1 //===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform manipulations on basic blocks, and 11 // instructions contained within basic blocks. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 16 #include "llvm/Function.h" 17 #include "llvm/Instructions.h" 18 #include "llvm/IntrinsicInst.h" 19 #include "llvm/Constant.h" 20 #include "llvm/Type.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/Analysis/Dominators.h" 24 #include "llvm/Target/TargetData.h" 25 #include "llvm/Transforms/Utils/Local.h" 26 #include "llvm/Transforms/Scalar.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/ValueHandle.h" 29 #include <algorithm> 30 using namespace llvm; 31 32 /// DeleteDeadBlock - Delete the specified block, which must have no 33 /// predecessors. 34 void llvm::DeleteDeadBlock(BasicBlock *BB) { 35 assert((pred_begin(BB) == pred_end(BB) || 36 // Can delete self loop. 37 BB->getSinglePredecessor() == BB) && "Block is not dead!"); 38 TerminatorInst *BBTerm = BB->getTerminator(); 39 40 // Loop through all of our successors and make sure they know that one 41 // of their predecessors is going away. 42 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) 43 BBTerm->getSuccessor(i)->removePredecessor(BB); 44 45 // Zap all the instructions in the block. 46 while (!BB->empty()) { 47 Instruction &I = BB->back(); 48 // If this instruction is used, replace uses with an arbitrary value. 49 // Because control flow can't get here, we don't care what we replace the 50 // value with. Note that since this block is unreachable, and all values 51 // contained within it must dominate their uses, that all uses will 52 // eventually be removed (they are themselves dead). 53 if (!I.use_empty()) 54 I.replaceAllUsesWith(UndefValue::get(I.getType())); 55 BB->getInstList().pop_back(); 56 } 57 58 // Zap the block! 59 BB->eraseFromParent(); 60 } 61 62 /// FoldSingleEntryPHINodes - We know that BB has one predecessor. If there are 63 /// any single-entry PHI nodes in it, fold them away. This handles the case 64 /// when all entries to the PHI nodes in a block are guaranteed equal, such as 65 /// when the block has exactly one predecessor. 66 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB) { 67 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 68 if (PN->getIncomingValue(0) != PN) 69 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 70 else 71 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 72 PN->eraseFromParent(); 73 } 74 } 75 76 77 /// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it 78 /// is dead. Also recursively delete any operands that become dead as 79 /// a result. This includes tracing the def-use list from the PHI to see if 80 /// it is ultimately unused or if it reaches an unused cycle. 81 bool llvm::DeleteDeadPHIs(BasicBlock *BB) { 82 // Recursively deleting a PHI may cause multiple PHIs to be deleted 83 // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete. 84 SmallVector<WeakVH, 8> PHIs; 85 for (BasicBlock::iterator I = BB->begin(); 86 PHINode *PN = dyn_cast<PHINode>(I); ++I) 87 PHIs.push_back(PN); 88 89 bool Changed = false; 90 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 91 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) 92 Changed |= RecursivelyDeleteDeadPHINode(PN); 93 94 return Changed; 95 } 96 97 /// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor, 98 /// if possible. The return value indicates success or failure. 99 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) { 100 pred_iterator PI(pred_begin(BB)), PE(pred_end(BB)); 101 // Can't merge the entry block. Don't merge away blocks who have their 102 // address taken: this is a bug if the predecessor block is the entry node 103 // (because we'd end up taking the address of the entry) and undesirable in 104 // any case. 105 if (pred_begin(BB) == pred_end(BB) || 106 BB->hasAddressTaken()) return false; 107 108 BasicBlock *PredBB = *PI++; 109 for (; PI != PE; ++PI) // Search all predecessors, see if they are all same 110 if (*PI != PredBB) { 111 PredBB = 0; // There are multiple different predecessors... 112 break; 113 } 114 115 // Can't merge if there are multiple predecessors. 116 if (!PredBB) return false; 117 // Don't break self-loops. 118 if (PredBB == BB) return false; 119 // Don't break invokes. 120 if (isa<InvokeInst>(PredBB->getTerminator())) return false; 121 122 succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB)); 123 BasicBlock* OnlySucc = BB; 124 for (; SI != SE; ++SI) 125 if (*SI != OnlySucc) { 126 OnlySucc = 0; // There are multiple distinct successors! 127 break; 128 } 129 130 // Can't merge if there are multiple successors. 131 if (!OnlySucc) return false; 132 133 // Can't merge if there is PHI loop. 134 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) { 135 if (PHINode *PN = dyn_cast<PHINode>(BI)) { 136 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 137 if (PN->getIncomingValue(i) == PN) 138 return false; 139 } else 140 break; 141 } 142 143 // Begin by getting rid of unneeded PHIs. 144 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 145 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 146 BB->getInstList().pop_front(); // Delete the phi node... 147 } 148 149 // Delete the unconditional branch from the predecessor... 150 PredBB->getInstList().pop_back(); 151 152 // Move all definitions in the successor to the predecessor... 153 PredBB->getInstList().splice(PredBB->end(), BB->getInstList()); 154 155 // Make all PHI nodes that referred to BB now refer to Pred as their 156 // source... 157 BB->replaceAllUsesWith(PredBB); 158 159 // Inherit predecessors name if it exists. 160 if (!PredBB->hasName()) 161 PredBB->takeName(BB); 162 163 // Finally, erase the old block and update dominator info. 164 if (P) { 165 if (DominatorTree* DT = P->getAnalysisIfAvailable<DominatorTree>()) { 166 DomTreeNode* DTN = DT->getNode(BB); 167 DomTreeNode* PredDTN = DT->getNode(PredBB); 168 169 if (DTN) { 170 SmallPtrSet<DomTreeNode*, 8> Children(DTN->begin(), DTN->end()); 171 for (SmallPtrSet<DomTreeNode*, 8>::iterator DI = Children.begin(), 172 DE = Children.end(); DI != DE; ++DI) 173 DT->changeImmediateDominator(*DI, PredDTN); 174 175 DT->eraseNode(BB); 176 } 177 } 178 } 179 180 BB->eraseFromParent(); 181 182 183 return true; 184 } 185 186 /// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI) 187 /// with a value, then remove and delete the original instruction. 188 /// 189 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL, 190 BasicBlock::iterator &BI, Value *V) { 191 Instruction &I = *BI; 192 // Replaces all of the uses of the instruction with uses of the value 193 I.replaceAllUsesWith(V); 194 195 // Make sure to propagate a name if there is one already. 196 if (I.hasName() && !V->hasName()) 197 V->takeName(&I); 198 199 // Delete the unnecessary instruction now... 200 BI = BIL.erase(BI); 201 } 202 203 204 /// ReplaceInstWithInst - Replace the instruction specified by BI with the 205 /// instruction specified by I. The original instruction is deleted and BI is 206 /// updated to point to the new instruction. 207 /// 208 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL, 209 BasicBlock::iterator &BI, Instruction *I) { 210 assert(I->getParent() == 0 && 211 "ReplaceInstWithInst: Instruction already inserted into basic block!"); 212 213 // Insert the new instruction into the basic block... 214 BasicBlock::iterator New = BIL.insert(BI, I); 215 216 // Replace all uses of the old instruction, and delete it. 217 ReplaceInstWithValue(BIL, BI, I); 218 219 // Move BI back to point to the newly inserted instruction 220 BI = New; 221 } 222 223 /// ReplaceInstWithInst - Replace the instruction specified by From with the 224 /// instruction specified by To. 225 /// 226 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { 227 BasicBlock::iterator BI(From); 228 ReplaceInstWithInst(From->getParent()->getInstList(), BI, To); 229 } 230 231 /// RemoveSuccessor - Change the specified terminator instruction such that its 232 /// successor SuccNum no longer exists. Because this reduces the outgoing 233 /// degree of the current basic block, the actual terminator instruction itself 234 /// may have to be changed. In the case where the last successor of the block 235 /// is deleted, a return instruction is inserted in its place which can cause a 236 /// surprising change in program behavior if it is not expected. 237 /// 238 void llvm::RemoveSuccessor(TerminatorInst *TI, unsigned SuccNum) { 239 assert(SuccNum < TI->getNumSuccessors() && 240 "Trying to remove a nonexistant successor!"); 241 242 // If our old successor block contains any PHI nodes, remove the entry in the 243 // PHI nodes that comes from this branch... 244 // 245 BasicBlock *BB = TI->getParent(); 246 TI->getSuccessor(SuccNum)->removePredecessor(BB); 247 248 TerminatorInst *NewTI = 0; 249 switch (TI->getOpcode()) { 250 case Instruction::Br: 251 // If this is a conditional branch... convert to unconditional branch. 252 if (TI->getNumSuccessors() == 2) { 253 cast<BranchInst>(TI)->setUnconditionalDest(TI->getSuccessor(1-SuccNum)); 254 } else { // Otherwise convert to a return instruction... 255 Value *RetVal = 0; 256 257 // Create a value to return... if the function doesn't return null... 258 if (!BB->getParent()->getReturnType()->isVoidTy()) 259 RetVal = Constant::getNullValue(BB->getParent()->getReturnType()); 260 261 // Create the return... 262 NewTI = ReturnInst::Create(TI->getContext(), RetVal); 263 } 264 break; 265 266 case Instruction::Invoke: // Should convert to call 267 case Instruction::Switch: // Should remove entry 268 default: 269 case Instruction::Ret: // Cannot happen, has no successors! 270 llvm_unreachable("Unhandled terminator instruction type in RemoveSuccessor!"); 271 } 272 273 if (NewTI) // If it's a different instruction, replace. 274 ReplaceInstWithInst(TI, NewTI); 275 } 276 277 /// SplitEdge - Split the edge connecting specified block. Pass P must 278 /// not be NULL. 279 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) { 280 TerminatorInst *LatchTerm = BB->getTerminator(); 281 unsigned SuccNum = 0; 282 #ifndef NDEBUG 283 unsigned e = LatchTerm->getNumSuccessors(); 284 #endif 285 for (unsigned i = 0; ; ++i) { 286 assert(i != e && "Didn't find edge?"); 287 if (LatchTerm->getSuccessor(i) == Succ) { 288 SuccNum = i; 289 break; 290 } 291 } 292 293 // If this is a critical edge, let SplitCriticalEdge do it. 294 if (SplitCriticalEdge(BB->getTerminator(), SuccNum, P)) 295 return LatchTerm->getSuccessor(SuccNum); 296 297 // If the edge isn't critical, then BB has a single successor or Succ has a 298 // single pred. Split the block. 299 BasicBlock::iterator SplitPoint; 300 if (BasicBlock *SP = Succ->getSinglePredecessor()) { 301 // If the successor only has a single pred, split the top of the successor 302 // block. 303 assert(SP == BB && "CFG broken"); 304 SP = NULL; 305 return SplitBlock(Succ, Succ->begin(), P); 306 } else { 307 // Otherwise, if BB has a single successor, split it at the bottom of the 308 // block. 309 assert(BB->getTerminator()->getNumSuccessors() == 1 && 310 "Should have a single succ!"); 311 return SplitBlock(BB, BB->getTerminator(), P); 312 } 313 } 314 315 /// SplitBlock - Split the specified block at the specified instruction - every 316 /// thing before SplitPt stays in Old and everything starting with SplitPt moves 317 /// to a new block. The two blocks are joined by an unconditional branch and 318 /// the loop info is updated. 319 /// 320 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) { 321 BasicBlock::iterator SplitIt = SplitPt; 322 while (isa<PHINode>(SplitIt)) 323 ++SplitIt; 324 BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split"); 325 326 // The new block lives in whichever loop the old one did. This preserves 327 // LCSSA as well, because we force the split point to be after any PHI nodes. 328 if (LoopInfo* LI = P->getAnalysisIfAvailable<LoopInfo>()) 329 if (Loop *L = LI->getLoopFor(Old)) 330 L->addBasicBlockToLoop(New, LI->getBase()); 331 332 if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) 333 { 334 // Old dominates New. New node domiantes all other nodes dominated by Old. 335 DomTreeNode *OldNode = DT->getNode(Old); 336 std::vector<DomTreeNode *> Children; 337 for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end(); 338 I != E; ++I) 339 Children.push_back(*I); 340 341 DomTreeNode *NewNode = DT->addNewBlock(New,Old); 342 343 for (std::vector<DomTreeNode *>::iterator I = Children.begin(), 344 E = Children.end(); I != E; ++I) 345 DT->changeImmediateDominator(*I, NewNode); 346 } 347 348 if (DominanceFrontier *DF = P->getAnalysisIfAvailable<DominanceFrontier>()) 349 DF->splitBlock(Old); 350 351 return New; 352 } 353 354 355 /// SplitBlockPredecessors - This method transforms BB by introducing a new 356 /// basic block into the function, and moving some of the predecessors of BB to 357 /// be predecessors of the new block. The new predecessors are indicated by the 358 /// Preds array, which has NumPreds elements in it. The new block is given a 359 /// suffix of 'Suffix'. 360 /// 361 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree, 362 /// DominanceFrontier, LoopInfo, and LCCSA but no other analyses. 363 /// In particular, it does not preserve LoopSimplify (because it's 364 /// complicated to handle the case where one of the edges being split 365 /// is an exit of a loop with other exits). 366 /// 367 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 368 BasicBlock *const *Preds, 369 unsigned NumPreds, const char *Suffix, 370 Pass *P) { 371 // Create new basic block, insert right before the original block. 372 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+Suffix, 373 BB->getParent(), BB); 374 375 // The new block unconditionally branches to the old block. 376 BranchInst *BI = BranchInst::Create(BB, NewBB); 377 378 LoopInfo *LI = P ? P->getAnalysisIfAvailable<LoopInfo>() : 0; 379 Loop *L = LI ? LI->getLoopFor(BB) : 0; 380 bool PreserveLCSSA = P->mustPreserveAnalysisID(LCSSAID); 381 382 // Move the edges from Preds to point to NewBB instead of BB. 383 // While here, if we need to preserve loop analyses, collect 384 // some information about how this split will affect loops. 385 bool HasLoopExit = false; 386 bool IsLoopEntry = !!L; 387 bool SplitMakesNewLoopHeader = false; 388 for (unsigned i = 0; i != NumPreds; ++i) { 389 // This is slightly more strict than necessary; the minimum requirement 390 // is that there be no more than one indirectbr branching to BB. And 391 // all BlockAddress uses would need to be updated. 392 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 393 "Cannot split an edge from an IndirectBrInst"); 394 395 Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB); 396 397 if (LI) { 398 // If we need to preserve LCSSA, determine if any of 399 // the preds is a loop exit. 400 if (PreserveLCSSA) 401 if (Loop *PL = LI->getLoopFor(Preds[i])) 402 if (!PL->contains(BB)) 403 HasLoopExit = true; 404 // If we need to preserve LoopInfo, note whether any of the 405 // preds crosses an interesting loop boundary. 406 if (L) { 407 if (L->contains(Preds[i])) 408 IsLoopEntry = false; 409 else 410 SplitMakesNewLoopHeader = true; 411 } 412 } 413 } 414 415 // Update dominator tree and dominator frontier if available. 416 DominatorTree *DT = P ? P->getAnalysisIfAvailable<DominatorTree>() : 0; 417 if (DT) 418 DT->splitBlock(NewBB); 419 if (DominanceFrontier *DF = P ? P->getAnalysisIfAvailable<DominanceFrontier>():0) 420 DF->splitBlock(NewBB); 421 422 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI 423 // node becomes an incoming value for BB's phi node. However, if the Preds 424 // list is empty, we need to insert dummy entries into the PHI nodes in BB to 425 // account for the newly created predecessor. 426 if (NumPreds == 0) { 427 // Insert dummy values as the incoming value. 428 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) 429 cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB); 430 return NewBB; 431 } 432 433 AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : 0; 434 435 if (L) { 436 if (IsLoopEntry) { 437 // Add the new block to the nearest enclosing loop (and not an 438 // adjacent loop). To find this, examine each of the predecessors and 439 // determine which loops enclose them, and select the most-nested loop 440 // which contains the loop containing the block being split. 441 Loop *InnermostPredLoop = 0; 442 for (unsigned i = 0; i != NumPreds; ++i) 443 if (Loop *PredLoop = LI->getLoopFor(Preds[i])) { 444 // Seek a loop which actually contains the block being split (to 445 // avoid adjacent loops). 446 while (PredLoop && !PredLoop->contains(BB)) 447 PredLoop = PredLoop->getParentLoop(); 448 // Select the most-nested of these loops which contains the block. 449 if (PredLoop && 450 PredLoop->contains(BB) && 451 (!InnermostPredLoop || 452 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) 453 InnermostPredLoop = PredLoop; 454 } 455 if (InnermostPredLoop) 456 InnermostPredLoop->addBasicBlockToLoop(NewBB, LI->getBase()); 457 } else { 458 L->addBasicBlockToLoop(NewBB, LI->getBase()); 459 if (SplitMakesNewLoopHeader) 460 L->moveToHeader(NewBB); 461 } 462 } 463 464 // Otherwise, create a new PHI node in NewBB for each PHI node in BB. 465 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ) { 466 PHINode *PN = cast<PHINode>(I++); 467 468 // Check to see if all of the values coming in are the same. If so, we 469 // don't need to create a new PHI node, unless it's needed for LCSSA. 470 Value *InVal = 0; 471 if (!HasLoopExit) { 472 InVal = PN->getIncomingValueForBlock(Preds[0]); 473 for (unsigned i = 1; i != NumPreds; ++i) 474 if (InVal != PN->getIncomingValueForBlock(Preds[i])) { 475 InVal = 0; 476 break; 477 } 478 } 479 480 if (InVal) { 481 // If all incoming values for the new PHI would be the same, just don't 482 // make a new PHI. Instead, just remove the incoming values from the old 483 // PHI. 484 for (unsigned i = 0; i != NumPreds; ++i) 485 PN->removeIncomingValue(Preds[i], false); 486 } else { 487 // If the values coming into the block are not the same, we need a PHI. 488 // Create the new PHI node, insert it into NewBB at the end of the block 489 PHINode *NewPHI = 490 PHINode::Create(PN->getType(), PN->getName()+".ph", BI); 491 if (AA) AA->copyValue(PN, NewPHI); 492 493 // Move all of the PHI values for 'Preds' to the new PHI. 494 for (unsigned i = 0; i != NumPreds; ++i) { 495 Value *V = PN->removeIncomingValue(Preds[i], false); 496 NewPHI->addIncoming(V, Preds[i]); 497 } 498 InVal = NewPHI; 499 } 500 501 // Add an incoming value to the PHI node in the loop for the preheader 502 // edge. 503 PN->addIncoming(InVal, NewBB); 504 } 505 506 return NewBB; 507 } 508 509 /// FindFunctionBackedges - Analyze the specified function to find all of the 510 /// loop backedges in the function and return them. This is a relatively cheap 511 /// (compared to computing dominators and loop info) analysis. 512 /// 513 /// The output is added to Result, as pairs of <from,to> edge info. 514 void llvm::FindFunctionBackedges(const Function &F, 515 SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) { 516 const BasicBlock *BB = &F.getEntryBlock(); 517 if (succ_begin(BB) == succ_end(BB)) 518 return; 519 520 SmallPtrSet<const BasicBlock*, 8> Visited; 521 SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack; 522 SmallPtrSet<const BasicBlock*, 8> InStack; 523 524 Visited.insert(BB); 525 VisitStack.push_back(std::make_pair(BB, succ_begin(BB))); 526 InStack.insert(BB); 527 do { 528 std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back(); 529 const BasicBlock *ParentBB = Top.first; 530 succ_const_iterator &I = Top.second; 531 532 bool FoundNew = false; 533 while (I != succ_end(ParentBB)) { 534 BB = *I++; 535 if (Visited.insert(BB)) { 536 FoundNew = true; 537 break; 538 } 539 // Successor is in VisitStack, it's a back edge. 540 if (InStack.count(BB)) 541 Result.push_back(std::make_pair(ParentBB, BB)); 542 } 543 544 if (FoundNew) { 545 // Go down one level if there is a unvisited successor. 546 InStack.insert(BB); 547 VisitStack.push_back(std::make_pair(BB, succ_begin(BB))); 548 } else { 549 // Go up one level. 550 InStack.erase(VisitStack.pop_back_val().first); 551 } 552 } while (!VisitStack.empty()); 553 554 555 } 556 557 558 559 /// AreEquivalentAddressValues - Test if A and B will obviously have the same 560 /// value. This includes recognizing that %t0 and %t1 will have the same 561 /// value in code like this: 562 /// %t0 = getelementptr \@a, 0, 3 563 /// store i32 0, i32* %t0 564 /// %t1 = getelementptr \@a, 0, 3 565 /// %t2 = load i32* %t1 566 /// 567 static bool AreEquivalentAddressValues(const Value *A, const Value *B) { 568 // Test if the values are trivially equivalent. 569 if (A == B) return true; 570 571 // Test if the values come from identical arithmetic instructions. 572 // Use isIdenticalToWhenDefined instead of isIdenticalTo because 573 // this function is only used when one address use dominates the 574 // other, which means that they'll always either have the same 575 // value or one of them will have an undefined value. 576 if (isa<BinaryOperator>(A) || isa<CastInst>(A) || 577 isa<PHINode>(A) || isa<GetElementPtrInst>(A)) 578 if (const Instruction *BI = dyn_cast<Instruction>(B)) 579 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 580 return true; 581 582 // Otherwise they may not be equivalent. 583 return false; 584 } 585 586 /// FindAvailableLoadedValue - Scan the ScanBB block backwards (starting at the 587 /// instruction before ScanFrom) checking to see if we have the value at the 588 /// memory address *Ptr locally available within a small number of instructions. 589 /// If the value is available, return it. 590 /// 591 /// If not, return the iterator for the last validated instruction that the 592 /// value would be live through. If we scanned the entire block and didn't find 593 /// something that invalidates *Ptr or provides it, ScanFrom would be left at 594 /// begin() and this returns null. ScanFrom could also be left 595 /// 596 /// MaxInstsToScan specifies the maximum instructions to scan in the block. If 597 /// it is set to 0, it will scan the whole block. You can also optionally 598 /// specify an alias analysis implementation, which makes this more precise. 599 Value *llvm::FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB, 600 BasicBlock::iterator &ScanFrom, 601 unsigned MaxInstsToScan, 602 AliasAnalysis *AA) { 603 if (MaxInstsToScan == 0) MaxInstsToScan = ~0U; 604 605 // If we're using alias analysis to disambiguate get the size of *Ptr. 606 unsigned AccessSize = 0; 607 if (AA) { 608 const Type *AccessTy = cast<PointerType>(Ptr->getType())->getElementType(); 609 AccessSize = AA->getTypeStoreSize(AccessTy); 610 } 611 612 while (ScanFrom != ScanBB->begin()) { 613 // We must ignore debug info directives when counting (otherwise they 614 // would affect codegen). 615 Instruction *Inst = --ScanFrom; 616 if (isa<DbgInfoIntrinsic>(Inst)) 617 continue; 618 619 // Restore ScanFrom to expected value in case next test succeeds 620 ScanFrom++; 621 622 // Don't scan huge blocks. 623 if (MaxInstsToScan-- == 0) return 0; 624 625 --ScanFrom; 626 // If this is a load of Ptr, the loaded value is available. 627 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 628 if (AreEquivalentAddressValues(LI->getOperand(0), Ptr)) 629 return LI; 630 631 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 632 // If this is a store through Ptr, the value is available! 633 if (AreEquivalentAddressValues(SI->getOperand(1), Ptr)) 634 return SI->getOperand(0); 635 636 // If Ptr is an alloca and this is a store to a different alloca, ignore 637 // the store. This is a trivial form of alias analysis that is important 638 // for reg2mem'd code. 639 if ((isa<AllocaInst>(Ptr) || isa<GlobalVariable>(Ptr)) && 640 (isa<AllocaInst>(SI->getOperand(1)) || 641 isa<GlobalVariable>(SI->getOperand(1)))) 642 continue; 643 644 // If we have alias analysis and it says the store won't modify the loaded 645 // value, ignore the store. 646 if (AA && 647 (AA->getModRefInfo(SI, Ptr, AccessSize) & AliasAnalysis::Mod) == 0) 648 continue; 649 650 // Otherwise the store that may or may not alias the pointer, bail out. 651 ++ScanFrom; 652 return 0; 653 } 654 655 // If this is some other instruction that may clobber Ptr, bail out. 656 if (Inst->mayWriteToMemory()) { 657 // If alias analysis claims that it really won't modify the load, 658 // ignore it. 659 if (AA && 660 (AA->getModRefInfo(Inst, Ptr, AccessSize) & AliasAnalysis::Mod) == 0) 661 continue; 662 663 // May modify the pointer, bail out. 664 ++ScanFrom; 665 return 0; 666 } 667 } 668 669 // Got to the start of the block, we didn't find it, but are done for this 670 // block. 671 return 0; 672 } 673 674