1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform manipulations on basic blocks, and
10 // instructions contained within basic blocks.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/DomTreeUpdater.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/Analysis/PostDominators.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/IR/ValueHandle.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Transforms/Utils/Local.h"
42 #include <cassert>
43 #include <cstdint>
44 #include <string>
45 #include <utility>
46 #include <vector>
47 
48 using namespace llvm;
49 
50 void llvm::DetatchDeadBlocks(
51     ArrayRef<BasicBlock *> BBs,
52     SmallVectorImpl<DominatorTree::UpdateType> *Updates,
53     bool KeepOneInputPHIs) {
54   for (auto *BB : BBs) {
55     // Loop through all of our successors and make sure they know that one
56     // of their predecessors is going away.
57     SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
58     for (BasicBlock *Succ : successors(BB)) {
59       Succ->removePredecessor(BB, KeepOneInputPHIs);
60       if (Updates && UniqueSuccessors.insert(Succ).second)
61         Updates->push_back({DominatorTree::Delete, BB, Succ});
62     }
63 
64     // Zap all the instructions in the block.
65     while (!BB->empty()) {
66       Instruction &I = BB->back();
67       // If this instruction is used, replace uses with an arbitrary value.
68       // Because control flow can't get here, we don't care what we replace the
69       // value with.  Note that since this block is unreachable, and all values
70       // contained within it must dominate their uses, that all uses will
71       // eventually be removed (they are themselves dead).
72       if (!I.use_empty())
73         I.replaceAllUsesWith(UndefValue::get(I.getType()));
74       BB->getInstList().pop_back();
75     }
76     new UnreachableInst(BB->getContext(), BB);
77     assert(BB->getInstList().size() == 1 &&
78            isa<UnreachableInst>(BB->getTerminator()) &&
79            "The successor list of BB isn't empty before "
80            "applying corresponding DTU updates.");
81   }
82 }
83 
84 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
85                            bool KeepOneInputPHIs) {
86   DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
87 }
88 
89 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
90                             bool KeepOneInputPHIs) {
91 #ifndef NDEBUG
92   // Make sure that all predecessors of each dead block is also dead.
93   SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
94   assert(Dead.size() == BBs.size() && "Duplicating blocks?");
95   for (auto *BB : Dead)
96     for (BasicBlock *Pred : predecessors(BB))
97       assert(Dead.count(Pred) && "All predecessors must be dead!");
98 #endif
99 
100   SmallVector<DominatorTree::UpdateType, 4> Updates;
101   DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
102 
103   if (DTU)
104     DTU->applyUpdatesPermissive(Updates);
105 
106   for (BasicBlock *BB : BBs)
107     if (DTU)
108       DTU->deleteBB(BB);
109     else
110       BB->eraseFromParent();
111 }
112 
113 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
114                                    MemoryDependenceResults *MemDep) {
115   if (!isa<PHINode>(BB->begin())) return;
116 
117   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
118     if (PN->getIncomingValue(0) != PN)
119       PN->replaceAllUsesWith(PN->getIncomingValue(0));
120     else
121       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
122 
123     if (MemDep)
124       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
125 
126     PN->eraseFromParent();
127   }
128 }
129 
130 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
131   // Recursively deleting a PHI may cause multiple PHIs to be deleted
132   // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
133   SmallVector<WeakTrackingVH, 8> PHIs;
134   for (PHINode &PN : BB->phis())
135     PHIs.push_back(&PN);
136 
137   bool Changed = false;
138   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
139     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
140       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI);
141 
142   return Changed;
143 }
144 
145 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
146                                      LoopInfo *LI, MemorySSAUpdater *MSSAU,
147                                      MemoryDependenceResults *MemDep) {
148   if (BB->hasAddressTaken())
149     return false;
150 
151   // Can't merge if there are multiple predecessors, or no predecessors.
152   BasicBlock *PredBB = BB->getUniquePredecessor();
153   if (!PredBB) return false;
154 
155   // Don't break self-loops.
156   if (PredBB == BB) return false;
157   // Don't break unwinding instructions.
158   if (PredBB->getTerminator()->isExceptionalTerminator())
159     return false;
160 
161   // Can't merge if there are multiple distinct successors.
162   if (PredBB->getUniqueSuccessor() != BB)
163     return false;
164 
165   // Can't merge if there is PHI loop.
166   for (PHINode &PN : BB->phis())
167     for (Value *IncValue : PN.incoming_values())
168       if (IncValue == &PN)
169         return false;
170 
171   // Begin by getting rid of unneeded PHIs.
172   SmallVector<AssertingVH<Value>, 4> IncomingValues;
173   if (isa<PHINode>(BB->front())) {
174     for (PHINode &PN : BB->phis())
175       if (!isa<PHINode>(PN.getIncomingValue(0)) ||
176           cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
177         IncomingValues.push_back(PN.getIncomingValue(0));
178     FoldSingleEntryPHINodes(BB, MemDep);
179   }
180 
181   // DTU update: Collect all the edges that exit BB.
182   // These dominator edges will be redirected from Pred.
183   std::vector<DominatorTree::UpdateType> Updates;
184   if (DTU) {
185     Updates.reserve(1 + (2 * succ_size(BB)));
186     Updates.push_back({DominatorTree::Delete, PredBB, BB});
187     for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
188       Updates.push_back({DominatorTree::Delete, BB, *I});
189       // This successor of BB may already have PredBB as a predecessor.
190       if (llvm::find(successors(PredBB), *I) == succ_end(PredBB))
191         Updates.push_back({DominatorTree::Insert, PredBB, *I});
192     }
193   }
194 
195   if (MSSAU)
196     MSSAU->moveAllAfterMergeBlocks(BB, PredBB, &*(BB->begin()));
197 
198   // Delete the unconditional branch from the predecessor...
199   PredBB->getInstList().pop_back();
200 
201   // Make all PHI nodes that referred to BB now refer to Pred as their
202   // source...
203   BB->replaceAllUsesWith(PredBB);
204 
205   // Move all definitions in the successor to the predecessor...
206   PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
207   new UnreachableInst(BB->getContext(), BB);
208 
209   // Eliminate duplicate dbg.values describing the entry PHI node post-splice.
210   for (auto Incoming : IncomingValues) {
211     if (isa<Instruction>(*Incoming)) {
212       SmallVector<DbgValueInst *, 2> DbgValues;
213       SmallDenseSet<std::pair<DILocalVariable *, DIExpression *>, 2>
214           DbgValueSet;
215       llvm::findDbgValues(DbgValues, Incoming);
216       for (auto &DVI : DbgValues) {
217         auto R = DbgValueSet.insert({DVI->getVariable(), DVI->getExpression()});
218         if (!R.second)
219           DVI->eraseFromParent();
220       }
221     }
222   }
223 
224   // Inherit predecessors name if it exists.
225   if (!PredBB->hasName())
226     PredBB->takeName(BB);
227 
228   if (LI)
229     LI->removeBlock(BB);
230 
231   if (MemDep)
232     MemDep->invalidateCachedPredecessors();
233 
234   // Finally, erase the old block and update dominator info.
235   if (DTU) {
236     assert(BB->getInstList().size() == 1 &&
237            isa<UnreachableInst>(BB->getTerminator()) &&
238            "The successor list of BB isn't empty before "
239            "applying corresponding DTU updates.");
240     DTU->applyUpdatesPermissive(Updates);
241     DTU->deleteBB(BB);
242   }
243 
244   else {
245     BB->eraseFromParent(); // Nuke BB if DTU is nullptr.
246   }
247   return true;
248 }
249 
250 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
251                                 BasicBlock::iterator &BI, Value *V) {
252   Instruction &I = *BI;
253   // Replaces all of the uses of the instruction with uses of the value
254   I.replaceAllUsesWith(V);
255 
256   // Make sure to propagate a name if there is one already.
257   if (I.hasName() && !V->hasName())
258     V->takeName(&I);
259 
260   // Delete the unnecessary instruction now...
261   BI = BIL.erase(BI);
262 }
263 
264 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
265                                BasicBlock::iterator &BI, Instruction *I) {
266   assert(I->getParent() == nullptr &&
267          "ReplaceInstWithInst: Instruction already inserted into basic block!");
268 
269   // Copy debug location to newly added instruction, if it wasn't already set
270   // by the caller.
271   if (!I->getDebugLoc())
272     I->setDebugLoc(BI->getDebugLoc());
273 
274   // Insert the new instruction into the basic block...
275   BasicBlock::iterator New = BIL.insert(BI, I);
276 
277   // Replace all uses of the old instruction, and delete it.
278   ReplaceInstWithValue(BIL, BI, I);
279 
280   // Move BI back to point to the newly inserted instruction
281   BI = New;
282 }
283 
284 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
285   BasicBlock::iterator BI(From);
286   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
287 }
288 
289 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
290                             LoopInfo *LI, MemorySSAUpdater *MSSAU) {
291   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
292 
293   // If this is a critical edge, let SplitCriticalEdge do it.
294   Instruction *LatchTerm = BB->getTerminator();
295   if (SplitCriticalEdge(
296           LatchTerm, SuccNum,
297           CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()))
298     return LatchTerm->getSuccessor(SuccNum);
299 
300   // If the edge isn't critical, then BB has a single successor or Succ has a
301   // single pred.  Split the block.
302   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
303     // If the successor only has a single pred, split the top of the successor
304     // block.
305     assert(SP == BB && "CFG broken");
306     SP = nullptr;
307     return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU);
308   }
309 
310   // Otherwise, if BB has a single successor, split it at the bottom of the
311   // block.
312   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
313          "Should have a single succ!");
314   return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU);
315 }
316 
317 unsigned
318 llvm::SplitAllCriticalEdges(Function &F,
319                             const CriticalEdgeSplittingOptions &Options) {
320   unsigned NumBroken = 0;
321   for (BasicBlock &BB : F) {
322     Instruction *TI = BB.getTerminator();
323     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
324       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
325         if (SplitCriticalEdge(TI, i, Options))
326           ++NumBroken;
327   }
328   return NumBroken;
329 }
330 
331 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
332                              DominatorTree *DT, LoopInfo *LI,
333                              MemorySSAUpdater *MSSAU) {
334   BasicBlock::iterator SplitIt = SplitPt->getIterator();
335   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
336     ++SplitIt;
337   BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
338 
339   // The new block lives in whichever loop the old one did. This preserves
340   // LCSSA as well, because we force the split point to be after any PHI nodes.
341   if (LI)
342     if (Loop *L = LI->getLoopFor(Old))
343       L->addBasicBlockToLoop(New, *LI);
344 
345   if (DT)
346     // Old dominates New. New node dominates all other nodes dominated by Old.
347     if (DomTreeNode *OldNode = DT->getNode(Old)) {
348       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
349 
350       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
351       for (DomTreeNode *I : Children)
352         DT->changeImmediateDominator(I, NewNode);
353     }
354 
355   // Move MemoryAccesses still tracked in Old, but part of New now.
356   // Update accesses in successor blocks accordingly.
357   if (MSSAU)
358     MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
359 
360   return New;
361 }
362 
363 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
364 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
365                                       ArrayRef<BasicBlock *> Preds,
366                                       DominatorTree *DT, LoopInfo *LI,
367                                       MemorySSAUpdater *MSSAU,
368                                       bool PreserveLCSSA, bool &HasLoopExit) {
369   // Update dominator tree if available.
370   if (DT) {
371     if (OldBB == DT->getRootNode()->getBlock()) {
372       assert(NewBB == &NewBB->getParent()->getEntryBlock());
373       DT->setNewRoot(NewBB);
374     } else {
375       // Split block expects NewBB to have a non-empty set of predecessors.
376       DT->splitBlock(NewBB);
377     }
378   }
379 
380   // Update MemoryPhis after split if MemorySSA is available
381   if (MSSAU)
382     MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
383 
384   // The rest of the logic is only relevant for updating the loop structures.
385   if (!LI)
386     return;
387 
388   assert(DT && "DT should be available to update LoopInfo!");
389   Loop *L = LI->getLoopFor(OldBB);
390 
391   // If we need to preserve loop analyses, collect some information about how
392   // this split will affect loops.
393   bool IsLoopEntry = !!L;
394   bool SplitMakesNewLoopHeader = false;
395   for (BasicBlock *Pred : Preds) {
396     // Preds that are not reachable from entry should not be used to identify if
397     // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
398     // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
399     // as true and make the NewBB the header of some loop. This breaks LI.
400     if (!DT->isReachableFromEntry(Pred))
401       continue;
402     // If we need to preserve LCSSA, determine if any of the preds is a loop
403     // exit.
404     if (PreserveLCSSA)
405       if (Loop *PL = LI->getLoopFor(Pred))
406         if (!PL->contains(OldBB))
407           HasLoopExit = true;
408 
409     // If we need to preserve LoopInfo, note whether any of the preds crosses
410     // an interesting loop boundary.
411     if (!L)
412       continue;
413     if (L->contains(Pred))
414       IsLoopEntry = false;
415     else
416       SplitMakesNewLoopHeader = true;
417   }
418 
419   // Unless we have a loop for OldBB, nothing else to do here.
420   if (!L)
421     return;
422 
423   if (IsLoopEntry) {
424     // Add the new block to the nearest enclosing loop (and not an adjacent
425     // loop). To find this, examine each of the predecessors and determine which
426     // loops enclose them, and select the most-nested loop which contains the
427     // loop containing the block being split.
428     Loop *InnermostPredLoop = nullptr;
429     for (BasicBlock *Pred : Preds) {
430       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
431         // Seek a loop which actually contains the block being split (to avoid
432         // adjacent loops).
433         while (PredLoop && !PredLoop->contains(OldBB))
434           PredLoop = PredLoop->getParentLoop();
435 
436         // Select the most-nested of these loops which contains the block.
437         if (PredLoop && PredLoop->contains(OldBB) &&
438             (!InnermostPredLoop ||
439              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
440           InnermostPredLoop = PredLoop;
441       }
442     }
443 
444     if (InnermostPredLoop)
445       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
446   } else {
447     L->addBasicBlockToLoop(NewBB, *LI);
448     if (SplitMakesNewLoopHeader)
449       L->moveToHeader(NewBB);
450   }
451 }
452 
453 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
454 /// This also updates AliasAnalysis, if available.
455 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
456                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
457                            bool HasLoopExit) {
458   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
459   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
460   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
461     PHINode *PN = cast<PHINode>(I++);
462 
463     // Check to see if all of the values coming in are the same.  If so, we
464     // don't need to create a new PHI node, unless it's needed for LCSSA.
465     Value *InVal = nullptr;
466     if (!HasLoopExit) {
467       InVal = PN->getIncomingValueForBlock(Preds[0]);
468       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
469         if (!PredSet.count(PN->getIncomingBlock(i)))
470           continue;
471         if (!InVal)
472           InVal = PN->getIncomingValue(i);
473         else if (InVal != PN->getIncomingValue(i)) {
474           InVal = nullptr;
475           break;
476         }
477       }
478     }
479 
480     if (InVal) {
481       // If all incoming values for the new PHI would be the same, just don't
482       // make a new PHI.  Instead, just remove the incoming values from the old
483       // PHI.
484 
485       // NOTE! This loop walks backwards for a reason! First off, this minimizes
486       // the cost of removal if we end up removing a large number of values, and
487       // second off, this ensures that the indices for the incoming values
488       // aren't invalidated when we remove one.
489       for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
490         if (PredSet.count(PN->getIncomingBlock(i)))
491           PN->removeIncomingValue(i, false);
492 
493       // Add an incoming value to the PHI node in the loop for the preheader
494       // edge.
495       PN->addIncoming(InVal, NewBB);
496       continue;
497     }
498 
499     // If the values coming into the block are not the same, we need a new
500     // PHI.
501     // Create the new PHI node, insert it into NewBB at the end of the block
502     PHINode *NewPHI =
503         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
504 
505     // NOTE! This loop walks backwards for a reason! First off, this minimizes
506     // the cost of removal if we end up removing a large number of values, and
507     // second off, this ensures that the indices for the incoming values aren't
508     // invalidated when we remove one.
509     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
510       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
511       if (PredSet.count(IncomingBB)) {
512         Value *V = PN->removeIncomingValue(i, false);
513         NewPHI->addIncoming(V, IncomingBB);
514       }
515     }
516 
517     PN->addIncoming(NewPHI, NewBB);
518   }
519 }
520 
521 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
522                                          ArrayRef<BasicBlock *> Preds,
523                                          const char *Suffix, DominatorTree *DT,
524                                          LoopInfo *LI, MemorySSAUpdater *MSSAU,
525                                          bool PreserveLCSSA) {
526   // Do not attempt to split that which cannot be split.
527   if (!BB->canSplitPredecessors())
528     return nullptr;
529 
530   // For the landingpads we need to act a bit differently.
531   // Delegate this work to the SplitLandingPadPredecessors.
532   if (BB->isLandingPad()) {
533     SmallVector<BasicBlock*, 2> NewBBs;
534     std::string NewName = std::string(Suffix) + ".split-lp";
535 
536     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT,
537                                 LI, MSSAU, PreserveLCSSA);
538     return NewBBs[0];
539   }
540 
541   // Create new basic block, insert right before the original block.
542   BasicBlock *NewBB = BasicBlock::Create(
543       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
544 
545   // The new block unconditionally branches to the old block.
546   BranchInst *BI = BranchInst::Create(BB, NewBB);
547   BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
548 
549   // Move the edges from Preds to point to NewBB instead of BB.
550   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
551     // This is slightly more strict than necessary; the minimum requirement
552     // is that there be no more than one indirectbr branching to BB. And
553     // all BlockAddress uses would need to be updated.
554     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
555            "Cannot split an edge from an IndirectBrInst");
556     assert(!isa<CallBrInst>(Preds[i]->getTerminator()) &&
557            "Cannot split an edge from a CallBrInst");
558     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
559   }
560 
561   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
562   // node becomes an incoming value for BB's phi node.  However, if the Preds
563   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
564   // account for the newly created predecessor.
565   if (Preds.empty()) {
566     // Insert dummy values as the incoming value.
567     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
568       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
569   }
570 
571   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
572   bool HasLoopExit = false;
573   UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, MSSAU, PreserveLCSSA,
574                             HasLoopExit);
575 
576   if (!Preds.empty()) {
577     // Update the PHI nodes in BB with the values coming from NewBB.
578     UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
579   }
580 
581   return NewBB;
582 }
583 
584 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
585                                        ArrayRef<BasicBlock *> Preds,
586                                        const char *Suffix1, const char *Suffix2,
587                                        SmallVectorImpl<BasicBlock *> &NewBBs,
588                                        DominatorTree *DT, LoopInfo *LI,
589                                        MemorySSAUpdater *MSSAU,
590                                        bool PreserveLCSSA) {
591   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
592 
593   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
594   // it right before the original block.
595   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
596                                           OrigBB->getName() + Suffix1,
597                                           OrigBB->getParent(), OrigBB);
598   NewBBs.push_back(NewBB1);
599 
600   // The new block unconditionally branches to the old block.
601   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
602   BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
603 
604   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
605   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
606     // This is slightly more strict than necessary; the minimum requirement
607     // is that there be no more than one indirectbr branching to BB. And
608     // all BlockAddress uses would need to be updated.
609     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
610            "Cannot split an edge from an IndirectBrInst");
611     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
612   }
613 
614   bool HasLoopExit = false;
615   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, MSSAU, PreserveLCSSA,
616                             HasLoopExit);
617 
618   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
619   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
620 
621   // Move the remaining edges from OrigBB to point to NewBB2.
622   SmallVector<BasicBlock*, 8> NewBB2Preds;
623   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
624        i != e; ) {
625     BasicBlock *Pred = *i++;
626     if (Pred == NewBB1) continue;
627     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
628            "Cannot split an edge from an IndirectBrInst");
629     NewBB2Preds.push_back(Pred);
630     e = pred_end(OrigBB);
631   }
632 
633   BasicBlock *NewBB2 = nullptr;
634   if (!NewBB2Preds.empty()) {
635     // Create another basic block for the rest of OrigBB's predecessors.
636     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
637                                 OrigBB->getName() + Suffix2,
638                                 OrigBB->getParent(), OrigBB);
639     NewBBs.push_back(NewBB2);
640 
641     // The new block unconditionally branches to the old block.
642     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
643     BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
644 
645     // Move the remaining edges from OrigBB to point to NewBB2.
646     for (BasicBlock *NewBB2Pred : NewBB2Preds)
647       NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
648 
649     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
650     HasLoopExit = false;
651     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, MSSAU,
652                               PreserveLCSSA, HasLoopExit);
653 
654     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
655     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
656   }
657 
658   LandingPadInst *LPad = OrigBB->getLandingPadInst();
659   Instruction *Clone1 = LPad->clone();
660   Clone1->setName(Twine("lpad") + Suffix1);
661   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
662 
663   if (NewBB2) {
664     Instruction *Clone2 = LPad->clone();
665     Clone2->setName(Twine("lpad") + Suffix2);
666     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
667 
668     // Create a PHI node for the two cloned landingpad instructions only
669     // if the original landingpad instruction has some uses.
670     if (!LPad->use_empty()) {
671       assert(!LPad->getType()->isTokenTy() &&
672              "Split cannot be applied if LPad is token type. Otherwise an "
673              "invalid PHINode of token type would be created.");
674       PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
675       PN->addIncoming(Clone1, NewBB1);
676       PN->addIncoming(Clone2, NewBB2);
677       LPad->replaceAllUsesWith(PN);
678     }
679     LPad->eraseFromParent();
680   } else {
681     // There is no second clone. Just replace the landing pad with the first
682     // clone.
683     LPad->replaceAllUsesWith(Clone1);
684     LPad->eraseFromParent();
685   }
686 }
687 
688 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
689                                              BasicBlock *Pred,
690                                              DomTreeUpdater *DTU) {
691   Instruction *UncondBranch = Pred->getTerminator();
692   // Clone the return and add it to the end of the predecessor.
693   Instruction *NewRet = RI->clone();
694   Pred->getInstList().push_back(NewRet);
695 
696   // If the return instruction returns a value, and if the value was a
697   // PHI node in "BB", propagate the right value into the return.
698   for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
699        i != e; ++i) {
700     Value *V = *i;
701     Instruction *NewBC = nullptr;
702     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
703       // Return value might be bitcasted. Clone and insert it before the
704       // return instruction.
705       V = BCI->getOperand(0);
706       NewBC = BCI->clone();
707       Pred->getInstList().insert(NewRet->getIterator(), NewBC);
708       *i = NewBC;
709     }
710     if (PHINode *PN = dyn_cast<PHINode>(V)) {
711       if (PN->getParent() == BB) {
712         if (NewBC)
713           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
714         else
715           *i = PN->getIncomingValueForBlock(Pred);
716       }
717     }
718   }
719 
720   // Update any PHI nodes in the returning block to realize that we no
721   // longer branch to them.
722   BB->removePredecessor(Pred);
723   UncondBranch->eraseFromParent();
724 
725   if (DTU)
726     DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
727 
728   return cast<ReturnInst>(NewRet);
729 }
730 
731 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
732                                              Instruction *SplitBefore,
733                                              bool Unreachable,
734                                              MDNode *BranchWeights,
735                                              DominatorTree *DT, LoopInfo *LI,
736                                              BasicBlock *ThenBlock) {
737   BasicBlock *Head = SplitBefore->getParent();
738   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
739   Instruction *HeadOldTerm = Head->getTerminator();
740   LLVMContext &C = Head->getContext();
741   Instruction *CheckTerm;
742   bool CreateThenBlock = (ThenBlock == nullptr);
743   if (CreateThenBlock) {
744     ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
745     if (Unreachable)
746       CheckTerm = new UnreachableInst(C, ThenBlock);
747     else
748       CheckTerm = BranchInst::Create(Tail, ThenBlock);
749     CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
750   } else
751     CheckTerm = ThenBlock->getTerminator();
752   BranchInst *HeadNewTerm =
753     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
754   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
755   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
756 
757   if (DT) {
758     if (DomTreeNode *OldNode = DT->getNode(Head)) {
759       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
760 
761       DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
762       for (DomTreeNode *Child : Children)
763         DT->changeImmediateDominator(Child, NewNode);
764 
765       // Head dominates ThenBlock.
766       if (CreateThenBlock)
767         DT->addNewBlock(ThenBlock, Head);
768       else
769         DT->changeImmediateDominator(ThenBlock, Head);
770     }
771   }
772 
773   if (LI) {
774     if (Loop *L = LI->getLoopFor(Head)) {
775       L->addBasicBlockToLoop(ThenBlock, *LI);
776       L->addBasicBlockToLoop(Tail, *LI);
777     }
778   }
779 
780   return CheckTerm;
781 }
782 
783 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
784                                          Instruction **ThenTerm,
785                                          Instruction **ElseTerm,
786                                          MDNode *BranchWeights) {
787   BasicBlock *Head = SplitBefore->getParent();
788   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
789   Instruction *HeadOldTerm = Head->getTerminator();
790   LLVMContext &C = Head->getContext();
791   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
792   BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
793   *ThenTerm = BranchInst::Create(Tail, ThenBlock);
794   (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
795   *ElseTerm = BranchInst::Create(Tail, ElseBlock);
796   (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
797   BranchInst *HeadNewTerm =
798     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
799   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
800   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
801 }
802 
803 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
804                              BasicBlock *&IfFalse) {
805   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
806   BasicBlock *Pred1 = nullptr;
807   BasicBlock *Pred2 = nullptr;
808 
809   if (SomePHI) {
810     if (SomePHI->getNumIncomingValues() != 2)
811       return nullptr;
812     Pred1 = SomePHI->getIncomingBlock(0);
813     Pred2 = SomePHI->getIncomingBlock(1);
814   } else {
815     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
816     if (PI == PE) // No predecessor
817       return nullptr;
818     Pred1 = *PI++;
819     if (PI == PE) // Only one predecessor
820       return nullptr;
821     Pred2 = *PI++;
822     if (PI != PE) // More than two predecessors
823       return nullptr;
824   }
825 
826   // We can only handle branches.  Other control flow will be lowered to
827   // branches if possible anyway.
828   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
829   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
830   if (!Pred1Br || !Pred2Br)
831     return nullptr;
832 
833   // Eliminate code duplication by ensuring that Pred1Br is conditional if
834   // either are.
835   if (Pred2Br->isConditional()) {
836     // If both branches are conditional, we don't have an "if statement".  In
837     // reality, we could transform this case, but since the condition will be
838     // required anyway, we stand no chance of eliminating it, so the xform is
839     // probably not profitable.
840     if (Pred1Br->isConditional())
841       return nullptr;
842 
843     std::swap(Pred1, Pred2);
844     std::swap(Pred1Br, Pred2Br);
845   }
846 
847   if (Pred1Br->isConditional()) {
848     // The only thing we have to watch out for here is to make sure that Pred2
849     // doesn't have incoming edges from other blocks.  If it does, the condition
850     // doesn't dominate BB.
851     if (!Pred2->getSinglePredecessor())
852       return nullptr;
853 
854     // If we found a conditional branch predecessor, make sure that it branches
855     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
856     if (Pred1Br->getSuccessor(0) == BB &&
857         Pred1Br->getSuccessor(1) == Pred2) {
858       IfTrue = Pred1;
859       IfFalse = Pred2;
860     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
861                Pred1Br->getSuccessor(1) == BB) {
862       IfTrue = Pred2;
863       IfFalse = Pred1;
864     } else {
865       // We know that one arm of the conditional goes to BB, so the other must
866       // go somewhere unrelated, and this must not be an "if statement".
867       return nullptr;
868     }
869 
870     return Pred1Br->getCondition();
871   }
872 
873   // Ok, if we got here, both predecessors end with an unconditional branch to
874   // BB.  Don't panic!  If both blocks only have a single (identical)
875   // predecessor, and THAT is a conditional branch, then we're all ok!
876   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
877   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
878     return nullptr;
879 
880   // Otherwise, if this is a conditional branch, then we can use it!
881   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
882   if (!BI) return nullptr;
883 
884   assert(BI->isConditional() && "Two successors but not conditional?");
885   if (BI->getSuccessor(0) == Pred1) {
886     IfTrue = Pred1;
887     IfFalse = Pred2;
888   } else {
889     IfTrue = Pred2;
890     IfFalse = Pred1;
891   }
892   return BI->getCondition();
893 }
894