1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform manipulations on basic blocks, and
10 // instructions contained within basic blocks.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/DomTreeUpdater.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/Analysis/PostDominators.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/IR/ValueHandle.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include <cassert>
45 #include <cstdint>
46 #include <string>
47 #include <utility>
48 #include <vector>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "basicblock-utils"
53 
54 void llvm::DetatchDeadBlocks(
55     ArrayRef<BasicBlock *> BBs,
56     SmallVectorImpl<DominatorTree::UpdateType> *Updates,
57     bool KeepOneInputPHIs) {
58   for (auto *BB : BBs) {
59     // Loop through all of our successors and make sure they know that one
60     // of their predecessors is going away.
61     SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
62     for (BasicBlock *Succ : successors(BB)) {
63       Succ->removePredecessor(BB, KeepOneInputPHIs);
64       if (Updates && UniqueSuccessors.insert(Succ).second)
65         Updates->push_back({DominatorTree::Delete, BB, Succ});
66     }
67 
68     // Zap all the instructions in the block.
69     while (!BB->empty()) {
70       Instruction &I = BB->back();
71       // If this instruction is used, replace uses with an arbitrary value.
72       // Because control flow can't get here, we don't care what we replace the
73       // value with.  Note that since this block is unreachable, and all values
74       // contained within it must dominate their uses, that all uses will
75       // eventually be removed (they are themselves dead).
76       if (!I.use_empty())
77         I.replaceAllUsesWith(UndefValue::get(I.getType()));
78       BB->getInstList().pop_back();
79     }
80     new UnreachableInst(BB->getContext(), BB);
81     assert(BB->getInstList().size() == 1 &&
82            isa<UnreachableInst>(BB->getTerminator()) &&
83            "The successor list of BB isn't empty before "
84            "applying corresponding DTU updates.");
85   }
86 }
87 
88 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
89                            bool KeepOneInputPHIs) {
90   DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
91 }
92 
93 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
94                             bool KeepOneInputPHIs) {
95 #ifndef NDEBUG
96   // Make sure that all predecessors of each dead block is also dead.
97   SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
98   assert(Dead.size() == BBs.size() && "Duplicating blocks?");
99   for (auto *BB : Dead)
100     for (BasicBlock *Pred : predecessors(BB))
101       assert(Dead.count(Pred) && "All predecessors must be dead!");
102 #endif
103 
104   SmallVector<DominatorTree::UpdateType, 4> Updates;
105   DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
106 
107   if (DTU)
108     DTU->applyUpdatesPermissive(Updates);
109 
110   for (BasicBlock *BB : BBs)
111     if (DTU)
112       DTU->deleteBB(BB);
113     else
114       BB->eraseFromParent();
115 }
116 
117 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
118                                       bool KeepOneInputPHIs) {
119   df_iterator_default_set<BasicBlock*> Reachable;
120 
121   // Mark all reachable blocks.
122   for (BasicBlock *BB : depth_first_ext(&F, Reachable))
123     (void)BB/* Mark all reachable blocks */;
124 
125   // Collect all dead blocks.
126   std::vector<BasicBlock*> DeadBlocks;
127   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
128     if (!Reachable.count(&*I)) {
129       BasicBlock *BB = &*I;
130       DeadBlocks.push_back(BB);
131     }
132 
133   // Delete the dead blocks.
134   DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
135 
136   return !DeadBlocks.empty();
137 }
138 
139 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
140                                    MemoryDependenceResults *MemDep) {
141   if (!isa<PHINode>(BB->begin())) return;
142 
143   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
144     if (PN->getIncomingValue(0) != PN)
145       PN->replaceAllUsesWith(PN->getIncomingValue(0));
146     else
147       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
148 
149     if (MemDep)
150       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
151 
152     PN->eraseFromParent();
153   }
154 }
155 
156 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI,
157                           MemorySSAUpdater *MSSAU) {
158   // Recursively deleting a PHI may cause multiple PHIs to be deleted
159   // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
160   SmallVector<WeakTrackingVH, 8> PHIs;
161   for (PHINode &PN : BB->phis())
162     PHIs.push_back(&PN);
163 
164   bool Changed = false;
165   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
166     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
167       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU);
168 
169   return Changed;
170 }
171 
172 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
173                                      LoopInfo *LI, MemorySSAUpdater *MSSAU,
174                                      MemoryDependenceResults *MemDep,
175                                      bool PredecessorWithTwoSuccessors) {
176   if (BB->hasAddressTaken())
177     return false;
178 
179   // Can't merge if there are multiple predecessors, or no predecessors.
180   BasicBlock *PredBB = BB->getUniquePredecessor();
181   if (!PredBB) return false;
182 
183   // Don't break self-loops.
184   if (PredBB == BB) return false;
185   // Don't break unwinding instructions.
186   if (PredBB->getTerminator()->isExceptionalTerminator())
187     return false;
188 
189   // Can't merge if there are multiple distinct successors.
190   if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
191     return false;
192 
193   // Currently only allow PredBB to have two predecessors, one being BB.
194   // Update BI to branch to BB's only successor instead of BB.
195   BranchInst *PredBB_BI;
196   BasicBlock *NewSucc = nullptr;
197   unsigned FallThruPath;
198   if (PredecessorWithTwoSuccessors) {
199     if (!(PredBB_BI = dyn_cast<BranchInst>(PredBB->getTerminator())))
200       return false;
201     BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
202     if (!BB_JmpI || !BB_JmpI->isUnconditional())
203       return false;
204     NewSucc = BB_JmpI->getSuccessor(0);
205     FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
206   }
207 
208   // Can't merge if there is PHI loop.
209   for (PHINode &PN : BB->phis())
210     for (Value *IncValue : PN.incoming_values())
211       if (IncValue == &PN)
212         return false;
213 
214   LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
215                     << PredBB->getName() << "\n");
216 
217   // Begin by getting rid of unneeded PHIs.
218   SmallVector<AssertingVH<Value>, 4> IncomingValues;
219   if (isa<PHINode>(BB->front())) {
220     for (PHINode &PN : BB->phis())
221       if (!isa<PHINode>(PN.getIncomingValue(0)) ||
222           cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
223         IncomingValues.push_back(PN.getIncomingValue(0));
224     FoldSingleEntryPHINodes(BB, MemDep);
225   }
226 
227   // DTU update: Collect all the edges that exit BB.
228   // These dominator edges will be redirected from Pred.
229   std::vector<DominatorTree::UpdateType> Updates;
230   if (DTU) {
231     Updates.reserve(1 + (2 * succ_size(BB)));
232     // Add insert edges first. Experimentally, for the particular case of two
233     // blocks that can be merged, with a single successor and single predecessor
234     // respectively, it is beneficial to have all insert updates first. Deleting
235     // edges first may lead to unreachable blocks, followed by inserting edges
236     // making the blocks reachable again. Such DT updates lead to high compile
237     // times. We add inserts before deletes here to reduce compile time.
238     for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
239       // This successor of BB may already have PredBB as a predecessor.
240       if (llvm::find(successors(PredBB), *I) == succ_end(PredBB))
241         Updates.push_back({DominatorTree::Insert, PredBB, *I});
242     for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
243       Updates.push_back({DominatorTree::Delete, BB, *I});
244     Updates.push_back({DominatorTree::Delete, PredBB, BB});
245   }
246 
247   Instruction *PTI = PredBB->getTerminator();
248   Instruction *STI = BB->getTerminator();
249   Instruction *Start = &*BB->begin();
250   // If there's nothing to move, mark the starting instruction as the last
251   // instruction in the block. Terminator instruction is handled separately.
252   if (Start == STI)
253     Start = PTI;
254 
255   // Move all definitions in the successor to the predecessor...
256   PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(),
257                                BB->begin(), STI->getIterator());
258 
259   if (MSSAU)
260     MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);
261 
262   // Make all PHI nodes that referred to BB now refer to Pred as their
263   // source...
264   BB->replaceAllUsesWith(PredBB);
265 
266   if (PredecessorWithTwoSuccessors) {
267     // Delete the unconditional branch from BB.
268     BB->getInstList().pop_back();
269 
270     // Update branch in the predecessor.
271     PredBB_BI->setSuccessor(FallThruPath, NewSucc);
272   } else {
273     // Delete the unconditional branch from the predecessor.
274     PredBB->getInstList().pop_back();
275 
276     // Move terminator instruction.
277     PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
278 
279     // Terminator may be a memory accessing instruction too.
280     if (MSSAU)
281       if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>(
282               MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator())))
283         MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End);
284   }
285   // Add unreachable to now empty BB.
286   new UnreachableInst(BB->getContext(), BB);
287 
288   // Eliminate duplicate/redundant dbg.values. This seems to be a good place to
289   // do that since we might end up with redundant dbg.values describing the
290   // entry PHI node post-splice.
291   RemoveRedundantDbgInstrs(PredBB);
292 
293   // Inherit predecessors name if it exists.
294   if (!PredBB->hasName())
295     PredBB->takeName(BB);
296 
297   if (LI)
298     LI->removeBlock(BB);
299 
300   if (MemDep)
301     MemDep->invalidateCachedPredecessors();
302 
303   // Finally, erase the old block and update dominator info.
304   if (DTU) {
305     assert(BB->getInstList().size() == 1 &&
306            isa<UnreachableInst>(BB->getTerminator()) &&
307            "The successor list of BB isn't empty before "
308            "applying corresponding DTU updates.");
309     DTU->applyUpdatesPermissive(Updates);
310     DTU->deleteBB(BB);
311   } else {
312     BB->eraseFromParent(); // Nuke BB if DTU is nullptr.
313   }
314 
315   return true;
316 }
317 
318 /// Remove redundant instructions within sequences of consecutive dbg.value
319 /// instructions. This is done using a backward scan to keep the last dbg.value
320 /// describing a specific variable/fragment.
321 ///
322 /// BackwardScan strategy:
323 /// ----------------------
324 /// Given a sequence of consecutive DbgValueInst like this
325 ///
326 ///   dbg.value ..., "x", FragmentX1  (*)
327 ///   dbg.value ..., "y", FragmentY1
328 ///   dbg.value ..., "x", FragmentX2
329 ///   dbg.value ..., "x", FragmentX1  (**)
330 ///
331 /// then the instruction marked with (*) can be removed (it is guaranteed to be
332 /// obsoleted by the instruction marked with (**) as the latter instruction is
333 /// describing the same variable using the same fragment info).
334 ///
335 /// Possible improvements:
336 /// - Check fully overlapping fragments and not only identical fragments.
337 /// - Support dbg.addr, dbg.declare. dbg.label, and possibly other meta
338 ///   instructions being part of the sequence of consecutive instructions.
339 static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
340   SmallVector<DbgValueInst *, 8> ToBeRemoved;
341   SmallDenseSet<DebugVariable> VariableSet;
342   for (auto &I : reverse(*BB)) {
343     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
344       DebugVariable Key(DVI->getVariable(),
345                         DVI->getExpression(),
346                         DVI->getDebugLoc()->getInlinedAt());
347       auto R = VariableSet.insert(Key);
348       // If the same variable fragment is described more than once it is enough
349       // to keep the last one (i.e. the first found since we for reverse
350       // iteration).
351       if (!R.second)
352         ToBeRemoved.push_back(DVI);
353       continue;
354     }
355     // Sequence with consecutive dbg.value instrs ended. Clear the map to
356     // restart identifying redundant instructions if case we find another
357     // dbg.value sequence.
358     VariableSet.clear();
359   }
360 
361   for (auto &Instr : ToBeRemoved)
362     Instr->eraseFromParent();
363 
364   return !ToBeRemoved.empty();
365 }
366 
367 /// Remove redundant dbg.value instructions using a forward scan. This can
368 /// remove a dbg.value instruction that is redundant due to indicating that a
369 /// variable has the same value as already being indicated by an earlier
370 /// dbg.value.
371 ///
372 /// ForwardScan strategy:
373 /// ---------------------
374 /// Given two identical dbg.value instructions, separated by a block of
375 /// instructions that isn't describing the same variable, like this
376 ///
377 ///   dbg.value X1, "x", FragmentX1  (**)
378 ///   <block of instructions, none being "dbg.value ..., "x", ...">
379 ///   dbg.value X1, "x", FragmentX1  (*)
380 ///
381 /// then the instruction marked with (*) can be removed. Variable "x" is already
382 /// described as being mapped to the SSA value X1.
383 ///
384 /// Possible improvements:
385 /// - Keep track of non-overlapping fragments.
386 static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
387   SmallVector<DbgValueInst *, 8> ToBeRemoved;
388   DenseMap<DebugVariable, std::pair<Value *, DIExpression *> > VariableMap;
389   for (auto &I : *BB) {
390     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
391       DebugVariable Key(DVI->getVariable(),
392                         NoneType(),
393                         DVI->getDebugLoc()->getInlinedAt());
394       auto VMI = VariableMap.find(Key);
395       // Update the map if we found a new value/expression describing the
396       // variable, or if the variable wasn't mapped already.
397       if (VMI == VariableMap.end() ||
398           VMI->second.first != DVI->getValue() ||
399           VMI->second.second != DVI->getExpression()) {
400         VariableMap[Key] = { DVI->getValue(), DVI->getExpression() };
401         continue;
402       }
403       // Found an identical mapping. Remember the instruction for later removal.
404       ToBeRemoved.push_back(DVI);
405     }
406   }
407 
408   for (auto &Instr : ToBeRemoved)
409     Instr->eraseFromParent();
410 
411   return !ToBeRemoved.empty();
412 }
413 
414 bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) {
415   bool MadeChanges = false;
416   // By using the "backward scan" strategy before the "forward scan" strategy we
417   // can remove both dbg.value (2) and (3) in a situation like this:
418   //
419   //   (1) dbg.value V1, "x", DIExpression()
420   //       ...
421   //   (2) dbg.value V2, "x", DIExpression()
422   //   (3) dbg.value V1, "x", DIExpression()
423   //
424   // The backward scan will remove (2), it is made obsolete by (3). After
425   // getting (2) out of the way, the foward scan will remove (3) since "x"
426   // already is described as having the value V1 at (1).
427   MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB);
428   MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB);
429 
430   if (MadeChanges)
431     LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: "
432                       << BB->getName() << "\n");
433   return MadeChanges;
434 }
435 
436 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
437                                 BasicBlock::iterator &BI, Value *V) {
438   Instruction &I = *BI;
439   // Replaces all of the uses of the instruction with uses of the value
440   I.replaceAllUsesWith(V);
441 
442   // Make sure to propagate a name if there is one already.
443   if (I.hasName() && !V->hasName())
444     V->takeName(&I);
445 
446   // Delete the unnecessary instruction now...
447   BI = BIL.erase(BI);
448 }
449 
450 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
451                                BasicBlock::iterator &BI, Instruction *I) {
452   assert(I->getParent() == nullptr &&
453          "ReplaceInstWithInst: Instruction already inserted into basic block!");
454 
455   // Copy debug location to newly added instruction, if it wasn't already set
456   // by the caller.
457   if (!I->getDebugLoc())
458     I->setDebugLoc(BI->getDebugLoc());
459 
460   // Insert the new instruction into the basic block...
461   BasicBlock::iterator New = BIL.insert(BI, I);
462 
463   // Replace all uses of the old instruction, and delete it.
464   ReplaceInstWithValue(BIL, BI, I);
465 
466   // Move BI back to point to the newly inserted instruction
467   BI = New;
468 }
469 
470 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
471   BasicBlock::iterator BI(From);
472   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
473 }
474 
475 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
476                             LoopInfo *LI, MemorySSAUpdater *MSSAU) {
477   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
478 
479   // If this is a critical edge, let SplitCriticalEdge do it.
480   Instruction *LatchTerm = BB->getTerminator();
481   if (SplitCriticalEdge(
482           LatchTerm, SuccNum,
483           CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()))
484     return LatchTerm->getSuccessor(SuccNum);
485 
486   // If the edge isn't critical, then BB has a single successor or Succ has a
487   // single pred.  Split the block.
488   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
489     // If the successor only has a single pred, split the top of the successor
490     // block.
491     assert(SP == BB && "CFG broken");
492     SP = nullptr;
493     return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU);
494   }
495 
496   // Otherwise, if BB has a single successor, split it at the bottom of the
497   // block.
498   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
499          "Should have a single succ!");
500   return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU);
501 }
502 
503 unsigned
504 llvm::SplitAllCriticalEdges(Function &F,
505                             const CriticalEdgeSplittingOptions &Options) {
506   unsigned NumBroken = 0;
507   for (BasicBlock &BB : F) {
508     Instruction *TI = BB.getTerminator();
509     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI) &&
510         !isa<CallBrInst>(TI))
511       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
512         if (SplitCriticalEdge(TI, i, Options))
513           ++NumBroken;
514   }
515   return NumBroken;
516 }
517 
518 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
519                              DominatorTree *DT, LoopInfo *LI,
520                              MemorySSAUpdater *MSSAU, const Twine &BBName) {
521   BasicBlock::iterator SplitIt = SplitPt->getIterator();
522   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
523     ++SplitIt;
524   std::string Name = BBName.str();
525   BasicBlock *New = Old->splitBasicBlock(
526       SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
527 
528   // The new block lives in whichever loop the old one did. This preserves
529   // LCSSA as well, because we force the split point to be after any PHI nodes.
530   if (LI)
531     if (Loop *L = LI->getLoopFor(Old))
532       L->addBasicBlockToLoop(New, *LI);
533 
534   if (DT)
535     // Old dominates New. New node dominates all other nodes dominated by Old.
536     if (DomTreeNode *OldNode = DT->getNode(Old)) {
537       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
538 
539       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
540       for (DomTreeNode *I : Children)
541         DT->changeImmediateDominator(I, NewNode);
542     }
543 
544   // Move MemoryAccesses still tracked in Old, but part of New now.
545   // Update accesses in successor blocks accordingly.
546   if (MSSAU)
547     MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
548 
549   return New;
550 }
551 
552 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
553 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
554                                       ArrayRef<BasicBlock *> Preds,
555                                       DominatorTree *DT, LoopInfo *LI,
556                                       MemorySSAUpdater *MSSAU,
557                                       bool PreserveLCSSA, bool &HasLoopExit) {
558   // Update dominator tree if available.
559   if (DT) {
560     if (OldBB == DT->getRootNode()->getBlock()) {
561       assert(NewBB == &NewBB->getParent()->getEntryBlock());
562       DT->setNewRoot(NewBB);
563     } else {
564       // Split block expects NewBB to have a non-empty set of predecessors.
565       DT->splitBlock(NewBB);
566     }
567   }
568 
569   // Update MemoryPhis after split if MemorySSA is available
570   if (MSSAU)
571     MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
572 
573   // The rest of the logic is only relevant for updating the loop structures.
574   if (!LI)
575     return;
576 
577   assert(DT && "DT should be available to update LoopInfo!");
578   Loop *L = LI->getLoopFor(OldBB);
579 
580   // If we need to preserve loop analyses, collect some information about how
581   // this split will affect loops.
582   bool IsLoopEntry = !!L;
583   bool SplitMakesNewLoopHeader = false;
584   for (BasicBlock *Pred : Preds) {
585     // Preds that are not reachable from entry should not be used to identify if
586     // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
587     // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
588     // as true and make the NewBB the header of some loop. This breaks LI.
589     if (!DT->isReachableFromEntry(Pred))
590       continue;
591     // If we need to preserve LCSSA, determine if any of the preds is a loop
592     // exit.
593     if (PreserveLCSSA)
594       if (Loop *PL = LI->getLoopFor(Pred))
595         if (!PL->contains(OldBB))
596           HasLoopExit = true;
597 
598     // If we need to preserve LoopInfo, note whether any of the preds crosses
599     // an interesting loop boundary.
600     if (!L)
601       continue;
602     if (L->contains(Pred))
603       IsLoopEntry = false;
604     else
605       SplitMakesNewLoopHeader = true;
606   }
607 
608   // Unless we have a loop for OldBB, nothing else to do here.
609   if (!L)
610     return;
611 
612   if (IsLoopEntry) {
613     // Add the new block to the nearest enclosing loop (and not an adjacent
614     // loop). To find this, examine each of the predecessors and determine which
615     // loops enclose them, and select the most-nested loop which contains the
616     // loop containing the block being split.
617     Loop *InnermostPredLoop = nullptr;
618     for (BasicBlock *Pred : Preds) {
619       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
620         // Seek a loop which actually contains the block being split (to avoid
621         // adjacent loops).
622         while (PredLoop && !PredLoop->contains(OldBB))
623           PredLoop = PredLoop->getParentLoop();
624 
625         // Select the most-nested of these loops which contains the block.
626         if (PredLoop && PredLoop->contains(OldBB) &&
627             (!InnermostPredLoop ||
628              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
629           InnermostPredLoop = PredLoop;
630       }
631     }
632 
633     if (InnermostPredLoop)
634       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
635   } else {
636     L->addBasicBlockToLoop(NewBB, *LI);
637     if (SplitMakesNewLoopHeader)
638       L->moveToHeader(NewBB);
639   }
640 }
641 
642 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
643 /// This also updates AliasAnalysis, if available.
644 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
645                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
646                            bool HasLoopExit) {
647   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
648   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
649   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
650     PHINode *PN = cast<PHINode>(I++);
651 
652     // Check to see if all of the values coming in are the same.  If so, we
653     // don't need to create a new PHI node, unless it's needed for LCSSA.
654     Value *InVal = nullptr;
655     if (!HasLoopExit) {
656       InVal = PN->getIncomingValueForBlock(Preds[0]);
657       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
658         if (!PredSet.count(PN->getIncomingBlock(i)))
659           continue;
660         if (!InVal)
661           InVal = PN->getIncomingValue(i);
662         else if (InVal != PN->getIncomingValue(i)) {
663           InVal = nullptr;
664           break;
665         }
666       }
667     }
668 
669     if (InVal) {
670       // If all incoming values for the new PHI would be the same, just don't
671       // make a new PHI.  Instead, just remove the incoming values from the old
672       // PHI.
673 
674       // NOTE! This loop walks backwards for a reason! First off, this minimizes
675       // the cost of removal if we end up removing a large number of values, and
676       // second off, this ensures that the indices for the incoming values
677       // aren't invalidated when we remove one.
678       for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
679         if (PredSet.count(PN->getIncomingBlock(i)))
680           PN->removeIncomingValue(i, false);
681 
682       // Add an incoming value to the PHI node in the loop for the preheader
683       // edge.
684       PN->addIncoming(InVal, NewBB);
685       continue;
686     }
687 
688     // If the values coming into the block are not the same, we need a new
689     // PHI.
690     // Create the new PHI node, insert it into NewBB at the end of the block
691     PHINode *NewPHI =
692         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
693 
694     // NOTE! This loop walks backwards for a reason! First off, this minimizes
695     // the cost of removal if we end up removing a large number of values, and
696     // second off, this ensures that the indices for the incoming values aren't
697     // invalidated when we remove one.
698     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
699       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
700       if (PredSet.count(IncomingBB)) {
701         Value *V = PN->removeIncomingValue(i, false);
702         NewPHI->addIncoming(V, IncomingBB);
703       }
704     }
705 
706     PN->addIncoming(NewPHI, NewBB);
707   }
708 }
709 
710 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
711                                          ArrayRef<BasicBlock *> Preds,
712                                          const char *Suffix, DominatorTree *DT,
713                                          LoopInfo *LI, MemorySSAUpdater *MSSAU,
714                                          bool PreserveLCSSA) {
715   // Do not attempt to split that which cannot be split.
716   if (!BB->canSplitPredecessors())
717     return nullptr;
718 
719   // For the landingpads we need to act a bit differently.
720   // Delegate this work to the SplitLandingPadPredecessors.
721   if (BB->isLandingPad()) {
722     SmallVector<BasicBlock*, 2> NewBBs;
723     std::string NewName = std::string(Suffix) + ".split-lp";
724 
725     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT,
726                                 LI, MSSAU, PreserveLCSSA);
727     return NewBBs[0];
728   }
729 
730   // Create new basic block, insert right before the original block.
731   BasicBlock *NewBB = BasicBlock::Create(
732       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
733 
734   // The new block unconditionally branches to the old block.
735   BranchInst *BI = BranchInst::Create(BB, NewBB);
736   // Splitting the predecessors of a loop header creates a preheader block.
737   if (LI && LI->isLoopHeader(BB))
738     // Using the loop start line number prevents debuggers stepping into the
739     // loop body for this instruction.
740     BI->setDebugLoc(LI->getLoopFor(BB)->getStartLoc());
741   else
742     BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
743 
744   // Move the edges from Preds to point to NewBB instead of BB.
745   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
746     // This is slightly more strict than necessary; the minimum requirement
747     // is that there be no more than one indirectbr branching to BB. And
748     // all BlockAddress uses would need to be updated.
749     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
750            "Cannot split an edge from an IndirectBrInst");
751     assert(!isa<CallBrInst>(Preds[i]->getTerminator()) &&
752            "Cannot split an edge from a CallBrInst");
753     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
754   }
755 
756   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
757   // node becomes an incoming value for BB's phi node.  However, if the Preds
758   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
759   // account for the newly created predecessor.
760   if (Preds.empty()) {
761     // Insert dummy values as the incoming value.
762     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
763       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
764   }
765 
766   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
767   bool HasLoopExit = false;
768   UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, MSSAU, PreserveLCSSA,
769                             HasLoopExit);
770 
771   if (!Preds.empty()) {
772     // Update the PHI nodes in BB with the values coming from NewBB.
773     UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
774   }
775 
776   return NewBB;
777 }
778 
779 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
780                                        ArrayRef<BasicBlock *> Preds,
781                                        const char *Suffix1, const char *Suffix2,
782                                        SmallVectorImpl<BasicBlock *> &NewBBs,
783                                        DominatorTree *DT, LoopInfo *LI,
784                                        MemorySSAUpdater *MSSAU,
785                                        bool PreserveLCSSA) {
786   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
787 
788   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
789   // it right before the original block.
790   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
791                                           OrigBB->getName() + Suffix1,
792                                           OrigBB->getParent(), OrigBB);
793   NewBBs.push_back(NewBB1);
794 
795   // The new block unconditionally branches to the old block.
796   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
797   BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
798 
799   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
800   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
801     // This is slightly more strict than necessary; the minimum requirement
802     // is that there be no more than one indirectbr branching to BB. And
803     // all BlockAddress uses would need to be updated.
804     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
805            "Cannot split an edge from an IndirectBrInst");
806     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
807   }
808 
809   bool HasLoopExit = false;
810   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, MSSAU, PreserveLCSSA,
811                             HasLoopExit);
812 
813   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
814   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
815 
816   // Move the remaining edges from OrigBB to point to NewBB2.
817   SmallVector<BasicBlock*, 8> NewBB2Preds;
818   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
819        i != e; ) {
820     BasicBlock *Pred = *i++;
821     if (Pred == NewBB1) continue;
822     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
823            "Cannot split an edge from an IndirectBrInst");
824     NewBB2Preds.push_back(Pred);
825     e = pred_end(OrigBB);
826   }
827 
828   BasicBlock *NewBB2 = nullptr;
829   if (!NewBB2Preds.empty()) {
830     // Create another basic block for the rest of OrigBB's predecessors.
831     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
832                                 OrigBB->getName() + Suffix2,
833                                 OrigBB->getParent(), OrigBB);
834     NewBBs.push_back(NewBB2);
835 
836     // The new block unconditionally branches to the old block.
837     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
838     BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
839 
840     // Move the remaining edges from OrigBB to point to NewBB2.
841     for (BasicBlock *NewBB2Pred : NewBB2Preds)
842       NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
843 
844     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
845     HasLoopExit = false;
846     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, MSSAU,
847                               PreserveLCSSA, HasLoopExit);
848 
849     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
850     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
851   }
852 
853   LandingPadInst *LPad = OrigBB->getLandingPadInst();
854   Instruction *Clone1 = LPad->clone();
855   Clone1->setName(Twine("lpad") + Suffix1);
856   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
857 
858   if (NewBB2) {
859     Instruction *Clone2 = LPad->clone();
860     Clone2->setName(Twine("lpad") + Suffix2);
861     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
862 
863     // Create a PHI node for the two cloned landingpad instructions only
864     // if the original landingpad instruction has some uses.
865     if (!LPad->use_empty()) {
866       assert(!LPad->getType()->isTokenTy() &&
867              "Split cannot be applied if LPad is token type. Otherwise an "
868              "invalid PHINode of token type would be created.");
869       PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
870       PN->addIncoming(Clone1, NewBB1);
871       PN->addIncoming(Clone2, NewBB2);
872       LPad->replaceAllUsesWith(PN);
873     }
874     LPad->eraseFromParent();
875   } else {
876     // There is no second clone. Just replace the landing pad with the first
877     // clone.
878     LPad->replaceAllUsesWith(Clone1);
879     LPad->eraseFromParent();
880   }
881 }
882 
883 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
884                                              BasicBlock *Pred,
885                                              DomTreeUpdater *DTU) {
886   Instruction *UncondBranch = Pred->getTerminator();
887   // Clone the return and add it to the end of the predecessor.
888   Instruction *NewRet = RI->clone();
889   Pred->getInstList().push_back(NewRet);
890 
891   // If the return instruction returns a value, and if the value was a
892   // PHI node in "BB", propagate the right value into the return.
893   for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
894        i != e; ++i) {
895     Value *V = *i;
896     Instruction *NewBC = nullptr;
897     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
898       // Return value might be bitcasted. Clone and insert it before the
899       // return instruction.
900       V = BCI->getOperand(0);
901       NewBC = BCI->clone();
902       Pred->getInstList().insert(NewRet->getIterator(), NewBC);
903       *i = NewBC;
904     }
905 
906     Instruction *NewEV = nullptr;
907     if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
908       V = EVI->getOperand(0);
909       NewEV = EVI->clone();
910       if (NewBC) {
911         NewBC->setOperand(0, NewEV);
912         Pred->getInstList().insert(NewBC->getIterator(), NewEV);
913       } else {
914         Pred->getInstList().insert(NewRet->getIterator(), NewEV);
915         *i = NewEV;
916       }
917     }
918 
919     if (PHINode *PN = dyn_cast<PHINode>(V)) {
920       if (PN->getParent() == BB) {
921         if (NewEV) {
922           NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred));
923         } else if (NewBC)
924           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
925         else
926           *i = PN->getIncomingValueForBlock(Pred);
927       }
928     }
929   }
930 
931   // Update any PHI nodes in the returning block to realize that we no
932   // longer branch to them.
933   BB->removePredecessor(Pred);
934   UncondBranch->eraseFromParent();
935 
936   if (DTU)
937     DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
938 
939   return cast<ReturnInst>(NewRet);
940 }
941 
942 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
943                                              Instruction *SplitBefore,
944                                              bool Unreachable,
945                                              MDNode *BranchWeights,
946                                              DominatorTree *DT, LoopInfo *LI,
947                                              BasicBlock *ThenBlock) {
948   BasicBlock *Head = SplitBefore->getParent();
949   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
950   Instruction *HeadOldTerm = Head->getTerminator();
951   LLVMContext &C = Head->getContext();
952   Instruction *CheckTerm;
953   bool CreateThenBlock = (ThenBlock == nullptr);
954   if (CreateThenBlock) {
955     ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
956     if (Unreachable)
957       CheckTerm = new UnreachableInst(C, ThenBlock);
958     else
959       CheckTerm = BranchInst::Create(Tail, ThenBlock);
960     CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
961   } else
962     CheckTerm = ThenBlock->getTerminator();
963   BranchInst *HeadNewTerm =
964     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
965   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
966   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
967 
968   if (DT) {
969     if (DomTreeNode *OldNode = DT->getNode(Head)) {
970       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
971 
972       DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
973       for (DomTreeNode *Child : Children)
974         DT->changeImmediateDominator(Child, NewNode);
975 
976       // Head dominates ThenBlock.
977       if (CreateThenBlock)
978         DT->addNewBlock(ThenBlock, Head);
979       else
980         DT->changeImmediateDominator(ThenBlock, Head);
981     }
982   }
983 
984   if (LI) {
985     if (Loop *L = LI->getLoopFor(Head)) {
986       L->addBasicBlockToLoop(ThenBlock, *LI);
987       L->addBasicBlockToLoop(Tail, *LI);
988     }
989   }
990 
991   return CheckTerm;
992 }
993 
994 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
995                                          Instruction **ThenTerm,
996                                          Instruction **ElseTerm,
997                                          MDNode *BranchWeights) {
998   BasicBlock *Head = SplitBefore->getParent();
999   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
1000   Instruction *HeadOldTerm = Head->getTerminator();
1001   LLVMContext &C = Head->getContext();
1002   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1003   BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1004   *ThenTerm = BranchInst::Create(Tail, ThenBlock);
1005   (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
1006   *ElseTerm = BranchInst::Create(Tail, ElseBlock);
1007   (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
1008   BranchInst *HeadNewTerm =
1009     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
1010   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1011   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1012 }
1013 
1014 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
1015                              BasicBlock *&IfFalse) {
1016   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
1017   BasicBlock *Pred1 = nullptr;
1018   BasicBlock *Pred2 = nullptr;
1019 
1020   if (SomePHI) {
1021     if (SomePHI->getNumIncomingValues() != 2)
1022       return nullptr;
1023     Pred1 = SomePHI->getIncomingBlock(0);
1024     Pred2 = SomePHI->getIncomingBlock(1);
1025   } else {
1026     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1027     if (PI == PE) // No predecessor
1028       return nullptr;
1029     Pred1 = *PI++;
1030     if (PI == PE) // Only one predecessor
1031       return nullptr;
1032     Pred2 = *PI++;
1033     if (PI != PE) // More than two predecessors
1034       return nullptr;
1035   }
1036 
1037   // We can only handle branches.  Other control flow will be lowered to
1038   // branches if possible anyway.
1039   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
1040   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
1041   if (!Pred1Br || !Pred2Br)
1042     return nullptr;
1043 
1044   // Eliminate code duplication by ensuring that Pred1Br is conditional if
1045   // either are.
1046   if (Pred2Br->isConditional()) {
1047     // If both branches are conditional, we don't have an "if statement".  In
1048     // reality, we could transform this case, but since the condition will be
1049     // required anyway, we stand no chance of eliminating it, so the xform is
1050     // probably not profitable.
1051     if (Pred1Br->isConditional())
1052       return nullptr;
1053 
1054     std::swap(Pred1, Pred2);
1055     std::swap(Pred1Br, Pred2Br);
1056   }
1057 
1058   if (Pred1Br->isConditional()) {
1059     // The only thing we have to watch out for here is to make sure that Pred2
1060     // doesn't have incoming edges from other blocks.  If it does, the condition
1061     // doesn't dominate BB.
1062     if (!Pred2->getSinglePredecessor())
1063       return nullptr;
1064 
1065     // If we found a conditional branch predecessor, make sure that it branches
1066     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
1067     if (Pred1Br->getSuccessor(0) == BB &&
1068         Pred1Br->getSuccessor(1) == Pred2) {
1069       IfTrue = Pred1;
1070       IfFalse = Pred2;
1071     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
1072                Pred1Br->getSuccessor(1) == BB) {
1073       IfTrue = Pred2;
1074       IfFalse = Pred1;
1075     } else {
1076       // We know that one arm of the conditional goes to BB, so the other must
1077       // go somewhere unrelated, and this must not be an "if statement".
1078       return nullptr;
1079     }
1080 
1081     return Pred1Br->getCondition();
1082   }
1083 
1084   // Ok, if we got here, both predecessors end with an unconditional branch to
1085   // BB.  Don't panic!  If both blocks only have a single (identical)
1086   // predecessor, and THAT is a conditional branch, then we're all ok!
1087   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
1088   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
1089     return nullptr;
1090 
1091   // Otherwise, if this is a conditional branch, then we can use it!
1092   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
1093   if (!BI) return nullptr;
1094 
1095   assert(BI->isConditional() && "Two successors but not conditional?");
1096   if (BI->getSuccessor(0) == Pred1) {
1097     IfTrue = Pred1;
1098     IfFalse = Pred2;
1099   } else {
1100     IfTrue = Pred2;
1101     IfFalse = Pred1;
1102   }
1103   return BI->getCondition();
1104 }
1105 
1106 // After creating a control flow hub, the operands of PHINodes in an outgoing
1107 // block Out no longer match the predecessors of that block. Predecessors of Out
1108 // that are incoming blocks to the hub are now replaced by just one edge from
1109 // the hub. To match this new control flow, the corresponding values from each
1110 // PHINode must now be moved a new PHINode in the first guard block of the hub.
1111 //
1112 // This operation cannot be performed with SSAUpdater, because it involves one
1113 // new use: If the block Out is in the list of Incoming blocks, then the newly
1114 // created PHI in the Hub will use itself along that edge from Out to Hub.
1115 static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock,
1116                           const SetVector<BasicBlock *> &Incoming,
1117                           BasicBlock *FirstGuardBlock) {
1118   auto I = Out->begin();
1119   while (I != Out->end() && isa<PHINode>(I)) {
1120     auto Phi = cast<PHINode>(I);
1121     auto NewPhi =
1122         PHINode::Create(Phi->getType(), Incoming.size(),
1123                         Phi->getName() + ".moved", &FirstGuardBlock->back());
1124     for (auto In : Incoming) {
1125       Value *V = UndefValue::get(Phi->getType());
1126       if (In == Out) {
1127         V = NewPhi;
1128       } else if (Phi->getBasicBlockIndex(In) != -1) {
1129         V = Phi->removeIncomingValue(In, false);
1130       }
1131       NewPhi->addIncoming(V, In);
1132     }
1133     assert(NewPhi->getNumIncomingValues() == Incoming.size());
1134     if (Phi->getNumOperands() == 0) {
1135       Phi->replaceAllUsesWith(NewPhi);
1136       I = Phi->eraseFromParent();
1137       continue;
1138     }
1139     Phi->addIncoming(NewPhi, GuardBlock);
1140     ++I;
1141   }
1142 }
1143 
1144 using BBPredicates = DenseMap<BasicBlock *, PHINode *>;
1145 using BBSetVector = SetVector<BasicBlock *>;
1146 
1147 // Redirects the terminator of the incoming block to the first guard
1148 // block in the hub. The condition of the original terminator (if it
1149 // was conditional) and its original successors are returned as a
1150 // tuple <condition, succ0, succ1>. The function additionally filters
1151 // out successors that are not in the set of outgoing blocks.
1152 //
1153 // - condition is non-null iff the branch is conditional.
1154 // - Succ1 is non-null iff the sole/taken target is an outgoing block.
1155 // - Succ2 is non-null iff condition is non-null and the fallthrough
1156 //         target is an outgoing block.
1157 static std::tuple<Value *, BasicBlock *, BasicBlock *>
1158 redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock,
1159               const BBSetVector &Outgoing) {
1160   auto Branch = cast<BranchInst>(BB->getTerminator());
1161   auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr;
1162 
1163   BasicBlock *Succ0 = Branch->getSuccessor(0);
1164   BasicBlock *Succ1 = nullptr;
1165   Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr;
1166 
1167   if (Branch->isUnconditional()) {
1168     Branch->setSuccessor(0, FirstGuardBlock);
1169     assert(Succ0);
1170   } else {
1171     Succ1 = Branch->getSuccessor(1);
1172     Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr;
1173     assert(Succ0 || Succ1);
1174     if (Succ0 && !Succ1) {
1175       Branch->setSuccessor(0, FirstGuardBlock);
1176     } else if (Succ1 && !Succ0) {
1177       Branch->setSuccessor(1, FirstGuardBlock);
1178     } else {
1179       Branch->eraseFromParent();
1180       BranchInst::Create(FirstGuardBlock, BB);
1181     }
1182   }
1183 
1184   assert(Succ0 || Succ1);
1185   return std::make_tuple(Condition, Succ0, Succ1);
1186 }
1187 
1188 // Capture the existing control flow as guard predicates, and redirect
1189 // control flow from every incoming block to the first guard block in
1190 // the hub.
1191 //
1192 // There is one guard predicate for each outgoing block OutBB. The
1193 // predicate is a PHINode with one input for each InBB which
1194 // represents whether the hub should transfer control flow to OutBB if
1195 // it arrived from InBB. These predicates are NOT ORTHOGONAL. The Hub
1196 // evaluates them in the same order as the Outgoing set-vector, and
1197 // control branches to the first outgoing block whose predicate
1198 // evaluates to true.
1199 static void convertToGuardPredicates(
1200     BasicBlock *FirstGuardBlock, BBPredicates &GuardPredicates,
1201     SmallVectorImpl<WeakVH> &DeletionCandidates, const BBSetVector &Incoming,
1202     const BBSetVector &Outgoing) {
1203   auto &Context = Incoming.front()->getContext();
1204   auto BoolTrue = ConstantInt::getTrue(Context);
1205   auto BoolFalse = ConstantInt::getFalse(Context);
1206 
1207   // The predicate for the last outgoing is trivially true, and so we
1208   // process only the first N-1 successors.
1209   for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1210     auto Out = Outgoing[i];
1211     LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n");
1212     auto Phi =
1213         PHINode::Create(Type::getInt1Ty(Context), Incoming.size(),
1214                         StringRef("Guard.") + Out->getName(), FirstGuardBlock);
1215     GuardPredicates[Out] = Phi;
1216   }
1217 
1218   for (auto In : Incoming) {
1219     Value *Condition;
1220     BasicBlock *Succ0;
1221     BasicBlock *Succ1;
1222     std::tie(Condition, Succ0, Succ1) =
1223         redirectToHub(In, FirstGuardBlock, Outgoing);
1224 
1225     // Optimization: Consider an incoming block A with both successors
1226     // Succ0 and Succ1 in the set of outgoing blocks. The predicates
1227     // for Succ0 and Succ1 complement each other. If Succ0 is visited
1228     // first in the loop below, control will branch to Succ0 using the
1229     // corresponding predicate. But if that branch is not taken, then
1230     // control must reach Succ1, which means that the predicate for
1231     // Succ1 is always true.
1232     bool OneSuccessorDone = false;
1233     for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1234       auto Out = Outgoing[i];
1235       auto Phi = GuardPredicates[Out];
1236       if (Out != Succ0 && Out != Succ1) {
1237         Phi->addIncoming(BoolFalse, In);
1238         continue;
1239       }
1240       // Optimization: When only one successor is an outgoing block,
1241       // the predicate is always true.
1242       if (!Succ0 || !Succ1 || OneSuccessorDone) {
1243         Phi->addIncoming(BoolTrue, In);
1244         continue;
1245       }
1246       assert(Succ0 && Succ1);
1247       OneSuccessorDone = true;
1248       if (Out == Succ0) {
1249         Phi->addIncoming(Condition, In);
1250         continue;
1251       }
1252       auto Inverted = invertCondition(Condition);
1253       DeletionCandidates.push_back(Condition);
1254       Phi->addIncoming(Inverted, In);
1255     }
1256   }
1257 }
1258 
1259 // For each outgoing block OutBB, create a guard block in the Hub. The
1260 // first guard block was already created outside, and available as the
1261 // first element in the vector of guard blocks.
1262 //
1263 // Each guard block terminates in a conditional branch that transfers
1264 // control to the corresponding outgoing block or the next guard
1265 // block. The last guard block has two outgoing blocks as successors
1266 // since the condition for the final outgoing block is trivially
1267 // true. So we create one less block (including the first guard block)
1268 // than the number of outgoing blocks.
1269 static void createGuardBlocks(SmallVectorImpl<BasicBlock *> &GuardBlocks,
1270                               Function *F, const BBSetVector &Outgoing,
1271                               BBPredicates &GuardPredicates, StringRef Prefix) {
1272   for (int i = 0, e = Outgoing.size() - 2; i != e; ++i) {
1273     GuardBlocks.push_back(
1274         BasicBlock::Create(F->getContext(), Prefix + ".guard", F));
1275   }
1276   assert(GuardBlocks.size() == GuardPredicates.size());
1277 
1278   // To help keep the loop simple, temporarily append the last
1279   // outgoing block to the list of guard blocks.
1280   GuardBlocks.push_back(Outgoing.back());
1281 
1282   for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) {
1283     auto Out = Outgoing[i];
1284     assert(GuardPredicates.count(Out));
1285     BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out],
1286                        GuardBlocks[i]);
1287   }
1288 
1289   // Remove the last block from the guard list.
1290   GuardBlocks.pop_back();
1291 }
1292 
1293 BasicBlock *llvm::CreateControlFlowHub(
1294     DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks,
1295     const BBSetVector &Incoming, const BBSetVector &Outgoing,
1296     const StringRef Prefix) {
1297   auto F = Incoming.front()->getParent();
1298   auto FirstGuardBlock =
1299       BasicBlock::Create(F->getContext(), Prefix + ".guard", F);
1300 
1301   SmallVector<DominatorTree::UpdateType, 16> Updates;
1302   if (DTU) {
1303     for (auto In : Incoming) {
1304       for (auto Succ : successors(In)) {
1305         if (Outgoing.count(Succ))
1306           Updates.push_back({DominatorTree::Delete, In, Succ});
1307       }
1308       Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock});
1309     }
1310   }
1311 
1312   BBPredicates GuardPredicates;
1313   SmallVector<WeakVH, 8> DeletionCandidates;
1314   convertToGuardPredicates(FirstGuardBlock, GuardPredicates, DeletionCandidates,
1315                            Incoming, Outgoing);
1316 
1317   GuardBlocks.push_back(FirstGuardBlock);
1318   createGuardBlocks(GuardBlocks, F, Outgoing, GuardPredicates, Prefix);
1319 
1320   // Update the PHINodes in each outgoing block to match the new control flow.
1321   for (int i = 0, e = GuardBlocks.size(); i != e; ++i) {
1322     reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock);
1323   }
1324   reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock);
1325 
1326   if (DTU) {
1327     int NumGuards = GuardBlocks.size();
1328     assert((int)Outgoing.size() == NumGuards + 1);
1329     for (int i = 0; i != NumGuards - 1; ++i) {
1330       Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]});
1331       Updates.push_back(
1332           {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]});
1333     }
1334     Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
1335                        Outgoing[NumGuards - 1]});
1336     Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
1337                        Outgoing[NumGuards]});
1338     DTU->applyUpdates(Updates);
1339   }
1340 
1341   for (auto I : DeletionCandidates) {
1342     if (I->use_empty())
1343       if (auto Inst = dyn_cast_or_null<Instruction>(I))
1344         Inst->eraseFromParent();
1345   }
1346 
1347   return FirstGuardBlock;
1348 }
1349