1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform manipulations on basic blocks, and 10 // instructions contained within basic blocks. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/DomTreeUpdater.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 23 #include "llvm/Analysis/MemorySSAUpdater.h" 24 #include "llvm/Analysis/PostDominators.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/InstrTypes.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/PseudoProbe.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/User.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/IR/ValueHandle.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Transforms/Utils/Local.h" 45 #include <cassert> 46 #include <cstdint> 47 #include <string> 48 #include <utility> 49 #include <vector> 50 51 using namespace llvm; 52 53 #define DEBUG_TYPE "basicblock-utils" 54 55 void llvm::DetatchDeadBlocks( 56 ArrayRef<BasicBlock *> BBs, 57 SmallVectorImpl<DominatorTree::UpdateType> *Updates, 58 bool KeepOneInputPHIs) { 59 for (auto *BB : BBs) { 60 // Loop through all of our successors and make sure they know that one 61 // of their predecessors is going away. 62 SmallPtrSet<BasicBlock *, 4> UniqueSuccessors; 63 for (BasicBlock *Succ : successors(BB)) { 64 Succ->removePredecessor(BB, KeepOneInputPHIs); 65 if (Updates && UniqueSuccessors.insert(Succ).second) 66 Updates->push_back({DominatorTree::Delete, BB, Succ}); 67 } 68 69 // Zap all the instructions in the block. 70 while (!BB->empty()) { 71 Instruction &I = BB->back(); 72 // If this instruction is used, replace uses with an arbitrary value. 73 // Because control flow can't get here, we don't care what we replace the 74 // value with. Note that since this block is unreachable, and all values 75 // contained within it must dominate their uses, that all uses will 76 // eventually be removed (they are themselves dead). 77 if (!I.use_empty()) 78 I.replaceAllUsesWith(UndefValue::get(I.getType())); 79 BB->getInstList().pop_back(); 80 } 81 new UnreachableInst(BB->getContext(), BB); 82 assert(BB->getInstList().size() == 1 && 83 isa<UnreachableInst>(BB->getTerminator()) && 84 "The successor list of BB isn't empty before " 85 "applying corresponding DTU updates."); 86 } 87 } 88 89 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU, 90 bool KeepOneInputPHIs) { 91 DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs); 92 } 93 94 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU, 95 bool KeepOneInputPHIs) { 96 #ifndef NDEBUG 97 // Make sure that all predecessors of each dead block is also dead. 98 SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end()); 99 assert(Dead.size() == BBs.size() && "Duplicating blocks?"); 100 for (auto *BB : Dead) 101 for (BasicBlock *Pred : predecessors(BB)) 102 assert(Dead.count(Pred) && "All predecessors must be dead!"); 103 #endif 104 105 SmallVector<DominatorTree::UpdateType, 4> Updates; 106 DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs); 107 108 if (DTU) 109 DTU->applyUpdates(Updates); 110 111 for (BasicBlock *BB : BBs) 112 if (DTU) 113 DTU->deleteBB(BB); 114 else 115 BB->eraseFromParent(); 116 } 117 118 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 119 bool KeepOneInputPHIs) { 120 df_iterator_default_set<BasicBlock*> Reachable; 121 122 // Mark all reachable blocks. 123 for (BasicBlock *BB : depth_first_ext(&F, Reachable)) 124 (void)BB/* Mark all reachable blocks */; 125 126 // Collect all dead blocks. 127 std::vector<BasicBlock*> DeadBlocks; 128 for (BasicBlock &BB : F) 129 if (!Reachable.count(&BB)) 130 DeadBlocks.push_back(&BB); 131 132 // Delete the dead blocks. 133 DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs); 134 135 return !DeadBlocks.empty(); 136 } 137 138 bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB, 139 MemoryDependenceResults *MemDep) { 140 if (!isa<PHINode>(BB->begin())) 141 return false; 142 143 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 144 if (PN->getIncomingValue(0) != PN) 145 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 146 else 147 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 148 149 if (MemDep) 150 MemDep->removeInstruction(PN); // Memdep updates AA itself. 151 152 PN->eraseFromParent(); 153 } 154 return true; 155 } 156 157 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI, 158 MemorySSAUpdater *MSSAU) { 159 // Recursively deleting a PHI may cause multiple PHIs to be deleted 160 // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete. 161 SmallVector<WeakTrackingVH, 8> PHIs; 162 for (PHINode &PN : BB->phis()) 163 PHIs.push_back(&PN); 164 165 bool Changed = false; 166 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 167 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) 168 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU); 169 170 return Changed; 171 } 172 173 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU, 174 LoopInfo *LI, MemorySSAUpdater *MSSAU, 175 MemoryDependenceResults *MemDep, 176 bool PredecessorWithTwoSuccessors) { 177 if (BB->hasAddressTaken()) 178 return false; 179 180 // Can't merge if there are multiple predecessors, or no predecessors. 181 BasicBlock *PredBB = BB->getUniquePredecessor(); 182 if (!PredBB) return false; 183 184 // Don't break self-loops. 185 if (PredBB == BB) return false; 186 // Don't break unwinding instructions. 187 if (PredBB->getTerminator()->isExceptionalTerminator()) 188 return false; 189 190 // Can't merge if there are multiple distinct successors. 191 if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB) 192 return false; 193 194 // Currently only allow PredBB to have two predecessors, one being BB. 195 // Update BI to branch to BB's only successor instead of BB. 196 BranchInst *PredBB_BI; 197 BasicBlock *NewSucc = nullptr; 198 unsigned FallThruPath; 199 if (PredecessorWithTwoSuccessors) { 200 if (!(PredBB_BI = dyn_cast<BranchInst>(PredBB->getTerminator()))) 201 return false; 202 BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator()); 203 if (!BB_JmpI || !BB_JmpI->isUnconditional()) 204 return false; 205 NewSucc = BB_JmpI->getSuccessor(0); 206 FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1; 207 } 208 209 // Can't merge if there is PHI loop. 210 for (PHINode &PN : BB->phis()) 211 if (llvm::is_contained(PN.incoming_values(), &PN)) 212 return false; 213 214 LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into " 215 << PredBB->getName() << "\n"); 216 217 // Begin by getting rid of unneeded PHIs. 218 SmallVector<AssertingVH<Value>, 4> IncomingValues; 219 if (isa<PHINode>(BB->front())) { 220 for (PHINode &PN : BB->phis()) 221 if (!isa<PHINode>(PN.getIncomingValue(0)) || 222 cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB) 223 IncomingValues.push_back(PN.getIncomingValue(0)); 224 FoldSingleEntryPHINodes(BB, MemDep); 225 } 226 227 // DTU update: Collect all the edges that exit BB. 228 // These dominator edges will be redirected from Pred. 229 std::vector<DominatorTree::UpdateType> Updates; 230 if (DTU) { 231 SmallPtrSet<BasicBlock *, 2> SuccsOfBB(succ_begin(BB), succ_end(BB)); 232 SmallPtrSet<BasicBlock *, 2> SuccsOfPredBB(succ_begin(PredBB), 233 succ_begin(PredBB)); 234 Updates.reserve(Updates.size() + 2 * SuccsOfBB.size() + 1); 235 // Add insert edges first. Experimentally, for the particular case of two 236 // blocks that can be merged, with a single successor and single predecessor 237 // respectively, it is beneficial to have all insert updates first. Deleting 238 // edges first may lead to unreachable blocks, followed by inserting edges 239 // making the blocks reachable again. Such DT updates lead to high compile 240 // times. We add inserts before deletes here to reduce compile time. 241 for (BasicBlock *SuccOfBB : SuccsOfBB) 242 // This successor of BB may already be a PredBB's successor. 243 if (!SuccsOfPredBB.contains(SuccOfBB)) 244 Updates.push_back({DominatorTree::Insert, PredBB, SuccOfBB}); 245 for (BasicBlock *SuccOfBB : SuccsOfBB) 246 Updates.push_back({DominatorTree::Delete, BB, SuccOfBB}); 247 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 248 } 249 250 Instruction *PTI = PredBB->getTerminator(); 251 Instruction *STI = BB->getTerminator(); 252 Instruction *Start = &*BB->begin(); 253 // If there's nothing to move, mark the starting instruction as the last 254 // instruction in the block. Terminator instruction is handled separately. 255 if (Start == STI) 256 Start = PTI; 257 258 // Move all definitions in the successor to the predecessor... 259 PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(), 260 BB->begin(), STI->getIterator()); 261 262 if (MSSAU) 263 MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start); 264 265 // Make all PHI nodes that referred to BB now refer to Pred as their 266 // source... 267 BB->replaceAllUsesWith(PredBB); 268 269 if (PredecessorWithTwoSuccessors) { 270 // Delete the unconditional branch from BB. 271 BB->getInstList().pop_back(); 272 273 // Update branch in the predecessor. 274 PredBB_BI->setSuccessor(FallThruPath, NewSucc); 275 } else { 276 // Delete the unconditional branch from the predecessor. 277 PredBB->getInstList().pop_back(); 278 279 // Move terminator instruction. 280 PredBB->getInstList().splice(PredBB->end(), BB->getInstList()); 281 282 // Terminator may be a memory accessing instruction too. 283 if (MSSAU) 284 if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>( 285 MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator()))) 286 MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End); 287 } 288 // Add unreachable to now empty BB. 289 new UnreachableInst(BB->getContext(), BB); 290 291 // Inherit predecessors name if it exists. 292 if (!PredBB->hasName()) 293 PredBB->takeName(BB); 294 295 if (LI) 296 LI->removeBlock(BB); 297 298 if (MemDep) 299 MemDep->invalidateCachedPredecessors(); 300 301 // Finally, erase the old block and update dominator info. 302 if (DTU) { 303 assert(BB->getInstList().size() == 1 && 304 isa<UnreachableInst>(BB->getTerminator()) && 305 "The successor list of BB isn't empty before " 306 "applying corresponding DTU updates."); 307 DTU->applyUpdates(Updates); 308 DTU->deleteBB(BB); 309 } else { 310 BB->eraseFromParent(); // Nuke BB if DTU is nullptr. 311 } 312 313 return true; 314 } 315 316 bool llvm::MergeBlockSuccessorsIntoGivenBlocks( 317 SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU, 318 LoopInfo *LI) { 319 assert(!MergeBlocks.empty() && "MergeBlocks should not be empty"); 320 321 bool BlocksHaveBeenMerged = false; 322 while (!MergeBlocks.empty()) { 323 BasicBlock *BB = *MergeBlocks.begin(); 324 BasicBlock *Dest = BB->getSingleSuccessor(); 325 if (Dest && (!L || L->contains(Dest))) { 326 BasicBlock *Fold = Dest->getUniquePredecessor(); 327 (void)Fold; 328 if (MergeBlockIntoPredecessor(Dest, DTU, LI)) { 329 assert(Fold == BB && 330 "Expecting BB to be unique predecessor of the Dest block"); 331 MergeBlocks.erase(Dest); 332 BlocksHaveBeenMerged = true; 333 } else 334 MergeBlocks.erase(BB); 335 } else 336 MergeBlocks.erase(BB); 337 } 338 return BlocksHaveBeenMerged; 339 } 340 341 /// Remove redundant instructions within sequences of consecutive dbg.value 342 /// instructions. This is done using a backward scan to keep the last dbg.value 343 /// describing a specific variable/fragment. 344 /// 345 /// BackwardScan strategy: 346 /// ---------------------- 347 /// Given a sequence of consecutive DbgValueInst like this 348 /// 349 /// dbg.value ..., "x", FragmentX1 (*) 350 /// dbg.value ..., "y", FragmentY1 351 /// dbg.value ..., "x", FragmentX2 352 /// dbg.value ..., "x", FragmentX1 (**) 353 /// 354 /// then the instruction marked with (*) can be removed (it is guaranteed to be 355 /// obsoleted by the instruction marked with (**) as the latter instruction is 356 /// describing the same variable using the same fragment info). 357 /// 358 /// Possible improvements: 359 /// - Check fully overlapping fragments and not only identical fragments. 360 /// - Support dbg.addr, dbg.declare. dbg.label, and possibly other meta 361 /// instructions being part of the sequence of consecutive instructions. 362 static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) { 363 SmallVector<DbgValueInst *, 8> ToBeRemoved; 364 SmallDenseSet<DebugVariable> VariableSet; 365 for (auto &I : reverse(*BB)) { 366 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) { 367 DebugVariable Key(DVI->getVariable(), 368 DVI->getExpression(), 369 DVI->getDebugLoc()->getInlinedAt()); 370 auto R = VariableSet.insert(Key); 371 // If the same variable fragment is described more than once it is enough 372 // to keep the last one (i.e. the first found since we for reverse 373 // iteration). 374 if (!R.second) 375 ToBeRemoved.push_back(DVI); 376 continue; 377 } 378 // Sequence with consecutive dbg.value instrs ended. Clear the map to 379 // restart identifying redundant instructions if case we find another 380 // dbg.value sequence. 381 VariableSet.clear(); 382 } 383 384 for (auto &Instr : ToBeRemoved) 385 Instr->eraseFromParent(); 386 387 return !ToBeRemoved.empty(); 388 } 389 390 /// Remove redundant dbg.value instructions using a forward scan. This can 391 /// remove a dbg.value instruction that is redundant due to indicating that a 392 /// variable has the same value as already being indicated by an earlier 393 /// dbg.value. 394 /// 395 /// ForwardScan strategy: 396 /// --------------------- 397 /// Given two identical dbg.value instructions, separated by a block of 398 /// instructions that isn't describing the same variable, like this 399 /// 400 /// dbg.value X1, "x", FragmentX1 (**) 401 /// <block of instructions, none being "dbg.value ..., "x", ..."> 402 /// dbg.value X1, "x", FragmentX1 (*) 403 /// 404 /// then the instruction marked with (*) can be removed. Variable "x" is already 405 /// described as being mapped to the SSA value X1. 406 /// 407 /// Possible improvements: 408 /// - Keep track of non-overlapping fragments. 409 static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) { 410 SmallVector<DbgValueInst *, 8> ToBeRemoved; 411 DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>> 412 VariableMap; 413 for (auto &I : *BB) { 414 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) { 415 DebugVariable Key(DVI->getVariable(), 416 NoneType(), 417 DVI->getDebugLoc()->getInlinedAt()); 418 auto VMI = VariableMap.find(Key); 419 // Update the map if we found a new value/expression describing the 420 // variable, or if the variable wasn't mapped already. 421 SmallVector<Value *, 4> Values(DVI->getValues()); 422 if (VMI == VariableMap.end() || VMI->second.first != Values || 423 VMI->second.second != DVI->getExpression()) { 424 VariableMap[Key] = {Values, DVI->getExpression()}; 425 continue; 426 } 427 // Found an identical mapping. Remember the instruction for later removal. 428 ToBeRemoved.push_back(DVI); 429 } 430 } 431 432 for (auto &Instr : ToBeRemoved) 433 Instr->eraseFromParent(); 434 435 return !ToBeRemoved.empty(); 436 } 437 438 bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB, bool RemovePseudoOp) { 439 bool MadeChanges = false; 440 // By using the "backward scan" strategy before the "forward scan" strategy we 441 // can remove both dbg.value (2) and (3) in a situation like this: 442 // 443 // (1) dbg.value V1, "x", DIExpression() 444 // ... 445 // (2) dbg.value V2, "x", DIExpression() 446 // (3) dbg.value V1, "x", DIExpression() 447 // 448 // The backward scan will remove (2), it is made obsolete by (3). After 449 // getting (2) out of the way, the foward scan will remove (3) since "x" 450 // already is described as having the value V1 at (1). 451 MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB); 452 MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB); 453 if (RemovePseudoOp) 454 MadeChanges |= removeRedundantPseudoProbes(BB); 455 456 if (MadeChanges) 457 LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: " 458 << BB->getName() << "\n"); 459 return MadeChanges; 460 } 461 462 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL, 463 BasicBlock::iterator &BI, Value *V) { 464 Instruction &I = *BI; 465 // Replaces all of the uses of the instruction with uses of the value 466 I.replaceAllUsesWith(V); 467 468 // Make sure to propagate a name if there is one already. 469 if (I.hasName() && !V->hasName()) 470 V->takeName(&I); 471 472 // Delete the unnecessary instruction now... 473 BI = BIL.erase(BI); 474 } 475 476 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL, 477 BasicBlock::iterator &BI, Instruction *I) { 478 assert(I->getParent() == nullptr && 479 "ReplaceInstWithInst: Instruction already inserted into basic block!"); 480 481 // Copy debug location to newly added instruction, if it wasn't already set 482 // by the caller. 483 if (!I->getDebugLoc()) 484 I->setDebugLoc(BI->getDebugLoc()); 485 486 // Insert the new instruction into the basic block... 487 BasicBlock::iterator New = BIL.insert(BI, I); 488 489 // Replace all uses of the old instruction, and delete it. 490 ReplaceInstWithValue(BIL, BI, I); 491 492 // Move BI back to point to the newly inserted instruction 493 BI = New; 494 } 495 496 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { 497 BasicBlock::iterator BI(From); 498 ReplaceInstWithInst(From->getParent()->getInstList(), BI, To); 499 } 500 501 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT, 502 LoopInfo *LI, MemorySSAUpdater *MSSAU, 503 const Twine &BBName) { 504 unsigned SuccNum = GetSuccessorNumber(BB, Succ); 505 506 Instruction *LatchTerm = BB->getTerminator(); 507 508 CriticalEdgeSplittingOptions Options = 509 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA(); 510 511 if ((isCriticalEdge(LatchTerm, SuccNum, Options.MergeIdenticalEdges))) { 512 // If it is a critical edge, and the succesor is an exception block, handle 513 // the split edge logic in this specific function 514 if (Succ->isEHPad()) 515 return ehAwareSplitEdge(BB, Succ, nullptr, nullptr, Options, BBName); 516 517 // If this is a critical edge, let SplitKnownCriticalEdge do it. 518 return SplitKnownCriticalEdge(LatchTerm, SuccNum, Options, BBName); 519 } 520 521 // If the edge isn't critical, then BB has a single successor or Succ has a 522 // single pred. Split the block. 523 if (BasicBlock *SP = Succ->getSinglePredecessor()) { 524 // If the successor only has a single pred, split the top of the successor 525 // block. 526 assert(SP == BB && "CFG broken"); 527 SP = nullptr; 528 return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName, 529 /*Before=*/true); 530 } 531 532 // Otherwise, if BB has a single successor, split it at the bottom of the 533 // block. 534 assert(BB->getTerminator()->getNumSuccessors() == 1 && 535 "Should have a single succ!"); 536 return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName); 537 } 538 539 void llvm::setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ) { 540 if (auto *II = dyn_cast<InvokeInst>(TI)) 541 II->setUnwindDest(Succ); 542 else if (auto *CS = dyn_cast<CatchSwitchInst>(TI)) 543 CS->setUnwindDest(Succ); 544 else if (auto *CR = dyn_cast<CleanupReturnInst>(TI)) 545 CR->setUnwindDest(Succ); 546 else 547 llvm_unreachable("unexpected terminator instruction"); 548 } 549 550 void llvm::updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred, 551 BasicBlock *NewPred, PHINode *Until) { 552 int BBIdx = 0; 553 for (PHINode &PN : DestBB->phis()) { 554 // We manually update the LandingPadReplacement PHINode and it is the last 555 // PHI Node. So, if we find it, we are done. 556 if (Until == &PN) 557 break; 558 559 // Reuse the previous value of BBIdx if it lines up. In cases where we 560 // have multiple phi nodes with *lots* of predecessors, this is a speed 561 // win because we don't have to scan the PHI looking for TIBB. This 562 // happens because the BB list of PHI nodes are usually in the same 563 // order. 564 if (PN.getIncomingBlock(BBIdx) != OldPred) 565 BBIdx = PN.getBasicBlockIndex(OldPred); 566 567 assert(BBIdx != -1 && "Invalid PHI Index!"); 568 PN.setIncomingBlock(BBIdx, NewPred); 569 } 570 } 571 572 BasicBlock *llvm::ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ, 573 LandingPadInst *OriginalPad, 574 PHINode *LandingPadReplacement, 575 const CriticalEdgeSplittingOptions &Options, 576 const Twine &BBName) { 577 578 auto *PadInst = Succ->getFirstNonPHI(); 579 if (!LandingPadReplacement && !PadInst->isEHPad()) 580 return SplitEdge(BB, Succ, Options.DT, Options.LI, Options.MSSAU, BBName); 581 582 auto *LI = Options.LI; 583 SmallVector<BasicBlock *, 4> LoopPreds; 584 // Check if extra modifications will be required to preserve loop-simplify 585 // form after splitting. If it would require splitting blocks with IndirectBr 586 // terminators, bail out if preserving loop-simplify form is requested. 587 if (Options.PreserveLoopSimplify && LI) { 588 if (Loop *BBLoop = LI->getLoopFor(BB)) { 589 590 // The only way that we can break LoopSimplify form by splitting a 591 // critical edge is when there exists some edge from BBLoop to Succ *and* 592 // the only edge into Succ from outside of BBLoop is that of NewBB after 593 // the split. If the first isn't true, then LoopSimplify still holds, 594 // NewBB is the new exit block and it has no non-loop predecessors. If the 595 // second isn't true, then Succ was not in LoopSimplify form prior to 596 // the split as it had a non-loop predecessor. In both of these cases, 597 // the predecessor must be directly in BBLoop, not in a subloop, or again 598 // LoopSimplify doesn't hold. 599 for (BasicBlock *P : predecessors(Succ)) { 600 if (P == BB) 601 continue; // The new block is known. 602 if (LI->getLoopFor(P) != BBLoop) { 603 // Loop is not in LoopSimplify form, no need to re simplify after 604 // splitting edge. 605 LoopPreds.clear(); 606 break; 607 } 608 LoopPreds.push_back(P); 609 } 610 // Loop-simplify form can be preserved, if we can split all in-loop 611 // predecessors. 612 if (any_of(LoopPreds, [](BasicBlock *Pred) { 613 return isa<IndirectBrInst>(Pred->getTerminator()); 614 })) { 615 return nullptr; 616 } 617 } 618 } 619 620 auto *NewBB = 621 BasicBlock::Create(BB->getContext(), BBName, BB->getParent(), Succ); 622 setUnwindEdgeTo(BB->getTerminator(), NewBB); 623 updatePhiNodes(Succ, BB, NewBB, LandingPadReplacement); 624 625 if (LandingPadReplacement) { 626 auto *NewLP = OriginalPad->clone(); 627 auto *Terminator = BranchInst::Create(Succ, NewBB); 628 NewLP->insertBefore(Terminator); 629 LandingPadReplacement->addIncoming(NewLP, NewBB); 630 } else { 631 Value *ParentPad = nullptr; 632 if (auto *FuncletPad = dyn_cast<FuncletPadInst>(PadInst)) 633 ParentPad = FuncletPad->getParentPad(); 634 else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(PadInst)) 635 ParentPad = CatchSwitch->getParentPad(); 636 else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(PadInst)) 637 ParentPad = CleanupPad->getParentPad(); 638 else if (auto *LandingPad = dyn_cast<LandingPadInst>(PadInst)) 639 ParentPad = LandingPad->getParent(); 640 else 641 llvm_unreachable("handling for other EHPads not implemented yet"); 642 643 auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, {}, BBName, NewBB); 644 CleanupReturnInst::Create(NewCleanupPad, Succ, NewBB); 645 } 646 647 auto *DT = Options.DT; 648 auto *MSSAU = Options.MSSAU; 649 if (!DT && !LI) 650 return NewBB; 651 652 if (DT) { 653 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 654 SmallVector<DominatorTree::UpdateType, 3> Updates; 655 656 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 657 Updates.push_back({DominatorTree::Insert, NewBB, Succ}); 658 Updates.push_back({DominatorTree::Delete, BB, Succ}); 659 660 DTU.applyUpdates(Updates); 661 DTU.flush(); 662 663 if (MSSAU) { 664 MSSAU->applyUpdates(Updates, *DT); 665 if (VerifyMemorySSA) 666 MSSAU->getMemorySSA()->verifyMemorySSA(); 667 } 668 } 669 670 if (LI) { 671 if (Loop *BBLoop = LI->getLoopFor(BB)) { 672 // If one or the other blocks were not in a loop, the new block is not 673 // either, and thus LI doesn't need to be updated. 674 if (Loop *SuccLoop = LI->getLoopFor(Succ)) { 675 if (BBLoop == SuccLoop) { 676 // Both in the same loop, the NewBB joins loop. 677 SuccLoop->addBasicBlockToLoop(NewBB, *LI); 678 } else if (BBLoop->contains(SuccLoop)) { 679 // Edge from an outer loop to an inner loop. Add to the outer loop. 680 BBLoop->addBasicBlockToLoop(NewBB, *LI); 681 } else if (SuccLoop->contains(BBLoop)) { 682 // Edge from an inner loop to an outer loop. Add to the outer loop. 683 SuccLoop->addBasicBlockToLoop(NewBB, *LI); 684 } else { 685 // Edge from two loops with no containment relation. Because these 686 // are natural loops, we know that the destination block must be the 687 // header of its loop (adding a branch into a loop elsewhere would 688 // create an irreducible loop). 689 assert(SuccLoop->getHeader() == Succ && 690 "Should not create irreducible loops!"); 691 if (Loop *P = SuccLoop->getParentLoop()) 692 P->addBasicBlockToLoop(NewBB, *LI); 693 } 694 } 695 696 // If BB is in a loop and Succ is outside of that loop, we may need to 697 // update LoopSimplify form and LCSSA form. 698 if (!BBLoop->contains(Succ)) { 699 assert(!BBLoop->contains(NewBB) && 700 "Split point for loop exit is contained in loop!"); 701 702 // Update LCSSA form in the newly created exit block. 703 if (Options.PreserveLCSSA) { 704 createPHIsForSplitLoopExit(BB, NewBB, Succ); 705 } 706 707 if (!LoopPreds.empty()) { 708 BasicBlock *NewExitBB = SplitBlockPredecessors( 709 Succ, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA); 710 if (Options.PreserveLCSSA) 711 createPHIsForSplitLoopExit(LoopPreds, NewExitBB, Succ); 712 } 713 } 714 } 715 } 716 717 return NewBB; 718 } 719 720 void llvm::createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds, 721 BasicBlock *SplitBB, BasicBlock *DestBB) { 722 // SplitBB shouldn't have anything non-trivial in it yet. 723 assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() || 724 SplitBB->isLandingPad()) && 725 "SplitBB has non-PHI nodes!"); 726 727 // For each PHI in the destination block. 728 for (PHINode &PN : DestBB->phis()) { 729 int Idx = PN.getBasicBlockIndex(SplitBB); 730 assert(Idx >= 0 && "Invalid Block Index"); 731 Value *V = PN.getIncomingValue(Idx); 732 733 // If the input is a PHI which already satisfies LCSSA, don't create 734 // a new one. 735 if (const PHINode *VP = dyn_cast<PHINode>(V)) 736 if (VP->getParent() == SplitBB) 737 continue; 738 739 // Otherwise a new PHI is needed. Create one and populate it. 740 PHINode *NewPN = PHINode::Create( 741 PN.getType(), Preds.size(), "split", 742 SplitBB->isLandingPad() ? &SplitBB->front() : SplitBB->getTerminator()); 743 for (BasicBlock *BB : Preds) 744 NewPN->addIncoming(V, BB); 745 746 // Update the original PHI. 747 PN.setIncomingValue(Idx, NewPN); 748 } 749 } 750 751 unsigned 752 llvm::SplitAllCriticalEdges(Function &F, 753 const CriticalEdgeSplittingOptions &Options) { 754 unsigned NumBroken = 0; 755 for (BasicBlock &BB : F) { 756 Instruction *TI = BB.getTerminator(); 757 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI) && 758 !isa<CallBrInst>(TI)) 759 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 760 if (SplitCriticalEdge(TI, i, Options)) 761 ++NumBroken; 762 } 763 return NumBroken; 764 } 765 766 static BasicBlock *SplitBlockImpl(BasicBlock *Old, Instruction *SplitPt, 767 DomTreeUpdater *DTU, DominatorTree *DT, 768 LoopInfo *LI, MemorySSAUpdater *MSSAU, 769 const Twine &BBName, bool Before) { 770 if (Before) { 771 DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 772 return splitBlockBefore(Old, SplitPt, 773 DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU, 774 BBName); 775 } 776 BasicBlock::iterator SplitIt = SplitPt->getIterator(); 777 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) 778 ++SplitIt; 779 std::string Name = BBName.str(); 780 BasicBlock *New = Old->splitBasicBlock( 781 SplitIt, Name.empty() ? Old->getName() + ".split" : Name); 782 783 // The new block lives in whichever loop the old one did. This preserves 784 // LCSSA as well, because we force the split point to be after any PHI nodes. 785 if (LI) 786 if (Loop *L = LI->getLoopFor(Old)) 787 L->addBasicBlockToLoop(New, *LI); 788 789 if (DTU) { 790 SmallVector<DominatorTree::UpdateType, 8> Updates; 791 // Old dominates New. New node dominates all other nodes dominated by Old. 792 SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfOld(succ_begin(New), 793 succ_end(New)); 794 Updates.push_back({DominatorTree::Insert, Old, New}); 795 Updates.reserve(Updates.size() + 2 * UniqueSuccessorsOfOld.size()); 796 for (BasicBlock *UniqueSuccessorOfOld : UniqueSuccessorsOfOld) { 797 Updates.push_back({DominatorTree::Insert, New, UniqueSuccessorOfOld}); 798 Updates.push_back({DominatorTree::Delete, Old, UniqueSuccessorOfOld}); 799 } 800 801 DTU->applyUpdates(Updates); 802 } else if (DT) 803 // Old dominates New. New node dominates all other nodes dominated by Old. 804 if (DomTreeNode *OldNode = DT->getNode(Old)) { 805 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 806 807 DomTreeNode *NewNode = DT->addNewBlock(New, Old); 808 for (DomTreeNode *I : Children) 809 DT->changeImmediateDominator(I, NewNode); 810 } 811 812 // Move MemoryAccesses still tracked in Old, but part of New now. 813 // Update accesses in successor blocks accordingly. 814 if (MSSAU) 815 MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin())); 816 817 return New; 818 } 819 820 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, 821 DominatorTree *DT, LoopInfo *LI, 822 MemorySSAUpdater *MSSAU, const Twine &BBName, 823 bool Before) { 824 return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName, 825 Before); 826 } 827 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, 828 DomTreeUpdater *DTU, LoopInfo *LI, 829 MemorySSAUpdater *MSSAU, const Twine &BBName, 830 bool Before) { 831 return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName, 832 Before); 833 } 834 835 BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, Instruction *SplitPt, 836 DomTreeUpdater *DTU, LoopInfo *LI, 837 MemorySSAUpdater *MSSAU, 838 const Twine &BBName) { 839 840 BasicBlock::iterator SplitIt = SplitPt->getIterator(); 841 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) 842 ++SplitIt; 843 std::string Name = BBName.str(); 844 BasicBlock *New = Old->splitBasicBlock( 845 SplitIt, Name.empty() ? Old->getName() + ".split" : Name, 846 /* Before=*/true); 847 848 // The new block lives in whichever loop the old one did. This preserves 849 // LCSSA as well, because we force the split point to be after any PHI nodes. 850 if (LI) 851 if (Loop *L = LI->getLoopFor(Old)) 852 L->addBasicBlockToLoop(New, *LI); 853 854 if (DTU) { 855 SmallVector<DominatorTree::UpdateType, 8> DTUpdates; 856 // New dominates Old. The predecessor nodes of the Old node dominate 857 // New node. 858 SmallPtrSet<BasicBlock *, 8> UniquePredecessorsOfOld(pred_begin(New), 859 pred_end(New)); 860 DTUpdates.push_back({DominatorTree::Insert, New, Old}); 861 DTUpdates.reserve(DTUpdates.size() + 2 * UniquePredecessorsOfOld.size()); 862 for (BasicBlock *UniquePredecessorOfOld : UniquePredecessorsOfOld) { 863 DTUpdates.push_back({DominatorTree::Insert, UniquePredecessorOfOld, New}); 864 DTUpdates.push_back({DominatorTree::Delete, UniquePredecessorOfOld, Old}); 865 } 866 867 DTU->applyUpdates(DTUpdates); 868 869 // Move MemoryAccesses still tracked in Old, but part of New now. 870 // Update accesses in successor blocks accordingly. 871 if (MSSAU) { 872 MSSAU->applyUpdates(DTUpdates, DTU->getDomTree()); 873 if (VerifyMemorySSA) 874 MSSAU->getMemorySSA()->verifyMemorySSA(); 875 } 876 } 877 return New; 878 } 879 880 /// Update DominatorTree, LoopInfo, and LCCSA analysis information. 881 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, 882 ArrayRef<BasicBlock *> Preds, 883 DomTreeUpdater *DTU, DominatorTree *DT, 884 LoopInfo *LI, MemorySSAUpdater *MSSAU, 885 bool PreserveLCSSA, bool &HasLoopExit) { 886 // Update dominator tree if available. 887 if (DTU) { 888 // Recalculation of DomTree is needed when updating a forward DomTree and 889 // the Entry BB is replaced. 890 if (NewBB == &NewBB->getParent()->getEntryBlock() && DTU->hasDomTree()) { 891 // The entry block was removed and there is no external interface for 892 // the dominator tree to be notified of this change. In this corner-case 893 // we recalculate the entire tree. 894 DTU->recalculate(*NewBB->getParent()); 895 } else { 896 // Split block expects NewBB to have a non-empty set of predecessors. 897 SmallVector<DominatorTree::UpdateType, 8> Updates; 898 SmallPtrSet<BasicBlock *, 8> UniquePreds(Preds.begin(), Preds.end()); 899 Updates.push_back({DominatorTree::Insert, NewBB, OldBB}); 900 Updates.reserve(Updates.size() + 2 * UniquePreds.size()); 901 for (auto *UniquePred : UniquePreds) { 902 Updates.push_back({DominatorTree::Insert, UniquePred, NewBB}); 903 Updates.push_back({DominatorTree::Delete, UniquePred, OldBB}); 904 } 905 DTU->applyUpdates(Updates); 906 } 907 } else if (DT) { 908 if (OldBB == DT->getRootNode()->getBlock()) { 909 assert(NewBB == &NewBB->getParent()->getEntryBlock()); 910 DT->setNewRoot(NewBB); 911 } else { 912 // Split block expects NewBB to have a non-empty set of predecessors. 913 DT->splitBlock(NewBB); 914 } 915 } 916 917 // Update MemoryPhis after split if MemorySSA is available 918 if (MSSAU) 919 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds); 920 921 // The rest of the logic is only relevant for updating the loop structures. 922 if (!LI) 923 return; 924 925 if (DTU && DTU->hasDomTree()) 926 DT = &DTU->getDomTree(); 927 assert(DT && "DT should be available to update LoopInfo!"); 928 Loop *L = LI->getLoopFor(OldBB); 929 930 // If we need to preserve loop analyses, collect some information about how 931 // this split will affect loops. 932 bool IsLoopEntry = !!L; 933 bool SplitMakesNewLoopHeader = false; 934 for (BasicBlock *Pred : Preds) { 935 // Preds that are not reachable from entry should not be used to identify if 936 // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks 937 // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader 938 // as true and make the NewBB the header of some loop. This breaks LI. 939 if (!DT->isReachableFromEntry(Pred)) 940 continue; 941 // If we need to preserve LCSSA, determine if any of the preds is a loop 942 // exit. 943 if (PreserveLCSSA) 944 if (Loop *PL = LI->getLoopFor(Pred)) 945 if (!PL->contains(OldBB)) 946 HasLoopExit = true; 947 948 // If we need to preserve LoopInfo, note whether any of the preds crosses 949 // an interesting loop boundary. 950 if (!L) 951 continue; 952 if (L->contains(Pred)) 953 IsLoopEntry = false; 954 else 955 SplitMakesNewLoopHeader = true; 956 } 957 958 // Unless we have a loop for OldBB, nothing else to do here. 959 if (!L) 960 return; 961 962 if (IsLoopEntry) { 963 // Add the new block to the nearest enclosing loop (and not an adjacent 964 // loop). To find this, examine each of the predecessors and determine which 965 // loops enclose them, and select the most-nested loop which contains the 966 // loop containing the block being split. 967 Loop *InnermostPredLoop = nullptr; 968 for (BasicBlock *Pred : Preds) { 969 if (Loop *PredLoop = LI->getLoopFor(Pred)) { 970 // Seek a loop which actually contains the block being split (to avoid 971 // adjacent loops). 972 while (PredLoop && !PredLoop->contains(OldBB)) 973 PredLoop = PredLoop->getParentLoop(); 974 975 // Select the most-nested of these loops which contains the block. 976 if (PredLoop && PredLoop->contains(OldBB) && 977 (!InnermostPredLoop || 978 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) 979 InnermostPredLoop = PredLoop; 980 } 981 } 982 983 if (InnermostPredLoop) 984 InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI); 985 } else { 986 L->addBasicBlockToLoop(NewBB, *LI); 987 if (SplitMakesNewLoopHeader) 988 L->moveToHeader(NewBB); 989 } 990 } 991 992 /// Update the PHI nodes in OrigBB to include the values coming from NewBB. 993 /// This also updates AliasAnalysis, if available. 994 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, 995 ArrayRef<BasicBlock *> Preds, BranchInst *BI, 996 bool HasLoopExit) { 997 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. 998 SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end()); 999 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) { 1000 PHINode *PN = cast<PHINode>(I++); 1001 1002 // Check to see if all of the values coming in are the same. If so, we 1003 // don't need to create a new PHI node, unless it's needed for LCSSA. 1004 Value *InVal = nullptr; 1005 if (!HasLoopExit) { 1006 InVal = PN->getIncomingValueForBlock(Preds[0]); 1007 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1008 if (!PredSet.count(PN->getIncomingBlock(i))) 1009 continue; 1010 if (!InVal) 1011 InVal = PN->getIncomingValue(i); 1012 else if (InVal != PN->getIncomingValue(i)) { 1013 InVal = nullptr; 1014 break; 1015 } 1016 } 1017 } 1018 1019 if (InVal) { 1020 // If all incoming values for the new PHI would be the same, just don't 1021 // make a new PHI. Instead, just remove the incoming values from the old 1022 // PHI. 1023 1024 // NOTE! This loop walks backwards for a reason! First off, this minimizes 1025 // the cost of removal if we end up removing a large number of values, and 1026 // second off, this ensures that the indices for the incoming values 1027 // aren't invalidated when we remove one. 1028 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) 1029 if (PredSet.count(PN->getIncomingBlock(i))) 1030 PN->removeIncomingValue(i, false); 1031 1032 // Add an incoming value to the PHI node in the loop for the preheader 1033 // edge. 1034 PN->addIncoming(InVal, NewBB); 1035 continue; 1036 } 1037 1038 // If the values coming into the block are not the same, we need a new 1039 // PHI. 1040 // Create the new PHI node, insert it into NewBB at the end of the block 1041 PHINode *NewPHI = 1042 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI); 1043 1044 // NOTE! This loop walks backwards for a reason! First off, this minimizes 1045 // the cost of removal if we end up removing a large number of values, and 1046 // second off, this ensures that the indices for the incoming values aren't 1047 // invalidated when we remove one. 1048 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) { 1049 BasicBlock *IncomingBB = PN->getIncomingBlock(i); 1050 if (PredSet.count(IncomingBB)) { 1051 Value *V = PN->removeIncomingValue(i, false); 1052 NewPHI->addIncoming(V, IncomingBB); 1053 } 1054 } 1055 1056 PN->addIncoming(NewPHI, NewBB); 1057 } 1058 } 1059 1060 static void SplitLandingPadPredecessorsImpl( 1061 BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1, 1062 const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs, 1063 DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, 1064 MemorySSAUpdater *MSSAU, bool PreserveLCSSA); 1065 1066 static BasicBlock * 1067 SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds, 1068 const char *Suffix, DomTreeUpdater *DTU, 1069 DominatorTree *DT, LoopInfo *LI, 1070 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 1071 // Do not attempt to split that which cannot be split. 1072 if (!BB->canSplitPredecessors()) 1073 return nullptr; 1074 1075 // For the landingpads we need to act a bit differently. 1076 // Delegate this work to the SplitLandingPadPredecessors. 1077 if (BB->isLandingPad()) { 1078 SmallVector<BasicBlock*, 2> NewBBs; 1079 std::string NewName = std::string(Suffix) + ".split-lp"; 1080 1081 SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs, 1082 DTU, DT, LI, MSSAU, PreserveLCSSA); 1083 return NewBBs[0]; 1084 } 1085 1086 // Create new basic block, insert right before the original block. 1087 BasicBlock *NewBB = BasicBlock::Create( 1088 BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB); 1089 1090 // The new block unconditionally branches to the old block. 1091 BranchInst *BI = BranchInst::Create(BB, NewBB); 1092 1093 Loop *L = nullptr; 1094 BasicBlock *OldLatch = nullptr; 1095 // Splitting the predecessors of a loop header creates a preheader block. 1096 if (LI && LI->isLoopHeader(BB)) { 1097 L = LI->getLoopFor(BB); 1098 // Using the loop start line number prevents debuggers stepping into the 1099 // loop body for this instruction. 1100 BI->setDebugLoc(L->getStartLoc()); 1101 1102 // If BB is the header of the Loop, it is possible that the loop is 1103 // modified, such that the current latch does not remain the latch of the 1104 // loop. If that is the case, the loop metadata from the current latch needs 1105 // to be applied to the new latch. 1106 OldLatch = L->getLoopLatch(); 1107 } else 1108 BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc()); 1109 1110 // Move the edges from Preds to point to NewBB instead of BB. 1111 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 1112 // This is slightly more strict than necessary; the minimum requirement 1113 // is that there be no more than one indirectbr branching to BB. And 1114 // all BlockAddress uses would need to be updated. 1115 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 1116 "Cannot split an edge from an IndirectBrInst"); 1117 assert(!isa<CallBrInst>(Preds[i]->getTerminator()) && 1118 "Cannot split an edge from a CallBrInst"); 1119 Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB); 1120 } 1121 1122 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI 1123 // node becomes an incoming value for BB's phi node. However, if the Preds 1124 // list is empty, we need to insert dummy entries into the PHI nodes in BB to 1125 // account for the newly created predecessor. 1126 if (Preds.empty()) { 1127 // Insert dummy values as the incoming value. 1128 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) 1129 cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB); 1130 } 1131 1132 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 1133 bool HasLoopExit = false; 1134 UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA, 1135 HasLoopExit); 1136 1137 if (!Preds.empty()) { 1138 // Update the PHI nodes in BB with the values coming from NewBB. 1139 UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit); 1140 } 1141 1142 if (OldLatch) { 1143 BasicBlock *NewLatch = L->getLoopLatch(); 1144 if (NewLatch != OldLatch) { 1145 MDNode *MD = OldLatch->getTerminator()->getMetadata("llvm.loop"); 1146 NewLatch->getTerminator()->setMetadata("llvm.loop", MD); 1147 OldLatch->getTerminator()->setMetadata("llvm.loop", nullptr); 1148 } 1149 } 1150 1151 return NewBB; 1152 } 1153 1154 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 1155 ArrayRef<BasicBlock *> Preds, 1156 const char *Suffix, DominatorTree *DT, 1157 LoopInfo *LI, MemorySSAUpdater *MSSAU, 1158 bool PreserveLCSSA) { 1159 return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI, 1160 MSSAU, PreserveLCSSA); 1161 } 1162 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 1163 ArrayRef<BasicBlock *> Preds, 1164 const char *Suffix, 1165 DomTreeUpdater *DTU, LoopInfo *LI, 1166 MemorySSAUpdater *MSSAU, 1167 bool PreserveLCSSA) { 1168 return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU, 1169 /*DT=*/nullptr, LI, MSSAU, PreserveLCSSA); 1170 } 1171 1172 static void SplitLandingPadPredecessorsImpl( 1173 BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1, 1174 const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs, 1175 DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, 1176 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 1177 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!"); 1178 1179 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert 1180 // it right before the original block. 1181 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(), 1182 OrigBB->getName() + Suffix1, 1183 OrigBB->getParent(), OrigBB); 1184 NewBBs.push_back(NewBB1); 1185 1186 // The new block unconditionally branches to the old block. 1187 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1); 1188 BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 1189 1190 // Move the edges from Preds to point to NewBB1 instead of OrigBB. 1191 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 1192 // This is slightly more strict than necessary; the minimum requirement 1193 // is that there be no more than one indirectbr branching to BB. And 1194 // all BlockAddress uses would need to be updated. 1195 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 1196 "Cannot split an edge from an IndirectBrInst"); 1197 Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1); 1198 } 1199 1200 bool HasLoopExit = false; 1201 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU, 1202 PreserveLCSSA, HasLoopExit); 1203 1204 // Update the PHI nodes in OrigBB with the values coming from NewBB1. 1205 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit); 1206 1207 // Move the remaining edges from OrigBB to point to NewBB2. 1208 SmallVector<BasicBlock*, 8> NewBB2Preds; 1209 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB); 1210 i != e; ) { 1211 BasicBlock *Pred = *i++; 1212 if (Pred == NewBB1) continue; 1213 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 1214 "Cannot split an edge from an IndirectBrInst"); 1215 NewBB2Preds.push_back(Pred); 1216 e = pred_end(OrigBB); 1217 } 1218 1219 BasicBlock *NewBB2 = nullptr; 1220 if (!NewBB2Preds.empty()) { 1221 // Create another basic block for the rest of OrigBB's predecessors. 1222 NewBB2 = BasicBlock::Create(OrigBB->getContext(), 1223 OrigBB->getName() + Suffix2, 1224 OrigBB->getParent(), OrigBB); 1225 NewBBs.push_back(NewBB2); 1226 1227 // The new block unconditionally branches to the old block. 1228 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2); 1229 BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 1230 1231 // Move the remaining edges from OrigBB to point to NewBB2. 1232 for (BasicBlock *NewBB2Pred : NewBB2Preds) 1233 NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2); 1234 1235 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 1236 HasLoopExit = false; 1237 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU, 1238 PreserveLCSSA, HasLoopExit); 1239 1240 // Update the PHI nodes in OrigBB with the values coming from NewBB2. 1241 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit); 1242 } 1243 1244 LandingPadInst *LPad = OrigBB->getLandingPadInst(); 1245 Instruction *Clone1 = LPad->clone(); 1246 Clone1->setName(Twine("lpad") + Suffix1); 1247 NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1); 1248 1249 if (NewBB2) { 1250 Instruction *Clone2 = LPad->clone(); 1251 Clone2->setName(Twine("lpad") + Suffix2); 1252 NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2); 1253 1254 // Create a PHI node for the two cloned landingpad instructions only 1255 // if the original landingpad instruction has some uses. 1256 if (!LPad->use_empty()) { 1257 assert(!LPad->getType()->isTokenTy() && 1258 "Split cannot be applied if LPad is token type. Otherwise an " 1259 "invalid PHINode of token type would be created."); 1260 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad); 1261 PN->addIncoming(Clone1, NewBB1); 1262 PN->addIncoming(Clone2, NewBB2); 1263 LPad->replaceAllUsesWith(PN); 1264 } 1265 LPad->eraseFromParent(); 1266 } else { 1267 // There is no second clone. Just replace the landing pad with the first 1268 // clone. 1269 LPad->replaceAllUsesWith(Clone1); 1270 LPad->eraseFromParent(); 1271 } 1272 } 1273 1274 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 1275 ArrayRef<BasicBlock *> Preds, 1276 const char *Suffix1, const char *Suffix2, 1277 SmallVectorImpl<BasicBlock *> &NewBBs, 1278 DominatorTree *DT, LoopInfo *LI, 1279 MemorySSAUpdater *MSSAU, 1280 bool PreserveLCSSA) { 1281 return SplitLandingPadPredecessorsImpl( 1282 OrigBB, Preds, Suffix1, Suffix2, NewBBs, 1283 /*DTU=*/nullptr, DT, LI, MSSAU, PreserveLCSSA); 1284 } 1285 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 1286 ArrayRef<BasicBlock *> Preds, 1287 const char *Suffix1, const char *Suffix2, 1288 SmallVectorImpl<BasicBlock *> &NewBBs, 1289 DomTreeUpdater *DTU, LoopInfo *LI, 1290 MemorySSAUpdater *MSSAU, 1291 bool PreserveLCSSA) { 1292 return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2, 1293 NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU, 1294 PreserveLCSSA); 1295 } 1296 1297 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, 1298 BasicBlock *Pred, 1299 DomTreeUpdater *DTU) { 1300 Instruction *UncondBranch = Pred->getTerminator(); 1301 // Clone the return and add it to the end of the predecessor. 1302 Instruction *NewRet = RI->clone(); 1303 Pred->getInstList().push_back(NewRet); 1304 1305 // If the return instruction returns a value, and if the value was a 1306 // PHI node in "BB", propagate the right value into the return. 1307 for (Use &Op : NewRet->operands()) { 1308 Value *V = Op; 1309 Instruction *NewBC = nullptr; 1310 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) { 1311 // Return value might be bitcasted. Clone and insert it before the 1312 // return instruction. 1313 V = BCI->getOperand(0); 1314 NewBC = BCI->clone(); 1315 Pred->getInstList().insert(NewRet->getIterator(), NewBC); 1316 Op = NewBC; 1317 } 1318 1319 Instruction *NewEV = nullptr; 1320 if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { 1321 V = EVI->getOperand(0); 1322 NewEV = EVI->clone(); 1323 if (NewBC) { 1324 NewBC->setOperand(0, NewEV); 1325 Pred->getInstList().insert(NewBC->getIterator(), NewEV); 1326 } else { 1327 Pred->getInstList().insert(NewRet->getIterator(), NewEV); 1328 Op = NewEV; 1329 } 1330 } 1331 1332 if (PHINode *PN = dyn_cast<PHINode>(V)) { 1333 if (PN->getParent() == BB) { 1334 if (NewEV) { 1335 NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred)); 1336 } else if (NewBC) 1337 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred)); 1338 else 1339 Op = PN->getIncomingValueForBlock(Pred); 1340 } 1341 } 1342 } 1343 1344 // Update any PHI nodes in the returning block to realize that we no 1345 // longer branch to them. 1346 BB->removePredecessor(Pred); 1347 UncondBranch->eraseFromParent(); 1348 1349 if (DTU) 1350 DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}}); 1351 1352 return cast<ReturnInst>(NewRet); 1353 } 1354 1355 static Instruction * 1356 SplitBlockAndInsertIfThenImpl(Value *Cond, Instruction *SplitBefore, 1357 bool Unreachable, MDNode *BranchWeights, 1358 DomTreeUpdater *DTU, DominatorTree *DT, 1359 LoopInfo *LI, BasicBlock *ThenBlock) { 1360 SmallVector<DominatorTree::UpdateType, 8> Updates; 1361 BasicBlock *Head = SplitBefore->getParent(); 1362 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 1363 if (DTU) { 1364 SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfHead(succ_begin(Tail), 1365 succ_end(Tail)); 1366 Updates.push_back({DominatorTree::Insert, Head, Tail}); 1367 Updates.reserve(Updates.size() + 2 * UniqueSuccessorsOfHead.size()); 1368 for (BasicBlock *UniqueSuccessorOfHead : UniqueSuccessorsOfHead) { 1369 Updates.push_back({DominatorTree::Insert, Tail, UniqueSuccessorOfHead}); 1370 Updates.push_back({DominatorTree::Delete, Head, UniqueSuccessorOfHead}); 1371 } 1372 } 1373 Instruction *HeadOldTerm = Head->getTerminator(); 1374 LLVMContext &C = Head->getContext(); 1375 Instruction *CheckTerm; 1376 bool CreateThenBlock = (ThenBlock == nullptr); 1377 if (CreateThenBlock) { 1378 ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 1379 if (Unreachable) 1380 CheckTerm = new UnreachableInst(C, ThenBlock); 1381 else { 1382 CheckTerm = BranchInst::Create(Tail, ThenBlock); 1383 if (DTU) 1384 Updates.push_back({DominatorTree::Insert, ThenBlock, Tail}); 1385 } 1386 CheckTerm->setDebugLoc(SplitBefore->getDebugLoc()); 1387 } else 1388 CheckTerm = ThenBlock->getTerminator(); 1389 BranchInst *HeadNewTerm = 1390 BranchInst::Create(/*ifTrue*/ ThenBlock, /*ifFalse*/ Tail, Cond); 1391 if (DTU) 1392 Updates.push_back({DominatorTree::Insert, Head, ThenBlock}); 1393 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 1394 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 1395 1396 if (DTU) 1397 DTU->applyUpdates(Updates); 1398 else if (DT) { 1399 if (DomTreeNode *OldNode = DT->getNode(Head)) { 1400 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 1401 1402 DomTreeNode *NewNode = DT->addNewBlock(Tail, Head); 1403 for (DomTreeNode *Child : Children) 1404 DT->changeImmediateDominator(Child, NewNode); 1405 1406 // Head dominates ThenBlock. 1407 if (CreateThenBlock) 1408 DT->addNewBlock(ThenBlock, Head); 1409 else 1410 DT->changeImmediateDominator(ThenBlock, Head); 1411 } 1412 } 1413 1414 if (LI) { 1415 if (Loop *L = LI->getLoopFor(Head)) { 1416 L->addBasicBlockToLoop(ThenBlock, *LI); 1417 L->addBasicBlockToLoop(Tail, *LI); 1418 } 1419 } 1420 1421 return CheckTerm; 1422 } 1423 1424 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond, 1425 Instruction *SplitBefore, 1426 bool Unreachable, 1427 MDNode *BranchWeights, 1428 DominatorTree *DT, LoopInfo *LI, 1429 BasicBlock *ThenBlock) { 1430 return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable, 1431 BranchWeights, 1432 /*DTU=*/nullptr, DT, LI, ThenBlock); 1433 } 1434 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond, 1435 Instruction *SplitBefore, 1436 bool Unreachable, 1437 MDNode *BranchWeights, 1438 DomTreeUpdater *DTU, LoopInfo *LI, 1439 BasicBlock *ThenBlock) { 1440 return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable, 1441 BranchWeights, DTU, /*DT=*/nullptr, LI, 1442 ThenBlock); 1443 } 1444 1445 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore, 1446 Instruction **ThenTerm, 1447 Instruction **ElseTerm, 1448 MDNode *BranchWeights) { 1449 BasicBlock *Head = SplitBefore->getParent(); 1450 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 1451 Instruction *HeadOldTerm = Head->getTerminator(); 1452 LLVMContext &C = Head->getContext(); 1453 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 1454 BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 1455 *ThenTerm = BranchInst::Create(Tail, ThenBlock); 1456 (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 1457 *ElseTerm = BranchInst::Create(Tail, ElseBlock); 1458 (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 1459 BranchInst *HeadNewTerm = 1460 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond); 1461 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 1462 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 1463 } 1464 1465 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 1466 BasicBlock *&IfFalse) { 1467 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin()); 1468 BasicBlock *Pred1 = nullptr; 1469 BasicBlock *Pred2 = nullptr; 1470 1471 if (SomePHI) { 1472 if (SomePHI->getNumIncomingValues() != 2) 1473 return nullptr; 1474 Pred1 = SomePHI->getIncomingBlock(0); 1475 Pred2 = SomePHI->getIncomingBlock(1); 1476 } else { 1477 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 1478 if (PI == PE) // No predecessor 1479 return nullptr; 1480 Pred1 = *PI++; 1481 if (PI == PE) // Only one predecessor 1482 return nullptr; 1483 Pred2 = *PI++; 1484 if (PI != PE) // More than two predecessors 1485 return nullptr; 1486 } 1487 1488 // We can only handle branches. Other control flow will be lowered to 1489 // branches if possible anyway. 1490 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 1491 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 1492 if (!Pred1Br || !Pred2Br) 1493 return nullptr; 1494 1495 // Eliminate code duplication by ensuring that Pred1Br is conditional if 1496 // either are. 1497 if (Pred2Br->isConditional()) { 1498 // If both branches are conditional, we don't have an "if statement". In 1499 // reality, we could transform this case, but since the condition will be 1500 // required anyway, we stand no chance of eliminating it, so the xform is 1501 // probably not profitable. 1502 if (Pred1Br->isConditional()) 1503 return nullptr; 1504 1505 std::swap(Pred1, Pred2); 1506 std::swap(Pred1Br, Pred2Br); 1507 } 1508 1509 if (Pred1Br->isConditional()) { 1510 // The only thing we have to watch out for here is to make sure that Pred2 1511 // doesn't have incoming edges from other blocks. If it does, the condition 1512 // doesn't dominate BB. 1513 if (!Pred2->getSinglePredecessor()) 1514 return nullptr; 1515 1516 // If we found a conditional branch predecessor, make sure that it branches 1517 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 1518 if (Pred1Br->getSuccessor(0) == BB && 1519 Pred1Br->getSuccessor(1) == Pred2) { 1520 IfTrue = Pred1; 1521 IfFalse = Pred2; 1522 } else if (Pred1Br->getSuccessor(0) == Pred2 && 1523 Pred1Br->getSuccessor(1) == BB) { 1524 IfTrue = Pred2; 1525 IfFalse = Pred1; 1526 } else { 1527 // We know that one arm of the conditional goes to BB, so the other must 1528 // go somewhere unrelated, and this must not be an "if statement". 1529 return nullptr; 1530 } 1531 1532 return Pred1Br->getCondition(); 1533 } 1534 1535 // Ok, if we got here, both predecessors end with an unconditional branch to 1536 // BB. Don't panic! If both blocks only have a single (identical) 1537 // predecessor, and THAT is a conditional branch, then we're all ok! 1538 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 1539 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor()) 1540 return nullptr; 1541 1542 // Otherwise, if this is a conditional branch, then we can use it! 1543 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 1544 if (!BI) return nullptr; 1545 1546 assert(BI->isConditional() && "Two successors but not conditional?"); 1547 if (BI->getSuccessor(0) == Pred1) { 1548 IfTrue = Pred1; 1549 IfFalse = Pred2; 1550 } else { 1551 IfTrue = Pred2; 1552 IfFalse = Pred1; 1553 } 1554 return BI->getCondition(); 1555 } 1556 1557 // After creating a control flow hub, the operands of PHINodes in an outgoing 1558 // block Out no longer match the predecessors of that block. Predecessors of Out 1559 // that are incoming blocks to the hub are now replaced by just one edge from 1560 // the hub. To match this new control flow, the corresponding values from each 1561 // PHINode must now be moved a new PHINode in the first guard block of the hub. 1562 // 1563 // This operation cannot be performed with SSAUpdater, because it involves one 1564 // new use: If the block Out is in the list of Incoming blocks, then the newly 1565 // created PHI in the Hub will use itself along that edge from Out to Hub. 1566 static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock, 1567 const SetVector<BasicBlock *> &Incoming, 1568 BasicBlock *FirstGuardBlock) { 1569 auto I = Out->begin(); 1570 while (I != Out->end() && isa<PHINode>(I)) { 1571 auto Phi = cast<PHINode>(I); 1572 auto NewPhi = 1573 PHINode::Create(Phi->getType(), Incoming.size(), 1574 Phi->getName() + ".moved", &FirstGuardBlock->back()); 1575 for (auto In : Incoming) { 1576 Value *V = UndefValue::get(Phi->getType()); 1577 if (In == Out) { 1578 V = NewPhi; 1579 } else if (Phi->getBasicBlockIndex(In) != -1) { 1580 V = Phi->removeIncomingValue(In, false); 1581 } 1582 NewPhi->addIncoming(V, In); 1583 } 1584 assert(NewPhi->getNumIncomingValues() == Incoming.size()); 1585 if (Phi->getNumOperands() == 0) { 1586 Phi->replaceAllUsesWith(NewPhi); 1587 I = Phi->eraseFromParent(); 1588 continue; 1589 } 1590 Phi->addIncoming(NewPhi, GuardBlock); 1591 ++I; 1592 } 1593 } 1594 1595 using BBPredicates = DenseMap<BasicBlock *, PHINode *>; 1596 using BBSetVector = SetVector<BasicBlock *>; 1597 1598 // Redirects the terminator of the incoming block to the first guard 1599 // block in the hub. The condition of the original terminator (if it 1600 // was conditional) and its original successors are returned as a 1601 // tuple <condition, succ0, succ1>. The function additionally filters 1602 // out successors that are not in the set of outgoing blocks. 1603 // 1604 // - condition is non-null iff the branch is conditional. 1605 // - Succ1 is non-null iff the sole/taken target is an outgoing block. 1606 // - Succ2 is non-null iff condition is non-null and the fallthrough 1607 // target is an outgoing block. 1608 static std::tuple<Value *, BasicBlock *, BasicBlock *> 1609 redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock, 1610 const BBSetVector &Outgoing) { 1611 auto Branch = cast<BranchInst>(BB->getTerminator()); 1612 auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr; 1613 1614 BasicBlock *Succ0 = Branch->getSuccessor(0); 1615 BasicBlock *Succ1 = nullptr; 1616 Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr; 1617 1618 if (Branch->isUnconditional()) { 1619 Branch->setSuccessor(0, FirstGuardBlock); 1620 assert(Succ0); 1621 } else { 1622 Succ1 = Branch->getSuccessor(1); 1623 Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr; 1624 assert(Succ0 || Succ1); 1625 if (Succ0 && !Succ1) { 1626 Branch->setSuccessor(0, FirstGuardBlock); 1627 } else if (Succ1 && !Succ0) { 1628 Branch->setSuccessor(1, FirstGuardBlock); 1629 } else { 1630 Branch->eraseFromParent(); 1631 BranchInst::Create(FirstGuardBlock, BB); 1632 } 1633 } 1634 1635 assert(Succ0 || Succ1); 1636 return std::make_tuple(Condition, Succ0, Succ1); 1637 } 1638 1639 // Capture the existing control flow as guard predicates, and redirect 1640 // control flow from every incoming block to the first guard block in 1641 // the hub. 1642 // 1643 // There is one guard predicate for each outgoing block OutBB. The 1644 // predicate is a PHINode with one input for each InBB which 1645 // represents whether the hub should transfer control flow to OutBB if 1646 // it arrived from InBB. These predicates are NOT ORTHOGONAL. The Hub 1647 // evaluates them in the same order as the Outgoing set-vector, and 1648 // control branches to the first outgoing block whose predicate 1649 // evaluates to true. 1650 static void convertToGuardPredicates( 1651 BasicBlock *FirstGuardBlock, BBPredicates &GuardPredicates, 1652 SmallVectorImpl<WeakVH> &DeletionCandidates, const BBSetVector &Incoming, 1653 const BBSetVector &Outgoing) { 1654 auto &Context = Incoming.front()->getContext(); 1655 auto BoolTrue = ConstantInt::getTrue(Context); 1656 auto BoolFalse = ConstantInt::getFalse(Context); 1657 1658 // The predicate for the last outgoing is trivially true, and so we 1659 // process only the first N-1 successors. 1660 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) { 1661 auto Out = Outgoing[i]; 1662 LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n"); 1663 auto Phi = 1664 PHINode::Create(Type::getInt1Ty(Context), Incoming.size(), 1665 StringRef("Guard.") + Out->getName(), FirstGuardBlock); 1666 GuardPredicates[Out] = Phi; 1667 } 1668 1669 for (auto In : Incoming) { 1670 Value *Condition; 1671 BasicBlock *Succ0; 1672 BasicBlock *Succ1; 1673 std::tie(Condition, Succ0, Succ1) = 1674 redirectToHub(In, FirstGuardBlock, Outgoing); 1675 1676 // Optimization: Consider an incoming block A with both successors 1677 // Succ0 and Succ1 in the set of outgoing blocks. The predicates 1678 // for Succ0 and Succ1 complement each other. If Succ0 is visited 1679 // first in the loop below, control will branch to Succ0 using the 1680 // corresponding predicate. But if that branch is not taken, then 1681 // control must reach Succ1, which means that the predicate for 1682 // Succ1 is always true. 1683 bool OneSuccessorDone = false; 1684 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) { 1685 auto Out = Outgoing[i]; 1686 auto Phi = GuardPredicates[Out]; 1687 if (Out != Succ0 && Out != Succ1) { 1688 Phi->addIncoming(BoolFalse, In); 1689 continue; 1690 } 1691 // Optimization: When only one successor is an outgoing block, 1692 // the predicate is always true. 1693 if (!Succ0 || !Succ1 || OneSuccessorDone) { 1694 Phi->addIncoming(BoolTrue, In); 1695 continue; 1696 } 1697 assert(Succ0 && Succ1); 1698 OneSuccessorDone = true; 1699 if (Out == Succ0) { 1700 Phi->addIncoming(Condition, In); 1701 continue; 1702 } 1703 auto Inverted = invertCondition(Condition); 1704 DeletionCandidates.push_back(Condition); 1705 Phi->addIncoming(Inverted, In); 1706 } 1707 } 1708 } 1709 1710 // For each outgoing block OutBB, create a guard block in the Hub. The 1711 // first guard block was already created outside, and available as the 1712 // first element in the vector of guard blocks. 1713 // 1714 // Each guard block terminates in a conditional branch that transfers 1715 // control to the corresponding outgoing block or the next guard 1716 // block. The last guard block has two outgoing blocks as successors 1717 // since the condition for the final outgoing block is trivially 1718 // true. So we create one less block (including the first guard block) 1719 // than the number of outgoing blocks. 1720 static void createGuardBlocks(SmallVectorImpl<BasicBlock *> &GuardBlocks, 1721 Function *F, const BBSetVector &Outgoing, 1722 BBPredicates &GuardPredicates, StringRef Prefix) { 1723 for (int i = 0, e = Outgoing.size() - 2; i != e; ++i) { 1724 GuardBlocks.push_back( 1725 BasicBlock::Create(F->getContext(), Prefix + ".guard", F)); 1726 } 1727 assert(GuardBlocks.size() == GuardPredicates.size()); 1728 1729 // To help keep the loop simple, temporarily append the last 1730 // outgoing block to the list of guard blocks. 1731 GuardBlocks.push_back(Outgoing.back()); 1732 1733 for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) { 1734 auto Out = Outgoing[i]; 1735 assert(GuardPredicates.count(Out)); 1736 BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out], 1737 GuardBlocks[i]); 1738 } 1739 1740 // Remove the last block from the guard list. 1741 GuardBlocks.pop_back(); 1742 } 1743 1744 BasicBlock *llvm::CreateControlFlowHub( 1745 DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks, 1746 const BBSetVector &Incoming, const BBSetVector &Outgoing, 1747 const StringRef Prefix) { 1748 auto F = Incoming.front()->getParent(); 1749 auto FirstGuardBlock = 1750 BasicBlock::Create(F->getContext(), Prefix + ".guard", F); 1751 1752 SmallVector<DominatorTree::UpdateType, 16> Updates; 1753 if (DTU) { 1754 for (auto In : Incoming) { 1755 Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock}); 1756 for (auto Succ : successors(In)) { 1757 if (Outgoing.count(Succ)) 1758 Updates.push_back({DominatorTree::Delete, In, Succ}); 1759 } 1760 } 1761 } 1762 1763 BBPredicates GuardPredicates; 1764 SmallVector<WeakVH, 8> DeletionCandidates; 1765 convertToGuardPredicates(FirstGuardBlock, GuardPredicates, DeletionCandidates, 1766 Incoming, Outgoing); 1767 1768 GuardBlocks.push_back(FirstGuardBlock); 1769 createGuardBlocks(GuardBlocks, F, Outgoing, GuardPredicates, Prefix); 1770 1771 // Update the PHINodes in each outgoing block to match the new control flow. 1772 for (int i = 0, e = GuardBlocks.size(); i != e; ++i) { 1773 reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock); 1774 } 1775 reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock); 1776 1777 if (DTU) { 1778 int NumGuards = GuardBlocks.size(); 1779 assert((int)Outgoing.size() == NumGuards + 1); 1780 for (int i = 0; i != NumGuards - 1; ++i) { 1781 Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]}); 1782 Updates.push_back( 1783 {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]}); 1784 } 1785 Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1], 1786 Outgoing[NumGuards - 1]}); 1787 Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1], 1788 Outgoing[NumGuards]}); 1789 DTU->applyUpdates(Updates); 1790 } 1791 1792 for (auto I : DeletionCandidates) { 1793 if (I->use_empty()) 1794 if (auto Inst = dyn_cast_or_null<Instruction>(I)) 1795 Inst->eraseFromParent(); 1796 } 1797 1798 return FirstGuardBlock; 1799 } 1800