1 //===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform manipulations on basic blocks, and 11 // instructions contained within basic blocks. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 16 #include "llvm/Analysis/AliasAnalysis.h" 17 #include "llvm/Analysis/CFG.h" 18 #include "llvm/Analysis/LoopInfo.h" 19 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 20 #include "llvm/IR/Constant.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/Type.h" 27 #include "llvm/IR/ValueHandle.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Transforms/Scalar.h" 30 #include "llvm/Transforms/Utils/Local.h" 31 #include <algorithm> 32 using namespace llvm; 33 34 void llvm::DeleteDeadBlock(BasicBlock *BB) { 35 assert((pred_begin(BB) == pred_end(BB) || 36 // Can delete self loop. 37 BB->getSinglePredecessor() == BB) && "Block is not dead!"); 38 TerminatorInst *BBTerm = BB->getTerminator(); 39 40 // Loop through all of our successors and make sure they know that one 41 // of their predecessors is going away. 42 for (BasicBlock *Succ : BBTerm->successors()) 43 Succ->removePredecessor(BB); 44 45 // Zap all the instructions in the block. 46 while (!BB->empty()) { 47 Instruction &I = BB->back(); 48 // If this instruction is used, replace uses with an arbitrary value. 49 // Because control flow can't get here, we don't care what we replace the 50 // value with. Note that since this block is unreachable, and all values 51 // contained within it must dominate their uses, that all uses will 52 // eventually be removed (they are themselves dead). 53 if (!I.use_empty()) 54 I.replaceAllUsesWith(UndefValue::get(I.getType())); 55 BB->getInstList().pop_back(); 56 } 57 58 // Zap the block! 59 BB->eraseFromParent(); 60 } 61 62 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, 63 MemoryDependenceResults *MemDep) { 64 if (!isa<PHINode>(BB->begin())) return; 65 66 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 67 if (PN->getIncomingValue(0) != PN) 68 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 69 else 70 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 71 72 if (MemDep) 73 MemDep->removeInstruction(PN); // Memdep updates AA itself. 74 75 PN->eraseFromParent(); 76 } 77 } 78 79 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) { 80 // Recursively deleting a PHI may cause multiple PHIs to be deleted 81 // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete. 82 SmallVector<WeakVH, 8> PHIs; 83 for (BasicBlock::iterator I = BB->begin(); 84 PHINode *PN = dyn_cast<PHINode>(I); ++I) 85 PHIs.push_back(PN); 86 87 bool Changed = false; 88 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 89 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) 90 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI); 91 92 return Changed; 93 } 94 95 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DominatorTree *DT, 96 LoopInfo *LI, 97 MemoryDependenceResults *MemDep) { 98 // Don't merge away blocks who have their address taken. 99 if (BB->hasAddressTaken()) return false; 100 101 // Can't merge if there are multiple predecessors, or no predecessors. 102 BasicBlock *PredBB = BB->getUniquePredecessor(); 103 if (!PredBB) return false; 104 105 // Don't break self-loops. 106 if (PredBB == BB) return false; 107 // Don't break unwinding instructions. 108 if (PredBB->getTerminator()->isExceptional()) 109 return false; 110 111 succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB)); 112 BasicBlock *OnlySucc = BB; 113 for (; SI != SE; ++SI) 114 if (*SI != OnlySucc) { 115 OnlySucc = nullptr; // There are multiple distinct successors! 116 break; 117 } 118 119 // Can't merge if there are multiple successors. 120 if (!OnlySucc) return false; 121 122 // Can't merge if there is PHI loop. 123 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) { 124 if (PHINode *PN = dyn_cast<PHINode>(BI)) { 125 for (Value *IncValue : PN->incoming_values()) 126 if (IncValue == PN) 127 return false; 128 } else 129 break; 130 } 131 132 // Begin by getting rid of unneeded PHIs. 133 if (isa<PHINode>(BB->front())) 134 FoldSingleEntryPHINodes(BB, MemDep); 135 136 // Delete the unconditional branch from the predecessor... 137 PredBB->getInstList().pop_back(); 138 139 // Make all PHI nodes that referred to BB now refer to Pred as their 140 // source... 141 BB->replaceAllUsesWith(PredBB); 142 143 // Move all definitions in the successor to the predecessor... 144 PredBB->getInstList().splice(PredBB->end(), BB->getInstList()); 145 146 // Inherit predecessors name if it exists. 147 if (!PredBB->hasName()) 148 PredBB->takeName(BB); 149 150 // Finally, erase the old block and update dominator info. 151 if (DT) 152 if (DomTreeNode *DTN = DT->getNode(BB)) { 153 DomTreeNode *PredDTN = DT->getNode(PredBB); 154 SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end()); 155 for (SmallVectorImpl<DomTreeNode *>::iterator DI = Children.begin(), 156 DE = Children.end(); 157 DI != DE; ++DI) 158 DT->changeImmediateDominator(*DI, PredDTN); 159 160 DT->eraseNode(BB); 161 } 162 163 if (LI) 164 LI->removeBlock(BB); 165 166 if (MemDep) 167 MemDep->invalidateCachedPredecessors(); 168 169 BB->eraseFromParent(); 170 return true; 171 } 172 173 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL, 174 BasicBlock::iterator &BI, Value *V) { 175 Instruction &I = *BI; 176 // Replaces all of the uses of the instruction with uses of the value 177 I.replaceAllUsesWith(V); 178 179 // Make sure to propagate a name if there is one already. 180 if (I.hasName() && !V->hasName()) 181 V->takeName(&I); 182 183 // Delete the unnecessary instruction now... 184 BI = BIL.erase(BI); 185 } 186 187 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL, 188 BasicBlock::iterator &BI, Instruction *I) { 189 assert(I->getParent() == nullptr && 190 "ReplaceInstWithInst: Instruction already inserted into basic block!"); 191 192 // Copy debug location to newly added instruction, if it wasn't already set 193 // by the caller. 194 if (!I->getDebugLoc()) 195 I->setDebugLoc(BI->getDebugLoc()); 196 197 // Insert the new instruction into the basic block... 198 BasicBlock::iterator New = BIL.insert(BI, I); 199 200 // Replace all uses of the old instruction, and delete it. 201 ReplaceInstWithValue(BIL, BI, I); 202 203 // Move BI back to point to the newly inserted instruction 204 BI = New; 205 } 206 207 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { 208 BasicBlock::iterator BI(From); 209 ReplaceInstWithInst(From->getParent()->getInstList(), BI, To); 210 } 211 212 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT, 213 LoopInfo *LI) { 214 unsigned SuccNum = GetSuccessorNumber(BB, Succ); 215 216 // If this is a critical edge, let SplitCriticalEdge do it. 217 TerminatorInst *LatchTerm = BB->getTerminator(); 218 if (SplitCriticalEdge(LatchTerm, SuccNum, CriticalEdgeSplittingOptions(DT, LI) 219 .setPreserveLCSSA())) 220 return LatchTerm->getSuccessor(SuccNum); 221 222 // If the edge isn't critical, then BB has a single successor or Succ has a 223 // single pred. Split the block. 224 if (BasicBlock *SP = Succ->getSinglePredecessor()) { 225 // If the successor only has a single pred, split the top of the successor 226 // block. 227 assert(SP == BB && "CFG broken"); 228 SP = nullptr; 229 return SplitBlock(Succ, &Succ->front(), DT, LI); 230 } 231 232 // Otherwise, if BB has a single successor, split it at the bottom of the 233 // block. 234 assert(BB->getTerminator()->getNumSuccessors() == 1 && 235 "Should have a single succ!"); 236 return SplitBlock(BB, BB->getTerminator(), DT, LI); 237 } 238 239 unsigned 240 llvm::SplitAllCriticalEdges(Function &F, 241 const CriticalEdgeSplittingOptions &Options) { 242 unsigned NumBroken = 0; 243 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) { 244 TerminatorInst *TI = I->getTerminator(); 245 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI)) 246 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 247 if (SplitCriticalEdge(TI, i, Options)) 248 ++NumBroken; 249 } 250 return NumBroken; 251 } 252 253 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, 254 DominatorTree *DT, LoopInfo *LI) { 255 BasicBlock::iterator SplitIt = SplitPt->getIterator(); 256 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) 257 ++SplitIt; 258 BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split"); 259 260 // The new block lives in whichever loop the old one did. This preserves 261 // LCSSA as well, because we force the split point to be after any PHI nodes. 262 if (LI) 263 if (Loop *L = LI->getLoopFor(Old)) 264 L->addBasicBlockToLoop(New, *LI); 265 266 if (DT) 267 // Old dominates New. New node dominates all other nodes dominated by Old. 268 if (DomTreeNode *OldNode = DT->getNode(Old)) { 269 std::vector<DomTreeNode *> Children; 270 for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end(); 271 I != E; ++I) 272 Children.push_back(*I); 273 274 DomTreeNode *NewNode = DT->addNewBlock(New, Old); 275 for (std::vector<DomTreeNode *>::iterator I = Children.begin(), 276 E = Children.end(); I != E; ++I) 277 DT->changeImmediateDominator(*I, NewNode); 278 } 279 280 return New; 281 } 282 283 /// Update DominatorTree, LoopInfo, and LCCSA analysis information. 284 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, 285 ArrayRef<BasicBlock *> Preds, 286 DominatorTree *DT, LoopInfo *LI, 287 bool PreserveLCSSA, bool &HasLoopExit) { 288 // Update dominator tree if available. 289 if (DT) 290 DT->splitBlock(NewBB); 291 292 // The rest of the logic is only relevant for updating the loop structures. 293 if (!LI) 294 return; 295 296 Loop *L = LI->getLoopFor(OldBB); 297 298 // If we need to preserve loop analyses, collect some information about how 299 // this split will affect loops. 300 bool IsLoopEntry = !!L; 301 bool SplitMakesNewLoopHeader = false; 302 for (ArrayRef<BasicBlock *>::iterator i = Preds.begin(), e = Preds.end(); 303 i != e; ++i) { 304 BasicBlock *Pred = *i; 305 306 // If we need to preserve LCSSA, determine if any of the preds is a loop 307 // exit. 308 if (PreserveLCSSA) 309 if (Loop *PL = LI->getLoopFor(Pred)) 310 if (!PL->contains(OldBB)) 311 HasLoopExit = true; 312 313 // If we need to preserve LoopInfo, note whether any of the preds crosses 314 // an interesting loop boundary. 315 if (!L) 316 continue; 317 if (L->contains(Pred)) 318 IsLoopEntry = false; 319 else 320 SplitMakesNewLoopHeader = true; 321 } 322 323 // Unless we have a loop for OldBB, nothing else to do here. 324 if (!L) 325 return; 326 327 if (IsLoopEntry) { 328 // Add the new block to the nearest enclosing loop (and not an adjacent 329 // loop). To find this, examine each of the predecessors and determine which 330 // loops enclose them, and select the most-nested loop which contains the 331 // loop containing the block being split. 332 Loop *InnermostPredLoop = nullptr; 333 for (ArrayRef<BasicBlock*>::iterator 334 i = Preds.begin(), e = Preds.end(); i != e; ++i) { 335 BasicBlock *Pred = *i; 336 if (Loop *PredLoop = LI->getLoopFor(Pred)) { 337 // Seek a loop which actually contains the block being split (to avoid 338 // adjacent loops). 339 while (PredLoop && !PredLoop->contains(OldBB)) 340 PredLoop = PredLoop->getParentLoop(); 341 342 // Select the most-nested of these loops which contains the block. 343 if (PredLoop && PredLoop->contains(OldBB) && 344 (!InnermostPredLoop || 345 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) 346 InnermostPredLoop = PredLoop; 347 } 348 } 349 350 if (InnermostPredLoop) 351 InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI); 352 } else { 353 L->addBasicBlockToLoop(NewBB, *LI); 354 if (SplitMakesNewLoopHeader) 355 L->moveToHeader(NewBB); 356 } 357 } 358 359 /// Update the PHI nodes in OrigBB to include the values coming from NewBB. 360 /// This also updates AliasAnalysis, if available. 361 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, 362 ArrayRef<BasicBlock *> Preds, BranchInst *BI, 363 bool HasLoopExit) { 364 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. 365 SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end()); 366 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) { 367 PHINode *PN = cast<PHINode>(I++); 368 369 // Check to see if all of the values coming in are the same. If so, we 370 // don't need to create a new PHI node, unless it's needed for LCSSA. 371 Value *InVal = nullptr; 372 if (!HasLoopExit) { 373 InVal = PN->getIncomingValueForBlock(Preds[0]); 374 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 375 if (!PredSet.count(PN->getIncomingBlock(i))) 376 continue; 377 if (!InVal) 378 InVal = PN->getIncomingValue(i); 379 else if (InVal != PN->getIncomingValue(i)) { 380 InVal = nullptr; 381 break; 382 } 383 } 384 } 385 386 if (InVal) { 387 // If all incoming values for the new PHI would be the same, just don't 388 // make a new PHI. Instead, just remove the incoming values from the old 389 // PHI. 390 391 // NOTE! This loop walks backwards for a reason! First off, this minimizes 392 // the cost of removal if we end up removing a large number of values, and 393 // second off, this ensures that the indices for the incoming values 394 // aren't invalidated when we remove one. 395 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) 396 if (PredSet.count(PN->getIncomingBlock(i))) 397 PN->removeIncomingValue(i, false); 398 399 // Add an incoming value to the PHI node in the loop for the preheader 400 // edge. 401 PN->addIncoming(InVal, NewBB); 402 continue; 403 } 404 405 // If the values coming into the block are not the same, we need a new 406 // PHI. 407 // Create the new PHI node, insert it into NewBB at the end of the block 408 PHINode *NewPHI = 409 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI); 410 411 // NOTE! This loop walks backwards for a reason! First off, this minimizes 412 // the cost of removal if we end up removing a large number of values, and 413 // second off, this ensures that the indices for the incoming values aren't 414 // invalidated when we remove one. 415 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) { 416 BasicBlock *IncomingBB = PN->getIncomingBlock(i); 417 if (PredSet.count(IncomingBB)) { 418 Value *V = PN->removeIncomingValue(i, false); 419 NewPHI->addIncoming(V, IncomingBB); 420 } 421 } 422 423 PN->addIncoming(NewPHI, NewBB); 424 } 425 } 426 427 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 428 ArrayRef<BasicBlock *> Preds, 429 const char *Suffix, DominatorTree *DT, 430 LoopInfo *LI, bool PreserveLCSSA) { 431 // Do not attempt to split that which cannot be split. 432 if (!BB->canSplitPredecessors()) 433 return nullptr; 434 435 // For the landingpads we need to act a bit differently. 436 // Delegate this work to the SplitLandingPadPredecessors. 437 if (BB->isLandingPad()) { 438 SmallVector<BasicBlock*, 2> NewBBs; 439 std::string NewName = std::string(Suffix) + ".split-lp"; 440 441 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT, 442 LI, PreserveLCSSA); 443 return NewBBs[0]; 444 } 445 446 // Create new basic block, insert right before the original block. 447 BasicBlock *NewBB = BasicBlock::Create( 448 BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB); 449 450 // The new block unconditionally branches to the old block. 451 BranchInst *BI = BranchInst::Create(BB, NewBB); 452 BI->setDebugLoc(BB->getFirstNonPHI()->getDebugLoc()); 453 454 // Move the edges from Preds to point to NewBB instead of BB. 455 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 456 // This is slightly more strict than necessary; the minimum requirement 457 // is that there be no more than one indirectbr branching to BB. And 458 // all BlockAddress uses would need to be updated. 459 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 460 "Cannot split an edge from an IndirectBrInst"); 461 Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB); 462 } 463 464 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI 465 // node becomes an incoming value for BB's phi node. However, if the Preds 466 // list is empty, we need to insert dummy entries into the PHI nodes in BB to 467 // account for the newly created predecessor. 468 if (Preds.size() == 0) { 469 // Insert dummy values as the incoming value. 470 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) 471 cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB); 472 return NewBB; 473 } 474 475 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 476 bool HasLoopExit = false; 477 UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, PreserveLCSSA, 478 HasLoopExit); 479 480 // Update the PHI nodes in BB with the values coming from NewBB. 481 UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit); 482 return NewBB; 483 } 484 485 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 486 ArrayRef<BasicBlock *> Preds, 487 const char *Suffix1, const char *Suffix2, 488 SmallVectorImpl<BasicBlock *> &NewBBs, 489 DominatorTree *DT, LoopInfo *LI, 490 bool PreserveLCSSA) { 491 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!"); 492 493 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert 494 // it right before the original block. 495 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(), 496 OrigBB->getName() + Suffix1, 497 OrigBB->getParent(), OrigBB); 498 NewBBs.push_back(NewBB1); 499 500 // The new block unconditionally branches to the old block. 501 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1); 502 BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 503 504 // Move the edges from Preds to point to NewBB1 instead of OrigBB. 505 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 506 // This is slightly more strict than necessary; the minimum requirement 507 // is that there be no more than one indirectbr branching to BB. And 508 // all BlockAddress uses would need to be updated. 509 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 510 "Cannot split an edge from an IndirectBrInst"); 511 Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1); 512 } 513 514 bool HasLoopExit = false; 515 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, PreserveLCSSA, 516 HasLoopExit); 517 518 // Update the PHI nodes in OrigBB with the values coming from NewBB1. 519 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit); 520 521 // Move the remaining edges from OrigBB to point to NewBB2. 522 SmallVector<BasicBlock*, 8> NewBB2Preds; 523 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB); 524 i != e; ) { 525 BasicBlock *Pred = *i++; 526 if (Pred == NewBB1) continue; 527 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 528 "Cannot split an edge from an IndirectBrInst"); 529 NewBB2Preds.push_back(Pred); 530 e = pred_end(OrigBB); 531 } 532 533 BasicBlock *NewBB2 = nullptr; 534 if (!NewBB2Preds.empty()) { 535 // Create another basic block for the rest of OrigBB's predecessors. 536 NewBB2 = BasicBlock::Create(OrigBB->getContext(), 537 OrigBB->getName() + Suffix2, 538 OrigBB->getParent(), OrigBB); 539 NewBBs.push_back(NewBB2); 540 541 // The new block unconditionally branches to the old block. 542 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2); 543 BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 544 545 // Move the remaining edges from OrigBB to point to NewBB2. 546 for (SmallVectorImpl<BasicBlock*>::iterator 547 i = NewBB2Preds.begin(), e = NewBB2Preds.end(); i != e; ++i) 548 (*i)->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2); 549 550 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 551 HasLoopExit = false; 552 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, 553 PreserveLCSSA, HasLoopExit); 554 555 // Update the PHI nodes in OrigBB with the values coming from NewBB2. 556 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit); 557 } 558 559 LandingPadInst *LPad = OrigBB->getLandingPadInst(); 560 Instruction *Clone1 = LPad->clone(); 561 Clone1->setName(Twine("lpad") + Suffix1); 562 NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1); 563 564 if (NewBB2) { 565 Instruction *Clone2 = LPad->clone(); 566 Clone2->setName(Twine("lpad") + Suffix2); 567 NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2); 568 569 // Create a PHI node for the two cloned landingpad instructions only 570 // if the original landingpad instruction has some uses. 571 if (!LPad->use_empty()) { 572 assert(!LPad->getType()->isTokenTy() && 573 "Split cannot be applied if LPad is token type. Otherwise an " 574 "invalid PHINode of token type would be created."); 575 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad); 576 PN->addIncoming(Clone1, NewBB1); 577 PN->addIncoming(Clone2, NewBB2); 578 LPad->replaceAllUsesWith(PN); 579 } 580 LPad->eraseFromParent(); 581 } else { 582 // There is no second clone. Just replace the landing pad with the first 583 // clone. 584 LPad->replaceAllUsesWith(Clone1); 585 LPad->eraseFromParent(); 586 } 587 } 588 589 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, 590 BasicBlock *Pred) { 591 Instruction *UncondBranch = Pred->getTerminator(); 592 // Clone the return and add it to the end of the predecessor. 593 Instruction *NewRet = RI->clone(); 594 Pred->getInstList().push_back(NewRet); 595 596 // If the return instruction returns a value, and if the value was a 597 // PHI node in "BB", propagate the right value into the return. 598 for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end(); 599 i != e; ++i) { 600 Value *V = *i; 601 Instruction *NewBC = nullptr; 602 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) { 603 // Return value might be bitcasted. Clone and insert it before the 604 // return instruction. 605 V = BCI->getOperand(0); 606 NewBC = BCI->clone(); 607 Pred->getInstList().insert(NewRet->getIterator(), NewBC); 608 *i = NewBC; 609 } 610 if (PHINode *PN = dyn_cast<PHINode>(V)) { 611 if (PN->getParent() == BB) { 612 if (NewBC) 613 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred)); 614 else 615 *i = PN->getIncomingValueForBlock(Pred); 616 } 617 } 618 } 619 620 // Update any PHI nodes in the returning block to realize that we no 621 // longer branch to them. 622 BB->removePredecessor(Pred); 623 UncondBranch->eraseFromParent(); 624 return cast<ReturnInst>(NewRet); 625 } 626 627 TerminatorInst * 628 llvm::SplitBlockAndInsertIfThen(Value *Cond, Instruction *SplitBefore, 629 bool Unreachable, MDNode *BranchWeights, 630 DominatorTree *DT, LoopInfo *LI) { 631 BasicBlock *Head = SplitBefore->getParent(); 632 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 633 TerminatorInst *HeadOldTerm = Head->getTerminator(); 634 LLVMContext &C = Head->getContext(); 635 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 636 TerminatorInst *CheckTerm; 637 if (Unreachable) 638 CheckTerm = new UnreachableInst(C, ThenBlock); 639 else 640 CheckTerm = BranchInst::Create(Tail, ThenBlock); 641 CheckTerm->setDebugLoc(SplitBefore->getDebugLoc()); 642 BranchInst *HeadNewTerm = 643 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond); 644 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 645 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 646 647 if (DT) { 648 if (DomTreeNode *OldNode = DT->getNode(Head)) { 649 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 650 651 DomTreeNode *NewNode = DT->addNewBlock(Tail, Head); 652 for (auto Child : Children) 653 DT->changeImmediateDominator(Child, NewNode); 654 655 // Head dominates ThenBlock. 656 DT->addNewBlock(ThenBlock, Head); 657 } 658 } 659 660 if (LI) { 661 Loop *L = LI->getLoopFor(Head); 662 L->addBasicBlockToLoop(ThenBlock, *LI); 663 L->addBasicBlockToLoop(Tail, *LI); 664 } 665 666 return CheckTerm; 667 } 668 669 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore, 670 TerminatorInst **ThenTerm, 671 TerminatorInst **ElseTerm, 672 MDNode *BranchWeights) { 673 BasicBlock *Head = SplitBefore->getParent(); 674 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 675 TerminatorInst *HeadOldTerm = Head->getTerminator(); 676 LLVMContext &C = Head->getContext(); 677 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 678 BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 679 *ThenTerm = BranchInst::Create(Tail, ThenBlock); 680 (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 681 *ElseTerm = BranchInst::Create(Tail, ElseBlock); 682 (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 683 BranchInst *HeadNewTerm = 684 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond); 685 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 686 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 687 } 688 689 690 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 691 BasicBlock *&IfFalse) { 692 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin()); 693 BasicBlock *Pred1 = nullptr; 694 BasicBlock *Pred2 = nullptr; 695 696 if (SomePHI) { 697 if (SomePHI->getNumIncomingValues() != 2) 698 return nullptr; 699 Pred1 = SomePHI->getIncomingBlock(0); 700 Pred2 = SomePHI->getIncomingBlock(1); 701 } else { 702 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 703 if (PI == PE) // No predecessor 704 return nullptr; 705 Pred1 = *PI++; 706 if (PI == PE) // Only one predecessor 707 return nullptr; 708 Pred2 = *PI++; 709 if (PI != PE) // More than two predecessors 710 return nullptr; 711 } 712 713 // We can only handle branches. Other control flow will be lowered to 714 // branches if possible anyway. 715 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 716 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 717 if (!Pred1Br || !Pred2Br) 718 return nullptr; 719 720 // Eliminate code duplication by ensuring that Pred1Br is conditional if 721 // either are. 722 if (Pred2Br->isConditional()) { 723 // If both branches are conditional, we don't have an "if statement". In 724 // reality, we could transform this case, but since the condition will be 725 // required anyway, we stand no chance of eliminating it, so the xform is 726 // probably not profitable. 727 if (Pred1Br->isConditional()) 728 return nullptr; 729 730 std::swap(Pred1, Pred2); 731 std::swap(Pred1Br, Pred2Br); 732 } 733 734 if (Pred1Br->isConditional()) { 735 // The only thing we have to watch out for here is to make sure that Pred2 736 // doesn't have incoming edges from other blocks. If it does, the condition 737 // doesn't dominate BB. 738 if (!Pred2->getSinglePredecessor()) 739 return nullptr; 740 741 // If we found a conditional branch predecessor, make sure that it branches 742 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 743 if (Pred1Br->getSuccessor(0) == BB && 744 Pred1Br->getSuccessor(1) == Pred2) { 745 IfTrue = Pred1; 746 IfFalse = Pred2; 747 } else if (Pred1Br->getSuccessor(0) == Pred2 && 748 Pred1Br->getSuccessor(1) == BB) { 749 IfTrue = Pred2; 750 IfFalse = Pred1; 751 } else { 752 // We know that one arm of the conditional goes to BB, so the other must 753 // go somewhere unrelated, and this must not be an "if statement". 754 return nullptr; 755 } 756 757 return Pred1Br->getCondition(); 758 } 759 760 // Ok, if we got here, both predecessors end with an unconditional branch to 761 // BB. Don't panic! If both blocks only have a single (identical) 762 // predecessor, and THAT is a conditional branch, then we're all ok! 763 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 764 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor()) 765 return nullptr; 766 767 // Otherwise, if this is a conditional branch, then we can use it! 768 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 769 if (!BI) return nullptr; 770 771 assert(BI->isConditional() && "Two successors but not conditional?"); 772 if (BI->getSuccessor(0) == Pred1) { 773 IfTrue = Pred1; 774 IfFalse = Pred2; 775 } else { 776 IfTrue = Pred2; 777 IfFalse = Pred1; 778 } 779 return BI->getCondition(); 780 } 781