1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform manipulations on basic blocks, and 11 // instructions contained within basic blocks. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/Analysis/CFG.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 23 #include "llvm/Analysis/MemorySSAUpdater.h" 24 #include "llvm/Analysis/PostDominators.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/DomTreeUpdater.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/InstrTypes.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/User.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/IR/ValueHandle.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Transforms/Utils/Local.h" 43 #include <cassert> 44 #include <cstdint> 45 #include <string> 46 #include <utility> 47 #include <vector> 48 49 using namespace llvm; 50 51 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU) { 52 assert((pred_begin(BB) == pred_end(BB) || 53 // Can delete self loop. 54 BB->getSinglePredecessor() == BB) && "Block is not dead!"); 55 TerminatorInst *BBTerm = BB->getTerminator(); 56 std::vector<DominatorTree::UpdateType> Updates; 57 58 // Loop through all of our successors and make sure they know that one 59 // of their predecessors is going away. 60 if (DTU) 61 Updates.reserve(BBTerm->getNumSuccessors()); 62 for (BasicBlock *Succ : BBTerm->successors()) { 63 Succ->removePredecessor(BB); 64 if (DTU) 65 Updates.push_back({DominatorTree::Delete, BB, Succ}); 66 } 67 68 // Zap all the instructions in the block. 69 while (!BB->empty()) { 70 Instruction &I = BB->back(); 71 // If this instruction is used, replace uses with an arbitrary value. 72 // Because control flow can't get here, we don't care what we replace the 73 // value with. Note that since this block is unreachable, and all values 74 // contained within it must dominate their uses, that all uses will 75 // eventually be removed (they are themselves dead). 76 if (!I.use_empty()) 77 I.replaceAllUsesWith(UndefValue::get(I.getType())); 78 BB->getInstList().pop_back(); 79 } 80 new UnreachableInst(BB->getContext(), BB); 81 assert(BB->getInstList().size() == 1 && 82 isa<UnreachableInst>(BB->getTerminator()) && 83 "The successor list of BB isn't empty before " 84 "applying corresponding DTU updates."); 85 86 if (DTU) { 87 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 88 DTU->deleteBB(BB); 89 } else { 90 BB->eraseFromParent(); // Zap the block! 91 } 92 } 93 94 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, 95 MemoryDependenceResults *MemDep) { 96 if (!isa<PHINode>(BB->begin())) return; 97 98 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 99 if (PN->getIncomingValue(0) != PN) 100 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 101 else 102 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 103 104 if (MemDep) 105 MemDep->removeInstruction(PN); // Memdep updates AA itself. 106 107 PN->eraseFromParent(); 108 } 109 } 110 111 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) { 112 // Recursively deleting a PHI may cause multiple PHIs to be deleted 113 // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete. 114 SmallVector<WeakTrackingVH, 8> PHIs; 115 for (PHINode &PN : BB->phis()) 116 PHIs.push_back(&PN); 117 118 bool Changed = false; 119 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 120 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) 121 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI); 122 123 return Changed; 124 } 125 126 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU, 127 LoopInfo *LI, MemorySSAUpdater *MSSAU, 128 MemoryDependenceResults *MemDep) { 129 if (BB->hasAddressTaken()) 130 return false; 131 132 // Can't merge if there are multiple predecessors, or no predecessors. 133 BasicBlock *PredBB = BB->getUniquePredecessor(); 134 if (!PredBB) return false; 135 136 // Don't break self-loops. 137 if (PredBB == BB) return false; 138 // Don't break unwinding instructions. 139 if (PredBB->getTerminator()->isExceptional()) 140 return false; 141 142 // Can't merge if there are multiple distinct successors. 143 if (PredBB->getUniqueSuccessor() != BB) 144 return false; 145 146 // Can't merge if there is PHI loop. 147 for (PHINode &PN : BB->phis()) 148 for (Value *IncValue : PN.incoming_values()) 149 if (IncValue == &PN) 150 return false; 151 152 // Begin by getting rid of unneeded PHIs. 153 SmallVector<AssertingVH<Value>, 4> IncomingValues; 154 if (isa<PHINode>(BB->front())) { 155 for (PHINode &PN : BB->phis()) 156 if (!isa<PHINode>(PN.getIncomingValue(0)) || 157 cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB) 158 IncomingValues.push_back(PN.getIncomingValue(0)); 159 FoldSingleEntryPHINodes(BB, MemDep); 160 } 161 162 // DTU update: Collect all the edges that exit BB. 163 // These dominator edges will be redirected from Pred. 164 std::vector<DominatorTree::UpdateType> Updates; 165 if (DTU) { 166 Updates.reserve(1 + (2 * succ_size(BB))); 167 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 168 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I) { 169 Updates.push_back({DominatorTree::Delete, BB, *I}); 170 Updates.push_back({DominatorTree::Insert, PredBB, *I}); 171 } 172 } 173 174 if (MSSAU) 175 MSSAU->moveAllAfterMergeBlocks(BB, PredBB, &*(BB->begin())); 176 177 // Delete the unconditional branch from the predecessor... 178 PredBB->getInstList().pop_back(); 179 180 // Make all PHI nodes that referred to BB now refer to Pred as their 181 // source... 182 BB->replaceAllUsesWith(PredBB); 183 184 // Move all definitions in the successor to the predecessor... 185 PredBB->getInstList().splice(PredBB->end(), BB->getInstList()); 186 new UnreachableInst(BB->getContext(), BB); 187 188 // Eliminate duplicate dbg.values describing the entry PHI node post-splice. 189 for (auto Incoming : IncomingValues) { 190 if (isa<Instruction>(*Incoming)) { 191 SmallVector<DbgValueInst *, 2> DbgValues; 192 SmallDenseSet<std::pair<DILocalVariable *, DIExpression *>, 2> 193 DbgValueSet; 194 llvm::findDbgValues(DbgValues, Incoming); 195 for (auto &DVI : DbgValues) { 196 auto R = DbgValueSet.insert({DVI->getVariable(), DVI->getExpression()}); 197 if (!R.second) 198 DVI->eraseFromParent(); 199 } 200 } 201 } 202 203 // Inherit predecessors name if it exists. 204 if (!PredBB->hasName()) 205 PredBB->takeName(BB); 206 207 if (LI) 208 LI->removeBlock(BB); 209 210 if (MemDep) 211 MemDep->invalidateCachedPredecessors(); 212 213 // Finally, erase the old block and update dominator info. 214 if (DTU) { 215 assert(BB->getInstList().size() == 1 && 216 isa<UnreachableInst>(BB->getTerminator()) && 217 "The successor list of BB isn't empty before " 218 "applying corresponding DTU updates."); 219 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 220 DTU->deleteBB(BB); 221 } 222 223 else { 224 BB->eraseFromParent(); // Nuke BB if DTU is nullptr. 225 } 226 return true; 227 } 228 229 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL, 230 BasicBlock::iterator &BI, Value *V) { 231 Instruction &I = *BI; 232 // Replaces all of the uses of the instruction with uses of the value 233 I.replaceAllUsesWith(V); 234 235 // Make sure to propagate a name if there is one already. 236 if (I.hasName() && !V->hasName()) 237 V->takeName(&I); 238 239 // Delete the unnecessary instruction now... 240 BI = BIL.erase(BI); 241 } 242 243 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL, 244 BasicBlock::iterator &BI, Instruction *I) { 245 assert(I->getParent() == nullptr && 246 "ReplaceInstWithInst: Instruction already inserted into basic block!"); 247 248 // Copy debug location to newly added instruction, if it wasn't already set 249 // by the caller. 250 if (!I->getDebugLoc()) 251 I->setDebugLoc(BI->getDebugLoc()); 252 253 // Insert the new instruction into the basic block... 254 BasicBlock::iterator New = BIL.insert(BI, I); 255 256 // Replace all uses of the old instruction, and delete it. 257 ReplaceInstWithValue(BIL, BI, I); 258 259 // Move BI back to point to the newly inserted instruction 260 BI = New; 261 } 262 263 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { 264 BasicBlock::iterator BI(From); 265 ReplaceInstWithInst(From->getParent()->getInstList(), BI, To); 266 } 267 268 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT, 269 LoopInfo *LI, MemorySSAUpdater *MSSAU) { 270 unsigned SuccNum = GetSuccessorNumber(BB, Succ); 271 272 // If this is a critical edge, let SplitCriticalEdge do it. 273 TerminatorInst *LatchTerm = BB->getTerminator(); 274 if (SplitCriticalEdge( 275 LatchTerm, SuccNum, 276 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA())) 277 return LatchTerm->getSuccessor(SuccNum); 278 279 // If the edge isn't critical, then BB has a single successor or Succ has a 280 // single pred. Split the block. 281 if (BasicBlock *SP = Succ->getSinglePredecessor()) { 282 // If the successor only has a single pred, split the top of the successor 283 // block. 284 assert(SP == BB && "CFG broken"); 285 SP = nullptr; 286 return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU); 287 } 288 289 // Otherwise, if BB has a single successor, split it at the bottom of the 290 // block. 291 assert(BB->getTerminator()->getNumSuccessors() == 1 && 292 "Should have a single succ!"); 293 return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU); 294 } 295 296 unsigned 297 llvm::SplitAllCriticalEdges(Function &F, 298 const CriticalEdgeSplittingOptions &Options) { 299 unsigned NumBroken = 0; 300 for (BasicBlock &BB : F) { 301 TerminatorInst *TI = BB.getTerminator(); 302 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI)) 303 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 304 if (SplitCriticalEdge(TI, i, Options)) 305 ++NumBroken; 306 } 307 return NumBroken; 308 } 309 310 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, 311 DominatorTree *DT, LoopInfo *LI, 312 MemorySSAUpdater *MSSAU) { 313 BasicBlock::iterator SplitIt = SplitPt->getIterator(); 314 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) 315 ++SplitIt; 316 BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split"); 317 318 // The new block lives in whichever loop the old one did. This preserves 319 // LCSSA as well, because we force the split point to be after any PHI nodes. 320 if (LI) 321 if (Loop *L = LI->getLoopFor(Old)) 322 L->addBasicBlockToLoop(New, *LI); 323 324 if (DT) 325 // Old dominates New. New node dominates all other nodes dominated by Old. 326 if (DomTreeNode *OldNode = DT->getNode(Old)) { 327 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 328 329 DomTreeNode *NewNode = DT->addNewBlock(New, Old); 330 for (DomTreeNode *I : Children) 331 DT->changeImmediateDominator(I, NewNode); 332 } 333 334 // Move MemoryAccesses still tracked in Old, but part of New now. 335 // Update accesses in successor blocks accordingly. 336 if (MSSAU) 337 MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin())); 338 339 return New; 340 } 341 342 /// Update DominatorTree, LoopInfo, and LCCSA analysis information. 343 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, 344 ArrayRef<BasicBlock *> Preds, 345 DominatorTree *DT, LoopInfo *LI, 346 MemorySSAUpdater *MSSAU, 347 bool PreserveLCSSA, bool &HasLoopExit) { 348 // Update dominator tree if available. 349 if (DT) { 350 if (OldBB == DT->getRootNode()->getBlock()) { 351 assert(NewBB == &NewBB->getParent()->getEntryBlock()); 352 DT->setNewRoot(NewBB); 353 } else { 354 // Split block expects NewBB to have a non-empty set of predecessors. 355 DT->splitBlock(NewBB); 356 } 357 } 358 359 // Update MemoryPhis after split if MemorySSA is available 360 if (MSSAU) 361 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds); 362 363 // The rest of the logic is only relevant for updating the loop structures. 364 if (!LI) 365 return; 366 367 assert(DT && "DT should be available to update LoopInfo!"); 368 Loop *L = LI->getLoopFor(OldBB); 369 370 // If we need to preserve loop analyses, collect some information about how 371 // this split will affect loops. 372 bool IsLoopEntry = !!L; 373 bool SplitMakesNewLoopHeader = false; 374 for (BasicBlock *Pred : Preds) { 375 // Preds that are not reachable from entry should not be used to identify if 376 // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks 377 // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader 378 // as true and make the NewBB the header of some loop. This breaks LI. 379 if (!DT->isReachableFromEntry(Pred)) 380 continue; 381 // If we need to preserve LCSSA, determine if any of the preds is a loop 382 // exit. 383 if (PreserveLCSSA) 384 if (Loop *PL = LI->getLoopFor(Pred)) 385 if (!PL->contains(OldBB)) 386 HasLoopExit = true; 387 388 // If we need to preserve LoopInfo, note whether any of the preds crosses 389 // an interesting loop boundary. 390 if (!L) 391 continue; 392 if (L->contains(Pred)) 393 IsLoopEntry = false; 394 else 395 SplitMakesNewLoopHeader = true; 396 } 397 398 // Unless we have a loop for OldBB, nothing else to do here. 399 if (!L) 400 return; 401 402 if (IsLoopEntry) { 403 // Add the new block to the nearest enclosing loop (and not an adjacent 404 // loop). To find this, examine each of the predecessors and determine which 405 // loops enclose them, and select the most-nested loop which contains the 406 // loop containing the block being split. 407 Loop *InnermostPredLoop = nullptr; 408 for (BasicBlock *Pred : Preds) { 409 if (Loop *PredLoop = LI->getLoopFor(Pred)) { 410 // Seek a loop which actually contains the block being split (to avoid 411 // adjacent loops). 412 while (PredLoop && !PredLoop->contains(OldBB)) 413 PredLoop = PredLoop->getParentLoop(); 414 415 // Select the most-nested of these loops which contains the block. 416 if (PredLoop && PredLoop->contains(OldBB) && 417 (!InnermostPredLoop || 418 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) 419 InnermostPredLoop = PredLoop; 420 } 421 } 422 423 if (InnermostPredLoop) 424 InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI); 425 } else { 426 L->addBasicBlockToLoop(NewBB, *LI); 427 if (SplitMakesNewLoopHeader) 428 L->moveToHeader(NewBB); 429 } 430 } 431 432 /// Update the PHI nodes in OrigBB to include the values coming from NewBB. 433 /// This also updates AliasAnalysis, if available. 434 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, 435 ArrayRef<BasicBlock *> Preds, BranchInst *BI, 436 bool HasLoopExit) { 437 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. 438 SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end()); 439 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) { 440 PHINode *PN = cast<PHINode>(I++); 441 442 // Check to see if all of the values coming in are the same. If so, we 443 // don't need to create a new PHI node, unless it's needed for LCSSA. 444 Value *InVal = nullptr; 445 if (!HasLoopExit) { 446 InVal = PN->getIncomingValueForBlock(Preds[0]); 447 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 448 if (!PredSet.count(PN->getIncomingBlock(i))) 449 continue; 450 if (!InVal) 451 InVal = PN->getIncomingValue(i); 452 else if (InVal != PN->getIncomingValue(i)) { 453 InVal = nullptr; 454 break; 455 } 456 } 457 } 458 459 if (InVal) { 460 // If all incoming values for the new PHI would be the same, just don't 461 // make a new PHI. Instead, just remove the incoming values from the old 462 // PHI. 463 464 // NOTE! This loop walks backwards for a reason! First off, this minimizes 465 // the cost of removal if we end up removing a large number of values, and 466 // second off, this ensures that the indices for the incoming values 467 // aren't invalidated when we remove one. 468 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) 469 if (PredSet.count(PN->getIncomingBlock(i))) 470 PN->removeIncomingValue(i, false); 471 472 // Add an incoming value to the PHI node in the loop for the preheader 473 // edge. 474 PN->addIncoming(InVal, NewBB); 475 continue; 476 } 477 478 // If the values coming into the block are not the same, we need a new 479 // PHI. 480 // Create the new PHI node, insert it into NewBB at the end of the block 481 PHINode *NewPHI = 482 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI); 483 484 // NOTE! This loop walks backwards for a reason! First off, this minimizes 485 // the cost of removal if we end up removing a large number of values, and 486 // second off, this ensures that the indices for the incoming values aren't 487 // invalidated when we remove one. 488 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) { 489 BasicBlock *IncomingBB = PN->getIncomingBlock(i); 490 if (PredSet.count(IncomingBB)) { 491 Value *V = PN->removeIncomingValue(i, false); 492 NewPHI->addIncoming(V, IncomingBB); 493 } 494 } 495 496 PN->addIncoming(NewPHI, NewBB); 497 } 498 } 499 500 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 501 ArrayRef<BasicBlock *> Preds, 502 const char *Suffix, DominatorTree *DT, 503 LoopInfo *LI, MemorySSAUpdater *MSSAU, 504 bool PreserveLCSSA) { 505 // Do not attempt to split that which cannot be split. 506 if (!BB->canSplitPredecessors()) 507 return nullptr; 508 509 // For the landingpads we need to act a bit differently. 510 // Delegate this work to the SplitLandingPadPredecessors. 511 if (BB->isLandingPad()) { 512 SmallVector<BasicBlock*, 2> NewBBs; 513 std::string NewName = std::string(Suffix) + ".split-lp"; 514 515 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT, 516 LI, MSSAU, PreserveLCSSA); 517 return NewBBs[0]; 518 } 519 520 // Create new basic block, insert right before the original block. 521 BasicBlock *NewBB = BasicBlock::Create( 522 BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB); 523 524 // The new block unconditionally branches to the old block. 525 BranchInst *BI = BranchInst::Create(BB, NewBB); 526 BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc()); 527 528 // Move the edges from Preds to point to NewBB instead of BB. 529 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 530 // This is slightly more strict than necessary; the minimum requirement 531 // is that there be no more than one indirectbr branching to BB. And 532 // all BlockAddress uses would need to be updated. 533 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 534 "Cannot split an edge from an IndirectBrInst"); 535 Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB); 536 } 537 538 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI 539 // node becomes an incoming value for BB's phi node. However, if the Preds 540 // list is empty, we need to insert dummy entries into the PHI nodes in BB to 541 // account for the newly created predecessor. 542 if (Preds.empty()) { 543 // Insert dummy values as the incoming value. 544 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) 545 cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB); 546 } 547 548 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 549 bool HasLoopExit = false; 550 UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, MSSAU, PreserveLCSSA, 551 HasLoopExit); 552 553 if (!Preds.empty()) { 554 // Update the PHI nodes in BB with the values coming from NewBB. 555 UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit); 556 } 557 558 return NewBB; 559 } 560 561 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 562 ArrayRef<BasicBlock *> Preds, 563 const char *Suffix1, const char *Suffix2, 564 SmallVectorImpl<BasicBlock *> &NewBBs, 565 DominatorTree *DT, LoopInfo *LI, 566 MemorySSAUpdater *MSSAU, 567 bool PreserveLCSSA) { 568 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!"); 569 570 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert 571 // it right before the original block. 572 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(), 573 OrigBB->getName() + Suffix1, 574 OrigBB->getParent(), OrigBB); 575 NewBBs.push_back(NewBB1); 576 577 // The new block unconditionally branches to the old block. 578 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1); 579 BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 580 581 // Move the edges from Preds to point to NewBB1 instead of OrigBB. 582 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 583 // This is slightly more strict than necessary; the minimum requirement 584 // is that there be no more than one indirectbr branching to BB. And 585 // all BlockAddress uses would need to be updated. 586 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 587 "Cannot split an edge from an IndirectBrInst"); 588 Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1); 589 } 590 591 bool HasLoopExit = false; 592 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, MSSAU, PreserveLCSSA, 593 HasLoopExit); 594 595 // Update the PHI nodes in OrigBB with the values coming from NewBB1. 596 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit); 597 598 // Move the remaining edges from OrigBB to point to NewBB2. 599 SmallVector<BasicBlock*, 8> NewBB2Preds; 600 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB); 601 i != e; ) { 602 BasicBlock *Pred = *i++; 603 if (Pred == NewBB1) continue; 604 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 605 "Cannot split an edge from an IndirectBrInst"); 606 NewBB2Preds.push_back(Pred); 607 e = pred_end(OrigBB); 608 } 609 610 BasicBlock *NewBB2 = nullptr; 611 if (!NewBB2Preds.empty()) { 612 // Create another basic block for the rest of OrigBB's predecessors. 613 NewBB2 = BasicBlock::Create(OrigBB->getContext(), 614 OrigBB->getName() + Suffix2, 615 OrigBB->getParent(), OrigBB); 616 NewBBs.push_back(NewBB2); 617 618 // The new block unconditionally branches to the old block. 619 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2); 620 BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 621 622 // Move the remaining edges from OrigBB to point to NewBB2. 623 for (BasicBlock *NewBB2Pred : NewBB2Preds) 624 NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2); 625 626 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 627 HasLoopExit = false; 628 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, MSSAU, 629 PreserveLCSSA, HasLoopExit); 630 631 // Update the PHI nodes in OrigBB with the values coming from NewBB2. 632 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit); 633 } 634 635 LandingPadInst *LPad = OrigBB->getLandingPadInst(); 636 Instruction *Clone1 = LPad->clone(); 637 Clone1->setName(Twine("lpad") + Suffix1); 638 NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1); 639 640 if (NewBB2) { 641 Instruction *Clone2 = LPad->clone(); 642 Clone2->setName(Twine("lpad") + Suffix2); 643 NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2); 644 645 // Create a PHI node for the two cloned landingpad instructions only 646 // if the original landingpad instruction has some uses. 647 if (!LPad->use_empty()) { 648 assert(!LPad->getType()->isTokenTy() && 649 "Split cannot be applied if LPad is token type. Otherwise an " 650 "invalid PHINode of token type would be created."); 651 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad); 652 PN->addIncoming(Clone1, NewBB1); 653 PN->addIncoming(Clone2, NewBB2); 654 LPad->replaceAllUsesWith(PN); 655 } 656 LPad->eraseFromParent(); 657 } else { 658 // There is no second clone. Just replace the landing pad with the first 659 // clone. 660 LPad->replaceAllUsesWith(Clone1); 661 LPad->eraseFromParent(); 662 } 663 } 664 665 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, 666 BasicBlock *Pred, 667 DomTreeUpdater *DTU) { 668 Instruction *UncondBranch = Pred->getTerminator(); 669 // Clone the return and add it to the end of the predecessor. 670 Instruction *NewRet = RI->clone(); 671 Pred->getInstList().push_back(NewRet); 672 673 // If the return instruction returns a value, and if the value was a 674 // PHI node in "BB", propagate the right value into the return. 675 for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end(); 676 i != e; ++i) { 677 Value *V = *i; 678 Instruction *NewBC = nullptr; 679 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) { 680 // Return value might be bitcasted. Clone and insert it before the 681 // return instruction. 682 V = BCI->getOperand(0); 683 NewBC = BCI->clone(); 684 Pred->getInstList().insert(NewRet->getIterator(), NewBC); 685 *i = NewBC; 686 } 687 if (PHINode *PN = dyn_cast<PHINode>(V)) { 688 if (PN->getParent() == BB) { 689 if (NewBC) 690 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred)); 691 else 692 *i = PN->getIncomingValueForBlock(Pred); 693 } 694 } 695 } 696 697 // Update any PHI nodes in the returning block to realize that we no 698 // longer branch to them. 699 BB->removePredecessor(Pred); 700 UncondBranch->eraseFromParent(); 701 702 if (DTU) 703 DTU->deleteEdge(Pred, BB); 704 705 return cast<ReturnInst>(NewRet); 706 } 707 708 TerminatorInst * 709 llvm::SplitBlockAndInsertIfThen(Value *Cond, Instruction *SplitBefore, 710 bool Unreachable, MDNode *BranchWeights, 711 DominatorTree *DT, LoopInfo *LI) { 712 BasicBlock *Head = SplitBefore->getParent(); 713 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 714 TerminatorInst *HeadOldTerm = Head->getTerminator(); 715 LLVMContext &C = Head->getContext(); 716 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 717 TerminatorInst *CheckTerm; 718 if (Unreachable) 719 CheckTerm = new UnreachableInst(C, ThenBlock); 720 else 721 CheckTerm = BranchInst::Create(Tail, ThenBlock); 722 CheckTerm->setDebugLoc(SplitBefore->getDebugLoc()); 723 BranchInst *HeadNewTerm = 724 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond); 725 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 726 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 727 728 if (DT) { 729 if (DomTreeNode *OldNode = DT->getNode(Head)) { 730 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 731 732 DomTreeNode *NewNode = DT->addNewBlock(Tail, Head); 733 for (DomTreeNode *Child : Children) 734 DT->changeImmediateDominator(Child, NewNode); 735 736 // Head dominates ThenBlock. 737 DT->addNewBlock(ThenBlock, Head); 738 } 739 } 740 741 if (LI) { 742 if (Loop *L = LI->getLoopFor(Head)) { 743 L->addBasicBlockToLoop(ThenBlock, *LI); 744 L->addBasicBlockToLoop(Tail, *LI); 745 } 746 } 747 748 return CheckTerm; 749 } 750 751 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore, 752 TerminatorInst **ThenTerm, 753 TerminatorInst **ElseTerm, 754 MDNode *BranchWeights) { 755 BasicBlock *Head = SplitBefore->getParent(); 756 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 757 TerminatorInst *HeadOldTerm = Head->getTerminator(); 758 LLVMContext &C = Head->getContext(); 759 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 760 BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 761 *ThenTerm = BranchInst::Create(Tail, ThenBlock); 762 (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 763 *ElseTerm = BranchInst::Create(Tail, ElseBlock); 764 (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 765 BranchInst *HeadNewTerm = 766 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond); 767 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 768 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 769 } 770 771 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 772 BasicBlock *&IfFalse) { 773 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin()); 774 BasicBlock *Pred1 = nullptr; 775 BasicBlock *Pred2 = nullptr; 776 777 if (SomePHI) { 778 if (SomePHI->getNumIncomingValues() != 2) 779 return nullptr; 780 Pred1 = SomePHI->getIncomingBlock(0); 781 Pred2 = SomePHI->getIncomingBlock(1); 782 } else { 783 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 784 if (PI == PE) // No predecessor 785 return nullptr; 786 Pred1 = *PI++; 787 if (PI == PE) // Only one predecessor 788 return nullptr; 789 Pred2 = *PI++; 790 if (PI != PE) // More than two predecessors 791 return nullptr; 792 } 793 794 // We can only handle branches. Other control flow will be lowered to 795 // branches if possible anyway. 796 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 797 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 798 if (!Pred1Br || !Pred2Br) 799 return nullptr; 800 801 // Eliminate code duplication by ensuring that Pred1Br is conditional if 802 // either are. 803 if (Pred2Br->isConditional()) { 804 // If both branches are conditional, we don't have an "if statement". In 805 // reality, we could transform this case, but since the condition will be 806 // required anyway, we stand no chance of eliminating it, so the xform is 807 // probably not profitable. 808 if (Pred1Br->isConditional()) 809 return nullptr; 810 811 std::swap(Pred1, Pred2); 812 std::swap(Pred1Br, Pred2Br); 813 } 814 815 if (Pred1Br->isConditional()) { 816 // The only thing we have to watch out for here is to make sure that Pred2 817 // doesn't have incoming edges from other blocks. If it does, the condition 818 // doesn't dominate BB. 819 if (!Pred2->getSinglePredecessor()) 820 return nullptr; 821 822 // If we found a conditional branch predecessor, make sure that it branches 823 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 824 if (Pred1Br->getSuccessor(0) == BB && 825 Pred1Br->getSuccessor(1) == Pred2) { 826 IfTrue = Pred1; 827 IfFalse = Pred2; 828 } else if (Pred1Br->getSuccessor(0) == Pred2 && 829 Pred1Br->getSuccessor(1) == BB) { 830 IfTrue = Pred2; 831 IfFalse = Pred1; 832 } else { 833 // We know that one arm of the conditional goes to BB, so the other must 834 // go somewhere unrelated, and this must not be an "if statement". 835 return nullptr; 836 } 837 838 return Pred1Br->getCondition(); 839 } 840 841 // Ok, if we got here, both predecessors end with an unconditional branch to 842 // BB. Don't panic! If both blocks only have a single (identical) 843 // predecessor, and THAT is a conditional branch, then we're all ok! 844 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 845 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor()) 846 return nullptr; 847 848 // Otherwise, if this is a conditional branch, then we can use it! 849 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 850 if (!BI) return nullptr; 851 852 assert(BI->isConditional() && "Two successors but not conditional?"); 853 if (BI->getSuccessor(0) == Pred1) { 854 IfTrue = Pred1; 855 IfFalse = Pred2; 856 } else { 857 IfTrue = Pred2; 858 IfFalse = Pred1; 859 } 860 return BI->getCondition(); 861 } 862