1 //===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform manipulations on basic blocks, and 11 // instructions contained within basic blocks. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 16 #include "llvm/Analysis/AliasAnalysis.h" 17 #include "llvm/Analysis/CFG.h" 18 #include "llvm/Analysis/LoopInfo.h" 19 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 20 #include "llvm/IR/Constant.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/Type.h" 27 #include "llvm/IR/ValueHandle.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Transforms/Scalar.h" 30 #include "llvm/Transforms/Utils/Local.h" 31 #include <algorithm> 32 using namespace llvm; 33 34 /// DeleteDeadBlock - Delete the specified block, which must have no 35 /// predecessors. 36 void llvm::DeleteDeadBlock(BasicBlock *BB) { 37 assert((pred_begin(BB) == pred_end(BB) || 38 // Can delete self loop. 39 BB->getSinglePredecessor() == BB) && "Block is not dead!"); 40 TerminatorInst *BBTerm = BB->getTerminator(); 41 42 // Loop through all of our successors and make sure they know that one 43 // of their predecessors is going away. 44 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) 45 BBTerm->getSuccessor(i)->removePredecessor(BB); 46 47 // Zap all the instructions in the block. 48 while (!BB->empty()) { 49 Instruction &I = BB->back(); 50 // If this instruction is used, replace uses with an arbitrary value. 51 // Because control flow can't get here, we don't care what we replace the 52 // value with. Note that since this block is unreachable, and all values 53 // contained within it must dominate their uses, that all uses will 54 // eventually be removed (they are themselves dead). 55 if (!I.use_empty()) 56 I.replaceAllUsesWith(UndefValue::get(I.getType())); 57 BB->getInstList().pop_back(); 58 } 59 60 // Zap the block! 61 BB->eraseFromParent(); 62 } 63 64 /// FoldSingleEntryPHINodes - We know that BB has one predecessor. If there are 65 /// any single-entry PHI nodes in it, fold them away. This handles the case 66 /// when all entries to the PHI nodes in a block are guaranteed equal, such as 67 /// when the block has exactly one predecessor. 68 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, Pass *P) { 69 if (!isa<PHINode>(BB->begin())) return; 70 71 AliasAnalysis *AA = nullptr; 72 MemoryDependenceAnalysis *MemDep = nullptr; 73 if (P) { 74 AA = P->getAnalysisIfAvailable<AliasAnalysis>(); 75 MemDep = P->getAnalysisIfAvailable<MemoryDependenceAnalysis>(); 76 } 77 78 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 79 if (PN->getIncomingValue(0) != PN) 80 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 81 else 82 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 83 84 if (MemDep) 85 MemDep->removeInstruction(PN); // Memdep updates AA itself. 86 else if (AA && isa<PointerType>(PN->getType())) 87 AA->deleteValue(PN); 88 89 PN->eraseFromParent(); 90 } 91 } 92 93 94 /// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it 95 /// is dead. Also recursively delete any operands that become dead as 96 /// a result. This includes tracing the def-use list from the PHI to see if 97 /// it is ultimately unused or if it reaches an unused cycle. 98 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) { 99 // Recursively deleting a PHI may cause multiple PHIs to be deleted 100 // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete. 101 SmallVector<WeakVH, 8> PHIs; 102 for (BasicBlock::iterator I = BB->begin(); 103 PHINode *PN = dyn_cast<PHINode>(I); ++I) 104 PHIs.push_back(PN); 105 106 bool Changed = false; 107 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 108 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) 109 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI); 110 111 return Changed; 112 } 113 114 /// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor, 115 /// if possible. The return value indicates success or failure. 116 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) { 117 // Don't merge away blocks who have their address taken. 118 if (BB->hasAddressTaken()) return false; 119 120 // Can't merge if there are multiple predecessors, or no predecessors. 121 BasicBlock *PredBB = BB->getUniquePredecessor(); 122 if (!PredBB) return false; 123 124 // Don't break self-loops. 125 if (PredBB == BB) return false; 126 // Don't break invokes. 127 if (isa<InvokeInst>(PredBB->getTerminator())) return false; 128 129 succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB)); 130 BasicBlock *OnlySucc = BB; 131 for (; SI != SE; ++SI) 132 if (*SI != OnlySucc) { 133 OnlySucc = nullptr; // There are multiple distinct successors! 134 break; 135 } 136 137 // Can't merge if there are multiple successors. 138 if (!OnlySucc) return false; 139 140 // Can't merge if there is PHI loop. 141 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) { 142 if (PHINode *PN = dyn_cast<PHINode>(BI)) { 143 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 144 if (PN->getIncomingValue(i) == PN) 145 return false; 146 } else 147 break; 148 } 149 150 // Begin by getting rid of unneeded PHIs. 151 if (isa<PHINode>(BB->front())) 152 FoldSingleEntryPHINodes(BB, P); 153 154 // Delete the unconditional branch from the predecessor... 155 PredBB->getInstList().pop_back(); 156 157 // Make all PHI nodes that referred to BB now refer to Pred as their 158 // source... 159 BB->replaceAllUsesWith(PredBB); 160 161 // Move all definitions in the successor to the predecessor... 162 PredBB->getInstList().splice(PredBB->end(), BB->getInstList()); 163 164 // Inherit predecessors name if it exists. 165 if (!PredBB->hasName()) 166 PredBB->takeName(BB); 167 168 // Finally, erase the old block and update dominator info. 169 if (P) { 170 if (DominatorTreeWrapperPass *DTWP = 171 P->getAnalysisIfAvailable<DominatorTreeWrapperPass>()) { 172 DominatorTree &DT = DTWP->getDomTree(); 173 if (DomTreeNode *DTN = DT.getNode(BB)) { 174 DomTreeNode *PredDTN = DT.getNode(PredBB); 175 SmallVector<DomTreeNode*, 8> Children(DTN->begin(), DTN->end()); 176 for (SmallVectorImpl<DomTreeNode *>::iterator DI = Children.begin(), 177 DE = Children.end(); DI != DE; ++DI) 178 DT.changeImmediateDominator(*DI, PredDTN); 179 180 DT.eraseNode(BB); 181 } 182 183 if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>()) 184 LI->removeBlock(BB); 185 186 if (MemoryDependenceAnalysis *MD = 187 P->getAnalysisIfAvailable<MemoryDependenceAnalysis>()) 188 MD->invalidateCachedPredecessors(); 189 } 190 } 191 192 BB->eraseFromParent(); 193 return true; 194 } 195 196 /// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI) 197 /// with a value, then remove and delete the original instruction. 198 /// 199 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL, 200 BasicBlock::iterator &BI, Value *V) { 201 Instruction &I = *BI; 202 // Replaces all of the uses of the instruction with uses of the value 203 I.replaceAllUsesWith(V); 204 205 // Make sure to propagate a name if there is one already. 206 if (I.hasName() && !V->hasName()) 207 V->takeName(&I); 208 209 // Delete the unnecessary instruction now... 210 BI = BIL.erase(BI); 211 } 212 213 214 /// ReplaceInstWithInst - Replace the instruction specified by BI with the 215 /// instruction specified by I. The original instruction is deleted and BI is 216 /// updated to point to the new instruction. 217 /// 218 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL, 219 BasicBlock::iterator &BI, Instruction *I) { 220 assert(I->getParent() == nullptr && 221 "ReplaceInstWithInst: Instruction already inserted into basic block!"); 222 223 // Insert the new instruction into the basic block... 224 BasicBlock::iterator New = BIL.insert(BI, I); 225 226 // Replace all uses of the old instruction, and delete it. 227 ReplaceInstWithValue(BIL, BI, I); 228 229 // Move BI back to point to the newly inserted instruction 230 BI = New; 231 } 232 233 /// ReplaceInstWithInst - Replace the instruction specified by From with the 234 /// instruction specified by To. 235 /// 236 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { 237 BasicBlock::iterator BI(From); 238 ReplaceInstWithInst(From->getParent()->getInstList(), BI, To); 239 } 240 241 /// SplitEdge - Split the edge connecting specified block. Pass P must 242 /// not be NULL. 243 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) { 244 unsigned SuccNum = GetSuccessorNumber(BB, Succ); 245 246 // If this is a critical edge, let SplitCriticalEdge do it. 247 TerminatorInst *LatchTerm = BB->getTerminator(); 248 if (SplitCriticalEdge(LatchTerm, SuccNum, P)) 249 return LatchTerm->getSuccessor(SuccNum); 250 251 // If the edge isn't critical, then BB has a single successor or Succ has a 252 // single pred. Split the block. 253 if (BasicBlock *SP = Succ->getSinglePredecessor()) { 254 // If the successor only has a single pred, split the top of the successor 255 // block. 256 assert(SP == BB && "CFG broken"); 257 SP = nullptr; 258 return SplitBlock(Succ, Succ->begin(), P); 259 } 260 261 // Otherwise, if BB has a single successor, split it at the bottom of the 262 // block. 263 assert(BB->getTerminator()->getNumSuccessors() == 1 && 264 "Should have a single succ!"); 265 return SplitBlock(BB, BB->getTerminator(), P); 266 } 267 268 unsigned llvm::SplitAllCriticalEdges(Function &F, Pass *P) { 269 unsigned NumBroken = 0; 270 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) { 271 TerminatorInst *TI = I->getTerminator(); 272 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI)) 273 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 274 if (SplitCriticalEdge(TI, i, P)) 275 ++NumBroken; 276 } 277 return NumBroken; 278 } 279 280 /// SplitBlock - Split the specified block at the specified instruction - every 281 /// thing before SplitPt stays in Old and everything starting with SplitPt moves 282 /// to a new block. The two blocks are joined by an unconditional branch and 283 /// the loop info is updated. 284 /// 285 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) { 286 BasicBlock::iterator SplitIt = SplitPt; 287 while (isa<PHINode>(SplitIt) || isa<LandingPadInst>(SplitIt)) 288 ++SplitIt; 289 BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split"); 290 291 // The new block lives in whichever loop the old one did. This preserves 292 // LCSSA as well, because we force the split point to be after any PHI nodes. 293 if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>()) 294 if (Loop *L = LI->getLoopFor(Old)) 295 L->addBasicBlockToLoop(New, LI->getBase()); 296 297 if (DominatorTreeWrapperPass *DTWP = 298 P->getAnalysisIfAvailable<DominatorTreeWrapperPass>()) { 299 DominatorTree &DT = DTWP->getDomTree(); 300 // Old dominates New. New node dominates all other nodes dominated by Old. 301 if (DomTreeNode *OldNode = DT.getNode(Old)) { 302 std::vector<DomTreeNode *> Children; 303 for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end(); 304 I != E; ++I) 305 Children.push_back(*I); 306 307 DomTreeNode *NewNode = DT.addNewBlock(New, Old); 308 for (std::vector<DomTreeNode *>::iterator I = Children.begin(), 309 E = Children.end(); I != E; ++I) 310 DT.changeImmediateDominator(*I, NewNode); 311 } 312 } 313 314 return New; 315 } 316 317 /// UpdateAnalysisInformation - Update DominatorTree, LoopInfo, and LCCSA 318 /// analysis information. 319 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, 320 ArrayRef<BasicBlock *> Preds, 321 Pass *P, bool &HasLoopExit) { 322 if (!P) return; 323 324 LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>(); 325 Loop *L = LI ? LI->getLoopFor(OldBB) : nullptr; 326 327 // If we need to preserve loop analyses, collect some information about how 328 // this split will affect loops. 329 bool IsLoopEntry = !!L; 330 bool SplitMakesNewLoopHeader = false; 331 if (LI) { 332 bool PreserveLCSSA = P->mustPreserveAnalysisID(LCSSAID); 333 for (ArrayRef<BasicBlock*>::iterator 334 i = Preds.begin(), e = Preds.end(); i != e; ++i) { 335 BasicBlock *Pred = *i; 336 337 // If we need to preserve LCSSA, determine if any of the preds is a loop 338 // exit. 339 if (PreserveLCSSA) 340 if (Loop *PL = LI->getLoopFor(Pred)) 341 if (!PL->contains(OldBB)) 342 HasLoopExit = true; 343 344 // If we need to preserve LoopInfo, note whether any of the preds crosses 345 // an interesting loop boundary. 346 if (!L) continue; 347 if (L->contains(Pred)) 348 IsLoopEntry = false; 349 else 350 SplitMakesNewLoopHeader = true; 351 } 352 } 353 354 // Update dominator tree if available. 355 if (DominatorTreeWrapperPass *DTWP = 356 P->getAnalysisIfAvailable<DominatorTreeWrapperPass>()) 357 DTWP->getDomTree().splitBlock(NewBB); 358 359 if (!L) return; 360 361 if (IsLoopEntry) { 362 // Add the new block to the nearest enclosing loop (and not an adjacent 363 // loop). To find this, examine each of the predecessors and determine which 364 // loops enclose them, and select the most-nested loop which contains the 365 // loop containing the block being split. 366 Loop *InnermostPredLoop = nullptr; 367 for (ArrayRef<BasicBlock*>::iterator 368 i = Preds.begin(), e = Preds.end(); i != e; ++i) { 369 BasicBlock *Pred = *i; 370 if (Loop *PredLoop = LI->getLoopFor(Pred)) { 371 // Seek a loop which actually contains the block being split (to avoid 372 // adjacent loops). 373 while (PredLoop && !PredLoop->contains(OldBB)) 374 PredLoop = PredLoop->getParentLoop(); 375 376 // Select the most-nested of these loops which contains the block. 377 if (PredLoop && PredLoop->contains(OldBB) && 378 (!InnermostPredLoop || 379 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) 380 InnermostPredLoop = PredLoop; 381 } 382 } 383 384 if (InnermostPredLoop) 385 InnermostPredLoop->addBasicBlockToLoop(NewBB, LI->getBase()); 386 } else { 387 L->addBasicBlockToLoop(NewBB, LI->getBase()); 388 if (SplitMakesNewLoopHeader) 389 L->moveToHeader(NewBB); 390 } 391 } 392 393 /// UpdatePHINodes - Update the PHI nodes in OrigBB to include the values coming 394 /// from NewBB. This also updates AliasAnalysis, if available. 395 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, 396 ArrayRef<BasicBlock*> Preds, BranchInst *BI, 397 Pass *P, bool HasLoopExit) { 398 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. 399 AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : nullptr; 400 SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end()); 401 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) { 402 PHINode *PN = cast<PHINode>(I++); 403 404 // Check to see if all of the values coming in are the same. If so, we 405 // don't need to create a new PHI node, unless it's needed for LCSSA. 406 Value *InVal = nullptr; 407 if (!HasLoopExit) { 408 InVal = PN->getIncomingValueForBlock(Preds[0]); 409 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 410 if (!PredSet.count(PN->getIncomingBlock(i))) 411 continue; 412 if (!InVal) 413 InVal = PN->getIncomingValue(i); 414 else if (InVal != PN->getIncomingValue(i)) { 415 InVal = nullptr; 416 break; 417 } 418 } 419 } 420 421 if (InVal) { 422 // If all incoming values for the new PHI would be the same, just don't 423 // make a new PHI. Instead, just remove the incoming values from the old 424 // PHI. 425 426 // NOTE! This loop walks backwards for a reason! First off, this minimizes 427 // the cost of removal if we end up removing a large number of values, and 428 // second off, this ensures that the indices for the incoming values 429 // aren't invalidated when we remove one. 430 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) 431 if (PredSet.count(PN->getIncomingBlock(i))) 432 PN->removeIncomingValue(i, false); 433 434 // Add an incoming value to the PHI node in the loop for the preheader 435 // edge. 436 PN->addIncoming(InVal, NewBB); 437 continue; 438 } 439 440 // If the values coming into the block are not the same, we need a new 441 // PHI. 442 // Create the new PHI node, insert it into NewBB at the end of the block 443 PHINode *NewPHI = 444 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI); 445 if (AA) 446 AA->copyValue(PN, NewPHI); 447 448 // NOTE! This loop walks backwards for a reason! First off, this minimizes 449 // the cost of removal if we end up removing a large number of values, and 450 // second off, this ensures that the indices for the incoming values aren't 451 // invalidated when we remove one. 452 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) { 453 BasicBlock *IncomingBB = PN->getIncomingBlock(i); 454 if (PredSet.count(IncomingBB)) { 455 Value *V = PN->removeIncomingValue(i, false); 456 NewPHI->addIncoming(V, IncomingBB); 457 } 458 } 459 460 PN->addIncoming(NewPHI, NewBB); 461 } 462 } 463 464 /// SplitBlockPredecessors - This method transforms BB by introducing a new 465 /// basic block into the function, and moving some of the predecessors of BB to 466 /// be predecessors of the new block. The new predecessors are indicated by the 467 /// Preds array, which has NumPreds elements in it. The new block is given a 468 /// suffix of 'Suffix'. 469 /// 470 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree, 471 /// LoopInfo, and LCCSA but no other analyses. In particular, it does not 472 /// preserve LoopSimplify (because it's complicated to handle the case where one 473 /// of the edges being split is an exit of a loop with other exits). 474 /// 475 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 476 ArrayRef<BasicBlock*> Preds, 477 const char *Suffix, Pass *P) { 478 // Create new basic block, insert right before the original block. 479 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+Suffix, 480 BB->getParent(), BB); 481 482 // The new block unconditionally branches to the old block. 483 BranchInst *BI = BranchInst::Create(BB, NewBB); 484 485 // Move the edges from Preds to point to NewBB instead of BB. 486 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 487 // This is slightly more strict than necessary; the minimum requirement 488 // is that there be no more than one indirectbr branching to BB. And 489 // all BlockAddress uses would need to be updated. 490 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 491 "Cannot split an edge from an IndirectBrInst"); 492 Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB); 493 } 494 495 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI 496 // node becomes an incoming value for BB's phi node. However, if the Preds 497 // list is empty, we need to insert dummy entries into the PHI nodes in BB to 498 // account for the newly created predecessor. 499 if (Preds.size() == 0) { 500 // Insert dummy values as the incoming value. 501 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) 502 cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB); 503 return NewBB; 504 } 505 506 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 507 bool HasLoopExit = false; 508 UpdateAnalysisInformation(BB, NewBB, Preds, P, HasLoopExit); 509 510 // Update the PHI nodes in BB with the values coming from NewBB. 511 UpdatePHINodes(BB, NewBB, Preds, BI, P, HasLoopExit); 512 return NewBB; 513 } 514 515 /// SplitLandingPadPredecessors - This method transforms the landing pad, 516 /// OrigBB, by introducing two new basic blocks into the function. One of those 517 /// new basic blocks gets the predecessors listed in Preds. The other basic 518 /// block gets the remaining predecessors of OrigBB. The landingpad instruction 519 /// OrigBB is clone into both of the new basic blocks. The new blocks are given 520 /// the suffixes 'Suffix1' and 'Suffix2', and are returned in the NewBBs vector. 521 /// 522 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree, 523 /// DominanceFrontier, LoopInfo, and LCCSA but no other analyses. In particular, 524 /// it does not preserve LoopSimplify (because it's complicated to handle the 525 /// case where one of the edges being split is an exit of a loop with other 526 /// exits). 527 /// 528 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 529 ArrayRef<BasicBlock*> Preds, 530 const char *Suffix1, const char *Suffix2, 531 Pass *P, 532 SmallVectorImpl<BasicBlock*> &NewBBs) { 533 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!"); 534 535 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert 536 // it right before the original block. 537 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(), 538 OrigBB->getName() + Suffix1, 539 OrigBB->getParent(), OrigBB); 540 NewBBs.push_back(NewBB1); 541 542 // The new block unconditionally branches to the old block. 543 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1); 544 545 // Move the edges from Preds to point to NewBB1 instead of OrigBB. 546 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 547 // This is slightly more strict than necessary; the minimum requirement 548 // is that there be no more than one indirectbr branching to BB. And 549 // all BlockAddress uses would need to be updated. 550 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 551 "Cannot split an edge from an IndirectBrInst"); 552 Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1); 553 } 554 555 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 556 bool HasLoopExit = false; 557 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, P, HasLoopExit); 558 559 // Update the PHI nodes in OrigBB with the values coming from NewBB1. 560 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, P, HasLoopExit); 561 562 // Move the remaining edges from OrigBB to point to NewBB2. 563 SmallVector<BasicBlock*, 8> NewBB2Preds; 564 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB); 565 i != e; ) { 566 BasicBlock *Pred = *i++; 567 if (Pred == NewBB1) continue; 568 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 569 "Cannot split an edge from an IndirectBrInst"); 570 NewBB2Preds.push_back(Pred); 571 e = pred_end(OrigBB); 572 } 573 574 BasicBlock *NewBB2 = nullptr; 575 if (!NewBB2Preds.empty()) { 576 // Create another basic block for the rest of OrigBB's predecessors. 577 NewBB2 = BasicBlock::Create(OrigBB->getContext(), 578 OrigBB->getName() + Suffix2, 579 OrigBB->getParent(), OrigBB); 580 NewBBs.push_back(NewBB2); 581 582 // The new block unconditionally branches to the old block. 583 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2); 584 585 // Move the remaining edges from OrigBB to point to NewBB2. 586 for (SmallVectorImpl<BasicBlock*>::iterator 587 i = NewBB2Preds.begin(), e = NewBB2Preds.end(); i != e; ++i) 588 (*i)->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2); 589 590 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 591 HasLoopExit = false; 592 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, P, HasLoopExit); 593 594 // Update the PHI nodes in OrigBB with the values coming from NewBB2. 595 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, P, HasLoopExit); 596 } 597 598 LandingPadInst *LPad = OrigBB->getLandingPadInst(); 599 Instruction *Clone1 = LPad->clone(); 600 Clone1->setName(Twine("lpad") + Suffix1); 601 NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1); 602 603 if (NewBB2) { 604 Instruction *Clone2 = LPad->clone(); 605 Clone2->setName(Twine("lpad") + Suffix2); 606 NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2); 607 608 // Create a PHI node for the two cloned landingpad instructions. 609 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad); 610 PN->addIncoming(Clone1, NewBB1); 611 PN->addIncoming(Clone2, NewBB2); 612 LPad->replaceAllUsesWith(PN); 613 LPad->eraseFromParent(); 614 } else { 615 // There is no second clone. Just replace the landing pad with the first 616 // clone. 617 LPad->replaceAllUsesWith(Clone1); 618 LPad->eraseFromParent(); 619 } 620 } 621 622 /// FoldReturnIntoUncondBranch - This method duplicates the specified return 623 /// instruction into a predecessor which ends in an unconditional branch. If 624 /// the return instruction returns a value defined by a PHI, propagate the 625 /// right value into the return. It returns the new return instruction in the 626 /// predecessor. 627 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, 628 BasicBlock *Pred) { 629 Instruction *UncondBranch = Pred->getTerminator(); 630 // Clone the return and add it to the end of the predecessor. 631 Instruction *NewRet = RI->clone(); 632 Pred->getInstList().push_back(NewRet); 633 634 // If the return instruction returns a value, and if the value was a 635 // PHI node in "BB", propagate the right value into the return. 636 for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end(); 637 i != e; ++i) { 638 Value *V = *i; 639 Instruction *NewBC = nullptr; 640 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) { 641 // Return value might be bitcasted. Clone and insert it before the 642 // return instruction. 643 V = BCI->getOperand(0); 644 NewBC = BCI->clone(); 645 Pred->getInstList().insert(NewRet, NewBC); 646 *i = NewBC; 647 } 648 if (PHINode *PN = dyn_cast<PHINode>(V)) { 649 if (PN->getParent() == BB) { 650 if (NewBC) 651 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred)); 652 else 653 *i = PN->getIncomingValueForBlock(Pred); 654 } 655 } 656 } 657 658 // Update any PHI nodes in the returning block to realize that we no 659 // longer branch to them. 660 BB->removePredecessor(Pred); 661 UncondBranch->eraseFromParent(); 662 return cast<ReturnInst>(NewRet); 663 } 664 665 /// SplitBlockAndInsertIfThen - Split the containing block at the 666 /// specified instruction - everything before and including SplitBefore stays 667 /// in the old basic block, and everything after SplitBefore is moved to a 668 /// new block. The two blocks are connected by a conditional branch 669 /// (with value of Cmp being the condition). 670 /// Before: 671 /// Head 672 /// SplitBefore 673 /// Tail 674 /// After: 675 /// Head 676 /// if (Cond) 677 /// ThenBlock 678 /// SplitBefore 679 /// Tail 680 /// 681 /// If Unreachable is true, then ThenBlock ends with 682 /// UnreachableInst, otherwise it branches to Tail. 683 /// Returns the NewBasicBlock's terminator. 684 685 TerminatorInst *llvm::SplitBlockAndInsertIfThen(Value *Cond, 686 Instruction *SplitBefore, 687 bool Unreachable, 688 MDNode *BranchWeights, 689 DominatorTree *DT) { 690 BasicBlock *Head = SplitBefore->getParent(); 691 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore); 692 TerminatorInst *HeadOldTerm = Head->getTerminator(); 693 LLVMContext &C = Head->getContext(); 694 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 695 TerminatorInst *CheckTerm; 696 if (Unreachable) 697 CheckTerm = new UnreachableInst(C, ThenBlock); 698 else 699 CheckTerm = BranchInst::Create(Tail, ThenBlock); 700 CheckTerm->setDebugLoc(SplitBefore->getDebugLoc()); 701 BranchInst *HeadNewTerm = 702 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond); 703 HeadNewTerm->setDebugLoc(SplitBefore->getDebugLoc()); 704 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 705 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 706 707 if (DT) { 708 if (DomTreeNode *OldNode = DT->getNode(Head)) { 709 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 710 711 DomTreeNode *NewNode = DT->addNewBlock(Tail, Head); 712 for (auto Child : Children) 713 DT->changeImmediateDominator(Child, NewNode); 714 715 // Head dominates ThenBlock. 716 DT->addNewBlock(ThenBlock, Head); 717 } 718 } 719 720 return CheckTerm; 721 } 722 723 /// SplitBlockAndInsertIfThenElse is similar to SplitBlockAndInsertIfThen, 724 /// but also creates the ElseBlock. 725 /// Before: 726 /// Head 727 /// SplitBefore 728 /// Tail 729 /// After: 730 /// Head 731 /// if (Cond) 732 /// ThenBlock 733 /// else 734 /// ElseBlock 735 /// SplitBefore 736 /// Tail 737 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore, 738 TerminatorInst **ThenTerm, 739 TerminatorInst **ElseTerm, 740 MDNode *BranchWeights) { 741 BasicBlock *Head = SplitBefore->getParent(); 742 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore); 743 TerminatorInst *HeadOldTerm = Head->getTerminator(); 744 LLVMContext &C = Head->getContext(); 745 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 746 BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 747 *ThenTerm = BranchInst::Create(Tail, ThenBlock); 748 (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 749 *ElseTerm = BranchInst::Create(Tail, ElseBlock); 750 (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 751 BranchInst *HeadNewTerm = 752 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond); 753 HeadNewTerm->setDebugLoc(SplitBefore->getDebugLoc()); 754 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 755 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 756 } 757 758 759 /// GetIfCondition - Given a basic block (BB) with two predecessors, 760 /// check to see if the merge at this block is due 761 /// to an "if condition". If so, return the boolean condition that determines 762 /// which entry into BB will be taken. Also, return by references the block 763 /// that will be entered from if the condition is true, and the block that will 764 /// be entered if the condition is false. 765 /// 766 /// This does no checking to see if the true/false blocks have large or unsavory 767 /// instructions in them. 768 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 769 BasicBlock *&IfFalse) { 770 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin()); 771 BasicBlock *Pred1 = nullptr; 772 BasicBlock *Pred2 = nullptr; 773 774 if (SomePHI) { 775 if (SomePHI->getNumIncomingValues() != 2) 776 return nullptr; 777 Pred1 = SomePHI->getIncomingBlock(0); 778 Pred2 = SomePHI->getIncomingBlock(1); 779 } else { 780 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 781 if (PI == PE) // No predecessor 782 return nullptr; 783 Pred1 = *PI++; 784 if (PI == PE) // Only one predecessor 785 return nullptr; 786 Pred2 = *PI++; 787 if (PI != PE) // More than two predecessors 788 return nullptr; 789 } 790 791 // We can only handle branches. Other control flow will be lowered to 792 // branches if possible anyway. 793 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 794 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 795 if (!Pred1Br || !Pred2Br) 796 return nullptr; 797 798 // Eliminate code duplication by ensuring that Pred1Br is conditional if 799 // either are. 800 if (Pred2Br->isConditional()) { 801 // If both branches are conditional, we don't have an "if statement". In 802 // reality, we could transform this case, but since the condition will be 803 // required anyway, we stand no chance of eliminating it, so the xform is 804 // probably not profitable. 805 if (Pred1Br->isConditional()) 806 return nullptr; 807 808 std::swap(Pred1, Pred2); 809 std::swap(Pred1Br, Pred2Br); 810 } 811 812 if (Pred1Br->isConditional()) { 813 // The only thing we have to watch out for here is to make sure that Pred2 814 // doesn't have incoming edges from other blocks. If it does, the condition 815 // doesn't dominate BB. 816 if (!Pred2->getSinglePredecessor()) 817 return nullptr; 818 819 // If we found a conditional branch predecessor, make sure that it branches 820 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 821 if (Pred1Br->getSuccessor(0) == BB && 822 Pred1Br->getSuccessor(1) == Pred2) { 823 IfTrue = Pred1; 824 IfFalse = Pred2; 825 } else if (Pred1Br->getSuccessor(0) == Pred2 && 826 Pred1Br->getSuccessor(1) == BB) { 827 IfTrue = Pred2; 828 IfFalse = Pred1; 829 } else { 830 // We know that one arm of the conditional goes to BB, so the other must 831 // go somewhere unrelated, and this must not be an "if statement". 832 return nullptr; 833 } 834 835 return Pred1Br->getCondition(); 836 } 837 838 // Ok, if we got here, both predecessors end with an unconditional branch to 839 // BB. Don't panic! If both blocks only have a single (identical) 840 // predecessor, and THAT is a conditional branch, then we're all ok! 841 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 842 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor()) 843 return nullptr; 844 845 // Otherwise, if this is a conditional branch, then we can use it! 846 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 847 if (!BI) return nullptr; 848 849 assert(BI->isConditional() && "Two successors but not conditional?"); 850 if (BI->getSuccessor(0) == Pred1) { 851 IfTrue = Pred1; 852 IfFalse = Pred2; 853 } else { 854 IfTrue = Pred2; 855 IfFalse = Pred1; 856 } 857 return BI->getCondition(); 858 } 859