1 //===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform manipulations on basic blocks, and
11 // instructions contained within basic blocks.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
16 #include "llvm/Analysis/AliasAnalysis.h"
17 #include "llvm/Analysis/CFG.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/IR/ValueHandle.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Transforms/Scalar.h"
30 #include "llvm/Transforms/Utils/Local.h"
31 #include <algorithm>
32 using namespace llvm;
33 
34 void llvm::DeleteDeadBlock(BasicBlock *BB) {
35   assert((pred_begin(BB) == pred_end(BB) ||
36          // Can delete self loop.
37          BB->getSinglePredecessor() == BB) && "Block is not dead!");
38   TerminatorInst *BBTerm = BB->getTerminator();
39 
40   // Loop through all of our successors and make sure they know that one
41   // of their predecessors is going away.
42   for (BasicBlock *Succ : BBTerm->successors())
43     Succ->removePredecessor(BB);
44 
45   // Zap all the instructions in the block.
46   while (!BB->empty()) {
47     Instruction &I = BB->back();
48     // If this instruction is used, replace uses with an arbitrary value.
49     // Because control flow can't get here, we don't care what we replace the
50     // value with.  Note that since this block is unreachable, and all values
51     // contained within it must dominate their uses, that all uses will
52     // eventually be removed (they are themselves dead).
53     if (!I.use_empty())
54       I.replaceAllUsesWith(UndefValue::get(I.getType()));
55     BB->getInstList().pop_back();
56   }
57 
58   // Zap the block!
59   BB->eraseFromParent();
60 }
61 
62 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
63                                    MemoryDependenceResults *MemDep) {
64   if (!isa<PHINode>(BB->begin())) return;
65 
66   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
67     if (PN->getIncomingValue(0) != PN)
68       PN->replaceAllUsesWith(PN->getIncomingValue(0));
69     else
70       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
71 
72     if (MemDep)
73       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
74 
75     PN->eraseFromParent();
76   }
77 }
78 
79 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
80   // Recursively deleting a PHI may cause multiple PHIs to be deleted
81   // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
82   SmallVector<WeakVH, 8> PHIs;
83   for (BasicBlock::iterator I = BB->begin();
84        PHINode *PN = dyn_cast<PHINode>(I); ++I)
85     PHIs.push_back(PN);
86 
87   bool Changed = false;
88   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
89     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
90       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI);
91 
92   return Changed;
93 }
94 
95 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DominatorTree *DT,
96                                      LoopInfo *LI,
97                                      MemoryDependenceResults *MemDep) {
98   // Don't merge away blocks who have their address taken.
99   if (BB->hasAddressTaken()) return false;
100 
101   // Can't merge if there are multiple predecessors, or no predecessors.
102   BasicBlock *PredBB = BB->getUniquePredecessor();
103   if (!PredBB) return false;
104 
105   // Don't break self-loops.
106   if (PredBB == BB) return false;
107   // Don't break unwinding instructions.
108   if (PredBB->getTerminator()->isExceptional())
109     return false;
110 
111   succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
112   BasicBlock *OnlySucc = BB;
113   for (; SI != SE; ++SI)
114     if (*SI != OnlySucc) {
115       OnlySucc = nullptr;     // There are multiple distinct successors!
116       break;
117     }
118 
119   // Can't merge if there are multiple successors.
120   if (!OnlySucc) return false;
121 
122   // Can't merge if there is PHI loop.
123   for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
124     if (PHINode *PN = dyn_cast<PHINode>(BI)) {
125       for (Value *IncValue : PN->incoming_values())
126         if (IncValue == PN)
127           return false;
128     } else
129       break;
130   }
131 
132   // Begin by getting rid of unneeded PHIs.
133   if (isa<PHINode>(BB->front()))
134     FoldSingleEntryPHINodes(BB, MemDep);
135 
136   // Delete the unconditional branch from the predecessor...
137   PredBB->getInstList().pop_back();
138 
139   // Make all PHI nodes that referred to BB now refer to Pred as their
140   // source...
141   BB->replaceAllUsesWith(PredBB);
142 
143   // Move all definitions in the successor to the predecessor...
144   PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
145 
146   // Inherit predecessors name if it exists.
147   if (!PredBB->hasName())
148     PredBB->takeName(BB);
149 
150   // Finally, erase the old block and update dominator info.
151   if (DT)
152     if (DomTreeNode *DTN = DT->getNode(BB)) {
153       DomTreeNode *PredDTN = DT->getNode(PredBB);
154       SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end());
155       for (SmallVectorImpl<DomTreeNode *>::iterator DI = Children.begin(),
156                                                     DE = Children.end();
157            DI != DE; ++DI)
158         DT->changeImmediateDominator(*DI, PredDTN);
159 
160       DT->eraseNode(BB);
161     }
162 
163   if (LI)
164     LI->removeBlock(BB);
165 
166   if (MemDep)
167     MemDep->invalidateCachedPredecessors();
168 
169   BB->eraseFromParent();
170   return true;
171 }
172 
173 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
174                                 BasicBlock::iterator &BI, Value *V) {
175   Instruction &I = *BI;
176   // Replaces all of the uses of the instruction with uses of the value
177   I.replaceAllUsesWith(V);
178 
179   // Make sure to propagate a name if there is one already.
180   if (I.hasName() && !V->hasName())
181     V->takeName(&I);
182 
183   // Delete the unnecessary instruction now...
184   BI = BIL.erase(BI);
185 }
186 
187 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
188                                BasicBlock::iterator &BI, Instruction *I) {
189   assert(I->getParent() == nullptr &&
190          "ReplaceInstWithInst: Instruction already inserted into basic block!");
191 
192   // Copy debug location to newly added instruction, if it wasn't already set
193   // by the caller.
194   if (!I->getDebugLoc())
195     I->setDebugLoc(BI->getDebugLoc());
196 
197   // Insert the new instruction into the basic block...
198   BasicBlock::iterator New = BIL.insert(BI, I);
199 
200   // Replace all uses of the old instruction, and delete it.
201   ReplaceInstWithValue(BIL, BI, I);
202 
203   // Move BI back to point to the newly inserted instruction
204   BI = New;
205 }
206 
207 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
208   BasicBlock::iterator BI(From);
209   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
210 }
211 
212 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
213                             LoopInfo *LI) {
214   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
215 
216   // If this is a critical edge, let SplitCriticalEdge do it.
217   TerminatorInst *LatchTerm = BB->getTerminator();
218   if (SplitCriticalEdge(LatchTerm, SuccNum, CriticalEdgeSplittingOptions(DT, LI)
219                                                 .setPreserveLCSSA()))
220     return LatchTerm->getSuccessor(SuccNum);
221 
222   // If the edge isn't critical, then BB has a single successor or Succ has a
223   // single pred.  Split the block.
224   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
225     // If the successor only has a single pred, split the top of the successor
226     // block.
227     assert(SP == BB && "CFG broken");
228     SP = nullptr;
229     return SplitBlock(Succ, &Succ->front(), DT, LI);
230   }
231 
232   // Otherwise, if BB has a single successor, split it at the bottom of the
233   // block.
234   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
235          "Should have a single succ!");
236   return SplitBlock(BB, BB->getTerminator(), DT, LI);
237 }
238 
239 unsigned
240 llvm::SplitAllCriticalEdges(Function &F,
241                             const CriticalEdgeSplittingOptions &Options) {
242   unsigned NumBroken = 0;
243   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
244     TerminatorInst *TI = I->getTerminator();
245     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
246       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
247         if (SplitCriticalEdge(TI, i, Options))
248           ++NumBroken;
249   }
250   return NumBroken;
251 }
252 
253 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
254                              DominatorTree *DT, LoopInfo *LI) {
255   BasicBlock::iterator SplitIt = SplitPt->getIterator();
256   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
257     ++SplitIt;
258   BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
259 
260   // The new block lives in whichever loop the old one did. This preserves
261   // LCSSA as well, because we force the split point to be after any PHI nodes.
262   if (LI)
263     if (Loop *L = LI->getLoopFor(Old))
264       L->addBasicBlockToLoop(New, *LI);
265 
266   if (DT)
267     // Old dominates New. New node dominates all other nodes dominated by Old.
268     if (DomTreeNode *OldNode = DT->getNode(Old)) {
269       std::vector<DomTreeNode *> Children;
270       for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
271            I != E; ++I)
272         Children.push_back(*I);
273 
274       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
275       for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
276              E = Children.end(); I != E; ++I)
277         DT->changeImmediateDominator(*I, NewNode);
278     }
279 
280   return New;
281 }
282 
283 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
284 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
285                                       ArrayRef<BasicBlock *> Preds,
286                                       DominatorTree *DT, LoopInfo *LI,
287                                       bool PreserveLCSSA, bool &HasLoopExit) {
288   // Update dominator tree if available.
289   if (DT)
290     DT->splitBlock(NewBB);
291 
292   // The rest of the logic is only relevant for updating the loop structures.
293   if (!LI)
294     return;
295 
296   Loop *L = LI->getLoopFor(OldBB);
297 
298   // If we need to preserve loop analyses, collect some information about how
299   // this split will affect loops.
300   bool IsLoopEntry = !!L;
301   bool SplitMakesNewLoopHeader = false;
302   for (ArrayRef<BasicBlock *>::iterator i = Preds.begin(), e = Preds.end();
303        i != e; ++i) {
304     BasicBlock *Pred = *i;
305 
306     // If we need to preserve LCSSA, determine if any of the preds is a loop
307     // exit.
308     if (PreserveLCSSA)
309       if (Loop *PL = LI->getLoopFor(Pred))
310         if (!PL->contains(OldBB))
311           HasLoopExit = true;
312 
313     // If we need to preserve LoopInfo, note whether any of the preds crosses
314     // an interesting loop boundary.
315     if (!L)
316       continue;
317     if (L->contains(Pred))
318       IsLoopEntry = false;
319     else
320       SplitMakesNewLoopHeader = true;
321   }
322 
323   // Unless we have a loop for OldBB, nothing else to do here.
324   if (!L)
325     return;
326 
327   if (IsLoopEntry) {
328     // Add the new block to the nearest enclosing loop (and not an adjacent
329     // loop). To find this, examine each of the predecessors and determine which
330     // loops enclose them, and select the most-nested loop which contains the
331     // loop containing the block being split.
332     Loop *InnermostPredLoop = nullptr;
333     for (ArrayRef<BasicBlock*>::iterator
334            i = Preds.begin(), e = Preds.end(); i != e; ++i) {
335       BasicBlock *Pred = *i;
336       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
337         // Seek a loop which actually contains the block being split (to avoid
338         // adjacent loops).
339         while (PredLoop && !PredLoop->contains(OldBB))
340           PredLoop = PredLoop->getParentLoop();
341 
342         // Select the most-nested of these loops which contains the block.
343         if (PredLoop && PredLoop->contains(OldBB) &&
344             (!InnermostPredLoop ||
345              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
346           InnermostPredLoop = PredLoop;
347       }
348     }
349 
350     if (InnermostPredLoop)
351       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
352   } else {
353     L->addBasicBlockToLoop(NewBB, *LI);
354     if (SplitMakesNewLoopHeader)
355       L->moveToHeader(NewBB);
356   }
357 }
358 
359 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
360 /// This also updates AliasAnalysis, if available.
361 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
362                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
363                            bool HasLoopExit) {
364   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
365   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
366   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
367     PHINode *PN = cast<PHINode>(I++);
368 
369     // Check to see if all of the values coming in are the same.  If so, we
370     // don't need to create a new PHI node, unless it's needed for LCSSA.
371     Value *InVal = nullptr;
372     if (!HasLoopExit) {
373       InVal = PN->getIncomingValueForBlock(Preds[0]);
374       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
375         if (!PredSet.count(PN->getIncomingBlock(i)))
376           continue;
377         if (!InVal)
378           InVal = PN->getIncomingValue(i);
379         else if (InVal != PN->getIncomingValue(i)) {
380           InVal = nullptr;
381           break;
382         }
383       }
384     }
385 
386     if (InVal) {
387       // If all incoming values for the new PHI would be the same, just don't
388       // make a new PHI.  Instead, just remove the incoming values from the old
389       // PHI.
390 
391       // NOTE! This loop walks backwards for a reason! First off, this minimizes
392       // the cost of removal if we end up removing a large number of values, and
393       // second off, this ensures that the indices for the incoming values
394       // aren't invalidated when we remove one.
395       for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
396         if (PredSet.count(PN->getIncomingBlock(i)))
397           PN->removeIncomingValue(i, false);
398 
399       // Add an incoming value to the PHI node in the loop for the preheader
400       // edge.
401       PN->addIncoming(InVal, NewBB);
402       continue;
403     }
404 
405     // If the values coming into the block are not the same, we need a new
406     // PHI.
407     // Create the new PHI node, insert it into NewBB at the end of the block
408     PHINode *NewPHI =
409         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
410 
411     // NOTE! This loop walks backwards for a reason! First off, this minimizes
412     // the cost of removal if we end up removing a large number of values, and
413     // second off, this ensures that the indices for the incoming values aren't
414     // invalidated when we remove one.
415     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
416       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
417       if (PredSet.count(IncomingBB)) {
418         Value *V = PN->removeIncomingValue(i, false);
419         NewPHI->addIncoming(V, IncomingBB);
420       }
421     }
422 
423     PN->addIncoming(NewPHI, NewBB);
424   }
425 }
426 
427 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
428                                          ArrayRef<BasicBlock *> Preds,
429                                          const char *Suffix, DominatorTree *DT,
430                                          LoopInfo *LI, bool PreserveLCSSA) {
431   // Do not attempt to split that which cannot be split.
432   if (!BB->canSplitPredecessors())
433     return nullptr;
434 
435   // For the landingpads we need to act a bit differently.
436   // Delegate this work to the SplitLandingPadPredecessors.
437   if (BB->isLandingPad()) {
438     SmallVector<BasicBlock*, 2> NewBBs;
439     std::string NewName = std::string(Suffix) + ".split-lp";
440 
441     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT,
442                                 LI, PreserveLCSSA);
443     return NewBBs[0];
444   }
445 
446   // Create new basic block, insert right before the original block.
447   BasicBlock *NewBB = BasicBlock::Create(
448       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
449 
450   // The new block unconditionally branches to the old block.
451   BranchInst *BI = BranchInst::Create(BB, NewBB);
452   BI->setDebugLoc(BB->getFirstNonPHI()->getDebugLoc());
453 
454   // Move the edges from Preds to point to NewBB instead of BB.
455   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
456     // This is slightly more strict than necessary; the minimum requirement
457     // is that there be no more than one indirectbr branching to BB. And
458     // all BlockAddress uses would need to be updated.
459     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
460            "Cannot split an edge from an IndirectBrInst");
461     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
462   }
463 
464   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
465   // node becomes an incoming value for BB's phi node.  However, if the Preds
466   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
467   // account for the newly created predecessor.
468   if (Preds.size() == 0) {
469     // Insert dummy values as the incoming value.
470     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
471       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
472     return NewBB;
473   }
474 
475   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
476   bool HasLoopExit = false;
477   UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, PreserveLCSSA,
478                             HasLoopExit);
479 
480   // Update the PHI nodes in BB with the values coming from NewBB.
481   UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
482   return NewBB;
483 }
484 
485 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
486                                        ArrayRef<BasicBlock *> Preds,
487                                        const char *Suffix1, const char *Suffix2,
488                                        SmallVectorImpl<BasicBlock *> &NewBBs,
489                                        DominatorTree *DT, LoopInfo *LI,
490                                        bool PreserveLCSSA) {
491   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
492 
493   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
494   // it right before the original block.
495   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
496                                           OrigBB->getName() + Suffix1,
497                                           OrigBB->getParent(), OrigBB);
498   NewBBs.push_back(NewBB1);
499 
500   // The new block unconditionally branches to the old block.
501   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
502   BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
503 
504   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
505   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
506     // This is slightly more strict than necessary; the minimum requirement
507     // is that there be no more than one indirectbr branching to BB. And
508     // all BlockAddress uses would need to be updated.
509     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
510            "Cannot split an edge from an IndirectBrInst");
511     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
512   }
513 
514   bool HasLoopExit = false;
515   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, PreserveLCSSA,
516                             HasLoopExit);
517 
518   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
519   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
520 
521   // Move the remaining edges from OrigBB to point to NewBB2.
522   SmallVector<BasicBlock*, 8> NewBB2Preds;
523   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
524        i != e; ) {
525     BasicBlock *Pred = *i++;
526     if (Pred == NewBB1) continue;
527     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
528            "Cannot split an edge from an IndirectBrInst");
529     NewBB2Preds.push_back(Pred);
530     e = pred_end(OrigBB);
531   }
532 
533   BasicBlock *NewBB2 = nullptr;
534   if (!NewBB2Preds.empty()) {
535     // Create another basic block for the rest of OrigBB's predecessors.
536     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
537                                 OrigBB->getName() + Suffix2,
538                                 OrigBB->getParent(), OrigBB);
539     NewBBs.push_back(NewBB2);
540 
541     // The new block unconditionally branches to the old block.
542     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
543     BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
544 
545     // Move the remaining edges from OrigBB to point to NewBB2.
546     for (SmallVectorImpl<BasicBlock*>::iterator
547            i = NewBB2Preds.begin(), e = NewBB2Preds.end(); i != e; ++i)
548       (*i)->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
549 
550     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
551     HasLoopExit = false;
552     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI,
553                               PreserveLCSSA, HasLoopExit);
554 
555     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
556     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
557   }
558 
559   LandingPadInst *LPad = OrigBB->getLandingPadInst();
560   Instruction *Clone1 = LPad->clone();
561   Clone1->setName(Twine("lpad") + Suffix1);
562   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
563 
564   if (NewBB2) {
565     Instruction *Clone2 = LPad->clone();
566     Clone2->setName(Twine("lpad") + Suffix2);
567     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
568 
569     // Create a PHI node for the two cloned landingpad instructions only
570     // if the original landingpad instruction has some uses.
571     if (!LPad->use_empty()) {
572       assert(!LPad->getType()->isTokenTy() &&
573              "Split cannot be applied if LPad is token type. Otherwise an "
574              "invalid PHINode of token type would be created.");
575       PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
576       PN->addIncoming(Clone1, NewBB1);
577       PN->addIncoming(Clone2, NewBB2);
578       LPad->replaceAllUsesWith(PN);
579     }
580     LPad->eraseFromParent();
581   } else {
582     // There is no second clone. Just replace the landing pad with the first
583     // clone.
584     LPad->replaceAllUsesWith(Clone1);
585     LPad->eraseFromParent();
586   }
587 }
588 
589 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
590                                              BasicBlock *Pred) {
591   Instruction *UncondBranch = Pred->getTerminator();
592   // Clone the return and add it to the end of the predecessor.
593   Instruction *NewRet = RI->clone();
594   Pred->getInstList().push_back(NewRet);
595 
596   // If the return instruction returns a value, and if the value was a
597   // PHI node in "BB", propagate the right value into the return.
598   for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
599        i != e; ++i) {
600     Value *V = *i;
601     Instruction *NewBC = nullptr;
602     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
603       // Return value might be bitcasted. Clone and insert it before the
604       // return instruction.
605       V = BCI->getOperand(0);
606       NewBC = BCI->clone();
607       Pred->getInstList().insert(NewRet->getIterator(), NewBC);
608       *i = NewBC;
609     }
610     if (PHINode *PN = dyn_cast<PHINode>(V)) {
611       if (PN->getParent() == BB) {
612         if (NewBC)
613           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
614         else
615           *i = PN->getIncomingValueForBlock(Pred);
616       }
617     }
618   }
619 
620   // Update any PHI nodes in the returning block to realize that we no
621   // longer branch to them.
622   BB->removePredecessor(Pred);
623   UncondBranch->eraseFromParent();
624   return cast<ReturnInst>(NewRet);
625 }
626 
627 TerminatorInst *
628 llvm::SplitBlockAndInsertIfThen(Value *Cond, Instruction *SplitBefore,
629                                 bool Unreachable, MDNode *BranchWeights,
630                                 DominatorTree *DT, LoopInfo *LI) {
631   BasicBlock *Head = SplitBefore->getParent();
632   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
633   TerminatorInst *HeadOldTerm = Head->getTerminator();
634   LLVMContext &C = Head->getContext();
635   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
636   TerminatorInst *CheckTerm;
637   if (Unreachable)
638     CheckTerm = new UnreachableInst(C, ThenBlock);
639   else
640     CheckTerm = BranchInst::Create(Tail, ThenBlock);
641   CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
642   BranchInst *HeadNewTerm =
643     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
644   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
645   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
646 
647   if (DT) {
648     if (DomTreeNode *OldNode = DT->getNode(Head)) {
649       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
650 
651       DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
652       for (auto Child : Children)
653         DT->changeImmediateDominator(Child, NewNode);
654 
655       // Head dominates ThenBlock.
656       DT->addNewBlock(ThenBlock, Head);
657     }
658   }
659 
660   if (LI) {
661     Loop *L = LI->getLoopFor(Head);
662     L->addBasicBlockToLoop(ThenBlock, *LI);
663     L->addBasicBlockToLoop(Tail, *LI);
664   }
665 
666   return CheckTerm;
667 }
668 
669 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
670                                          TerminatorInst **ThenTerm,
671                                          TerminatorInst **ElseTerm,
672                                          MDNode *BranchWeights) {
673   BasicBlock *Head = SplitBefore->getParent();
674   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
675   TerminatorInst *HeadOldTerm = Head->getTerminator();
676   LLVMContext &C = Head->getContext();
677   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
678   BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
679   *ThenTerm = BranchInst::Create(Tail, ThenBlock);
680   (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
681   *ElseTerm = BranchInst::Create(Tail, ElseBlock);
682   (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
683   BranchInst *HeadNewTerm =
684     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
685   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
686   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
687 }
688 
689 
690 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
691                              BasicBlock *&IfFalse) {
692   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
693   BasicBlock *Pred1 = nullptr;
694   BasicBlock *Pred2 = nullptr;
695 
696   if (SomePHI) {
697     if (SomePHI->getNumIncomingValues() != 2)
698       return nullptr;
699     Pred1 = SomePHI->getIncomingBlock(0);
700     Pred2 = SomePHI->getIncomingBlock(1);
701   } else {
702     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
703     if (PI == PE) // No predecessor
704       return nullptr;
705     Pred1 = *PI++;
706     if (PI == PE) // Only one predecessor
707       return nullptr;
708     Pred2 = *PI++;
709     if (PI != PE) // More than two predecessors
710       return nullptr;
711   }
712 
713   // We can only handle branches.  Other control flow will be lowered to
714   // branches if possible anyway.
715   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
716   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
717   if (!Pred1Br || !Pred2Br)
718     return nullptr;
719 
720   // Eliminate code duplication by ensuring that Pred1Br is conditional if
721   // either are.
722   if (Pred2Br->isConditional()) {
723     // If both branches are conditional, we don't have an "if statement".  In
724     // reality, we could transform this case, but since the condition will be
725     // required anyway, we stand no chance of eliminating it, so the xform is
726     // probably not profitable.
727     if (Pred1Br->isConditional())
728       return nullptr;
729 
730     std::swap(Pred1, Pred2);
731     std::swap(Pred1Br, Pred2Br);
732   }
733 
734   if (Pred1Br->isConditional()) {
735     // The only thing we have to watch out for here is to make sure that Pred2
736     // doesn't have incoming edges from other blocks.  If it does, the condition
737     // doesn't dominate BB.
738     if (!Pred2->getSinglePredecessor())
739       return nullptr;
740 
741     // If we found a conditional branch predecessor, make sure that it branches
742     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
743     if (Pred1Br->getSuccessor(0) == BB &&
744         Pred1Br->getSuccessor(1) == Pred2) {
745       IfTrue = Pred1;
746       IfFalse = Pred2;
747     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
748                Pred1Br->getSuccessor(1) == BB) {
749       IfTrue = Pred2;
750       IfFalse = Pred1;
751     } else {
752       // We know that one arm of the conditional goes to BB, so the other must
753       // go somewhere unrelated, and this must not be an "if statement".
754       return nullptr;
755     }
756 
757     return Pred1Br->getCondition();
758   }
759 
760   // Ok, if we got here, both predecessors end with an unconditional branch to
761   // BB.  Don't panic!  If both blocks only have a single (identical)
762   // predecessor, and THAT is a conditional branch, then we're all ok!
763   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
764   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
765     return nullptr;
766 
767   // Otherwise, if this is a conditional branch, then we can use it!
768   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
769   if (!BI) return nullptr;
770 
771   assert(BI->isConditional() && "Two successors but not conditional?");
772   if (BI->getSuccessor(0) == Pred1) {
773     IfTrue = Pred1;
774     IfFalse = Pred2;
775   } else {
776     IfTrue = Pred2;
777     IfFalse = Pred1;
778   }
779   return BI->getCondition();
780 }
781