1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform manipulations on basic blocks, and 11 // instructions contained within basic blocks. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/Analysis/CFG.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 23 #include "llvm/Analysis/Utils/Local.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CFG.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfoMetadata.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/InstrTypes.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/IR/User.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/IR/ValueHandle.h" 39 #include "llvm/Support/Casting.h" 40 #include <cassert> 41 #include <cstdint> 42 #include <string> 43 #include <utility> 44 #include <vector> 45 46 using namespace llvm; 47 48 void llvm::DeleteDeadBlock(BasicBlock *BB, DeferredDominance *DDT) { 49 assert((pred_begin(BB) == pred_end(BB) || 50 // Can delete self loop. 51 BB->getSinglePredecessor() == BB) && "Block is not dead!"); 52 TerminatorInst *BBTerm = BB->getTerminator(); 53 std::vector<DominatorTree::UpdateType> Updates; 54 55 // Loop through all of our successors and make sure they know that one 56 // of their predecessors is going away. 57 if (DDT) 58 Updates.reserve(BBTerm->getNumSuccessors()); 59 for (BasicBlock *Succ : BBTerm->successors()) { 60 Succ->removePredecessor(BB); 61 if (DDT) 62 Updates.push_back({DominatorTree::Delete, BB, Succ}); 63 } 64 65 // Zap all the instructions in the block. 66 while (!BB->empty()) { 67 Instruction &I = BB->back(); 68 // If this instruction is used, replace uses with an arbitrary value. 69 // Because control flow can't get here, we don't care what we replace the 70 // value with. Note that since this block is unreachable, and all values 71 // contained within it must dominate their uses, that all uses will 72 // eventually be removed (they are themselves dead). 73 if (!I.use_empty()) 74 I.replaceAllUsesWith(UndefValue::get(I.getType())); 75 BB->getInstList().pop_back(); 76 } 77 78 if (DDT) { 79 DDT->applyUpdates(Updates); 80 DDT->deleteBB(BB); // Deferred deletion of BB. 81 } else { 82 BB->eraseFromParent(); // Zap the block! 83 } 84 } 85 86 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, 87 MemoryDependenceResults *MemDep) { 88 if (!isa<PHINode>(BB->begin())) return; 89 90 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 91 if (PN->getIncomingValue(0) != PN) 92 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 93 else 94 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 95 96 if (MemDep) 97 MemDep->removeInstruction(PN); // Memdep updates AA itself. 98 99 PN->eraseFromParent(); 100 } 101 } 102 103 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) { 104 // Recursively deleting a PHI may cause multiple PHIs to be deleted 105 // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete. 106 SmallVector<WeakTrackingVH, 8> PHIs; 107 for (PHINode &PN : BB->phis()) 108 PHIs.push_back(&PN); 109 110 bool Changed = false; 111 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 112 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) 113 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI); 114 115 return Changed; 116 } 117 118 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DominatorTree *DT, 119 LoopInfo *LI, 120 MemoryDependenceResults *MemDep) { 121 // Don't merge away blocks who have their address taken. 122 if (BB->hasAddressTaken()) return false; 123 124 // Can't merge if there are multiple predecessors, or no predecessors. 125 BasicBlock *PredBB = BB->getUniquePredecessor(); 126 if (!PredBB) return false; 127 128 // Don't break self-loops. 129 if (PredBB == BB) return false; 130 // Don't break unwinding instructions. 131 if (PredBB->getTerminator()->isExceptional()) 132 return false; 133 134 succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB)); 135 BasicBlock *OnlySucc = BB; 136 for (; SI != SE; ++SI) 137 if (*SI != OnlySucc) { 138 OnlySucc = nullptr; // There are multiple distinct successors! 139 break; 140 } 141 142 // Can't merge if there are multiple successors. 143 if (!OnlySucc) return false; 144 145 // Can't merge if there is PHI loop. 146 for (PHINode &PN : BB->phis()) 147 for (Value *IncValue : PN.incoming_values()) 148 if (IncValue == &PN) 149 return false; 150 151 // Begin by getting rid of unneeded PHIs. 152 SmallVector<AssertingVH<Value>, 4> IncomingValues; 153 if (isa<PHINode>(BB->front())) { 154 for (PHINode &PN : BB->phis()) 155 if (!isa<PHINode>(PN.getIncomingValue(0)) || 156 cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB) 157 IncomingValues.push_back(PN.getIncomingValue(0)); 158 FoldSingleEntryPHINodes(BB, MemDep); 159 } 160 161 // Delete the unconditional branch from the predecessor... 162 PredBB->getInstList().pop_back(); 163 164 // Make all PHI nodes that referred to BB now refer to Pred as their 165 // source... 166 BB->replaceAllUsesWith(PredBB); 167 168 // Move all definitions in the successor to the predecessor... 169 PredBB->getInstList().splice(PredBB->end(), BB->getInstList()); 170 171 // Eliminate duplicate dbg.values describing the entry PHI node post-splice. 172 for (auto Incoming : IncomingValues) { 173 if (isa<Instruction>(*Incoming)) { 174 SmallVector<DbgValueInst *, 2> DbgValues; 175 SmallDenseSet<std::pair<DILocalVariable *, DIExpression *>, 2> 176 DbgValueSet; 177 llvm::findDbgValues(DbgValues, Incoming); 178 for (auto &DVI : DbgValues) { 179 auto R = DbgValueSet.insert({DVI->getVariable(), DVI->getExpression()}); 180 if (!R.second) 181 DVI->eraseFromParent(); 182 } 183 } 184 } 185 186 // Inherit predecessors name if it exists. 187 if (!PredBB->hasName()) 188 PredBB->takeName(BB); 189 190 // Finally, erase the old block and update dominator info. 191 if (DT) 192 if (DomTreeNode *DTN = DT->getNode(BB)) { 193 DomTreeNode *PredDTN = DT->getNode(PredBB); 194 SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end()); 195 for (DomTreeNode *DI : Children) 196 DT->changeImmediateDominator(DI, PredDTN); 197 198 DT->eraseNode(BB); 199 } 200 201 if (LI) 202 LI->removeBlock(BB); 203 204 if (MemDep) 205 MemDep->invalidateCachedPredecessors(); 206 207 BB->eraseFromParent(); 208 return true; 209 } 210 211 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL, 212 BasicBlock::iterator &BI, Value *V) { 213 Instruction &I = *BI; 214 // Replaces all of the uses of the instruction with uses of the value 215 I.replaceAllUsesWith(V); 216 217 // Make sure to propagate a name if there is one already. 218 if (I.hasName() && !V->hasName()) 219 V->takeName(&I); 220 221 // Delete the unnecessary instruction now... 222 BI = BIL.erase(BI); 223 } 224 225 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL, 226 BasicBlock::iterator &BI, Instruction *I) { 227 assert(I->getParent() == nullptr && 228 "ReplaceInstWithInst: Instruction already inserted into basic block!"); 229 230 // Copy debug location to newly added instruction, if it wasn't already set 231 // by the caller. 232 if (!I->getDebugLoc()) 233 I->setDebugLoc(BI->getDebugLoc()); 234 235 // Insert the new instruction into the basic block... 236 BasicBlock::iterator New = BIL.insert(BI, I); 237 238 // Replace all uses of the old instruction, and delete it. 239 ReplaceInstWithValue(BIL, BI, I); 240 241 // Move BI back to point to the newly inserted instruction 242 BI = New; 243 } 244 245 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { 246 BasicBlock::iterator BI(From); 247 ReplaceInstWithInst(From->getParent()->getInstList(), BI, To); 248 } 249 250 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT, 251 LoopInfo *LI) { 252 unsigned SuccNum = GetSuccessorNumber(BB, Succ); 253 254 // If this is a critical edge, let SplitCriticalEdge do it. 255 TerminatorInst *LatchTerm = BB->getTerminator(); 256 if (SplitCriticalEdge(LatchTerm, SuccNum, CriticalEdgeSplittingOptions(DT, LI) 257 .setPreserveLCSSA())) 258 return LatchTerm->getSuccessor(SuccNum); 259 260 // If the edge isn't critical, then BB has a single successor or Succ has a 261 // single pred. Split the block. 262 if (BasicBlock *SP = Succ->getSinglePredecessor()) { 263 // If the successor only has a single pred, split the top of the successor 264 // block. 265 assert(SP == BB && "CFG broken"); 266 SP = nullptr; 267 return SplitBlock(Succ, &Succ->front(), DT, LI); 268 } 269 270 // Otherwise, if BB has a single successor, split it at the bottom of the 271 // block. 272 assert(BB->getTerminator()->getNumSuccessors() == 1 && 273 "Should have a single succ!"); 274 return SplitBlock(BB, BB->getTerminator(), DT, LI); 275 } 276 277 unsigned 278 llvm::SplitAllCriticalEdges(Function &F, 279 const CriticalEdgeSplittingOptions &Options) { 280 unsigned NumBroken = 0; 281 for (BasicBlock &BB : F) { 282 TerminatorInst *TI = BB.getTerminator(); 283 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI)) 284 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 285 if (SplitCriticalEdge(TI, i, Options)) 286 ++NumBroken; 287 } 288 return NumBroken; 289 } 290 291 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, 292 DominatorTree *DT, LoopInfo *LI) { 293 BasicBlock::iterator SplitIt = SplitPt->getIterator(); 294 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) 295 ++SplitIt; 296 BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split"); 297 298 // The new block lives in whichever loop the old one did. This preserves 299 // LCSSA as well, because we force the split point to be after any PHI nodes. 300 if (LI) 301 if (Loop *L = LI->getLoopFor(Old)) 302 L->addBasicBlockToLoop(New, *LI); 303 304 if (DT) 305 // Old dominates New. New node dominates all other nodes dominated by Old. 306 if (DomTreeNode *OldNode = DT->getNode(Old)) { 307 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 308 309 DomTreeNode *NewNode = DT->addNewBlock(New, Old); 310 for (DomTreeNode *I : Children) 311 DT->changeImmediateDominator(I, NewNode); 312 } 313 314 return New; 315 } 316 317 /// Update DominatorTree, LoopInfo, and LCCSA analysis information. 318 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, 319 ArrayRef<BasicBlock *> Preds, 320 DominatorTree *DT, LoopInfo *LI, 321 bool PreserveLCSSA, bool &HasLoopExit) { 322 // Update dominator tree if available. 323 if (DT) { 324 if (OldBB == DT->getRootNode()->getBlock()) { 325 assert(NewBB == &NewBB->getParent()->getEntryBlock()); 326 DT->setNewRoot(NewBB); 327 } else { 328 // Split block expects NewBB to have a non-empty set of predecessors. 329 DT->splitBlock(NewBB); 330 } 331 } 332 333 // The rest of the logic is only relevant for updating the loop structures. 334 if (!LI) 335 return; 336 337 assert(DT && "DT should be available to update LoopInfo!"); 338 Loop *L = LI->getLoopFor(OldBB); 339 340 // If we need to preserve loop analyses, collect some information about how 341 // this split will affect loops. 342 bool IsLoopEntry = !!L; 343 bool SplitMakesNewLoopHeader = false; 344 for (BasicBlock *Pred : Preds) { 345 // Preds that are not reachable from entry should not be used to identify if 346 // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks 347 // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader 348 // as true and make the NewBB the header of some loop. This breaks LI. 349 if (!DT->isReachableFromEntry(Pred)) 350 continue; 351 // If we need to preserve LCSSA, determine if any of the preds is a loop 352 // exit. 353 if (PreserveLCSSA) 354 if (Loop *PL = LI->getLoopFor(Pred)) 355 if (!PL->contains(OldBB)) 356 HasLoopExit = true; 357 358 // If we need to preserve LoopInfo, note whether any of the preds crosses 359 // an interesting loop boundary. 360 if (!L) 361 continue; 362 if (L->contains(Pred)) 363 IsLoopEntry = false; 364 else 365 SplitMakesNewLoopHeader = true; 366 } 367 368 // Unless we have a loop for OldBB, nothing else to do here. 369 if (!L) 370 return; 371 372 if (IsLoopEntry) { 373 // Add the new block to the nearest enclosing loop (and not an adjacent 374 // loop). To find this, examine each of the predecessors and determine which 375 // loops enclose them, and select the most-nested loop which contains the 376 // loop containing the block being split. 377 Loop *InnermostPredLoop = nullptr; 378 for (BasicBlock *Pred : Preds) { 379 if (Loop *PredLoop = LI->getLoopFor(Pred)) { 380 // Seek a loop which actually contains the block being split (to avoid 381 // adjacent loops). 382 while (PredLoop && !PredLoop->contains(OldBB)) 383 PredLoop = PredLoop->getParentLoop(); 384 385 // Select the most-nested of these loops which contains the block. 386 if (PredLoop && PredLoop->contains(OldBB) && 387 (!InnermostPredLoop || 388 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) 389 InnermostPredLoop = PredLoop; 390 } 391 } 392 393 if (InnermostPredLoop) 394 InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI); 395 } else { 396 L->addBasicBlockToLoop(NewBB, *LI); 397 if (SplitMakesNewLoopHeader) 398 L->moveToHeader(NewBB); 399 } 400 } 401 402 /// Update the PHI nodes in OrigBB to include the values coming from NewBB. 403 /// This also updates AliasAnalysis, if available. 404 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, 405 ArrayRef<BasicBlock *> Preds, BranchInst *BI, 406 bool HasLoopExit) { 407 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. 408 SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end()); 409 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) { 410 PHINode *PN = cast<PHINode>(I++); 411 412 // Check to see if all of the values coming in are the same. If so, we 413 // don't need to create a new PHI node, unless it's needed for LCSSA. 414 Value *InVal = nullptr; 415 if (!HasLoopExit) { 416 InVal = PN->getIncomingValueForBlock(Preds[0]); 417 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 418 if (!PredSet.count(PN->getIncomingBlock(i))) 419 continue; 420 if (!InVal) 421 InVal = PN->getIncomingValue(i); 422 else if (InVal != PN->getIncomingValue(i)) { 423 InVal = nullptr; 424 break; 425 } 426 } 427 } 428 429 if (InVal) { 430 // If all incoming values for the new PHI would be the same, just don't 431 // make a new PHI. Instead, just remove the incoming values from the old 432 // PHI. 433 434 // NOTE! This loop walks backwards for a reason! First off, this minimizes 435 // the cost of removal if we end up removing a large number of values, and 436 // second off, this ensures that the indices for the incoming values 437 // aren't invalidated when we remove one. 438 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) 439 if (PredSet.count(PN->getIncomingBlock(i))) 440 PN->removeIncomingValue(i, false); 441 442 // Add an incoming value to the PHI node in the loop for the preheader 443 // edge. 444 PN->addIncoming(InVal, NewBB); 445 continue; 446 } 447 448 // If the values coming into the block are not the same, we need a new 449 // PHI. 450 // Create the new PHI node, insert it into NewBB at the end of the block 451 PHINode *NewPHI = 452 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI); 453 454 // NOTE! This loop walks backwards for a reason! First off, this minimizes 455 // the cost of removal if we end up removing a large number of values, and 456 // second off, this ensures that the indices for the incoming values aren't 457 // invalidated when we remove one. 458 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) { 459 BasicBlock *IncomingBB = PN->getIncomingBlock(i); 460 if (PredSet.count(IncomingBB)) { 461 Value *V = PN->removeIncomingValue(i, false); 462 NewPHI->addIncoming(V, IncomingBB); 463 } 464 } 465 466 PN->addIncoming(NewPHI, NewBB); 467 } 468 } 469 470 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 471 ArrayRef<BasicBlock *> Preds, 472 const char *Suffix, DominatorTree *DT, 473 LoopInfo *LI, bool PreserveLCSSA) { 474 // Do not attempt to split that which cannot be split. 475 if (!BB->canSplitPredecessors()) 476 return nullptr; 477 478 // For the landingpads we need to act a bit differently. 479 // Delegate this work to the SplitLandingPadPredecessors. 480 if (BB->isLandingPad()) { 481 SmallVector<BasicBlock*, 2> NewBBs; 482 std::string NewName = std::string(Suffix) + ".split-lp"; 483 484 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT, 485 LI, PreserveLCSSA); 486 return NewBBs[0]; 487 } 488 489 // Create new basic block, insert right before the original block. 490 BasicBlock *NewBB = BasicBlock::Create( 491 BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB); 492 493 // The new block unconditionally branches to the old block. 494 BranchInst *BI = BranchInst::Create(BB, NewBB); 495 BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc()); 496 497 // Move the edges from Preds to point to NewBB instead of BB. 498 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 499 // This is slightly more strict than necessary; the minimum requirement 500 // is that there be no more than one indirectbr branching to BB. And 501 // all BlockAddress uses would need to be updated. 502 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 503 "Cannot split an edge from an IndirectBrInst"); 504 Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB); 505 } 506 507 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI 508 // node becomes an incoming value for BB's phi node. However, if the Preds 509 // list is empty, we need to insert dummy entries into the PHI nodes in BB to 510 // account for the newly created predecessor. 511 if (Preds.empty()) { 512 // Insert dummy values as the incoming value. 513 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) 514 cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB); 515 } 516 517 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 518 bool HasLoopExit = false; 519 UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, PreserveLCSSA, 520 HasLoopExit); 521 522 if (!Preds.empty()) { 523 // Update the PHI nodes in BB with the values coming from NewBB. 524 UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit); 525 } 526 527 return NewBB; 528 } 529 530 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 531 ArrayRef<BasicBlock *> Preds, 532 const char *Suffix1, const char *Suffix2, 533 SmallVectorImpl<BasicBlock *> &NewBBs, 534 DominatorTree *DT, LoopInfo *LI, 535 bool PreserveLCSSA) { 536 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!"); 537 538 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert 539 // it right before the original block. 540 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(), 541 OrigBB->getName() + Suffix1, 542 OrigBB->getParent(), OrigBB); 543 NewBBs.push_back(NewBB1); 544 545 // The new block unconditionally branches to the old block. 546 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1); 547 BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 548 549 // Move the edges from Preds to point to NewBB1 instead of OrigBB. 550 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 551 // This is slightly more strict than necessary; the minimum requirement 552 // is that there be no more than one indirectbr branching to BB. And 553 // all BlockAddress uses would need to be updated. 554 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 555 "Cannot split an edge from an IndirectBrInst"); 556 Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1); 557 } 558 559 bool HasLoopExit = false; 560 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, PreserveLCSSA, 561 HasLoopExit); 562 563 // Update the PHI nodes in OrigBB with the values coming from NewBB1. 564 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit); 565 566 // Move the remaining edges from OrigBB to point to NewBB2. 567 SmallVector<BasicBlock*, 8> NewBB2Preds; 568 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB); 569 i != e; ) { 570 BasicBlock *Pred = *i++; 571 if (Pred == NewBB1) continue; 572 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 573 "Cannot split an edge from an IndirectBrInst"); 574 NewBB2Preds.push_back(Pred); 575 e = pred_end(OrigBB); 576 } 577 578 BasicBlock *NewBB2 = nullptr; 579 if (!NewBB2Preds.empty()) { 580 // Create another basic block for the rest of OrigBB's predecessors. 581 NewBB2 = BasicBlock::Create(OrigBB->getContext(), 582 OrigBB->getName() + Suffix2, 583 OrigBB->getParent(), OrigBB); 584 NewBBs.push_back(NewBB2); 585 586 // The new block unconditionally branches to the old block. 587 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2); 588 BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 589 590 // Move the remaining edges from OrigBB to point to NewBB2. 591 for (BasicBlock *NewBB2Pred : NewBB2Preds) 592 NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2); 593 594 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 595 HasLoopExit = false; 596 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, 597 PreserveLCSSA, HasLoopExit); 598 599 // Update the PHI nodes in OrigBB with the values coming from NewBB2. 600 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit); 601 } 602 603 LandingPadInst *LPad = OrigBB->getLandingPadInst(); 604 Instruction *Clone1 = LPad->clone(); 605 Clone1->setName(Twine("lpad") + Suffix1); 606 NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1); 607 608 if (NewBB2) { 609 Instruction *Clone2 = LPad->clone(); 610 Clone2->setName(Twine("lpad") + Suffix2); 611 NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2); 612 613 // Create a PHI node for the two cloned landingpad instructions only 614 // if the original landingpad instruction has some uses. 615 if (!LPad->use_empty()) { 616 assert(!LPad->getType()->isTokenTy() && 617 "Split cannot be applied if LPad is token type. Otherwise an " 618 "invalid PHINode of token type would be created."); 619 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad); 620 PN->addIncoming(Clone1, NewBB1); 621 PN->addIncoming(Clone2, NewBB2); 622 LPad->replaceAllUsesWith(PN); 623 } 624 LPad->eraseFromParent(); 625 } else { 626 // There is no second clone. Just replace the landing pad with the first 627 // clone. 628 LPad->replaceAllUsesWith(Clone1); 629 LPad->eraseFromParent(); 630 } 631 } 632 633 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, 634 BasicBlock *Pred) { 635 Instruction *UncondBranch = Pred->getTerminator(); 636 // Clone the return and add it to the end of the predecessor. 637 Instruction *NewRet = RI->clone(); 638 Pred->getInstList().push_back(NewRet); 639 640 // If the return instruction returns a value, and if the value was a 641 // PHI node in "BB", propagate the right value into the return. 642 for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end(); 643 i != e; ++i) { 644 Value *V = *i; 645 Instruction *NewBC = nullptr; 646 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) { 647 // Return value might be bitcasted. Clone and insert it before the 648 // return instruction. 649 V = BCI->getOperand(0); 650 NewBC = BCI->clone(); 651 Pred->getInstList().insert(NewRet->getIterator(), NewBC); 652 *i = NewBC; 653 } 654 if (PHINode *PN = dyn_cast<PHINode>(V)) { 655 if (PN->getParent() == BB) { 656 if (NewBC) 657 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred)); 658 else 659 *i = PN->getIncomingValueForBlock(Pred); 660 } 661 } 662 } 663 664 // Update any PHI nodes in the returning block to realize that we no 665 // longer branch to them. 666 BB->removePredecessor(Pred); 667 UncondBranch->eraseFromParent(); 668 return cast<ReturnInst>(NewRet); 669 } 670 671 TerminatorInst * 672 llvm::SplitBlockAndInsertIfThen(Value *Cond, Instruction *SplitBefore, 673 bool Unreachable, MDNode *BranchWeights, 674 DominatorTree *DT, LoopInfo *LI) { 675 BasicBlock *Head = SplitBefore->getParent(); 676 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 677 TerminatorInst *HeadOldTerm = Head->getTerminator(); 678 LLVMContext &C = Head->getContext(); 679 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 680 TerminatorInst *CheckTerm; 681 if (Unreachable) 682 CheckTerm = new UnreachableInst(C, ThenBlock); 683 else 684 CheckTerm = BranchInst::Create(Tail, ThenBlock); 685 CheckTerm->setDebugLoc(SplitBefore->getDebugLoc()); 686 BranchInst *HeadNewTerm = 687 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond); 688 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 689 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 690 691 if (DT) { 692 if (DomTreeNode *OldNode = DT->getNode(Head)) { 693 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 694 695 DomTreeNode *NewNode = DT->addNewBlock(Tail, Head); 696 for (DomTreeNode *Child : Children) 697 DT->changeImmediateDominator(Child, NewNode); 698 699 // Head dominates ThenBlock. 700 DT->addNewBlock(ThenBlock, Head); 701 } 702 } 703 704 if (LI) { 705 if (Loop *L = LI->getLoopFor(Head)) { 706 L->addBasicBlockToLoop(ThenBlock, *LI); 707 L->addBasicBlockToLoop(Tail, *LI); 708 } 709 } 710 711 return CheckTerm; 712 } 713 714 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore, 715 TerminatorInst **ThenTerm, 716 TerminatorInst **ElseTerm, 717 MDNode *BranchWeights) { 718 BasicBlock *Head = SplitBefore->getParent(); 719 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 720 TerminatorInst *HeadOldTerm = Head->getTerminator(); 721 LLVMContext &C = Head->getContext(); 722 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 723 BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 724 *ThenTerm = BranchInst::Create(Tail, ThenBlock); 725 (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 726 *ElseTerm = BranchInst::Create(Tail, ElseBlock); 727 (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 728 BranchInst *HeadNewTerm = 729 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond); 730 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 731 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 732 } 733 734 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 735 BasicBlock *&IfFalse) { 736 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin()); 737 BasicBlock *Pred1 = nullptr; 738 BasicBlock *Pred2 = nullptr; 739 740 if (SomePHI) { 741 if (SomePHI->getNumIncomingValues() != 2) 742 return nullptr; 743 Pred1 = SomePHI->getIncomingBlock(0); 744 Pred2 = SomePHI->getIncomingBlock(1); 745 } else { 746 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 747 if (PI == PE) // No predecessor 748 return nullptr; 749 Pred1 = *PI++; 750 if (PI == PE) // Only one predecessor 751 return nullptr; 752 Pred2 = *PI++; 753 if (PI != PE) // More than two predecessors 754 return nullptr; 755 } 756 757 // We can only handle branches. Other control flow will be lowered to 758 // branches if possible anyway. 759 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 760 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 761 if (!Pred1Br || !Pred2Br) 762 return nullptr; 763 764 // Eliminate code duplication by ensuring that Pred1Br is conditional if 765 // either are. 766 if (Pred2Br->isConditional()) { 767 // If both branches are conditional, we don't have an "if statement". In 768 // reality, we could transform this case, but since the condition will be 769 // required anyway, we stand no chance of eliminating it, so the xform is 770 // probably not profitable. 771 if (Pred1Br->isConditional()) 772 return nullptr; 773 774 std::swap(Pred1, Pred2); 775 std::swap(Pred1Br, Pred2Br); 776 } 777 778 if (Pred1Br->isConditional()) { 779 // The only thing we have to watch out for here is to make sure that Pred2 780 // doesn't have incoming edges from other blocks. If it does, the condition 781 // doesn't dominate BB. 782 if (!Pred2->getSinglePredecessor()) 783 return nullptr; 784 785 // If we found a conditional branch predecessor, make sure that it branches 786 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 787 if (Pred1Br->getSuccessor(0) == BB && 788 Pred1Br->getSuccessor(1) == Pred2) { 789 IfTrue = Pred1; 790 IfFalse = Pred2; 791 } else if (Pred1Br->getSuccessor(0) == Pred2 && 792 Pred1Br->getSuccessor(1) == BB) { 793 IfTrue = Pred2; 794 IfFalse = Pred1; 795 } else { 796 // We know that one arm of the conditional goes to BB, so the other must 797 // go somewhere unrelated, and this must not be an "if statement". 798 return nullptr; 799 } 800 801 return Pred1Br->getCondition(); 802 } 803 804 // Ok, if we got here, both predecessors end with an unconditional branch to 805 // BB. Don't panic! If both blocks only have a single (identical) 806 // predecessor, and THAT is a conditional branch, then we're all ok! 807 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 808 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor()) 809 return nullptr; 810 811 // Otherwise, if this is a conditional branch, then we can use it! 812 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 813 if (!BI) return nullptr; 814 815 assert(BI->isConditional() && "Two successors but not conditional?"); 816 if (BI->getSuccessor(0) == Pred1) { 817 IfTrue = Pred1; 818 IfFalse = Pred2; 819 } else { 820 IfTrue = Pred2; 821 IfFalse = Pred1; 822 } 823 return BI->getCondition(); 824 } 825