1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform manipulations on basic blocks, and
10 // instructions contained within basic blocks.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/DomTreeUpdater.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/Analysis/PostDominators.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/IR/ValueHandle.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include <cassert>
45 #include <cstdint>
46 #include <string>
47 #include <utility>
48 #include <vector>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "basicblock-utils"
53 
54 void llvm::DetatchDeadBlocks(
55     ArrayRef<BasicBlock *> BBs,
56     SmallVectorImpl<DominatorTree::UpdateType> *Updates,
57     bool KeepOneInputPHIs) {
58   for (auto *BB : BBs) {
59     // Loop through all of our successors and make sure they know that one
60     // of their predecessors is going away.
61     SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
62     for (BasicBlock *Succ : successors(BB)) {
63       Succ->removePredecessor(BB, KeepOneInputPHIs);
64       if (Updates && UniqueSuccessors.insert(Succ).second)
65         Updates->push_back({DominatorTree::Delete, BB, Succ});
66     }
67 
68     // Zap all the instructions in the block.
69     while (!BB->empty()) {
70       Instruction &I = BB->back();
71       // If this instruction is used, replace uses with an arbitrary value.
72       // Because control flow can't get here, we don't care what we replace the
73       // value with.  Note that since this block is unreachable, and all values
74       // contained within it must dominate their uses, that all uses will
75       // eventually be removed (they are themselves dead).
76       if (!I.use_empty())
77         I.replaceAllUsesWith(UndefValue::get(I.getType()));
78       BB->getInstList().pop_back();
79     }
80     new UnreachableInst(BB->getContext(), BB);
81     assert(BB->getInstList().size() == 1 &&
82            isa<UnreachableInst>(BB->getTerminator()) &&
83            "The successor list of BB isn't empty before "
84            "applying corresponding DTU updates.");
85   }
86 }
87 
88 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
89                            bool KeepOneInputPHIs) {
90   DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
91 }
92 
93 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
94                             bool KeepOneInputPHIs) {
95 #ifndef NDEBUG
96   // Make sure that all predecessors of each dead block is also dead.
97   SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
98   assert(Dead.size() == BBs.size() && "Duplicating blocks?");
99   for (auto *BB : Dead)
100     for (BasicBlock *Pred : predecessors(BB))
101       assert(Dead.count(Pred) && "All predecessors must be dead!");
102 #endif
103 
104   SmallVector<DominatorTree::UpdateType, 4> Updates;
105   DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
106 
107   if (DTU)
108     DTU->applyUpdatesPermissive(Updates);
109 
110   for (BasicBlock *BB : BBs)
111     if (DTU)
112       DTU->deleteBB(BB);
113     else
114       BB->eraseFromParent();
115 }
116 
117 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
118                                       bool KeepOneInputPHIs) {
119   df_iterator_default_set<BasicBlock*> Reachable;
120 
121   // Mark all reachable blocks.
122   for (BasicBlock *BB : depth_first_ext(&F, Reachable))
123     (void)BB/* Mark all reachable blocks */;
124 
125   // Collect all dead blocks.
126   std::vector<BasicBlock*> DeadBlocks;
127   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
128     if (!Reachable.count(&*I)) {
129       BasicBlock *BB = &*I;
130       DeadBlocks.push_back(BB);
131     }
132 
133   // Delete the dead blocks.
134   DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
135 
136   return !DeadBlocks.empty();
137 }
138 
139 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
140                                    MemoryDependenceResults *MemDep) {
141   if (!isa<PHINode>(BB->begin())) return;
142 
143   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
144     if (PN->getIncomingValue(0) != PN)
145       PN->replaceAllUsesWith(PN->getIncomingValue(0));
146     else
147       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
148 
149     if (MemDep)
150       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
151 
152     PN->eraseFromParent();
153   }
154 }
155 
156 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
157   // Recursively deleting a PHI may cause multiple PHIs to be deleted
158   // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
159   SmallVector<WeakTrackingVH, 8> PHIs;
160   for (PHINode &PN : BB->phis())
161     PHIs.push_back(&PN);
162 
163   bool Changed = false;
164   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
165     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
166       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI);
167 
168   return Changed;
169 }
170 
171 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
172                                      LoopInfo *LI, MemorySSAUpdater *MSSAU,
173                                      MemoryDependenceResults *MemDep) {
174   if (BB->hasAddressTaken())
175     return false;
176 
177   // Can't merge if there are multiple predecessors, or no predecessors.
178   BasicBlock *PredBB = BB->getUniquePredecessor();
179   if (!PredBB) return false;
180 
181   // Don't break self-loops.
182   if (PredBB == BB) return false;
183   // Don't break unwinding instructions.
184   if (PredBB->getTerminator()->isExceptionalTerminator())
185     return false;
186 
187   // Can't merge if there are multiple distinct successors.
188   if (PredBB->getUniqueSuccessor() != BB)
189     return false;
190 
191   // Can't merge if there is PHI loop.
192   for (PHINode &PN : BB->phis())
193     for (Value *IncValue : PN.incoming_values())
194       if (IncValue == &PN)
195         return false;
196 
197   LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
198                     << PredBB->getName() << "\n");
199 
200   // Begin by getting rid of unneeded PHIs.
201   SmallVector<AssertingVH<Value>, 4> IncomingValues;
202   if (isa<PHINode>(BB->front())) {
203     for (PHINode &PN : BB->phis())
204       if (!isa<PHINode>(PN.getIncomingValue(0)) ||
205           cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
206         IncomingValues.push_back(PN.getIncomingValue(0));
207     FoldSingleEntryPHINodes(BB, MemDep);
208   }
209 
210   // DTU update: Collect all the edges that exit BB.
211   // These dominator edges will be redirected from Pred.
212   std::vector<DominatorTree::UpdateType> Updates;
213   if (DTU) {
214     Updates.reserve(1 + (2 * succ_size(BB)));
215     // Add insert edges first. Experimentally, for the particular case of two
216     // blocks that can be merged, with a single successor and single predecessor
217     // respectively, it is beneficial to have all insert updates first. Deleting
218     // edges first may lead to unreachable blocks, followed by inserting edges
219     // making the blocks reachable again. Such DT updates lead to high compile
220     // times. We add inserts before deletes here to reduce compile time.
221     for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
222       // This successor of BB may already have PredBB as a predecessor.
223       if (llvm::find(successors(PredBB), *I) == succ_end(PredBB))
224         Updates.push_back({DominatorTree::Insert, PredBB, *I});
225     for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
226       Updates.push_back({DominatorTree::Delete, BB, *I});
227     Updates.push_back({DominatorTree::Delete, PredBB, BB});
228   }
229 
230   if (MSSAU)
231     MSSAU->moveAllAfterMergeBlocks(BB, PredBB, &*(BB->begin()));
232 
233   // Delete the unconditional branch from the predecessor...
234   PredBB->getInstList().pop_back();
235 
236   // Make all PHI nodes that referred to BB now refer to Pred as their
237   // source...
238   BB->replaceAllUsesWith(PredBB);
239 
240   // Move all definitions in the successor to the predecessor...
241   PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
242   new UnreachableInst(BB->getContext(), BB);
243 
244   // Eliminate duplicate dbg.values describing the entry PHI node post-splice.
245   for (auto Incoming : IncomingValues) {
246     if (isa<Instruction>(*Incoming)) {
247       SmallVector<DbgValueInst *, 2> DbgValues;
248       SmallDenseSet<std::pair<DILocalVariable *, DIExpression *>, 2>
249           DbgValueSet;
250       llvm::findDbgValues(DbgValues, Incoming);
251       for (auto &DVI : DbgValues) {
252         auto R = DbgValueSet.insert({DVI->getVariable(), DVI->getExpression()});
253         if (!R.second) {
254           if (MSSAU)
255             MSSAU->removeMemoryAccess(DVI);
256           DVI->eraseFromParent();
257         }
258       }
259     }
260   }
261 
262   // Inherit predecessors name if it exists.
263   if (!PredBB->hasName())
264     PredBB->takeName(BB);
265 
266   if (LI)
267     LI->removeBlock(BB);
268 
269   if (MemDep)
270     MemDep->invalidateCachedPredecessors();
271 
272   // Finally, erase the old block and update dominator info.
273   if (DTU) {
274     assert(BB->getInstList().size() == 1 &&
275            isa<UnreachableInst>(BB->getTerminator()) &&
276            "The successor list of BB isn't empty before "
277            "applying corresponding DTU updates.");
278     DTU->applyUpdatesPermissive(Updates);
279     DTU->deleteBB(BB);
280   }
281 
282   else {
283     BB->eraseFromParent(); // Nuke BB if DTU is nullptr.
284   }
285   return true;
286 }
287 
288 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
289                                 BasicBlock::iterator &BI, Value *V) {
290   Instruction &I = *BI;
291   // Replaces all of the uses of the instruction with uses of the value
292   I.replaceAllUsesWith(V);
293 
294   // Make sure to propagate a name if there is one already.
295   if (I.hasName() && !V->hasName())
296     V->takeName(&I);
297 
298   // Delete the unnecessary instruction now...
299   BI = BIL.erase(BI);
300 }
301 
302 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
303                                BasicBlock::iterator &BI, Instruction *I) {
304   assert(I->getParent() == nullptr &&
305          "ReplaceInstWithInst: Instruction already inserted into basic block!");
306 
307   // Copy debug location to newly added instruction, if it wasn't already set
308   // by the caller.
309   if (!I->getDebugLoc())
310     I->setDebugLoc(BI->getDebugLoc());
311 
312   // Insert the new instruction into the basic block...
313   BasicBlock::iterator New = BIL.insert(BI, I);
314 
315   // Replace all uses of the old instruction, and delete it.
316   ReplaceInstWithValue(BIL, BI, I);
317 
318   // Move BI back to point to the newly inserted instruction
319   BI = New;
320 }
321 
322 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
323   BasicBlock::iterator BI(From);
324   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
325 }
326 
327 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
328                             LoopInfo *LI, MemorySSAUpdater *MSSAU) {
329   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
330 
331   // If this is a critical edge, let SplitCriticalEdge do it.
332   Instruction *LatchTerm = BB->getTerminator();
333   if (SplitCriticalEdge(
334           LatchTerm, SuccNum,
335           CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()))
336     return LatchTerm->getSuccessor(SuccNum);
337 
338   // If the edge isn't critical, then BB has a single successor or Succ has a
339   // single pred.  Split the block.
340   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
341     // If the successor only has a single pred, split the top of the successor
342     // block.
343     assert(SP == BB && "CFG broken");
344     SP = nullptr;
345     return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU);
346   }
347 
348   // Otherwise, if BB has a single successor, split it at the bottom of the
349   // block.
350   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
351          "Should have a single succ!");
352   return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU);
353 }
354 
355 unsigned
356 llvm::SplitAllCriticalEdges(Function &F,
357                             const CriticalEdgeSplittingOptions &Options) {
358   unsigned NumBroken = 0;
359   for (BasicBlock &BB : F) {
360     Instruction *TI = BB.getTerminator();
361     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
362       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
363         if (SplitCriticalEdge(TI, i, Options))
364           ++NumBroken;
365   }
366   return NumBroken;
367 }
368 
369 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
370                              DominatorTree *DT, LoopInfo *LI,
371                              MemorySSAUpdater *MSSAU) {
372   BasicBlock::iterator SplitIt = SplitPt->getIterator();
373   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
374     ++SplitIt;
375   BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
376 
377   // The new block lives in whichever loop the old one did. This preserves
378   // LCSSA as well, because we force the split point to be after any PHI nodes.
379   if (LI)
380     if (Loop *L = LI->getLoopFor(Old))
381       L->addBasicBlockToLoop(New, *LI);
382 
383   if (DT)
384     // Old dominates New. New node dominates all other nodes dominated by Old.
385     if (DomTreeNode *OldNode = DT->getNode(Old)) {
386       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
387 
388       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
389       for (DomTreeNode *I : Children)
390         DT->changeImmediateDominator(I, NewNode);
391     }
392 
393   // Move MemoryAccesses still tracked in Old, but part of New now.
394   // Update accesses in successor blocks accordingly.
395   if (MSSAU)
396     MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
397 
398   return New;
399 }
400 
401 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
402 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
403                                       ArrayRef<BasicBlock *> Preds,
404                                       DominatorTree *DT, LoopInfo *LI,
405                                       MemorySSAUpdater *MSSAU,
406                                       bool PreserveLCSSA, bool &HasLoopExit) {
407   // Update dominator tree if available.
408   if (DT) {
409     if (OldBB == DT->getRootNode()->getBlock()) {
410       assert(NewBB == &NewBB->getParent()->getEntryBlock());
411       DT->setNewRoot(NewBB);
412     } else {
413       // Split block expects NewBB to have a non-empty set of predecessors.
414       DT->splitBlock(NewBB);
415     }
416   }
417 
418   // Update MemoryPhis after split if MemorySSA is available
419   if (MSSAU)
420     MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
421 
422   // The rest of the logic is only relevant for updating the loop structures.
423   if (!LI)
424     return;
425 
426   assert(DT && "DT should be available to update LoopInfo!");
427   Loop *L = LI->getLoopFor(OldBB);
428 
429   // If we need to preserve loop analyses, collect some information about how
430   // this split will affect loops.
431   bool IsLoopEntry = !!L;
432   bool SplitMakesNewLoopHeader = false;
433   for (BasicBlock *Pred : Preds) {
434     // Preds that are not reachable from entry should not be used to identify if
435     // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
436     // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
437     // as true and make the NewBB the header of some loop. This breaks LI.
438     if (!DT->isReachableFromEntry(Pred))
439       continue;
440     // If we need to preserve LCSSA, determine if any of the preds is a loop
441     // exit.
442     if (PreserveLCSSA)
443       if (Loop *PL = LI->getLoopFor(Pred))
444         if (!PL->contains(OldBB))
445           HasLoopExit = true;
446 
447     // If we need to preserve LoopInfo, note whether any of the preds crosses
448     // an interesting loop boundary.
449     if (!L)
450       continue;
451     if (L->contains(Pred))
452       IsLoopEntry = false;
453     else
454       SplitMakesNewLoopHeader = true;
455   }
456 
457   // Unless we have a loop for OldBB, nothing else to do here.
458   if (!L)
459     return;
460 
461   if (IsLoopEntry) {
462     // Add the new block to the nearest enclosing loop (and not an adjacent
463     // loop). To find this, examine each of the predecessors and determine which
464     // loops enclose them, and select the most-nested loop which contains the
465     // loop containing the block being split.
466     Loop *InnermostPredLoop = nullptr;
467     for (BasicBlock *Pred : Preds) {
468       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
469         // Seek a loop which actually contains the block being split (to avoid
470         // adjacent loops).
471         while (PredLoop && !PredLoop->contains(OldBB))
472           PredLoop = PredLoop->getParentLoop();
473 
474         // Select the most-nested of these loops which contains the block.
475         if (PredLoop && PredLoop->contains(OldBB) &&
476             (!InnermostPredLoop ||
477              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
478           InnermostPredLoop = PredLoop;
479       }
480     }
481 
482     if (InnermostPredLoop)
483       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
484   } else {
485     L->addBasicBlockToLoop(NewBB, *LI);
486     if (SplitMakesNewLoopHeader)
487       L->moveToHeader(NewBB);
488   }
489 }
490 
491 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
492 /// This also updates AliasAnalysis, if available.
493 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
494                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
495                            bool HasLoopExit) {
496   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
497   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
498   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
499     PHINode *PN = cast<PHINode>(I++);
500 
501     // Check to see if all of the values coming in are the same.  If so, we
502     // don't need to create a new PHI node, unless it's needed for LCSSA.
503     Value *InVal = nullptr;
504     if (!HasLoopExit) {
505       InVal = PN->getIncomingValueForBlock(Preds[0]);
506       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
507         if (!PredSet.count(PN->getIncomingBlock(i)))
508           continue;
509         if (!InVal)
510           InVal = PN->getIncomingValue(i);
511         else if (InVal != PN->getIncomingValue(i)) {
512           InVal = nullptr;
513           break;
514         }
515       }
516     }
517 
518     if (InVal) {
519       // If all incoming values for the new PHI would be the same, just don't
520       // make a new PHI.  Instead, just remove the incoming values from the old
521       // PHI.
522 
523       // NOTE! This loop walks backwards for a reason! First off, this minimizes
524       // the cost of removal if we end up removing a large number of values, and
525       // second off, this ensures that the indices for the incoming values
526       // aren't invalidated when we remove one.
527       for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
528         if (PredSet.count(PN->getIncomingBlock(i)))
529           PN->removeIncomingValue(i, false);
530 
531       // Add an incoming value to the PHI node in the loop for the preheader
532       // edge.
533       PN->addIncoming(InVal, NewBB);
534       continue;
535     }
536 
537     // If the values coming into the block are not the same, we need a new
538     // PHI.
539     // Create the new PHI node, insert it into NewBB at the end of the block
540     PHINode *NewPHI =
541         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
542 
543     // NOTE! This loop walks backwards for a reason! First off, this minimizes
544     // the cost of removal if we end up removing a large number of values, and
545     // second off, this ensures that the indices for the incoming values aren't
546     // invalidated when we remove one.
547     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
548       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
549       if (PredSet.count(IncomingBB)) {
550         Value *V = PN->removeIncomingValue(i, false);
551         NewPHI->addIncoming(V, IncomingBB);
552       }
553     }
554 
555     PN->addIncoming(NewPHI, NewBB);
556   }
557 }
558 
559 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
560                                          ArrayRef<BasicBlock *> Preds,
561                                          const char *Suffix, DominatorTree *DT,
562                                          LoopInfo *LI, MemorySSAUpdater *MSSAU,
563                                          bool PreserveLCSSA) {
564   // Do not attempt to split that which cannot be split.
565   if (!BB->canSplitPredecessors())
566     return nullptr;
567 
568   // For the landingpads we need to act a bit differently.
569   // Delegate this work to the SplitLandingPadPredecessors.
570   if (BB->isLandingPad()) {
571     SmallVector<BasicBlock*, 2> NewBBs;
572     std::string NewName = std::string(Suffix) + ".split-lp";
573 
574     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT,
575                                 LI, MSSAU, PreserveLCSSA);
576     return NewBBs[0];
577   }
578 
579   // Create new basic block, insert right before the original block.
580   BasicBlock *NewBB = BasicBlock::Create(
581       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
582 
583   // The new block unconditionally branches to the old block.
584   BranchInst *BI = BranchInst::Create(BB, NewBB);
585   // Splitting the predecessors of a loop header creates a preheader block.
586   if (LI && LI->isLoopHeader(BB))
587     // Using the loop start line number prevents debuggers stepping into the
588     // loop body for this instruction.
589     BI->setDebugLoc(LI->getLoopFor(BB)->getStartLoc());
590   else
591     BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
592 
593   // Move the edges from Preds to point to NewBB instead of BB.
594   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
595     // This is slightly more strict than necessary; the minimum requirement
596     // is that there be no more than one indirectbr branching to BB. And
597     // all BlockAddress uses would need to be updated.
598     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
599            "Cannot split an edge from an IndirectBrInst");
600     assert(!isa<CallBrInst>(Preds[i]->getTerminator()) &&
601            "Cannot split an edge from a CallBrInst");
602     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
603   }
604 
605   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
606   // node becomes an incoming value for BB's phi node.  However, if the Preds
607   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
608   // account for the newly created predecessor.
609   if (Preds.empty()) {
610     // Insert dummy values as the incoming value.
611     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
612       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
613   }
614 
615   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
616   bool HasLoopExit = false;
617   UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, MSSAU, PreserveLCSSA,
618                             HasLoopExit);
619 
620   if (!Preds.empty()) {
621     // Update the PHI nodes in BB with the values coming from NewBB.
622     UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
623   }
624 
625   return NewBB;
626 }
627 
628 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
629                                        ArrayRef<BasicBlock *> Preds,
630                                        const char *Suffix1, const char *Suffix2,
631                                        SmallVectorImpl<BasicBlock *> &NewBBs,
632                                        DominatorTree *DT, LoopInfo *LI,
633                                        MemorySSAUpdater *MSSAU,
634                                        bool PreserveLCSSA) {
635   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
636 
637   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
638   // it right before the original block.
639   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
640                                           OrigBB->getName() + Suffix1,
641                                           OrigBB->getParent(), OrigBB);
642   NewBBs.push_back(NewBB1);
643 
644   // The new block unconditionally branches to the old block.
645   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
646   BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
647 
648   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
649   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
650     // This is slightly more strict than necessary; the minimum requirement
651     // is that there be no more than one indirectbr branching to BB. And
652     // all BlockAddress uses would need to be updated.
653     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
654            "Cannot split an edge from an IndirectBrInst");
655     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
656   }
657 
658   bool HasLoopExit = false;
659   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, MSSAU, PreserveLCSSA,
660                             HasLoopExit);
661 
662   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
663   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
664 
665   // Move the remaining edges from OrigBB to point to NewBB2.
666   SmallVector<BasicBlock*, 8> NewBB2Preds;
667   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
668        i != e; ) {
669     BasicBlock *Pred = *i++;
670     if (Pred == NewBB1) continue;
671     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
672            "Cannot split an edge from an IndirectBrInst");
673     NewBB2Preds.push_back(Pred);
674     e = pred_end(OrigBB);
675   }
676 
677   BasicBlock *NewBB2 = nullptr;
678   if (!NewBB2Preds.empty()) {
679     // Create another basic block for the rest of OrigBB's predecessors.
680     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
681                                 OrigBB->getName() + Suffix2,
682                                 OrigBB->getParent(), OrigBB);
683     NewBBs.push_back(NewBB2);
684 
685     // The new block unconditionally branches to the old block.
686     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
687     BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
688 
689     // Move the remaining edges from OrigBB to point to NewBB2.
690     for (BasicBlock *NewBB2Pred : NewBB2Preds)
691       NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
692 
693     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
694     HasLoopExit = false;
695     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, MSSAU,
696                               PreserveLCSSA, HasLoopExit);
697 
698     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
699     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
700   }
701 
702   LandingPadInst *LPad = OrigBB->getLandingPadInst();
703   Instruction *Clone1 = LPad->clone();
704   Clone1->setName(Twine("lpad") + Suffix1);
705   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
706 
707   if (NewBB2) {
708     Instruction *Clone2 = LPad->clone();
709     Clone2->setName(Twine("lpad") + Suffix2);
710     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
711 
712     // Create a PHI node for the two cloned landingpad instructions only
713     // if the original landingpad instruction has some uses.
714     if (!LPad->use_empty()) {
715       assert(!LPad->getType()->isTokenTy() &&
716              "Split cannot be applied if LPad is token type. Otherwise an "
717              "invalid PHINode of token type would be created.");
718       PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
719       PN->addIncoming(Clone1, NewBB1);
720       PN->addIncoming(Clone2, NewBB2);
721       LPad->replaceAllUsesWith(PN);
722     }
723     LPad->eraseFromParent();
724   } else {
725     // There is no second clone. Just replace the landing pad with the first
726     // clone.
727     LPad->replaceAllUsesWith(Clone1);
728     LPad->eraseFromParent();
729   }
730 }
731 
732 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
733                                              BasicBlock *Pred,
734                                              DomTreeUpdater *DTU) {
735   Instruction *UncondBranch = Pred->getTerminator();
736   // Clone the return and add it to the end of the predecessor.
737   Instruction *NewRet = RI->clone();
738   Pred->getInstList().push_back(NewRet);
739 
740   // If the return instruction returns a value, and if the value was a
741   // PHI node in "BB", propagate the right value into the return.
742   for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
743        i != e; ++i) {
744     Value *V = *i;
745     Instruction *NewBC = nullptr;
746     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
747       // Return value might be bitcasted. Clone and insert it before the
748       // return instruction.
749       V = BCI->getOperand(0);
750       NewBC = BCI->clone();
751       Pred->getInstList().insert(NewRet->getIterator(), NewBC);
752       *i = NewBC;
753     }
754     if (PHINode *PN = dyn_cast<PHINode>(V)) {
755       if (PN->getParent() == BB) {
756         if (NewBC)
757           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
758         else
759           *i = PN->getIncomingValueForBlock(Pred);
760       }
761     }
762   }
763 
764   // Update any PHI nodes in the returning block to realize that we no
765   // longer branch to them.
766   BB->removePredecessor(Pred);
767   UncondBranch->eraseFromParent();
768 
769   if (DTU)
770     DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
771 
772   return cast<ReturnInst>(NewRet);
773 }
774 
775 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
776                                              Instruction *SplitBefore,
777                                              bool Unreachable,
778                                              MDNode *BranchWeights,
779                                              DominatorTree *DT, LoopInfo *LI,
780                                              BasicBlock *ThenBlock) {
781   BasicBlock *Head = SplitBefore->getParent();
782   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
783   Instruction *HeadOldTerm = Head->getTerminator();
784   LLVMContext &C = Head->getContext();
785   Instruction *CheckTerm;
786   bool CreateThenBlock = (ThenBlock == nullptr);
787   if (CreateThenBlock) {
788     ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
789     if (Unreachable)
790       CheckTerm = new UnreachableInst(C, ThenBlock);
791     else
792       CheckTerm = BranchInst::Create(Tail, ThenBlock);
793     CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
794   } else
795     CheckTerm = ThenBlock->getTerminator();
796   BranchInst *HeadNewTerm =
797     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
798   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
799   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
800 
801   if (DT) {
802     if (DomTreeNode *OldNode = DT->getNode(Head)) {
803       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
804 
805       DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
806       for (DomTreeNode *Child : Children)
807         DT->changeImmediateDominator(Child, NewNode);
808 
809       // Head dominates ThenBlock.
810       if (CreateThenBlock)
811         DT->addNewBlock(ThenBlock, Head);
812       else
813         DT->changeImmediateDominator(ThenBlock, Head);
814     }
815   }
816 
817   if (LI) {
818     if (Loop *L = LI->getLoopFor(Head)) {
819       L->addBasicBlockToLoop(ThenBlock, *LI);
820       L->addBasicBlockToLoop(Tail, *LI);
821     }
822   }
823 
824   return CheckTerm;
825 }
826 
827 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
828                                          Instruction **ThenTerm,
829                                          Instruction **ElseTerm,
830                                          MDNode *BranchWeights) {
831   BasicBlock *Head = SplitBefore->getParent();
832   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
833   Instruction *HeadOldTerm = Head->getTerminator();
834   LLVMContext &C = Head->getContext();
835   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
836   BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
837   *ThenTerm = BranchInst::Create(Tail, ThenBlock);
838   (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
839   *ElseTerm = BranchInst::Create(Tail, ElseBlock);
840   (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
841   BranchInst *HeadNewTerm =
842     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
843   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
844   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
845 }
846 
847 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
848                              BasicBlock *&IfFalse) {
849   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
850   BasicBlock *Pred1 = nullptr;
851   BasicBlock *Pred2 = nullptr;
852 
853   if (SomePHI) {
854     if (SomePHI->getNumIncomingValues() != 2)
855       return nullptr;
856     Pred1 = SomePHI->getIncomingBlock(0);
857     Pred2 = SomePHI->getIncomingBlock(1);
858   } else {
859     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
860     if (PI == PE) // No predecessor
861       return nullptr;
862     Pred1 = *PI++;
863     if (PI == PE) // Only one predecessor
864       return nullptr;
865     Pred2 = *PI++;
866     if (PI != PE) // More than two predecessors
867       return nullptr;
868   }
869 
870   // We can only handle branches.  Other control flow will be lowered to
871   // branches if possible anyway.
872   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
873   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
874   if (!Pred1Br || !Pred2Br)
875     return nullptr;
876 
877   // Eliminate code duplication by ensuring that Pred1Br is conditional if
878   // either are.
879   if (Pred2Br->isConditional()) {
880     // If both branches are conditional, we don't have an "if statement".  In
881     // reality, we could transform this case, but since the condition will be
882     // required anyway, we stand no chance of eliminating it, so the xform is
883     // probably not profitable.
884     if (Pred1Br->isConditional())
885       return nullptr;
886 
887     std::swap(Pred1, Pred2);
888     std::swap(Pred1Br, Pred2Br);
889   }
890 
891   if (Pred1Br->isConditional()) {
892     // The only thing we have to watch out for here is to make sure that Pred2
893     // doesn't have incoming edges from other blocks.  If it does, the condition
894     // doesn't dominate BB.
895     if (!Pred2->getSinglePredecessor())
896       return nullptr;
897 
898     // If we found a conditional branch predecessor, make sure that it branches
899     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
900     if (Pred1Br->getSuccessor(0) == BB &&
901         Pred1Br->getSuccessor(1) == Pred2) {
902       IfTrue = Pred1;
903       IfFalse = Pred2;
904     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
905                Pred1Br->getSuccessor(1) == BB) {
906       IfTrue = Pred2;
907       IfFalse = Pred1;
908     } else {
909       // We know that one arm of the conditional goes to BB, so the other must
910       // go somewhere unrelated, and this must not be an "if statement".
911       return nullptr;
912     }
913 
914     return Pred1Br->getCondition();
915   }
916 
917   // Ok, if we got here, both predecessors end with an unconditional branch to
918   // BB.  Don't panic!  If both blocks only have a single (identical)
919   // predecessor, and THAT is a conditional branch, then we're all ok!
920   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
921   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
922     return nullptr;
923 
924   // Otherwise, if this is a conditional branch, then we can use it!
925   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
926   if (!BI) return nullptr;
927 
928   assert(BI->isConditional() && "Two successors but not conditional?");
929   if (BI->getSuccessor(0) == Pred1) {
930     IfTrue = Pred1;
931     IfFalse = Pred2;
932   } else {
933     IfTrue = Pred2;
934     IfFalse = Pred1;
935   }
936   return BI->getCondition();
937 }
938