1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform manipulations on basic blocks, and
10 // instructions contained within basic blocks.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/DomTreeUpdater.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/Analysis/PostDominators.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/IR/ValueHandle.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include <cassert>
45 #include <cstdint>
46 #include <string>
47 #include <utility>
48 #include <vector>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "basicblock-utils"
53 
54 void llvm::DetatchDeadBlocks(
55     ArrayRef<BasicBlock *> BBs,
56     SmallVectorImpl<DominatorTree::UpdateType> *Updates,
57     bool KeepOneInputPHIs) {
58   for (auto *BB : BBs) {
59     // Loop through all of our successors and make sure they know that one
60     // of their predecessors is going away.
61     SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
62     for (BasicBlock *Succ : successors(BB)) {
63       Succ->removePredecessor(BB, KeepOneInputPHIs);
64       if (Updates && UniqueSuccessors.insert(Succ).second)
65         Updates->push_back({DominatorTree::Delete, BB, Succ});
66     }
67 
68     // Zap all the instructions in the block.
69     while (!BB->empty()) {
70       Instruction &I = BB->back();
71       // If this instruction is used, replace uses with an arbitrary value.
72       // Because control flow can't get here, we don't care what we replace the
73       // value with.  Note that since this block is unreachable, and all values
74       // contained within it must dominate their uses, that all uses will
75       // eventually be removed (they are themselves dead).
76       if (!I.use_empty())
77         I.replaceAllUsesWith(UndefValue::get(I.getType()));
78       BB->getInstList().pop_back();
79     }
80     new UnreachableInst(BB->getContext(), BB);
81     assert(BB->getInstList().size() == 1 &&
82            isa<UnreachableInst>(BB->getTerminator()) &&
83            "The successor list of BB isn't empty before "
84            "applying corresponding DTU updates.");
85   }
86 }
87 
88 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
89                            bool KeepOneInputPHIs) {
90   DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
91 }
92 
93 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
94                             bool KeepOneInputPHIs) {
95 #ifndef NDEBUG
96   // Make sure that all predecessors of each dead block is also dead.
97   SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
98   assert(Dead.size() == BBs.size() && "Duplicating blocks?");
99   for (auto *BB : Dead)
100     for (BasicBlock *Pred : predecessors(BB))
101       assert(Dead.count(Pred) && "All predecessors must be dead!");
102 #endif
103 
104   SmallVector<DominatorTree::UpdateType, 4> Updates;
105   DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
106 
107   if (DTU)
108     DTU->applyUpdatesPermissive(Updates);
109 
110   for (BasicBlock *BB : BBs)
111     if (DTU)
112       DTU->deleteBB(BB);
113     else
114       BB->eraseFromParent();
115 }
116 
117 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
118                                       bool KeepOneInputPHIs) {
119   df_iterator_default_set<BasicBlock*> Reachable;
120 
121   // Mark all reachable blocks.
122   for (BasicBlock *BB : depth_first_ext(&F, Reachable))
123     (void)BB/* Mark all reachable blocks */;
124 
125   // Collect all dead blocks.
126   std::vector<BasicBlock*> DeadBlocks;
127   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
128     if (!Reachable.count(&*I)) {
129       BasicBlock *BB = &*I;
130       DeadBlocks.push_back(BB);
131     }
132 
133   // Delete the dead blocks.
134   DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
135 
136   return !DeadBlocks.empty();
137 }
138 
139 bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
140                                    MemoryDependenceResults *MemDep) {
141   if (!isa<PHINode>(BB->begin()))
142     return false;
143 
144   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
145     if (PN->getIncomingValue(0) != PN)
146       PN->replaceAllUsesWith(PN->getIncomingValue(0));
147     else
148       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
149 
150     if (MemDep)
151       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
152 
153     PN->eraseFromParent();
154   }
155   return true;
156 }
157 
158 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI,
159                           MemorySSAUpdater *MSSAU) {
160   // Recursively deleting a PHI may cause multiple PHIs to be deleted
161   // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
162   SmallVector<WeakTrackingVH, 8> PHIs;
163   for (PHINode &PN : BB->phis())
164     PHIs.push_back(&PN);
165 
166   bool Changed = false;
167   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
168     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
169       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU);
170 
171   return Changed;
172 }
173 
174 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
175                                      LoopInfo *LI, MemorySSAUpdater *MSSAU,
176                                      MemoryDependenceResults *MemDep,
177                                      bool PredecessorWithTwoSuccessors) {
178   if (BB->hasAddressTaken())
179     return false;
180 
181   // Can't merge if there are multiple predecessors, or no predecessors.
182   BasicBlock *PredBB = BB->getUniquePredecessor();
183   if (!PredBB) return false;
184 
185   // Don't break self-loops.
186   if (PredBB == BB) return false;
187   // Don't break unwinding instructions.
188   if (PredBB->getTerminator()->isExceptionalTerminator())
189     return false;
190 
191   // Can't merge if there are multiple distinct successors.
192   if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
193     return false;
194 
195   // Currently only allow PredBB to have two predecessors, one being BB.
196   // Update BI to branch to BB's only successor instead of BB.
197   BranchInst *PredBB_BI;
198   BasicBlock *NewSucc = nullptr;
199   unsigned FallThruPath;
200   if (PredecessorWithTwoSuccessors) {
201     if (!(PredBB_BI = dyn_cast<BranchInst>(PredBB->getTerminator())))
202       return false;
203     BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
204     if (!BB_JmpI || !BB_JmpI->isUnconditional())
205       return false;
206     NewSucc = BB_JmpI->getSuccessor(0);
207     FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
208   }
209 
210   // Can't merge if there is PHI loop.
211   for (PHINode &PN : BB->phis())
212     for (Value *IncValue : PN.incoming_values())
213       if (IncValue == &PN)
214         return false;
215 
216   LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
217                     << PredBB->getName() << "\n");
218 
219   // Begin by getting rid of unneeded PHIs.
220   SmallVector<AssertingVH<Value>, 4> IncomingValues;
221   if (isa<PHINode>(BB->front())) {
222     for (PHINode &PN : BB->phis())
223       if (!isa<PHINode>(PN.getIncomingValue(0)) ||
224           cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
225         IncomingValues.push_back(PN.getIncomingValue(0));
226     FoldSingleEntryPHINodes(BB, MemDep);
227   }
228 
229   // DTU update: Collect all the edges that exit BB.
230   // These dominator edges will be redirected from Pred.
231   std::vector<DominatorTree::UpdateType> Updates;
232   if (DTU) {
233     Updates.reserve(1 + (2 * succ_size(BB)));
234     // Add insert edges first. Experimentally, for the particular case of two
235     // blocks that can be merged, with a single successor and single predecessor
236     // respectively, it is beneficial to have all insert updates first. Deleting
237     // edges first may lead to unreachable blocks, followed by inserting edges
238     // making the blocks reachable again. Such DT updates lead to high compile
239     // times. We add inserts before deletes here to reduce compile time.
240     for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
241       // This successor of BB may already have PredBB as a predecessor.
242       if (!llvm::is_contained(successors(PredBB), *I))
243         Updates.push_back({DominatorTree::Insert, PredBB, *I});
244     for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
245       Updates.push_back({DominatorTree::Delete, BB, *I});
246     Updates.push_back({DominatorTree::Delete, PredBB, BB});
247   }
248 
249   Instruction *PTI = PredBB->getTerminator();
250   Instruction *STI = BB->getTerminator();
251   Instruction *Start = &*BB->begin();
252   // If there's nothing to move, mark the starting instruction as the last
253   // instruction in the block. Terminator instruction is handled separately.
254   if (Start == STI)
255     Start = PTI;
256 
257   // Move all definitions in the successor to the predecessor...
258   PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(),
259                                BB->begin(), STI->getIterator());
260 
261   if (MSSAU)
262     MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);
263 
264   // Make all PHI nodes that referred to BB now refer to Pred as their
265   // source...
266   BB->replaceAllUsesWith(PredBB);
267 
268   if (PredecessorWithTwoSuccessors) {
269     // Delete the unconditional branch from BB.
270     BB->getInstList().pop_back();
271 
272     // Update branch in the predecessor.
273     PredBB_BI->setSuccessor(FallThruPath, NewSucc);
274   } else {
275     // Delete the unconditional branch from the predecessor.
276     PredBB->getInstList().pop_back();
277 
278     // Move terminator instruction.
279     PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
280 
281     // Terminator may be a memory accessing instruction too.
282     if (MSSAU)
283       if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>(
284               MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator())))
285         MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End);
286   }
287   // Add unreachable to now empty BB.
288   new UnreachableInst(BB->getContext(), BB);
289 
290   // Inherit predecessors name if it exists.
291   if (!PredBB->hasName())
292     PredBB->takeName(BB);
293 
294   if (LI)
295     LI->removeBlock(BB);
296 
297   if (MemDep)
298     MemDep->invalidateCachedPredecessors();
299 
300   // Finally, erase the old block and update dominator info.
301   if (DTU) {
302     assert(BB->getInstList().size() == 1 &&
303            isa<UnreachableInst>(BB->getTerminator()) &&
304            "The successor list of BB isn't empty before "
305            "applying corresponding DTU updates.");
306     DTU->applyUpdatesPermissive(Updates);
307     DTU->deleteBB(BB);
308   } else {
309     BB->eraseFromParent(); // Nuke BB if DTU is nullptr.
310   }
311 
312   return true;
313 }
314 
315 bool llvm::MergeBlockSuccessorsIntoGivenBlocks(
316     SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU,
317     LoopInfo *LI) {
318   assert(!MergeBlocks.empty() && "MergeBlocks should not be empty");
319 
320   bool BlocksHaveBeenMerged = false;
321   while (!MergeBlocks.empty()) {
322     BasicBlock *BB = *MergeBlocks.begin();
323     BasicBlock *Dest = BB->getSingleSuccessor();
324     if (Dest && (!L || L->contains(Dest))) {
325       BasicBlock *Fold = Dest->getUniquePredecessor();
326       (void)Fold;
327       if (MergeBlockIntoPredecessor(Dest, DTU, LI)) {
328         assert(Fold == BB &&
329                "Expecting BB to be unique predecessor of the Dest block");
330         MergeBlocks.erase(Dest);
331         BlocksHaveBeenMerged = true;
332       } else
333         MergeBlocks.erase(BB);
334     } else
335       MergeBlocks.erase(BB);
336   }
337   return BlocksHaveBeenMerged;
338 }
339 
340 /// Remove redundant instructions within sequences of consecutive dbg.value
341 /// instructions. This is done using a backward scan to keep the last dbg.value
342 /// describing a specific variable/fragment.
343 ///
344 /// BackwardScan strategy:
345 /// ----------------------
346 /// Given a sequence of consecutive DbgValueInst like this
347 ///
348 ///   dbg.value ..., "x", FragmentX1  (*)
349 ///   dbg.value ..., "y", FragmentY1
350 ///   dbg.value ..., "x", FragmentX2
351 ///   dbg.value ..., "x", FragmentX1  (**)
352 ///
353 /// then the instruction marked with (*) can be removed (it is guaranteed to be
354 /// obsoleted by the instruction marked with (**) as the latter instruction is
355 /// describing the same variable using the same fragment info).
356 ///
357 /// Possible improvements:
358 /// - Check fully overlapping fragments and not only identical fragments.
359 /// - Support dbg.addr, dbg.declare. dbg.label, and possibly other meta
360 ///   instructions being part of the sequence of consecutive instructions.
361 static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
362   SmallVector<DbgValueInst *, 8> ToBeRemoved;
363   SmallDenseSet<DebugVariable> VariableSet;
364   for (auto &I : reverse(*BB)) {
365     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
366       DebugVariable Key(DVI->getVariable(),
367                         DVI->getExpression(),
368                         DVI->getDebugLoc()->getInlinedAt());
369       auto R = VariableSet.insert(Key);
370       // If the same variable fragment is described more than once it is enough
371       // to keep the last one (i.e. the first found since we for reverse
372       // iteration).
373       if (!R.second)
374         ToBeRemoved.push_back(DVI);
375       continue;
376     }
377     // Sequence with consecutive dbg.value instrs ended. Clear the map to
378     // restart identifying redundant instructions if case we find another
379     // dbg.value sequence.
380     VariableSet.clear();
381   }
382 
383   for (auto &Instr : ToBeRemoved)
384     Instr->eraseFromParent();
385 
386   return !ToBeRemoved.empty();
387 }
388 
389 /// Remove redundant dbg.value instructions using a forward scan. This can
390 /// remove a dbg.value instruction that is redundant due to indicating that a
391 /// variable has the same value as already being indicated by an earlier
392 /// dbg.value.
393 ///
394 /// ForwardScan strategy:
395 /// ---------------------
396 /// Given two identical dbg.value instructions, separated by a block of
397 /// instructions that isn't describing the same variable, like this
398 ///
399 ///   dbg.value X1, "x", FragmentX1  (**)
400 ///   <block of instructions, none being "dbg.value ..., "x", ...">
401 ///   dbg.value X1, "x", FragmentX1  (*)
402 ///
403 /// then the instruction marked with (*) can be removed. Variable "x" is already
404 /// described as being mapped to the SSA value X1.
405 ///
406 /// Possible improvements:
407 /// - Keep track of non-overlapping fragments.
408 static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
409   SmallVector<DbgValueInst *, 8> ToBeRemoved;
410   DenseMap<DebugVariable, std::pair<Value *, DIExpression *> > VariableMap;
411   for (auto &I : *BB) {
412     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
413       DebugVariable Key(DVI->getVariable(),
414                         NoneType(),
415                         DVI->getDebugLoc()->getInlinedAt());
416       auto VMI = VariableMap.find(Key);
417       // Update the map if we found a new value/expression describing the
418       // variable, or if the variable wasn't mapped already.
419       if (VMI == VariableMap.end() ||
420           VMI->second.first != DVI->getValue() ||
421           VMI->second.second != DVI->getExpression()) {
422         VariableMap[Key] = { DVI->getValue(), DVI->getExpression() };
423         continue;
424       }
425       // Found an identical mapping. Remember the instruction for later removal.
426       ToBeRemoved.push_back(DVI);
427     }
428   }
429 
430   for (auto &Instr : ToBeRemoved)
431     Instr->eraseFromParent();
432 
433   return !ToBeRemoved.empty();
434 }
435 
436 bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) {
437   bool MadeChanges = false;
438   // By using the "backward scan" strategy before the "forward scan" strategy we
439   // can remove both dbg.value (2) and (3) in a situation like this:
440   //
441   //   (1) dbg.value V1, "x", DIExpression()
442   //       ...
443   //   (2) dbg.value V2, "x", DIExpression()
444   //   (3) dbg.value V1, "x", DIExpression()
445   //
446   // The backward scan will remove (2), it is made obsolete by (3). After
447   // getting (2) out of the way, the foward scan will remove (3) since "x"
448   // already is described as having the value V1 at (1).
449   MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB);
450   MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB);
451 
452   if (MadeChanges)
453     LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: "
454                       << BB->getName() << "\n");
455   return MadeChanges;
456 }
457 
458 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
459                                 BasicBlock::iterator &BI, Value *V) {
460   Instruction &I = *BI;
461   // Replaces all of the uses of the instruction with uses of the value
462   I.replaceAllUsesWith(V);
463 
464   // Make sure to propagate a name if there is one already.
465   if (I.hasName() && !V->hasName())
466     V->takeName(&I);
467 
468   // Delete the unnecessary instruction now...
469   BI = BIL.erase(BI);
470 }
471 
472 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
473                                BasicBlock::iterator &BI, Instruction *I) {
474   assert(I->getParent() == nullptr &&
475          "ReplaceInstWithInst: Instruction already inserted into basic block!");
476 
477   // Copy debug location to newly added instruction, if it wasn't already set
478   // by the caller.
479   if (!I->getDebugLoc())
480     I->setDebugLoc(BI->getDebugLoc());
481 
482   // Insert the new instruction into the basic block...
483   BasicBlock::iterator New = BIL.insert(BI, I);
484 
485   // Replace all uses of the old instruction, and delete it.
486   ReplaceInstWithValue(BIL, BI, I);
487 
488   // Move BI back to point to the newly inserted instruction
489   BI = New;
490 }
491 
492 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
493   BasicBlock::iterator BI(From);
494   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
495 }
496 
497 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
498                             LoopInfo *LI, MemorySSAUpdater *MSSAU) {
499   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
500 
501   // If this is a critical edge, let SplitCriticalEdge do it.
502   Instruction *LatchTerm = BB->getTerminator();
503   if (SplitCriticalEdge(
504           LatchTerm, SuccNum,
505           CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()))
506     return LatchTerm->getSuccessor(SuccNum);
507 
508   // If the edge isn't critical, then BB has a single successor or Succ has a
509   // single pred.  Split the block.
510   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
511     // If the successor only has a single pred, split the top of the successor
512     // block.
513     assert(SP == BB && "CFG broken");
514     SP = nullptr;
515     return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, "", /*Before=*/true);
516   }
517 
518   // Otherwise, if BB has a single successor, split it at the bottom of the
519   // block.
520   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
521          "Should have a single succ!");
522   return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU);
523 }
524 
525 unsigned
526 llvm::SplitAllCriticalEdges(Function &F,
527                             const CriticalEdgeSplittingOptions &Options) {
528   unsigned NumBroken = 0;
529   for (BasicBlock &BB : F) {
530     Instruction *TI = BB.getTerminator();
531     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI) &&
532         !isa<CallBrInst>(TI))
533       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
534         if (SplitCriticalEdge(TI, i, Options))
535           ++NumBroken;
536   }
537   return NumBroken;
538 }
539 
540 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
541                              DominatorTree *DT, LoopInfo *LI,
542                              MemorySSAUpdater *MSSAU, const Twine &BBName,
543                              bool Before) {
544   if (Before)
545     return splitBlockBefore(Old, SplitPt, DT, LI, MSSAU, BBName);
546   BasicBlock::iterator SplitIt = SplitPt->getIterator();
547   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
548     ++SplitIt;
549   std::string Name = BBName.str();
550   BasicBlock *New = Old->splitBasicBlock(
551       SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
552 
553   // The new block lives in whichever loop the old one did. This preserves
554   // LCSSA as well, because we force the split point to be after any PHI nodes.
555   if (LI)
556     if (Loop *L = LI->getLoopFor(Old))
557       L->addBasicBlockToLoop(New, *LI);
558 
559   if (DT)
560     // Old dominates New. New node dominates all other nodes dominated by Old.
561     if (DomTreeNode *OldNode = DT->getNode(Old)) {
562       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
563 
564       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
565       for (DomTreeNode *I : Children)
566         DT->changeImmediateDominator(I, NewNode);
567     }
568 
569   // Move MemoryAccesses still tracked in Old, but part of New now.
570   // Update accesses in successor blocks accordingly.
571   if (MSSAU)
572     MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
573 
574   return New;
575 }
576 
577 BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, Instruction *SplitPt,
578                                    DominatorTree *DT, LoopInfo *LI,
579                                    MemorySSAUpdater *MSSAU,
580                                    const Twine &BBName) {
581 
582   BasicBlock::iterator SplitIt = SplitPt->getIterator();
583   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
584     ++SplitIt;
585   std::string Name = BBName.str();
586   BasicBlock *New = Old->splitBasicBlock(
587       SplitIt, Name.empty() ? Old->getName() + ".split" : Name,
588       /* Before=*/true);
589 
590   // The new block lives in whichever loop the old one did. This preserves
591   // LCSSA as well, because we force the split point to be after any PHI nodes.
592   if (LI)
593     if (Loop *L = LI->getLoopFor(Old))
594       L->addBasicBlockToLoop(New, *LI);
595 
596   if (DT) {
597     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
598     SmallVector<DominatorTree::UpdateType, 8> DTUpdates;
599     // New dominates Old. The predecessor nodes of the Old node dominate
600     // New node.
601     DTUpdates.push_back({DominatorTree::Insert, New, Old});
602     for (BasicBlock *Pred : predecessors(New))
603       if (DT->getNode(Pred)) {
604         DTUpdates.push_back({DominatorTree::Insert, Pred, New});
605         DTUpdates.push_back({DominatorTree::Delete, Pred, Old});
606       }
607 
608     DTU.applyUpdates(DTUpdates);
609     DTU.flush();
610 
611     // Move MemoryAccesses still tracked in Old, but part of New now.
612     // Update accesses in successor blocks accordingly.
613     if (MSSAU) {
614       MSSAU->applyUpdates(DTUpdates, *DT);
615       if (VerifyMemorySSA)
616         MSSAU->getMemorySSA()->verifyMemorySSA();
617     }
618   }
619   return New;
620 }
621 
622 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
623 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
624                                       ArrayRef<BasicBlock *> Preds,
625                                       DominatorTree *DT, LoopInfo *LI,
626                                       MemorySSAUpdater *MSSAU,
627                                       bool PreserveLCSSA, bool &HasLoopExit) {
628   // Update dominator tree if available.
629   if (DT) {
630     if (OldBB == DT->getRootNode()->getBlock()) {
631       assert(NewBB == &NewBB->getParent()->getEntryBlock());
632       DT->setNewRoot(NewBB);
633     } else {
634       // Split block expects NewBB to have a non-empty set of predecessors.
635       DT->splitBlock(NewBB);
636     }
637   }
638 
639   // Update MemoryPhis after split if MemorySSA is available
640   if (MSSAU)
641     MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
642 
643   // The rest of the logic is only relevant for updating the loop structures.
644   if (!LI)
645     return;
646 
647   assert(DT && "DT should be available to update LoopInfo!");
648   Loop *L = LI->getLoopFor(OldBB);
649 
650   // If we need to preserve loop analyses, collect some information about how
651   // this split will affect loops.
652   bool IsLoopEntry = !!L;
653   bool SplitMakesNewLoopHeader = false;
654   for (BasicBlock *Pred : Preds) {
655     // Preds that are not reachable from entry should not be used to identify if
656     // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
657     // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
658     // as true and make the NewBB the header of some loop. This breaks LI.
659     if (!DT->isReachableFromEntry(Pred))
660       continue;
661     // If we need to preserve LCSSA, determine if any of the preds is a loop
662     // exit.
663     if (PreserveLCSSA)
664       if (Loop *PL = LI->getLoopFor(Pred))
665         if (!PL->contains(OldBB))
666           HasLoopExit = true;
667 
668     // If we need to preserve LoopInfo, note whether any of the preds crosses
669     // an interesting loop boundary.
670     if (!L)
671       continue;
672     if (L->contains(Pred))
673       IsLoopEntry = false;
674     else
675       SplitMakesNewLoopHeader = true;
676   }
677 
678   // Unless we have a loop for OldBB, nothing else to do here.
679   if (!L)
680     return;
681 
682   if (IsLoopEntry) {
683     // Add the new block to the nearest enclosing loop (and not an adjacent
684     // loop). To find this, examine each of the predecessors and determine which
685     // loops enclose them, and select the most-nested loop which contains the
686     // loop containing the block being split.
687     Loop *InnermostPredLoop = nullptr;
688     for (BasicBlock *Pred : Preds) {
689       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
690         // Seek a loop which actually contains the block being split (to avoid
691         // adjacent loops).
692         while (PredLoop && !PredLoop->contains(OldBB))
693           PredLoop = PredLoop->getParentLoop();
694 
695         // Select the most-nested of these loops which contains the block.
696         if (PredLoop && PredLoop->contains(OldBB) &&
697             (!InnermostPredLoop ||
698              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
699           InnermostPredLoop = PredLoop;
700       }
701     }
702 
703     if (InnermostPredLoop)
704       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
705   } else {
706     L->addBasicBlockToLoop(NewBB, *LI);
707     if (SplitMakesNewLoopHeader)
708       L->moveToHeader(NewBB);
709   }
710 }
711 
712 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
713 /// This also updates AliasAnalysis, if available.
714 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
715                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
716                            bool HasLoopExit) {
717   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
718   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
719   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
720     PHINode *PN = cast<PHINode>(I++);
721 
722     // Check to see if all of the values coming in are the same.  If so, we
723     // don't need to create a new PHI node, unless it's needed for LCSSA.
724     Value *InVal = nullptr;
725     if (!HasLoopExit) {
726       InVal = PN->getIncomingValueForBlock(Preds[0]);
727       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
728         if (!PredSet.count(PN->getIncomingBlock(i)))
729           continue;
730         if (!InVal)
731           InVal = PN->getIncomingValue(i);
732         else if (InVal != PN->getIncomingValue(i)) {
733           InVal = nullptr;
734           break;
735         }
736       }
737     }
738 
739     if (InVal) {
740       // If all incoming values for the new PHI would be the same, just don't
741       // make a new PHI.  Instead, just remove the incoming values from the old
742       // PHI.
743 
744       // NOTE! This loop walks backwards for a reason! First off, this minimizes
745       // the cost of removal if we end up removing a large number of values, and
746       // second off, this ensures that the indices for the incoming values
747       // aren't invalidated when we remove one.
748       for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
749         if (PredSet.count(PN->getIncomingBlock(i)))
750           PN->removeIncomingValue(i, false);
751 
752       // Add an incoming value to the PHI node in the loop for the preheader
753       // edge.
754       PN->addIncoming(InVal, NewBB);
755       continue;
756     }
757 
758     // If the values coming into the block are not the same, we need a new
759     // PHI.
760     // Create the new PHI node, insert it into NewBB at the end of the block
761     PHINode *NewPHI =
762         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
763 
764     // NOTE! This loop walks backwards for a reason! First off, this minimizes
765     // the cost of removal if we end up removing a large number of values, and
766     // second off, this ensures that the indices for the incoming values aren't
767     // invalidated when we remove one.
768     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
769       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
770       if (PredSet.count(IncomingBB)) {
771         Value *V = PN->removeIncomingValue(i, false);
772         NewPHI->addIncoming(V, IncomingBB);
773       }
774     }
775 
776     PN->addIncoming(NewPHI, NewBB);
777   }
778 }
779 
780 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
781                                          ArrayRef<BasicBlock *> Preds,
782                                          const char *Suffix, DominatorTree *DT,
783                                          LoopInfo *LI, MemorySSAUpdater *MSSAU,
784                                          bool PreserveLCSSA) {
785   // Do not attempt to split that which cannot be split.
786   if (!BB->canSplitPredecessors())
787     return nullptr;
788 
789   // For the landingpads we need to act a bit differently.
790   // Delegate this work to the SplitLandingPadPredecessors.
791   if (BB->isLandingPad()) {
792     SmallVector<BasicBlock*, 2> NewBBs;
793     std::string NewName = std::string(Suffix) + ".split-lp";
794 
795     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT,
796                                 LI, MSSAU, PreserveLCSSA);
797     return NewBBs[0];
798   }
799 
800   // Create new basic block, insert right before the original block.
801   BasicBlock *NewBB = BasicBlock::Create(
802       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
803 
804   // The new block unconditionally branches to the old block.
805   BranchInst *BI = BranchInst::Create(BB, NewBB);
806 
807   Loop *L = nullptr;
808   BasicBlock *OldLatch = nullptr;
809   // Splitting the predecessors of a loop header creates a preheader block.
810   if (LI && LI->isLoopHeader(BB)) {
811     L = LI->getLoopFor(BB);
812     // Using the loop start line number prevents debuggers stepping into the
813     // loop body for this instruction.
814     BI->setDebugLoc(L->getStartLoc());
815 
816     // If BB is the header of the Loop, it is possible that the loop is
817     // modified, such that the current latch does not remain the latch of the
818     // loop. If that is the case, the loop metadata from the current latch needs
819     // to be applied to the new latch.
820     OldLatch = L->getLoopLatch();
821   } else
822     BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
823 
824   // Move the edges from Preds to point to NewBB instead of BB.
825   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
826     // This is slightly more strict than necessary; the minimum requirement
827     // is that there be no more than one indirectbr branching to BB. And
828     // all BlockAddress uses would need to be updated.
829     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
830            "Cannot split an edge from an IndirectBrInst");
831     assert(!isa<CallBrInst>(Preds[i]->getTerminator()) &&
832            "Cannot split an edge from a CallBrInst");
833     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
834   }
835 
836   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
837   // node becomes an incoming value for BB's phi node.  However, if the Preds
838   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
839   // account for the newly created predecessor.
840   if (Preds.empty()) {
841     // Insert dummy values as the incoming value.
842     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
843       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
844   }
845 
846   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
847   bool HasLoopExit = false;
848   UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, MSSAU, PreserveLCSSA,
849                             HasLoopExit);
850 
851   if (!Preds.empty()) {
852     // Update the PHI nodes in BB with the values coming from NewBB.
853     UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
854   }
855 
856   if (OldLatch) {
857     BasicBlock *NewLatch = L->getLoopLatch();
858     if (NewLatch != OldLatch) {
859       MDNode *MD = OldLatch->getTerminator()->getMetadata("llvm.loop");
860       NewLatch->getTerminator()->setMetadata("llvm.loop", MD);
861       OldLatch->getTerminator()->setMetadata("llvm.loop", nullptr);
862     }
863   }
864 
865   return NewBB;
866 }
867 
868 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
869                                        ArrayRef<BasicBlock *> Preds,
870                                        const char *Suffix1, const char *Suffix2,
871                                        SmallVectorImpl<BasicBlock *> &NewBBs,
872                                        DominatorTree *DT, LoopInfo *LI,
873                                        MemorySSAUpdater *MSSAU,
874                                        bool PreserveLCSSA) {
875   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
876 
877   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
878   // it right before the original block.
879   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
880                                           OrigBB->getName() + Suffix1,
881                                           OrigBB->getParent(), OrigBB);
882   NewBBs.push_back(NewBB1);
883 
884   // The new block unconditionally branches to the old block.
885   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
886   BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
887 
888   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
889   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
890     // This is slightly more strict than necessary; the minimum requirement
891     // is that there be no more than one indirectbr branching to BB. And
892     // all BlockAddress uses would need to be updated.
893     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
894            "Cannot split an edge from an IndirectBrInst");
895     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
896   }
897 
898   bool HasLoopExit = false;
899   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, MSSAU, PreserveLCSSA,
900                             HasLoopExit);
901 
902   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
903   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
904 
905   // Move the remaining edges from OrigBB to point to NewBB2.
906   SmallVector<BasicBlock*, 8> NewBB2Preds;
907   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
908        i != e; ) {
909     BasicBlock *Pred = *i++;
910     if (Pred == NewBB1) continue;
911     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
912            "Cannot split an edge from an IndirectBrInst");
913     NewBB2Preds.push_back(Pred);
914     e = pred_end(OrigBB);
915   }
916 
917   BasicBlock *NewBB2 = nullptr;
918   if (!NewBB2Preds.empty()) {
919     // Create another basic block for the rest of OrigBB's predecessors.
920     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
921                                 OrigBB->getName() + Suffix2,
922                                 OrigBB->getParent(), OrigBB);
923     NewBBs.push_back(NewBB2);
924 
925     // The new block unconditionally branches to the old block.
926     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
927     BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
928 
929     // Move the remaining edges from OrigBB to point to NewBB2.
930     for (BasicBlock *NewBB2Pred : NewBB2Preds)
931       NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
932 
933     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
934     HasLoopExit = false;
935     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, MSSAU,
936                               PreserveLCSSA, HasLoopExit);
937 
938     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
939     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
940   }
941 
942   LandingPadInst *LPad = OrigBB->getLandingPadInst();
943   Instruction *Clone1 = LPad->clone();
944   Clone1->setName(Twine("lpad") + Suffix1);
945   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
946 
947   if (NewBB2) {
948     Instruction *Clone2 = LPad->clone();
949     Clone2->setName(Twine("lpad") + Suffix2);
950     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
951 
952     // Create a PHI node for the two cloned landingpad instructions only
953     // if the original landingpad instruction has some uses.
954     if (!LPad->use_empty()) {
955       assert(!LPad->getType()->isTokenTy() &&
956              "Split cannot be applied if LPad is token type. Otherwise an "
957              "invalid PHINode of token type would be created.");
958       PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
959       PN->addIncoming(Clone1, NewBB1);
960       PN->addIncoming(Clone2, NewBB2);
961       LPad->replaceAllUsesWith(PN);
962     }
963     LPad->eraseFromParent();
964   } else {
965     // There is no second clone. Just replace the landing pad with the first
966     // clone.
967     LPad->replaceAllUsesWith(Clone1);
968     LPad->eraseFromParent();
969   }
970 }
971 
972 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
973                                              BasicBlock *Pred,
974                                              DomTreeUpdater *DTU) {
975   Instruction *UncondBranch = Pred->getTerminator();
976   // Clone the return and add it to the end of the predecessor.
977   Instruction *NewRet = RI->clone();
978   Pred->getInstList().push_back(NewRet);
979 
980   // If the return instruction returns a value, and if the value was a
981   // PHI node in "BB", propagate the right value into the return.
982   for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
983        i != e; ++i) {
984     Value *V = *i;
985     Instruction *NewBC = nullptr;
986     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
987       // Return value might be bitcasted. Clone and insert it before the
988       // return instruction.
989       V = BCI->getOperand(0);
990       NewBC = BCI->clone();
991       Pred->getInstList().insert(NewRet->getIterator(), NewBC);
992       *i = NewBC;
993     }
994 
995     Instruction *NewEV = nullptr;
996     if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
997       V = EVI->getOperand(0);
998       NewEV = EVI->clone();
999       if (NewBC) {
1000         NewBC->setOperand(0, NewEV);
1001         Pred->getInstList().insert(NewBC->getIterator(), NewEV);
1002       } else {
1003         Pred->getInstList().insert(NewRet->getIterator(), NewEV);
1004         *i = NewEV;
1005       }
1006     }
1007 
1008     if (PHINode *PN = dyn_cast<PHINode>(V)) {
1009       if (PN->getParent() == BB) {
1010         if (NewEV) {
1011           NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred));
1012         } else if (NewBC)
1013           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
1014         else
1015           *i = PN->getIncomingValueForBlock(Pred);
1016       }
1017     }
1018   }
1019 
1020   // Update any PHI nodes in the returning block to realize that we no
1021   // longer branch to them.
1022   BB->removePredecessor(Pred);
1023   UncondBranch->eraseFromParent();
1024 
1025   if (DTU)
1026     DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
1027 
1028   return cast<ReturnInst>(NewRet);
1029 }
1030 
1031 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
1032                                              Instruction *SplitBefore,
1033                                              bool Unreachable,
1034                                              MDNode *BranchWeights,
1035                                              DominatorTree *DT, LoopInfo *LI,
1036                                              BasicBlock *ThenBlock) {
1037   BasicBlock *Head = SplitBefore->getParent();
1038   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
1039   Instruction *HeadOldTerm = Head->getTerminator();
1040   LLVMContext &C = Head->getContext();
1041   Instruction *CheckTerm;
1042   bool CreateThenBlock = (ThenBlock == nullptr);
1043   if (CreateThenBlock) {
1044     ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1045     if (Unreachable)
1046       CheckTerm = new UnreachableInst(C, ThenBlock);
1047     else
1048       CheckTerm = BranchInst::Create(Tail, ThenBlock);
1049     CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
1050   } else
1051     CheckTerm = ThenBlock->getTerminator();
1052   BranchInst *HeadNewTerm =
1053     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
1054   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1055   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1056 
1057   if (DT) {
1058     if (DomTreeNode *OldNode = DT->getNode(Head)) {
1059       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
1060 
1061       DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
1062       for (DomTreeNode *Child : Children)
1063         DT->changeImmediateDominator(Child, NewNode);
1064 
1065       // Head dominates ThenBlock.
1066       if (CreateThenBlock)
1067         DT->addNewBlock(ThenBlock, Head);
1068       else
1069         DT->changeImmediateDominator(ThenBlock, Head);
1070     }
1071   }
1072 
1073   if (LI) {
1074     if (Loop *L = LI->getLoopFor(Head)) {
1075       L->addBasicBlockToLoop(ThenBlock, *LI);
1076       L->addBasicBlockToLoop(Tail, *LI);
1077     }
1078   }
1079 
1080   return CheckTerm;
1081 }
1082 
1083 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
1084                                          Instruction **ThenTerm,
1085                                          Instruction **ElseTerm,
1086                                          MDNode *BranchWeights) {
1087   BasicBlock *Head = SplitBefore->getParent();
1088   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
1089   Instruction *HeadOldTerm = Head->getTerminator();
1090   LLVMContext &C = Head->getContext();
1091   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1092   BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1093   *ThenTerm = BranchInst::Create(Tail, ThenBlock);
1094   (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
1095   *ElseTerm = BranchInst::Create(Tail, ElseBlock);
1096   (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
1097   BranchInst *HeadNewTerm =
1098     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
1099   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1100   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1101 }
1102 
1103 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
1104                              BasicBlock *&IfFalse) {
1105   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
1106   BasicBlock *Pred1 = nullptr;
1107   BasicBlock *Pred2 = nullptr;
1108 
1109   if (SomePHI) {
1110     if (SomePHI->getNumIncomingValues() != 2)
1111       return nullptr;
1112     Pred1 = SomePHI->getIncomingBlock(0);
1113     Pred2 = SomePHI->getIncomingBlock(1);
1114   } else {
1115     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1116     if (PI == PE) // No predecessor
1117       return nullptr;
1118     Pred1 = *PI++;
1119     if (PI == PE) // Only one predecessor
1120       return nullptr;
1121     Pred2 = *PI++;
1122     if (PI != PE) // More than two predecessors
1123       return nullptr;
1124   }
1125 
1126   // We can only handle branches.  Other control flow will be lowered to
1127   // branches if possible anyway.
1128   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
1129   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
1130   if (!Pred1Br || !Pred2Br)
1131     return nullptr;
1132 
1133   // Eliminate code duplication by ensuring that Pred1Br is conditional if
1134   // either are.
1135   if (Pred2Br->isConditional()) {
1136     // If both branches are conditional, we don't have an "if statement".  In
1137     // reality, we could transform this case, but since the condition will be
1138     // required anyway, we stand no chance of eliminating it, so the xform is
1139     // probably not profitable.
1140     if (Pred1Br->isConditional())
1141       return nullptr;
1142 
1143     std::swap(Pred1, Pred2);
1144     std::swap(Pred1Br, Pred2Br);
1145   }
1146 
1147   if (Pred1Br->isConditional()) {
1148     // The only thing we have to watch out for here is to make sure that Pred2
1149     // doesn't have incoming edges from other blocks.  If it does, the condition
1150     // doesn't dominate BB.
1151     if (!Pred2->getSinglePredecessor())
1152       return nullptr;
1153 
1154     // If we found a conditional branch predecessor, make sure that it branches
1155     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
1156     if (Pred1Br->getSuccessor(0) == BB &&
1157         Pred1Br->getSuccessor(1) == Pred2) {
1158       IfTrue = Pred1;
1159       IfFalse = Pred2;
1160     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
1161                Pred1Br->getSuccessor(1) == BB) {
1162       IfTrue = Pred2;
1163       IfFalse = Pred1;
1164     } else {
1165       // We know that one arm of the conditional goes to BB, so the other must
1166       // go somewhere unrelated, and this must not be an "if statement".
1167       return nullptr;
1168     }
1169 
1170     return Pred1Br->getCondition();
1171   }
1172 
1173   // Ok, if we got here, both predecessors end with an unconditional branch to
1174   // BB.  Don't panic!  If both blocks only have a single (identical)
1175   // predecessor, and THAT is a conditional branch, then we're all ok!
1176   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
1177   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
1178     return nullptr;
1179 
1180   // Otherwise, if this is a conditional branch, then we can use it!
1181   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
1182   if (!BI) return nullptr;
1183 
1184   assert(BI->isConditional() && "Two successors but not conditional?");
1185   if (BI->getSuccessor(0) == Pred1) {
1186     IfTrue = Pred1;
1187     IfFalse = Pred2;
1188   } else {
1189     IfTrue = Pred2;
1190     IfFalse = Pred1;
1191   }
1192   return BI->getCondition();
1193 }
1194 
1195 // After creating a control flow hub, the operands of PHINodes in an outgoing
1196 // block Out no longer match the predecessors of that block. Predecessors of Out
1197 // that are incoming blocks to the hub are now replaced by just one edge from
1198 // the hub. To match this new control flow, the corresponding values from each
1199 // PHINode must now be moved a new PHINode in the first guard block of the hub.
1200 //
1201 // This operation cannot be performed with SSAUpdater, because it involves one
1202 // new use: If the block Out is in the list of Incoming blocks, then the newly
1203 // created PHI in the Hub will use itself along that edge from Out to Hub.
1204 static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock,
1205                           const SetVector<BasicBlock *> &Incoming,
1206                           BasicBlock *FirstGuardBlock) {
1207   auto I = Out->begin();
1208   while (I != Out->end() && isa<PHINode>(I)) {
1209     auto Phi = cast<PHINode>(I);
1210     auto NewPhi =
1211         PHINode::Create(Phi->getType(), Incoming.size(),
1212                         Phi->getName() + ".moved", &FirstGuardBlock->back());
1213     for (auto In : Incoming) {
1214       Value *V = UndefValue::get(Phi->getType());
1215       if (In == Out) {
1216         V = NewPhi;
1217       } else if (Phi->getBasicBlockIndex(In) != -1) {
1218         V = Phi->removeIncomingValue(In, false);
1219       }
1220       NewPhi->addIncoming(V, In);
1221     }
1222     assert(NewPhi->getNumIncomingValues() == Incoming.size());
1223     if (Phi->getNumOperands() == 0) {
1224       Phi->replaceAllUsesWith(NewPhi);
1225       I = Phi->eraseFromParent();
1226       continue;
1227     }
1228     Phi->addIncoming(NewPhi, GuardBlock);
1229     ++I;
1230   }
1231 }
1232 
1233 using BBPredicates = DenseMap<BasicBlock *, PHINode *>;
1234 using BBSetVector = SetVector<BasicBlock *>;
1235 
1236 // Redirects the terminator of the incoming block to the first guard
1237 // block in the hub. The condition of the original terminator (if it
1238 // was conditional) and its original successors are returned as a
1239 // tuple <condition, succ0, succ1>. The function additionally filters
1240 // out successors that are not in the set of outgoing blocks.
1241 //
1242 // - condition is non-null iff the branch is conditional.
1243 // - Succ1 is non-null iff the sole/taken target is an outgoing block.
1244 // - Succ2 is non-null iff condition is non-null and the fallthrough
1245 //         target is an outgoing block.
1246 static std::tuple<Value *, BasicBlock *, BasicBlock *>
1247 redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock,
1248               const BBSetVector &Outgoing) {
1249   auto Branch = cast<BranchInst>(BB->getTerminator());
1250   auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr;
1251 
1252   BasicBlock *Succ0 = Branch->getSuccessor(0);
1253   BasicBlock *Succ1 = nullptr;
1254   Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr;
1255 
1256   if (Branch->isUnconditional()) {
1257     Branch->setSuccessor(0, FirstGuardBlock);
1258     assert(Succ0);
1259   } else {
1260     Succ1 = Branch->getSuccessor(1);
1261     Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr;
1262     assert(Succ0 || Succ1);
1263     if (Succ0 && !Succ1) {
1264       Branch->setSuccessor(0, FirstGuardBlock);
1265     } else if (Succ1 && !Succ0) {
1266       Branch->setSuccessor(1, FirstGuardBlock);
1267     } else {
1268       Branch->eraseFromParent();
1269       BranchInst::Create(FirstGuardBlock, BB);
1270     }
1271   }
1272 
1273   assert(Succ0 || Succ1);
1274   return std::make_tuple(Condition, Succ0, Succ1);
1275 }
1276 
1277 // Capture the existing control flow as guard predicates, and redirect
1278 // control flow from every incoming block to the first guard block in
1279 // the hub.
1280 //
1281 // There is one guard predicate for each outgoing block OutBB. The
1282 // predicate is a PHINode with one input for each InBB which
1283 // represents whether the hub should transfer control flow to OutBB if
1284 // it arrived from InBB. These predicates are NOT ORTHOGONAL. The Hub
1285 // evaluates them in the same order as the Outgoing set-vector, and
1286 // control branches to the first outgoing block whose predicate
1287 // evaluates to true.
1288 static void convertToGuardPredicates(
1289     BasicBlock *FirstGuardBlock, BBPredicates &GuardPredicates,
1290     SmallVectorImpl<WeakVH> &DeletionCandidates, const BBSetVector &Incoming,
1291     const BBSetVector &Outgoing) {
1292   auto &Context = Incoming.front()->getContext();
1293   auto BoolTrue = ConstantInt::getTrue(Context);
1294   auto BoolFalse = ConstantInt::getFalse(Context);
1295 
1296   // The predicate for the last outgoing is trivially true, and so we
1297   // process only the first N-1 successors.
1298   for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1299     auto Out = Outgoing[i];
1300     LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n");
1301     auto Phi =
1302         PHINode::Create(Type::getInt1Ty(Context), Incoming.size(),
1303                         StringRef("Guard.") + Out->getName(), FirstGuardBlock);
1304     GuardPredicates[Out] = Phi;
1305   }
1306 
1307   for (auto In : Incoming) {
1308     Value *Condition;
1309     BasicBlock *Succ0;
1310     BasicBlock *Succ1;
1311     std::tie(Condition, Succ0, Succ1) =
1312         redirectToHub(In, FirstGuardBlock, Outgoing);
1313 
1314     // Optimization: Consider an incoming block A with both successors
1315     // Succ0 and Succ1 in the set of outgoing blocks. The predicates
1316     // for Succ0 and Succ1 complement each other. If Succ0 is visited
1317     // first in the loop below, control will branch to Succ0 using the
1318     // corresponding predicate. But if that branch is not taken, then
1319     // control must reach Succ1, which means that the predicate for
1320     // Succ1 is always true.
1321     bool OneSuccessorDone = false;
1322     for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1323       auto Out = Outgoing[i];
1324       auto Phi = GuardPredicates[Out];
1325       if (Out != Succ0 && Out != Succ1) {
1326         Phi->addIncoming(BoolFalse, In);
1327         continue;
1328       }
1329       // Optimization: When only one successor is an outgoing block,
1330       // the predicate is always true.
1331       if (!Succ0 || !Succ1 || OneSuccessorDone) {
1332         Phi->addIncoming(BoolTrue, In);
1333         continue;
1334       }
1335       assert(Succ0 && Succ1);
1336       OneSuccessorDone = true;
1337       if (Out == Succ0) {
1338         Phi->addIncoming(Condition, In);
1339         continue;
1340       }
1341       auto Inverted = invertCondition(Condition);
1342       DeletionCandidates.push_back(Condition);
1343       Phi->addIncoming(Inverted, In);
1344     }
1345   }
1346 }
1347 
1348 // For each outgoing block OutBB, create a guard block in the Hub. The
1349 // first guard block was already created outside, and available as the
1350 // first element in the vector of guard blocks.
1351 //
1352 // Each guard block terminates in a conditional branch that transfers
1353 // control to the corresponding outgoing block or the next guard
1354 // block. The last guard block has two outgoing blocks as successors
1355 // since the condition for the final outgoing block is trivially
1356 // true. So we create one less block (including the first guard block)
1357 // than the number of outgoing blocks.
1358 static void createGuardBlocks(SmallVectorImpl<BasicBlock *> &GuardBlocks,
1359                               Function *F, const BBSetVector &Outgoing,
1360                               BBPredicates &GuardPredicates, StringRef Prefix) {
1361   for (int i = 0, e = Outgoing.size() - 2; i != e; ++i) {
1362     GuardBlocks.push_back(
1363         BasicBlock::Create(F->getContext(), Prefix + ".guard", F));
1364   }
1365   assert(GuardBlocks.size() == GuardPredicates.size());
1366 
1367   // To help keep the loop simple, temporarily append the last
1368   // outgoing block to the list of guard blocks.
1369   GuardBlocks.push_back(Outgoing.back());
1370 
1371   for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) {
1372     auto Out = Outgoing[i];
1373     assert(GuardPredicates.count(Out));
1374     BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out],
1375                        GuardBlocks[i]);
1376   }
1377 
1378   // Remove the last block from the guard list.
1379   GuardBlocks.pop_back();
1380 }
1381 
1382 BasicBlock *llvm::CreateControlFlowHub(
1383     DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks,
1384     const BBSetVector &Incoming, const BBSetVector &Outgoing,
1385     const StringRef Prefix) {
1386   auto F = Incoming.front()->getParent();
1387   auto FirstGuardBlock =
1388       BasicBlock::Create(F->getContext(), Prefix + ".guard", F);
1389 
1390   SmallVector<DominatorTree::UpdateType, 16> Updates;
1391   if (DTU) {
1392     for (auto In : Incoming) {
1393       for (auto Succ : successors(In)) {
1394         if (Outgoing.count(Succ))
1395           Updates.push_back({DominatorTree::Delete, In, Succ});
1396       }
1397       Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock});
1398     }
1399   }
1400 
1401   BBPredicates GuardPredicates;
1402   SmallVector<WeakVH, 8> DeletionCandidates;
1403   convertToGuardPredicates(FirstGuardBlock, GuardPredicates, DeletionCandidates,
1404                            Incoming, Outgoing);
1405 
1406   GuardBlocks.push_back(FirstGuardBlock);
1407   createGuardBlocks(GuardBlocks, F, Outgoing, GuardPredicates, Prefix);
1408 
1409   // Update the PHINodes in each outgoing block to match the new control flow.
1410   for (int i = 0, e = GuardBlocks.size(); i != e; ++i) {
1411     reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock);
1412   }
1413   reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock);
1414 
1415   if (DTU) {
1416     int NumGuards = GuardBlocks.size();
1417     assert((int)Outgoing.size() == NumGuards + 1);
1418     for (int i = 0; i != NumGuards - 1; ++i) {
1419       Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]});
1420       Updates.push_back(
1421           {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]});
1422     }
1423     Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
1424                        Outgoing[NumGuards - 1]});
1425     Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
1426                        Outgoing[NumGuards]});
1427     DTU->applyUpdates(Updates);
1428   }
1429 
1430   for (auto I : DeletionCandidates) {
1431     if (I->use_empty())
1432       if (auto Inst = dyn_cast_or_null<Instruction>(I))
1433         Inst->eraseFromParent();
1434   }
1435 
1436   return FirstGuardBlock;
1437 }
1438