1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform manipulations on basic blocks, and
10 // instructions contained within basic blocks.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/DomTreeUpdater.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/Analysis/PostDominators.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/IR/ValueHandle.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include <cassert>
45 #include <cstdint>
46 #include <string>
47 #include <utility>
48 #include <vector>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "basicblock-utils"
53 
54 void llvm::DetatchDeadBlocks(
55     ArrayRef<BasicBlock *> BBs,
56     SmallVectorImpl<DominatorTree::UpdateType> *Updates,
57     bool KeepOneInputPHIs) {
58   for (auto *BB : BBs) {
59     // Loop through all of our successors and make sure they know that one
60     // of their predecessors is going away.
61     SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
62     for (BasicBlock *Succ : successors(BB)) {
63       Succ->removePredecessor(BB, KeepOneInputPHIs);
64       if (Updates && UniqueSuccessors.insert(Succ).second)
65         Updates->push_back({DominatorTree::Delete, BB, Succ});
66     }
67 
68     // Zap all the instructions in the block.
69     while (!BB->empty()) {
70       Instruction &I = BB->back();
71       // If this instruction is used, replace uses with an arbitrary value.
72       // Because control flow can't get here, we don't care what we replace the
73       // value with.  Note that since this block is unreachable, and all values
74       // contained within it must dominate their uses, that all uses will
75       // eventually be removed (they are themselves dead).
76       if (!I.use_empty())
77         I.replaceAllUsesWith(UndefValue::get(I.getType()));
78       BB->getInstList().pop_back();
79     }
80     new UnreachableInst(BB->getContext(), BB);
81     assert(BB->getInstList().size() == 1 &&
82            isa<UnreachableInst>(BB->getTerminator()) &&
83            "The successor list of BB isn't empty before "
84            "applying corresponding DTU updates.");
85   }
86 }
87 
88 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
89                            bool KeepOneInputPHIs) {
90   DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
91 }
92 
93 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
94                             bool KeepOneInputPHIs) {
95 #ifndef NDEBUG
96   // Make sure that all predecessors of each dead block is also dead.
97   SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
98   assert(Dead.size() == BBs.size() && "Duplicating blocks?");
99   for (auto *BB : Dead)
100     for (BasicBlock *Pred : predecessors(BB))
101       assert(Dead.count(Pred) && "All predecessors must be dead!");
102 #endif
103 
104   SmallVector<DominatorTree::UpdateType, 4> Updates;
105   DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
106 
107   if (DTU)
108     DTU->applyUpdates(Updates);
109 
110   for (BasicBlock *BB : BBs)
111     if (DTU)
112       DTU->deleteBB(BB);
113     else
114       BB->eraseFromParent();
115 }
116 
117 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
118                                       bool KeepOneInputPHIs) {
119   df_iterator_default_set<BasicBlock*> Reachable;
120 
121   // Mark all reachable blocks.
122   for (BasicBlock *BB : depth_first_ext(&F, Reachable))
123     (void)BB/* Mark all reachable blocks */;
124 
125   // Collect all dead blocks.
126   std::vector<BasicBlock*> DeadBlocks;
127   for (BasicBlock &BB : F)
128     if (!Reachable.count(&BB))
129       DeadBlocks.push_back(&BB);
130 
131   // Delete the dead blocks.
132   DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
133 
134   return !DeadBlocks.empty();
135 }
136 
137 bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
138                                    MemoryDependenceResults *MemDep) {
139   if (!isa<PHINode>(BB->begin()))
140     return false;
141 
142   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
143     if (PN->getIncomingValue(0) != PN)
144       PN->replaceAllUsesWith(PN->getIncomingValue(0));
145     else
146       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
147 
148     if (MemDep)
149       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
150 
151     PN->eraseFromParent();
152   }
153   return true;
154 }
155 
156 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI,
157                           MemorySSAUpdater *MSSAU) {
158   // Recursively deleting a PHI may cause multiple PHIs to be deleted
159   // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
160   SmallVector<WeakTrackingVH, 8> PHIs;
161   for (PHINode &PN : BB->phis())
162     PHIs.push_back(&PN);
163 
164   bool Changed = false;
165   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
166     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
167       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU);
168 
169   return Changed;
170 }
171 
172 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
173                                      LoopInfo *LI, MemorySSAUpdater *MSSAU,
174                                      MemoryDependenceResults *MemDep,
175                                      bool PredecessorWithTwoSuccessors) {
176   if (BB->hasAddressTaken())
177     return false;
178 
179   // Can't merge if there are multiple predecessors, or no predecessors.
180   BasicBlock *PredBB = BB->getUniquePredecessor();
181   if (!PredBB) return false;
182 
183   // Don't break self-loops.
184   if (PredBB == BB) return false;
185   // Don't break unwinding instructions.
186   if (PredBB->getTerminator()->isExceptionalTerminator())
187     return false;
188 
189   // Can't merge if there are multiple distinct successors.
190   if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
191     return false;
192 
193   // Currently only allow PredBB to have two predecessors, one being BB.
194   // Update BI to branch to BB's only successor instead of BB.
195   BranchInst *PredBB_BI;
196   BasicBlock *NewSucc = nullptr;
197   unsigned FallThruPath;
198   if (PredecessorWithTwoSuccessors) {
199     if (!(PredBB_BI = dyn_cast<BranchInst>(PredBB->getTerminator())))
200       return false;
201     BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
202     if (!BB_JmpI || !BB_JmpI->isUnconditional())
203       return false;
204     NewSucc = BB_JmpI->getSuccessor(0);
205     FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
206   }
207 
208   // Can't merge if there is PHI loop.
209   for (PHINode &PN : BB->phis())
210     for (Value *IncValue : PN.incoming_values())
211       if (IncValue == &PN)
212         return false;
213 
214   LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
215                     << PredBB->getName() << "\n");
216 
217   // Begin by getting rid of unneeded PHIs.
218   SmallVector<AssertingVH<Value>, 4> IncomingValues;
219   if (isa<PHINode>(BB->front())) {
220     for (PHINode &PN : BB->phis())
221       if (!isa<PHINode>(PN.getIncomingValue(0)) ||
222           cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
223         IncomingValues.push_back(PN.getIncomingValue(0));
224     FoldSingleEntryPHINodes(BB, MemDep);
225   }
226 
227   // DTU update: Collect all the edges that exit BB.
228   // These dominator edges will be redirected from Pred.
229   std::vector<DominatorTree::UpdateType> Updates;
230   if (DTU) {
231     SmallSetVector<BasicBlock *, 2> UniqueSuccessors(succ_begin(BB),
232                                                      succ_end(BB));
233     Updates.reserve(1 + (2 * UniqueSuccessors.size()));
234     // Add insert edges first. Experimentally, for the particular case of two
235     // blocks that can be merged, with a single successor and single predecessor
236     // respectively, it is beneficial to have all insert updates first. Deleting
237     // edges first may lead to unreachable blocks, followed by inserting edges
238     // making the blocks reachable again. Such DT updates lead to high compile
239     // times. We add inserts before deletes here to reduce compile time.
240     for (BasicBlock *UniqueSuccessor : UniqueSuccessors)
241       // This successor of BB may already have PredBB as a predecessor.
242       if (!llvm::is_contained(successors(PredBB), UniqueSuccessor))
243         Updates.push_back({DominatorTree::Insert, PredBB, UniqueSuccessor});
244     for (BasicBlock *UniqueSuccessor : UniqueSuccessors)
245       Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor});
246     Updates.push_back({DominatorTree::Delete, PredBB, BB});
247   }
248 
249   Instruction *PTI = PredBB->getTerminator();
250   Instruction *STI = BB->getTerminator();
251   Instruction *Start = &*BB->begin();
252   // If there's nothing to move, mark the starting instruction as the last
253   // instruction in the block. Terminator instruction is handled separately.
254   if (Start == STI)
255     Start = PTI;
256 
257   // Move all definitions in the successor to the predecessor...
258   PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(),
259                                BB->begin(), STI->getIterator());
260 
261   if (MSSAU)
262     MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);
263 
264   // Make all PHI nodes that referred to BB now refer to Pred as their
265   // source...
266   BB->replaceAllUsesWith(PredBB);
267 
268   if (PredecessorWithTwoSuccessors) {
269     // Delete the unconditional branch from BB.
270     BB->getInstList().pop_back();
271 
272     // Update branch in the predecessor.
273     PredBB_BI->setSuccessor(FallThruPath, NewSucc);
274   } else {
275     // Delete the unconditional branch from the predecessor.
276     PredBB->getInstList().pop_back();
277 
278     // Move terminator instruction.
279     PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
280 
281     // Terminator may be a memory accessing instruction too.
282     if (MSSAU)
283       if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>(
284               MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator())))
285         MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End);
286   }
287   // Add unreachable to now empty BB.
288   new UnreachableInst(BB->getContext(), BB);
289 
290   // Inherit predecessors name if it exists.
291   if (!PredBB->hasName())
292     PredBB->takeName(BB);
293 
294   if (LI)
295     LI->removeBlock(BB);
296 
297   if (MemDep)
298     MemDep->invalidateCachedPredecessors();
299 
300   // Finally, erase the old block and update dominator info.
301   if (DTU) {
302     assert(BB->getInstList().size() == 1 &&
303            isa<UnreachableInst>(BB->getTerminator()) &&
304            "The successor list of BB isn't empty before "
305            "applying corresponding DTU updates.");
306     DTU->applyUpdates(Updates);
307     DTU->deleteBB(BB);
308   } else {
309     BB->eraseFromParent(); // Nuke BB if DTU is nullptr.
310   }
311 
312   return true;
313 }
314 
315 bool llvm::MergeBlockSuccessorsIntoGivenBlocks(
316     SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU,
317     LoopInfo *LI) {
318   assert(!MergeBlocks.empty() && "MergeBlocks should not be empty");
319 
320   bool BlocksHaveBeenMerged = false;
321   while (!MergeBlocks.empty()) {
322     BasicBlock *BB = *MergeBlocks.begin();
323     BasicBlock *Dest = BB->getSingleSuccessor();
324     if (Dest && (!L || L->contains(Dest))) {
325       BasicBlock *Fold = Dest->getUniquePredecessor();
326       (void)Fold;
327       if (MergeBlockIntoPredecessor(Dest, DTU, LI)) {
328         assert(Fold == BB &&
329                "Expecting BB to be unique predecessor of the Dest block");
330         MergeBlocks.erase(Dest);
331         BlocksHaveBeenMerged = true;
332       } else
333         MergeBlocks.erase(BB);
334     } else
335       MergeBlocks.erase(BB);
336   }
337   return BlocksHaveBeenMerged;
338 }
339 
340 /// Remove redundant instructions within sequences of consecutive dbg.value
341 /// instructions. This is done using a backward scan to keep the last dbg.value
342 /// describing a specific variable/fragment.
343 ///
344 /// BackwardScan strategy:
345 /// ----------------------
346 /// Given a sequence of consecutive DbgValueInst like this
347 ///
348 ///   dbg.value ..., "x", FragmentX1  (*)
349 ///   dbg.value ..., "y", FragmentY1
350 ///   dbg.value ..., "x", FragmentX2
351 ///   dbg.value ..., "x", FragmentX1  (**)
352 ///
353 /// then the instruction marked with (*) can be removed (it is guaranteed to be
354 /// obsoleted by the instruction marked with (**) as the latter instruction is
355 /// describing the same variable using the same fragment info).
356 ///
357 /// Possible improvements:
358 /// - Check fully overlapping fragments and not only identical fragments.
359 /// - Support dbg.addr, dbg.declare. dbg.label, and possibly other meta
360 ///   instructions being part of the sequence of consecutive instructions.
361 static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
362   SmallVector<DbgValueInst *, 8> ToBeRemoved;
363   SmallDenseSet<DebugVariable> VariableSet;
364   for (auto &I : reverse(*BB)) {
365     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
366       DebugVariable Key(DVI->getVariable(),
367                         DVI->getExpression(),
368                         DVI->getDebugLoc()->getInlinedAt());
369       auto R = VariableSet.insert(Key);
370       // If the same variable fragment is described more than once it is enough
371       // to keep the last one (i.e. the first found since we for reverse
372       // iteration).
373       if (!R.second)
374         ToBeRemoved.push_back(DVI);
375       continue;
376     }
377     // Sequence with consecutive dbg.value instrs ended. Clear the map to
378     // restart identifying redundant instructions if case we find another
379     // dbg.value sequence.
380     VariableSet.clear();
381   }
382 
383   for (auto &Instr : ToBeRemoved)
384     Instr->eraseFromParent();
385 
386   return !ToBeRemoved.empty();
387 }
388 
389 /// Remove redundant dbg.value instructions using a forward scan. This can
390 /// remove a dbg.value instruction that is redundant due to indicating that a
391 /// variable has the same value as already being indicated by an earlier
392 /// dbg.value.
393 ///
394 /// ForwardScan strategy:
395 /// ---------------------
396 /// Given two identical dbg.value instructions, separated by a block of
397 /// instructions that isn't describing the same variable, like this
398 ///
399 ///   dbg.value X1, "x", FragmentX1  (**)
400 ///   <block of instructions, none being "dbg.value ..., "x", ...">
401 ///   dbg.value X1, "x", FragmentX1  (*)
402 ///
403 /// then the instruction marked with (*) can be removed. Variable "x" is already
404 /// described as being mapped to the SSA value X1.
405 ///
406 /// Possible improvements:
407 /// - Keep track of non-overlapping fragments.
408 static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
409   SmallVector<DbgValueInst *, 8> ToBeRemoved;
410   DenseMap<DebugVariable, std::pair<Value *, DIExpression *> > VariableMap;
411   for (auto &I : *BB) {
412     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
413       DebugVariable Key(DVI->getVariable(),
414                         NoneType(),
415                         DVI->getDebugLoc()->getInlinedAt());
416       auto VMI = VariableMap.find(Key);
417       // Update the map if we found a new value/expression describing the
418       // variable, or if the variable wasn't mapped already.
419       if (VMI == VariableMap.end() ||
420           VMI->second.first != DVI->getValue() ||
421           VMI->second.second != DVI->getExpression()) {
422         VariableMap[Key] = { DVI->getValue(), DVI->getExpression() };
423         continue;
424       }
425       // Found an identical mapping. Remember the instruction for later removal.
426       ToBeRemoved.push_back(DVI);
427     }
428   }
429 
430   for (auto &Instr : ToBeRemoved)
431     Instr->eraseFromParent();
432 
433   return !ToBeRemoved.empty();
434 }
435 
436 bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) {
437   bool MadeChanges = false;
438   // By using the "backward scan" strategy before the "forward scan" strategy we
439   // can remove both dbg.value (2) and (3) in a situation like this:
440   //
441   //   (1) dbg.value V1, "x", DIExpression()
442   //       ...
443   //   (2) dbg.value V2, "x", DIExpression()
444   //   (3) dbg.value V1, "x", DIExpression()
445   //
446   // The backward scan will remove (2), it is made obsolete by (3). After
447   // getting (2) out of the way, the foward scan will remove (3) since "x"
448   // already is described as having the value V1 at (1).
449   MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB);
450   MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB);
451 
452   if (MadeChanges)
453     LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: "
454                       << BB->getName() << "\n");
455   return MadeChanges;
456 }
457 
458 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
459                                 BasicBlock::iterator &BI, Value *V) {
460   Instruction &I = *BI;
461   // Replaces all of the uses of the instruction with uses of the value
462   I.replaceAllUsesWith(V);
463 
464   // Make sure to propagate a name if there is one already.
465   if (I.hasName() && !V->hasName())
466     V->takeName(&I);
467 
468   // Delete the unnecessary instruction now...
469   BI = BIL.erase(BI);
470 }
471 
472 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
473                                BasicBlock::iterator &BI, Instruction *I) {
474   assert(I->getParent() == nullptr &&
475          "ReplaceInstWithInst: Instruction already inserted into basic block!");
476 
477   // Copy debug location to newly added instruction, if it wasn't already set
478   // by the caller.
479   if (!I->getDebugLoc())
480     I->setDebugLoc(BI->getDebugLoc());
481 
482   // Insert the new instruction into the basic block...
483   BasicBlock::iterator New = BIL.insert(BI, I);
484 
485   // Replace all uses of the old instruction, and delete it.
486   ReplaceInstWithValue(BIL, BI, I);
487 
488   // Move BI back to point to the newly inserted instruction
489   BI = New;
490 }
491 
492 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
493   BasicBlock::iterator BI(From);
494   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
495 }
496 
497 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
498                             LoopInfo *LI, MemorySSAUpdater *MSSAU,
499                             const Twine &BBName) {
500   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
501 
502   // If this is a critical edge, let SplitCriticalEdge do it.
503   Instruction *LatchTerm = BB->getTerminator();
504   if (SplitCriticalEdge(
505           LatchTerm, SuccNum,
506           CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA(),
507           BBName))
508     return LatchTerm->getSuccessor(SuccNum);
509 
510   // If the edge isn't critical, then BB has a single successor or Succ has a
511   // single pred.  Split the block.
512   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
513     // If the successor only has a single pred, split the top of the successor
514     // block.
515     assert(SP == BB && "CFG broken");
516     SP = nullptr;
517     return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName,
518                       /*Before=*/true);
519   }
520 
521   // Otherwise, if BB has a single successor, split it at the bottom of the
522   // block.
523   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
524          "Should have a single succ!");
525   return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName);
526 }
527 
528 unsigned
529 llvm::SplitAllCriticalEdges(Function &F,
530                             const CriticalEdgeSplittingOptions &Options) {
531   unsigned NumBroken = 0;
532   for (BasicBlock &BB : F) {
533     Instruction *TI = BB.getTerminator();
534     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI) &&
535         !isa<CallBrInst>(TI))
536       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
537         if (SplitCriticalEdge(TI, i, Options))
538           ++NumBroken;
539   }
540   return NumBroken;
541 }
542 
543 static BasicBlock *SplitBlockImpl(BasicBlock *Old, Instruction *SplitPt,
544                                   DomTreeUpdater *DTU, DominatorTree *DT,
545                                   LoopInfo *LI, MemorySSAUpdater *MSSAU,
546                                   const Twine &BBName, bool Before) {
547   if (Before) {
548     DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
549     return splitBlockBefore(Old, SplitPt,
550                             DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU,
551                             BBName);
552   }
553   BasicBlock::iterator SplitIt = SplitPt->getIterator();
554   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
555     ++SplitIt;
556   std::string Name = BBName.str();
557   BasicBlock *New = Old->splitBasicBlock(
558       SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
559 
560   // The new block lives in whichever loop the old one did. This preserves
561   // LCSSA as well, because we force the split point to be after any PHI nodes.
562   if (LI)
563     if (Loop *L = LI->getLoopFor(Old))
564       L->addBasicBlockToLoop(New, *LI);
565 
566   if (DTU) {
567     SmallVector<DominatorTree::UpdateType, 8> Updates;
568     // Old dominates New. New node dominates all other nodes dominated by Old.
569     SmallSetVector<BasicBlock *, 8> UniqueSuccessorsOfOld(succ_begin(New),
570                                                           succ_end(New));
571     Updates.push_back({DominatorTree::Insert, Old, New});
572     Updates.reserve(Updates.size() + 2 * UniqueSuccessorsOfOld.size());
573     for (BasicBlock *UniqueSuccessorOfOld : UniqueSuccessorsOfOld) {
574       Updates.push_back({DominatorTree::Insert, New, UniqueSuccessorOfOld});
575       Updates.push_back({DominatorTree::Delete, Old, UniqueSuccessorOfOld});
576     }
577 
578     DTU->applyUpdates(Updates);
579   } else if (DT)
580     // Old dominates New. New node dominates all other nodes dominated by Old.
581     if (DomTreeNode *OldNode = DT->getNode(Old)) {
582       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
583 
584       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
585       for (DomTreeNode *I : Children)
586         DT->changeImmediateDominator(I, NewNode);
587     }
588 
589   // Move MemoryAccesses still tracked in Old, but part of New now.
590   // Update accesses in successor blocks accordingly.
591   if (MSSAU)
592     MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
593 
594   return New;
595 }
596 
597 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
598                              DominatorTree *DT, LoopInfo *LI,
599                              MemorySSAUpdater *MSSAU, const Twine &BBName,
600                              bool Before) {
601   return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName,
602                         Before);
603 }
604 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
605                              DomTreeUpdater *DTU, LoopInfo *LI,
606                              MemorySSAUpdater *MSSAU, const Twine &BBName,
607                              bool Before) {
608   return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName,
609                         Before);
610 }
611 
612 BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, Instruction *SplitPt,
613                                    DomTreeUpdater *DTU, LoopInfo *LI,
614                                    MemorySSAUpdater *MSSAU,
615                                    const Twine &BBName) {
616 
617   BasicBlock::iterator SplitIt = SplitPt->getIterator();
618   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
619     ++SplitIt;
620   std::string Name = BBName.str();
621   BasicBlock *New = Old->splitBasicBlock(
622       SplitIt, Name.empty() ? Old->getName() + ".split" : Name,
623       /* Before=*/true);
624 
625   // The new block lives in whichever loop the old one did. This preserves
626   // LCSSA as well, because we force the split point to be after any PHI nodes.
627   if (LI)
628     if (Loop *L = LI->getLoopFor(Old))
629       L->addBasicBlockToLoop(New, *LI);
630 
631   if (DTU) {
632     SmallVector<DominatorTree::UpdateType, 8> DTUpdates;
633     // New dominates Old. The predecessor nodes of the Old node dominate
634     // New node.
635     SmallSetVector<BasicBlock *, 8> UniquePredecessorsOfOld(pred_begin(New),
636                                                             pred_end(New));
637     DTUpdates.push_back({DominatorTree::Insert, New, Old});
638     DTUpdates.reserve(DTUpdates.size() + 2 * UniquePredecessorsOfOld.size());
639     for (BasicBlock *UniquePredecessorOfOld : UniquePredecessorsOfOld) {
640       DTUpdates.push_back({DominatorTree::Insert, UniquePredecessorOfOld, New});
641       DTUpdates.push_back({DominatorTree::Delete, UniquePredecessorOfOld, Old});
642     }
643 
644     DTU->applyUpdates(DTUpdates);
645 
646     // Move MemoryAccesses still tracked in Old, but part of New now.
647     // Update accesses in successor blocks accordingly.
648     if (MSSAU) {
649       MSSAU->applyUpdates(DTUpdates, DTU->getDomTree());
650       if (VerifyMemorySSA)
651         MSSAU->getMemorySSA()->verifyMemorySSA();
652     }
653   }
654   return New;
655 }
656 
657 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
658 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
659                                       ArrayRef<BasicBlock *> Preds,
660                                       DomTreeUpdater *DTU, DominatorTree *DT,
661                                       LoopInfo *LI, MemorySSAUpdater *MSSAU,
662                                       bool PreserveLCSSA, bool &HasLoopExit) {
663   // Update dominator tree if available.
664   if (DTU) {
665     // Recalculation of DomTree is needed when updating a forward DomTree and
666     // the Entry BB is replaced.
667     if (NewBB == &NewBB->getParent()->getEntryBlock() && DTU->hasDomTree()) {
668       // The entry block was removed and there is no external interface for
669       // the dominator tree to be notified of this change. In this corner-case
670       // we recalculate the entire tree.
671       DTU->recalculate(*NewBB->getParent());
672     } else {
673       // Split block expects NewBB to have a non-empty set of predecessors.
674       SmallVector<DominatorTree::UpdateType, 8> Updates;
675       SmallSetVector<BasicBlock *, 8> UniquePreds(Preds.begin(), Preds.end());
676       Updates.push_back({DominatorTree::Insert, NewBB, OldBB});
677       Updates.reserve(Updates.size() + 2 * UniquePreds.size());
678       for (auto *UniquePred : UniquePreds) {
679         Updates.push_back({DominatorTree::Insert, UniquePred, NewBB});
680         Updates.push_back({DominatorTree::Delete, UniquePred, OldBB});
681       }
682       DTU->applyUpdates(Updates);
683     }
684   } else if (DT) {
685     if (OldBB == DT->getRootNode()->getBlock()) {
686       assert(NewBB == &NewBB->getParent()->getEntryBlock());
687       DT->setNewRoot(NewBB);
688     } else {
689       // Split block expects NewBB to have a non-empty set of predecessors.
690       DT->splitBlock(NewBB);
691     }
692   }
693 
694   // Update MemoryPhis after split if MemorySSA is available
695   if (MSSAU)
696     MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
697 
698   // The rest of the logic is only relevant for updating the loop structures.
699   if (!LI)
700     return;
701 
702   if (DTU && DTU->hasDomTree())
703     DT = &DTU->getDomTree();
704   assert(DT && "DT should be available to update LoopInfo!");
705   Loop *L = LI->getLoopFor(OldBB);
706 
707   // If we need to preserve loop analyses, collect some information about how
708   // this split will affect loops.
709   bool IsLoopEntry = !!L;
710   bool SplitMakesNewLoopHeader = false;
711   for (BasicBlock *Pred : Preds) {
712     // Preds that are not reachable from entry should not be used to identify if
713     // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
714     // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
715     // as true and make the NewBB the header of some loop. This breaks LI.
716     if (!DT->isReachableFromEntry(Pred))
717       continue;
718     // If we need to preserve LCSSA, determine if any of the preds is a loop
719     // exit.
720     if (PreserveLCSSA)
721       if (Loop *PL = LI->getLoopFor(Pred))
722         if (!PL->contains(OldBB))
723           HasLoopExit = true;
724 
725     // If we need to preserve LoopInfo, note whether any of the preds crosses
726     // an interesting loop boundary.
727     if (!L)
728       continue;
729     if (L->contains(Pred))
730       IsLoopEntry = false;
731     else
732       SplitMakesNewLoopHeader = true;
733   }
734 
735   // Unless we have a loop for OldBB, nothing else to do here.
736   if (!L)
737     return;
738 
739   if (IsLoopEntry) {
740     // Add the new block to the nearest enclosing loop (and not an adjacent
741     // loop). To find this, examine each of the predecessors and determine which
742     // loops enclose them, and select the most-nested loop which contains the
743     // loop containing the block being split.
744     Loop *InnermostPredLoop = nullptr;
745     for (BasicBlock *Pred : Preds) {
746       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
747         // Seek a loop which actually contains the block being split (to avoid
748         // adjacent loops).
749         while (PredLoop && !PredLoop->contains(OldBB))
750           PredLoop = PredLoop->getParentLoop();
751 
752         // Select the most-nested of these loops which contains the block.
753         if (PredLoop && PredLoop->contains(OldBB) &&
754             (!InnermostPredLoop ||
755              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
756           InnermostPredLoop = PredLoop;
757       }
758     }
759 
760     if (InnermostPredLoop)
761       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
762   } else {
763     L->addBasicBlockToLoop(NewBB, *LI);
764     if (SplitMakesNewLoopHeader)
765       L->moveToHeader(NewBB);
766   }
767 }
768 
769 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
770 /// This also updates AliasAnalysis, if available.
771 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
772                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
773                            bool HasLoopExit) {
774   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
775   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
776   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
777     PHINode *PN = cast<PHINode>(I++);
778 
779     // Check to see if all of the values coming in are the same.  If so, we
780     // don't need to create a new PHI node, unless it's needed for LCSSA.
781     Value *InVal = nullptr;
782     if (!HasLoopExit) {
783       InVal = PN->getIncomingValueForBlock(Preds[0]);
784       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
785         if (!PredSet.count(PN->getIncomingBlock(i)))
786           continue;
787         if (!InVal)
788           InVal = PN->getIncomingValue(i);
789         else if (InVal != PN->getIncomingValue(i)) {
790           InVal = nullptr;
791           break;
792         }
793       }
794     }
795 
796     if (InVal) {
797       // If all incoming values for the new PHI would be the same, just don't
798       // make a new PHI.  Instead, just remove the incoming values from the old
799       // PHI.
800 
801       // NOTE! This loop walks backwards for a reason! First off, this minimizes
802       // the cost of removal if we end up removing a large number of values, and
803       // second off, this ensures that the indices for the incoming values
804       // aren't invalidated when we remove one.
805       for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
806         if (PredSet.count(PN->getIncomingBlock(i)))
807           PN->removeIncomingValue(i, false);
808 
809       // Add an incoming value to the PHI node in the loop for the preheader
810       // edge.
811       PN->addIncoming(InVal, NewBB);
812       continue;
813     }
814 
815     // If the values coming into the block are not the same, we need a new
816     // PHI.
817     // Create the new PHI node, insert it into NewBB at the end of the block
818     PHINode *NewPHI =
819         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
820 
821     // NOTE! This loop walks backwards for a reason! First off, this minimizes
822     // the cost of removal if we end up removing a large number of values, and
823     // second off, this ensures that the indices for the incoming values aren't
824     // invalidated when we remove one.
825     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
826       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
827       if (PredSet.count(IncomingBB)) {
828         Value *V = PN->removeIncomingValue(i, false);
829         NewPHI->addIncoming(V, IncomingBB);
830       }
831     }
832 
833     PN->addIncoming(NewPHI, NewBB);
834   }
835 }
836 
837 static void SplitLandingPadPredecessorsImpl(
838     BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
839     const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
840     DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
841     MemorySSAUpdater *MSSAU, bool PreserveLCSSA);
842 
843 static BasicBlock *
844 SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds,
845                            const char *Suffix, DomTreeUpdater *DTU,
846                            DominatorTree *DT, LoopInfo *LI,
847                            MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
848   // Do not attempt to split that which cannot be split.
849   if (!BB->canSplitPredecessors())
850     return nullptr;
851 
852   // For the landingpads we need to act a bit differently.
853   // Delegate this work to the SplitLandingPadPredecessors.
854   if (BB->isLandingPad()) {
855     SmallVector<BasicBlock*, 2> NewBBs;
856     std::string NewName = std::string(Suffix) + ".split-lp";
857 
858     SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs,
859                                     DTU, DT, LI, MSSAU, PreserveLCSSA);
860     return NewBBs[0];
861   }
862 
863   // Create new basic block, insert right before the original block.
864   BasicBlock *NewBB = BasicBlock::Create(
865       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
866 
867   // The new block unconditionally branches to the old block.
868   BranchInst *BI = BranchInst::Create(BB, NewBB);
869 
870   Loop *L = nullptr;
871   BasicBlock *OldLatch = nullptr;
872   // Splitting the predecessors of a loop header creates a preheader block.
873   if (LI && LI->isLoopHeader(BB)) {
874     L = LI->getLoopFor(BB);
875     // Using the loop start line number prevents debuggers stepping into the
876     // loop body for this instruction.
877     BI->setDebugLoc(L->getStartLoc());
878 
879     // If BB is the header of the Loop, it is possible that the loop is
880     // modified, such that the current latch does not remain the latch of the
881     // loop. If that is the case, the loop metadata from the current latch needs
882     // to be applied to the new latch.
883     OldLatch = L->getLoopLatch();
884   } else
885     BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
886 
887   // Move the edges from Preds to point to NewBB instead of BB.
888   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
889     // This is slightly more strict than necessary; the minimum requirement
890     // is that there be no more than one indirectbr branching to BB. And
891     // all BlockAddress uses would need to be updated.
892     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
893            "Cannot split an edge from an IndirectBrInst");
894     assert(!isa<CallBrInst>(Preds[i]->getTerminator()) &&
895            "Cannot split an edge from a CallBrInst");
896     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
897   }
898 
899   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
900   // node becomes an incoming value for BB's phi node.  However, if the Preds
901   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
902   // account for the newly created predecessor.
903   if (Preds.empty()) {
904     // Insert dummy values as the incoming value.
905     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
906       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
907   }
908 
909   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
910   bool HasLoopExit = false;
911   UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA,
912                             HasLoopExit);
913 
914   if (!Preds.empty()) {
915     // Update the PHI nodes in BB with the values coming from NewBB.
916     UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
917   }
918 
919   if (OldLatch) {
920     BasicBlock *NewLatch = L->getLoopLatch();
921     if (NewLatch != OldLatch) {
922       MDNode *MD = OldLatch->getTerminator()->getMetadata("llvm.loop");
923       NewLatch->getTerminator()->setMetadata("llvm.loop", MD);
924       OldLatch->getTerminator()->setMetadata("llvm.loop", nullptr);
925     }
926   }
927 
928   return NewBB;
929 }
930 
931 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
932                                          ArrayRef<BasicBlock *> Preds,
933                                          const char *Suffix, DominatorTree *DT,
934                                          LoopInfo *LI, MemorySSAUpdater *MSSAU,
935                                          bool PreserveLCSSA) {
936   return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI,
937                                     MSSAU, PreserveLCSSA);
938 }
939 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
940                                          ArrayRef<BasicBlock *> Preds,
941                                          const char *Suffix,
942                                          DomTreeUpdater *DTU, LoopInfo *LI,
943                                          MemorySSAUpdater *MSSAU,
944                                          bool PreserveLCSSA) {
945   return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU,
946                                     /*DT=*/nullptr, LI, MSSAU, PreserveLCSSA);
947 }
948 
949 static void SplitLandingPadPredecessorsImpl(
950     BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
951     const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
952     DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
953     MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
954   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
955 
956   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
957   // it right before the original block.
958   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
959                                           OrigBB->getName() + Suffix1,
960                                           OrigBB->getParent(), OrigBB);
961   NewBBs.push_back(NewBB1);
962 
963   // The new block unconditionally branches to the old block.
964   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
965   BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
966 
967   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
968   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
969     // This is slightly more strict than necessary; the minimum requirement
970     // is that there be no more than one indirectbr branching to BB. And
971     // all BlockAddress uses would need to be updated.
972     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
973            "Cannot split an edge from an IndirectBrInst");
974     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
975   }
976 
977   bool HasLoopExit = false;
978   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU,
979                             PreserveLCSSA, HasLoopExit);
980 
981   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
982   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
983 
984   // Move the remaining edges from OrigBB to point to NewBB2.
985   SmallVector<BasicBlock*, 8> NewBB2Preds;
986   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
987        i != e; ) {
988     BasicBlock *Pred = *i++;
989     if (Pred == NewBB1) continue;
990     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
991            "Cannot split an edge from an IndirectBrInst");
992     NewBB2Preds.push_back(Pred);
993     e = pred_end(OrigBB);
994   }
995 
996   BasicBlock *NewBB2 = nullptr;
997   if (!NewBB2Preds.empty()) {
998     // Create another basic block for the rest of OrigBB's predecessors.
999     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
1000                                 OrigBB->getName() + Suffix2,
1001                                 OrigBB->getParent(), OrigBB);
1002     NewBBs.push_back(NewBB2);
1003 
1004     // The new block unconditionally branches to the old block.
1005     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
1006     BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
1007 
1008     // Move the remaining edges from OrigBB to point to NewBB2.
1009     for (BasicBlock *NewBB2Pred : NewBB2Preds)
1010       NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
1011 
1012     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
1013     HasLoopExit = false;
1014     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU,
1015                               PreserveLCSSA, HasLoopExit);
1016 
1017     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
1018     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
1019   }
1020 
1021   LandingPadInst *LPad = OrigBB->getLandingPadInst();
1022   Instruction *Clone1 = LPad->clone();
1023   Clone1->setName(Twine("lpad") + Suffix1);
1024   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
1025 
1026   if (NewBB2) {
1027     Instruction *Clone2 = LPad->clone();
1028     Clone2->setName(Twine("lpad") + Suffix2);
1029     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
1030 
1031     // Create a PHI node for the two cloned landingpad instructions only
1032     // if the original landingpad instruction has some uses.
1033     if (!LPad->use_empty()) {
1034       assert(!LPad->getType()->isTokenTy() &&
1035              "Split cannot be applied if LPad is token type. Otherwise an "
1036              "invalid PHINode of token type would be created.");
1037       PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
1038       PN->addIncoming(Clone1, NewBB1);
1039       PN->addIncoming(Clone2, NewBB2);
1040       LPad->replaceAllUsesWith(PN);
1041     }
1042     LPad->eraseFromParent();
1043   } else {
1044     // There is no second clone. Just replace the landing pad with the first
1045     // clone.
1046     LPad->replaceAllUsesWith(Clone1);
1047     LPad->eraseFromParent();
1048   }
1049 }
1050 
1051 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
1052                                        ArrayRef<BasicBlock *> Preds,
1053                                        const char *Suffix1, const char *Suffix2,
1054                                        SmallVectorImpl<BasicBlock *> &NewBBs,
1055                                        DominatorTree *DT, LoopInfo *LI,
1056                                        MemorySSAUpdater *MSSAU,
1057                                        bool PreserveLCSSA) {
1058   return SplitLandingPadPredecessorsImpl(
1059       OrigBB, Preds, Suffix1, Suffix2, NewBBs,
1060       /*DTU=*/nullptr, DT, LI, MSSAU, PreserveLCSSA);
1061 }
1062 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
1063                                        ArrayRef<BasicBlock *> Preds,
1064                                        const char *Suffix1, const char *Suffix2,
1065                                        SmallVectorImpl<BasicBlock *> &NewBBs,
1066                                        DomTreeUpdater *DTU, LoopInfo *LI,
1067                                        MemorySSAUpdater *MSSAU,
1068                                        bool PreserveLCSSA) {
1069   return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2,
1070                                          NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU,
1071                                          PreserveLCSSA);
1072 }
1073 
1074 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
1075                                              BasicBlock *Pred,
1076                                              DomTreeUpdater *DTU) {
1077   Instruction *UncondBranch = Pred->getTerminator();
1078   // Clone the return and add it to the end of the predecessor.
1079   Instruction *NewRet = RI->clone();
1080   Pred->getInstList().push_back(NewRet);
1081 
1082   // If the return instruction returns a value, and if the value was a
1083   // PHI node in "BB", propagate the right value into the return.
1084   for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
1085        i != e; ++i) {
1086     Value *V = *i;
1087     Instruction *NewBC = nullptr;
1088     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
1089       // Return value might be bitcasted. Clone and insert it before the
1090       // return instruction.
1091       V = BCI->getOperand(0);
1092       NewBC = BCI->clone();
1093       Pred->getInstList().insert(NewRet->getIterator(), NewBC);
1094       *i = NewBC;
1095     }
1096 
1097     Instruction *NewEV = nullptr;
1098     if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
1099       V = EVI->getOperand(0);
1100       NewEV = EVI->clone();
1101       if (NewBC) {
1102         NewBC->setOperand(0, NewEV);
1103         Pred->getInstList().insert(NewBC->getIterator(), NewEV);
1104       } else {
1105         Pred->getInstList().insert(NewRet->getIterator(), NewEV);
1106         *i = NewEV;
1107       }
1108     }
1109 
1110     if (PHINode *PN = dyn_cast<PHINode>(V)) {
1111       if (PN->getParent() == BB) {
1112         if (NewEV) {
1113           NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred));
1114         } else if (NewBC)
1115           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
1116         else
1117           *i = PN->getIncomingValueForBlock(Pred);
1118       }
1119     }
1120   }
1121 
1122   // Update any PHI nodes in the returning block to realize that we no
1123   // longer branch to them.
1124   BB->removePredecessor(Pred);
1125   UncondBranch->eraseFromParent();
1126 
1127   if (DTU)
1128     DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
1129 
1130   return cast<ReturnInst>(NewRet);
1131 }
1132 
1133 static Instruction *
1134 SplitBlockAndInsertIfThenImpl(Value *Cond, Instruction *SplitBefore,
1135                               bool Unreachable, MDNode *BranchWeights,
1136                               DomTreeUpdater *DTU, DominatorTree *DT,
1137                               LoopInfo *LI, BasicBlock *ThenBlock) {
1138   SmallVector<DominatorTree::UpdateType, 8> Updates;
1139   BasicBlock *Head = SplitBefore->getParent();
1140   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
1141   if (DTU) {
1142     SmallSetVector<BasicBlock *, 8> UniqueSuccessorsOfHead(succ_begin(Tail),
1143                                                            succ_end(Tail));
1144     Updates.push_back({DominatorTree::Insert, Head, Tail});
1145     Updates.reserve(Updates.size() + 2 * UniqueSuccessorsOfHead.size());
1146     for (BasicBlock *UniqueSuccessorOfHead : UniqueSuccessorsOfHead) {
1147       Updates.push_back({DominatorTree::Insert, Tail, UniqueSuccessorOfHead});
1148       Updates.push_back({DominatorTree::Delete, Head, UniqueSuccessorOfHead});
1149     }
1150   }
1151   Instruction *HeadOldTerm = Head->getTerminator();
1152   LLVMContext &C = Head->getContext();
1153   Instruction *CheckTerm;
1154   bool CreateThenBlock = (ThenBlock == nullptr);
1155   if (CreateThenBlock) {
1156     ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1157     if (Unreachable)
1158       CheckTerm = new UnreachableInst(C, ThenBlock);
1159     else {
1160       CheckTerm = BranchInst::Create(Tail, ThenBlock);
1161       if (DTU)
1162         Updates.push_back({DominatorTree::Insert, ThenBlock, Tail});
1163     }
1164     CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
1165   } else
1166     CheckTerm = ThenBlock->getTerminator();
1167   BranchInst *HeadNewTerm =
1168       BranchInst::Create(/*ifTrue*/ ThenBlock, /*ifFalse*/ Tail, Cond);
1169   if (DTU)
1170     Updates.push_back({DominatorTree::Insert, Head, ThenBlock});
1171   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1172   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1173 
1174   if (DTU)
1175     DTU->applyUpdates(Updates);
1176   else if (DT) {
1177     if (DomTreeNode *OldNode = DT->getNode(Head)) {
1178       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
1179 
1180       DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
1181       for (DomTreeNode *Child : Children)
1182         DT->changeImmediateDominator(Child, NewNode);
1183 
1184       // Head dominates ThenBlock.
1185       if (CreateThenBlock)
1186         DT->addNewBlock(ThenBlock, Head);
1187       else
1188         DT->changeImmediateDominator(ThenBlock, Head);
1189     }
1190   }
1191 
1192   if (LI) {
1193     if (Loop *L = LI->getLoopFor(Head)) {
1194       L->addBasicBlockToLoop(ThenBlock, *LI);
1195       L->addBasicBlockToLoop(Tail, *LI);
1196     }
1197   }
1198 
1199   return CheckTerm;
1200 }
1201 
1202 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
1203                                              Instruction *SplitBefore,
1204                                              bool Unreachable,
1205                                              MDNode *BranchWeights,
1206                                              DominatorTree *DT, LoopInfo *LI,
1207                                              BasicBlock *ThenBlock) {
1208   return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable,
1209                                        BranchWeights,
1210                                        /*DTU=*/nullptr, DT, LI, ThenBlock);
1211 }
1212 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
1213                                              Instruction *SplitBefore,
1214                                              bool Unreachable,
1215                                              MDNode *BranchWeights,
1216                                              DomTreeUpdater *DTU, LoopInfo *LI,
1217                                              BasicBlock *ThenBlock) {
1218   return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable,
1219                                        BranchWeights, DTU, /*DT=*/nullptr, LI,
1220                                        ThenBlock);
1221 }
1222 
1223 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
1224                                          Instruction **ThenTerm,
1225                                          Instruction **ElseTerm,
1226                                          MDNode *BranchWeights) {
1227   BasicBlock *Head = SplitBefore->getParent();
1228   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
1229   Instruction *HeadOldTerm = Head->getTerminator();
1230   LLVMContext &C = Head->getContext();
1231   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1232   BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1233   *ThenTerm = BranchInst::Create(Tail, ThenBlock);
1234   (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
1235   *ElseTerm = BranchInst::Create(Tail, ElseBlock);
1236   (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
1237   BranchInst *HeadNewTerm =
1238     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
1239   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1240   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1241 }
1242 
1243 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
1244                              BasicBlock *&IfFalse) {
1245   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
1246   BasicBlock *Pred1 = nullptr;
1247   BasicBlock *Pred2 = nullptr;
1248 
1249   if (SomePHI) {
1250     if (SomePHI->getNumIncomingValues() != 2)
1251       return nullptr;
1252     Pred1 = SomePHI->getIncomingBlock(0);
1253     Pred2 = SomePHI->getIncomingBlock(1);
1254   } else {
1255     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1256     if (PI == PE) // No predecessor
1257       return nullptr;
1258     Pred1 = *PI++;
1259     if (PI == PE) // Only one predecessor
1260       return nullptr;
1261     Pred2 = *PI++;
1262     if (PI != PE) // More than two predecessors
1263       return nullptr;
1264   }
1265 
1266   // We can only handle branches.  Other control flow will be lowered to
1267   // branches if possible anyway.
1268   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
1269   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
1270   if (!Pred1Br || !Pred2Br)
1271     return nullptr;
1272 
1273   // Eliminate code duplication by ensuring that Pred1Br is conditional if
1274   // either are.
1275   if (Pred2Br->isConditional()) {
1276     // If both branches are conditional, we don't have an "if statement".  In
1277     // reality, we could transform this case, but since the condition will be
1278     // required anyway, we stand no chance of eliminating it, so the xform is
1279     // probably not profitable.
1280     if (Pred1Br->isConditional())
1281       return nullptr;
1282 
1283     std::swap(Pred1, Pred2);
1284     std::swap(Pred1Br, Pred2Br);
1285   }
1286 
1287   if (Pred1Br->isConditional()) {
1288     // The only thing we have to watch out for here is to make sure that Pred2
1289     // doesn't have incoming edges from other blocks.  If it does, the condition
1290     // doesn't dominate BB.
1291     if (!Pred2->getSinglePredecessor())
1292       return nullptr;
1293 
1294     // If we found a conditional branch predecessor, make sure that it branches
1295     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
1296     if (Pred1Br->getSuccessor(0) == BB &&
1297         Pred1Br->getSuccessor(1) == Pred2) {
1298       IfTrue = Pred1;
1299       IfFalse = Pred2;
1300     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
1301                Pred1Br->getSuccessor(1) == BB) {
1302       IfTrue = Pred2;
1303       IfFalse = Pred1;
1304     } else {
1305       // We know that one arm of the conditional goes to BB, so the other must
1306       // go somewhere unrelated, and this must not be an "if statement".
1307       return nullptr;
1308     }
1309 
1310     return Pred1Br->getCondition();
1311   }
1312 
1313   // Ok, if we got here, both predecessors end with an unconditional branch to
1314   // BB.  Don't panic!  If both blocks only have a single (identical)
1315   // predecessor, and THAT is a conditional branch, then we're all ok!
1316   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
1317   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
1318     return nullptr;
1319 
1320   // Otherwise, if this is a conditional branch, then we can use it!
1321   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
1322   if (!BI) return nullptr;
1323 
1324   assert(BI->isConditional() && "Two successors but not conditional?");
1325   if (BI->getSuccessor(0) == Pred1) {
1326     IfTrue = Pred1;
1327     IfFalse = Pred2;
1328   } else {
1329     IfTrue = Pred2;
1330     IfFalse = Pred1;
1331   }
1332   return BI->getCondition();
1333 }
1334 
1335 // After creating a control flow hub, the operands of PHINodes in an outgoing
1336 // block Out no longer match the predecessors of that block. Predecessors of Out
1337 // that are incoming blocks to the hub are now replaced by just one edge from
1338 // the hub. To match this new control flow, the corresponding values from each
1339 // PHINode must now be moved a new PHINode in the first guard block of the hub.
1340 //
1341 // This operation cannot be performed with SSAUpdater, because it involves one
1342 // new use: If the block Out is in the list of Incoming blocks, then the newly
1343 // created PHI in the Hub will use itself along that edge from Out to Hub.
1344 static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock,
1345                           const SetVector<BasicBlock *> &Incoming,
1346                           BasicBlock *FirstGuardBlock) {
1347   auto I = Out->begin();
1348   while (I != Out->end() && isa<PHINode>(I)) {
1349     auto Phi = cast<PHINode>(I);
1350     auto NewPhi =
1351         PHINode::Create(Phi->getType(), Incoming.size(),
1352                         Phi->getName() + ".moved", &FirstGuardBlock->back());
1353     for (auto In : Incoming) {
1354       Value *V = UndefValue::get(Phi->getType());
1355       if (In == Out) {
1356         V = NewPhi;
1357       } else if (Phi->getBasicBlockIndex(In) != -1) {
1358         V = Phi->removeIncomingValue(In, false);
1359       }
1360       NewPhi->addIncoming(V, In);
1361     }
1362     assert(NewPhi->getNumIncomingValues() == Incoming.size());
1363     if (Phi->getNumOperands() == 0) {
1364       Phi->replaceAllUsesWith(NewPhi);
1365       I = Phi->eraseFromParent();
1366       continue;
1367     }
1368     Phi->addIncoming(NewPhi, GuardBlock);
1369     ++I;
1370   }
1371 }
1372 
1373 using BBPredicates = DenseMap<BasicBlock *, PHINode *>;
1374 using BBSetVector = SetVector<BasicBlock *>;
1375 
1376 // Redirects the terminator of the incoming block to the first guard
1377 // block in the hub. The condition of the original terminator (if it
1378 // was conditional) and its original successors are returned as a
1379 // tuple <condition, succ0, succ1>. The function additionally filters
1380 // out successors that are not in the set of outgoing blocks.
1381 //
1382 // - condition is non-null iff the branch is conditional.
1383 // - Succ1 is non-null iff the sole/taken target is an outgoing block.
1384 // - Succ2 is non-null iff condition is non-null and the fallthrough
1385 //         target is an outgoing block.
1386 static std::tuple<Value *, BasicBlock *, BasicBlock *>
1387 redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock,
1388               const BBSetVector &Outgoing) {
1389   auto Branch = cast<BranchInst>(BB->getTerminator());
1390   auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr;
1391 
1392   BasicBlock *Succ0 = Branch->getSuccessor(0);
1393   BasicBlock *Succ1 = nullptr;
1394   Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr;
1395 
1396   if (Branch->isUnconditional()) {
1397     Branch->setSuccessor(0, FirstGuardBlock);
1398     assert(Succ0);
1399   } else {
1400     Succ1 = Branch->getSuccessor(1);
1401     Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr;
1402     assert(Succ0 || Succ1);
1403     if (Succ0 && !Succ1) {
1404       Branch->setSuccessor(0, FirstGuardBlock);
1405     } else if (Succ1 && !Succ0) {
1406       Branch->setSuccessor(1, FirstGuardBlock);
1407     } else {
1408       Branch->eraseFromParent();
1409       BranchInst::Create(FirstGuardBlock, BB);
1410     }
1411   }
1412 
1413   assert(Succ0 || Succ1);
1414   return std::make_tuple(Condition, Succ0, Succ1);
1415 }
1416 
1417 // Capture the existing control flow as guard predicates, and redirect
1418 // control flow from every incoming block to the first guard block in
1419 // the hub.
1420 //
1421 // There is one guard predicate for each outgoing block OutBB. The
1422 // predicate is a PHINode with one input for each InBB which
1423 // represents whether the hub should transfer control flow to OutBB if
1424 // it arrived from InBB. These predicates are NOT ORTHOGONAL. The Hub
1425 // evaluates them in the same order as the Outgoing set-vector, and
1426 // control branches to the first outgoing block whose predicate
1427 // evaluates to true.
1428 static void convertToGuardPredicates(
1429     BasicBlock *FirstGuardBlock, BBPredicates &GuardPredicates,
1430     SmallVectorImpl<WeakVH> &DeletionCandidates, const BBSetVector &Incoming,
1431     const BBSetVector &Outgoing) {
1432   auto &Context = Incoming.front()->getContext();
1433   auto BoolTrue = ConstantInt::getTrue(Context);
1434   auto BoolFalse = ConstantInt::getFalse(Context);
1435 
1436   // The predicate for the last outgoing is trivially true, and so we
1437   // process only the first N-1 successors.
1438   for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1439     auto Out = Outgoing[i];
1440     LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n");
1441     auto Phi =
1442         PHINode::Create(Type::getInt1Ty(Context), Incoming.size(),
1443                         StringRef("Guard.") + Out->getName(), FirstGuardBlock);
1444     GuardPredicates[Out] = Phi;
1445   }
1446 
1447   for (auto In : Incoming) {
1448     Value *Condition;
1449     BasicBlock *Succ0;
1450     BasicBlock *Succ1;
1451     std::tie(Condition, Succ0, Succ1) =
1452         redirectToHub(In, FirstGuardBlock, Outgoing);
1453 
1454     // Optimization: Consider an incoming block A with both successors
1455     // Succ0 and Succ1 in the set of outgoing blocks. The predicates
1456     // for Succ0 and Succ1 complement each other. If Succ0 is visited
1457     // first in the loop below, control will branch to Succ0 using the
1458     // corresponding predicate. But if that branch is not taken, then
1459     // control must reach Succ1, which means that the predicate for
1460     // Succ1 is always true.
1461     bool OneSuccessorDone = false;
1462     for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1463       auto Out = Outgoing[i];
1464       auto Phi = GuardPredicates[Out];
1465       if (Out != Succ0 && Out != Succ1) {
1466         Phi->addIncoming(BoolFalse, In);
1467         continue;
1468       }
1469       // Optimization: When only one successor is an outgoing block,
1470       // the predicate is always true.
1471       if (!Succ0 || !Succ1 || OneSuccessorDone) {
1472         Phi->addIncoming(BoolTrue, In);
1473         continue;
1474       }
1475       assert(Succ0 && Succ1);
1476       OneSuccessorDone = true;
1477       if (Out == Succ0) {
1478         Phi->addIncoming(Condition, In);
1479         continue;
1480       }
1481       auto Inverted = invertCondition(Condition);
1482       DeletionCandidates.push_back(Condition);
1483       Phi->addIncoming(Inverted, In);
1484     }
1485   }
1486 }
1487 
1488 // For each outgoing block OutBB, create a guard block in the Hub. The
1489 // first guard block was already created outside, and available as the
1490 // first element in the vector of guard blocks.
1491 //
1492 // Each guard block terminates in a conditional branch that transfers
1493 // control to the corresponding outgoing block or the next guard
1494 // block. The last guard block has two outgoing blocks as successors
1495 // since the condition for the final outgoing block is trivially
1496 // true. So we create one less block (including the first guard block)
1497 // than the number of outgoing blocks.
1498 static void createGuardBlocks(SmallVectorImpl<BasicBlock *> &GuardBlocks,
1499                               Function *F, const BBSetVector &Outgoing,
1500                               BBPredicates &GuardPredicates, StringRef Prefix) {
1501   for (int i = 0, e = Outgoing.size() - 2; i != e; ++i) {
1502     GuardBlocks.push_back(
1503         BasicBlock::Create(F->getContext(), Prefix + ".guard", F));
1504   }
1505   assert(GuardBlocks.size() == GuardPredicates.size());
1506 
1507   // To help keep the loop simple, temporarily append the last
1508   // outgoing block to the list of guard blocks.
1509   GuardBlocks.push_back(Outgoing.back());
1510 
1511   for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) {
1512     auto Out = Outgoing[i];
1513     assert(GuardPredicates.count(Out));
1514     BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out],
1515                        GuardBlocks[i]);
1516   }
1517 
1518   // Remove the last block from the guard list.
1519   GuardBlocks.pop_back();
1520 }
1521 
1522 BasicBlock *llvm::CreateControlFlowHub(
1523     DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks,
1524     const BBSetVector &Incoming, const BBSetVector &Outgoing,
1525     const StringRef Prefix) {
1526   auto F = Incoming.front()->getParent();
1527   auto FirstGuardBlock =
1528       BasicBlock::Create(F->getContext(), Prefix + ".guard", F);
1529 
1530   SmallVector<DominatorTree::UpdateType, 16> Updates;
1531   if (DTU) {
1532     for (auto In : Incoming) {
1533       Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock});
1534       for (auto Succ : successors(In)) {
1535         if (Outgoing.count(Succ))
1536           Updates.push_back({DominatorTree::Delete, In, Succ});
1537       }
1538     }
1539   }
1540 
1541   BBPredicates GuardPredicates;
1542   SmallVector<WeakVH, 8> DeletionCandidates;
1543   convertToGuardPredicates(FirstGuardBlock, GuardPredicates, DeletionCandidates,
1544                            Incoming, Outgoing);
1545 
1546   GuardBlocks.push_back(FirstGuardBlock);
1547   createGuardBlocks(GuardBlocks, F, Outgoing, GuardPredicates, Prefix);
1548 
1549   // Update the PHINodes in each outgoing block to match the new control flow.
1550   for (int i = 0, e = GuardBlocks.size(); i != e; ++i) {
1551     reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock);
1552   }
1553   reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock);
1554 
1555   if (DTU) {
1556     int NumGuards = GuardBlocks.size();
1557     assert((int)Outgoing.size() == NumGuards + 1);
1558     for (int i = 0; i != NumGuards - 1; ++i) {
1559       Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]});
1560       Updates.push_back(
1561           {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]});
1562     }
1563     Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
1564                        Outgoing[NumGuards - 1]});
1565     Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
1566                        Outgoing[NumGuards]});
1567     DTU->applyUpdates(Updates);
1568   }
1569 
1570   for (auto I : DeletionCandidates) {
1571     if (I->use_empty())
1572       if (auto Inst = dyn_cast_or_null<Instruction>(I))
1573         Inst->eraseFromParent();
1574   }
1575 
1576   return FirstGuardBlock;
1577 }
1578