1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform manipulations on basic blocks, and 10 // instructions contained within basic blocks. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 22 #include "llvm/Analysis/MemorySSAUpdater.h" 23 #include "llvm/Analysis/PostDominators.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CFG.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfoMetadata.h" 28 #include "llvm/IR/DomTreeUpdater.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/InstrTypes.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/User.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/IR/ValueHandle.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Transforms/Utils/Local.h" 42 #include <cassert> 43 #include <cstdint> 44 #include <string> 45 #include <utility> 46 #include <vector> 47 48 using namespace llvm; 49 50 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU) { 51 SmallVector<BasicBlock *, 1> BBs = {BB}; 52 DeleteDeadBlocks(BBs, DTU); 53 } 54 55 void llvm::DeleteDeadBlocks(SmallVectorImpl <BasicBlock *> &BBs, 56 DomTreeUpdater *DTU) { 57 #ifndef NDEBUG 58 // Make sure that all predecessors of each dead block is also dead. 59 SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end()); 60 assert(Dead.size() == BBs.size() && "Duplicating blocks?"); 61 for (auto *BB : Dead) 62 for (BasicBlock *Pred : predecessors(BB)) 63 assert(Dead.count(Pred) && "All predecessors must be dead!"); 64 #endif 65 66 SmallVector<DominatorTree::UpdateType, 4> Updates; 67 for (auto *BB : BBs) { 68 // Loop through all of our successors and make sure they know that one 69 // of their predecessors is going away. 70 for (BasicBlock *Succ : successors(BB)) { 71 Succ->removePredecessor(BB); 72 if (DTU) 73 Updates.push_back({DominatorTree::Delete, BB, Succ}); 74 } 75 76 // Zap all the instructions in the block. 77 while (!BB->empty()) { 78 Instruction &I = BB->back(); 79 // If this instruction is used, replace uses with an arbitrary value. 80 // Because control flow can't get here, we don't care what we replace the 81 // value with. Note that since this block is unreachable, and all values 82 // contained within it must dominate their uses, that all uses will 83 // eventually be removed (they are themselves dead). 84 if (!I.use_empty()) 85 I.replaceAllUsesWith(UndefValue::get(I.getType())); 86 BB->getInstList().pop_back(); 87 } 88 new UnreachableInst(BB->getContext(), BB); 89 assert(BB->getInstList().size() == 1 && 90 isa<UnreachableInst>(BB->getTerminator()) && 91 "The successor list of BB isn't empty before " 92 "applying corresponding DTU updates."); 93 } 94 if (DTU) 95 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 96 97 for (BasicBlock *BB : BBs) 98 if (DTU) 99 DTU->deleteBB(BB); 100 else 101 BB->eraseFromParent(); 102 } 103 104 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, 105 MemoryDependenceResults *MemDep) { 106 if (!isa<PHINode>(BB->begin())) return; 107 108 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 109 if (PN->getIncomingValue(0) != PN) 110 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 111 else 112 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 113 114 if (MemDep) 115 MemDep->removeInstruction(PN); // Memdep updates AA itself. 116 117 PN->eraseFromParent(); 118 } 119 } 120 121 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) { 122 // Recursively deleting a PHI may cause multiple PHIs to be deleted 123 // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete. 124 SmallVector<WeakTrackingVH, 8> PHIs; 125 for (PHINode &PN : BB->phis()) 126 PHIs.push_back(&PN); 127 128 bool Changed = false; 129 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 130 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) 131 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI); 132 133 return Changed; 134 } 135 136 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU, 137 LoopInfo *LI, MemorySSAUpdater *MSSAU, 138 MemoryDependenceResults *MemDep) { 139 if (BB->hasAddressTaken()) 140 return false; 141 142 // Can't merge if there are multiple predecessors, or no predecessors. 143 BasicBlock *PredBB = BB->getUniquePredecessor(); 144 if (!PredBB) return false; 145 146 // Don't break self-loops. 147 if (PredBB == BB) return false; 148 // Don't break unwinding instructions. 149 if (PredBB->getTerminator()->isExceptionalTerminator()) 150 return false; 151 152 // Can't merge if there are multiple distinct successors. 153 if (PredBB->getUniqueSuccessor() != BB) 154 return false; 155 156 // Can't merge if there is PHI loop. 157 for (PHINode &PN : BB->phis()) 158 for (Value *IncValue : PN.incoming_values()) 159 if (IncValue == &PN) 160 return false; 161 162 // Begin by getting rid of unneeded PHIs. 163 SmallVector<AssertingVH<Value>, 4> IncomingValues; 164 if (isa<PHINode>(BB->front())) { 165 for (PHINode &PN : BB->phis()) 166 if (!isa<PHINode>(PN.getIncomingValue(0)) || 167 cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB) 168 IncomingValues.push_back(PN.getIncomingValue(0)); 169 FoldSingleEntryPHINodes(BB, MemDep); 170 } 171 172 // DTU update: Collect all the edges that exit BB. 173 // These dominator edges will be redirected from Pred. 174 std::vector<DominatorTree::UpdateType> Updates; 175 if (DTU) { 176 Updates.reserve(1 + (2 * succ_size(BB))); 177 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 178 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I) { 179 Updates.push_back({DominatorTree::Delete, BB, *I}); 180 Updates.push_back({DominatorTree::Insert, PredBB, *I}); 181 } 182 } 183 184 if (MSSAU) 185 MSSAU->moveAllAfterMergeBlocks(BB, PredBB, &*(BB->begin())); 186 187 // Delete the unconditional branch from the predecessor... 188 PredBB->getInstList().pop_back(); 189 190 // Make all PHI nodes that referred to BB now refer to Pred as their 191 // source... 192 BB->replaceAllUsesWith(PredBB); 193 194 // Move all definitions in the successor to the predecessor... 195 PredBB->getInstList().splice(PredBB->end(), BB->getInstList()); 196 new UnreachableInst(BB->getContext(), BB); 197 198 // Eliminate duplicate dbg.values describing the entry PHI node post-splice. 199 for (auto Incoming : IncomingValues) { 200 if (isa<Instruction>(*Incoming)) { 201 SmallVector<DbgValueInst *, 2> DbgValues; 202 SmallDenseSet<std::pair<DILocalVariable *, DIExpression *>, 2> 203 DbgValueSet; 204 llvm::findDbgValues(DbgValues, Incoming); 205 for (auto &DVI : DbgValues) { 206 auto R = DbgValueSet.insert({DVI->getVariable(), DVI->getExpression()}); 207 if (!R.second) 208 DVI->eraseFromParent(); 209 } 210 } 211 } 212 213 // Inherit predecessors name if it exists. 214 if (!PredBB->hasName()) 215 PredBB->takeName(BB); 216 217 if (LI) 218 LI->removeBlock(BB); 219 220 if (MemDep) 221 MemDep->invalidateCachedPredecessors(); 222 223 // Finally, erase the old block and update dominator info. 224 if (DTU) { 225 assert(BB->getInstList().size() == 1 && 226 isa<UnreachableInst>(BB->getTerminator()) && 227 "The successor list of BB isn't empty before " 228 "applying corresponding DTU updates."); 229 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 230 DTU->deleteBB(BB); 231 } 232 233 else { 234 BB->eraseFromParent(); // Nuke BB if DTU is nullptr. 235 } 236 return true; 237 } 238 239 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL, 240 BasicBlock::iterator &BI, Value *V) { 241 Instruction &I = *BI; 242 // Replaces all of the uses of the instruction with uses of the value 243 I.replaceAllUsesWith(V); 244 245 // Make sure to propagate a name if there is one already. 246 if (I.hasName() && !V->hasName()) 247 V->takeName(&I); 248 249 // Delete the unnecessary instruction now... 250 BI = BIL.erase(BI); 251 } 252 253 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL, 254 BasicBlock::iterator &BI, Instruction *I) { 255 assert(I->getParent() == nullptr && 256 "ReplaceInstWithInst: Instruction already inserted into basic block!"); 257 258 // Copy debug location to newly added instruction, if it wasn't already set 259 // by the caller. 260 if (!I->getDebugLoc()) 261 I->setDebugLoc(BI->getDebugLoc()); 262 263 // Insert the new instruction into the basic block... 264 BasicBlock::iterator New = BIL.insert(BI, I); 265 266 // Replace all uses of the old instruction, and delete it. 267 ReplaceInstWithValue(BIL, BI, I); 268 269 // Move BI back to point to the newly inserted instruction 270 BI = New; 271 } 272 273 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { 274 BasicBlock::iterator BI(From); 275 ReplaceInstWithInst(From->getParent()->getInstList(), BI, To); 276 } 277 278 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT, 279 LoopInfo *LI, MemorySSAUpdater *MSSAU) { 280 unsigned SuccNum = GetSuccessorNumber(BB, Succ); 281 282 // If this is a critical edge, let SplitCriticalEdge do it. 283 Instruction *LatchTerm = BB->getTerminator(); 284 if (SplitCriticalEdge( 285 LatchTerm, SuccNum, 286 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA())) 287 return LatchTerm->getSuccessor(SuccNum); 288 289 // If the edge isn't critical, then BB has a single successor or Succ has a 290 // single pred. Split the block. 291 if (BasicBlock *SP = Succ->getSinglePredecessor()) { 292 // If the successor only has a single pred, split the top of the successor 293 // block. 294 assert(SP == BB && "CFG broken"); 295 SP = nullptr; 296 return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU); 297 } 298 299 // Otherwise, if BB has a single successor, split it at the bottom of the 300 // block. 301 assert(BB->getTerminator()->getNumSuccessors() == 1 && 302 "Should have a single succ!"); 303 return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU); 304 } 305 306 unsigned 307 llvm::SplitAllCriticalEdges(Function &F, 308 const CriticalEdgeSplittingOptions &Options) { 309 unsigned NumBroken = 0; 310 for (BasicBlock &BB : F) { 311 Instruction *TI = BB.getTerminator(); 312 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI)) 313 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 314 if (SplitCriticalEdge(TI, i, Options)) 315 ++NumBroken; 316 } 317 return NumBroken; 318 } 319 320 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, 321 DominatorTree *DT, LoopInfo *LI, 322 MemorySSAUpdater *MSSAU) { 323 BasicBlock::iterator SplitIt = SplitPt->getIterator(); 324 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) 325 ++SplitIt; 326 BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split"); 327 328 // The new block lives in whichever loop the old one did. This preserves 329 // LCSSA as well, because we force the split point to be after any PHI nodes. 330 if (LI) 331 if (Loop *L = LI->getLoopFor(Old)) 332 L->addBasicBlockToLoop(New, *LI); 333 334 if (DT) 335 // Old dominates New. New node dominates all other nodes dominated by Old. 336 if (DomTreeNode *OldNode = DT->getNode(Old)) { 337 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 338 339 DomTreeNode *NewNode = DT->addNewBlock(New, Old); 340 for (DomTreeNode *I : Children) 341 DT->changeImmediateDominator(I, NewNode); 342 } 343 344 // Move MemoryAccesses still tracked in Old, but part of New now. 345 // Update accesses in successor blocks accordingly. 346 if (MSSAU) 347 MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin())); 348 349 return New; 350 } 351 352 /// Update DominatorTree, LoopInfo, and LCCSA analysis information. 353 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, 354 ArrayRef<BasicBlock *> Preds, 355 DominatorTree *DT, LoopInfo *LI, 356 MemorySSAUpdater *MSSAU, 357 bool PreserveLCSSA, bool &HasLoopExit) { 358 // Update dominator tree if available. 359 if (DT) { 360 if (OldBB == DT->getRootNode()->getBlock()) { 361 assert(NewBB == &NewBB->getParent()->getEntryBlock()); 362 DT->setNewRoot(NewBB); 363 } else { 364 // Split block expects NewBB to have a non-empty set of predecessors. 365 DT->splitBlock(NewBB); 366 } 367 } 368 369 // Update MemoryPhis after split if MemorySSA is available 370 if (MSSAU) 371 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds); 372 373 // The rest of the logic is only relevant for updating the loop structures. 374 if (!LI) 375 return; 376 377 assert(DT && "DT should be available to update LoopInfo!"); 378 Loop *L = LI->getLoopFor(OldBB); 379 380 // If we need to preserve loop analyses, collect some information about how 381 // this split will affect loops. 382 bool IsLoopEntry = !!L; 383 bool SplitMakesNewLoopHeader = false; 384 for (BasicBlock *Pred : Preds) { 385 // Preds that are not reachable from entry should not be used to identify if 386 // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks 387 // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader 388 // as true and make the NewBB the header of some loop. This breaks LI. 389 if (!DT->isReachableFromEntry(Pred)) 390 continue; 391 // If we need to preserve LCSSA, determine if any of the preds is a loop 392 // exit. 393 if (PreserveLCSSA) 394 if (Loop *PL = LI->getLoopFor(Pred)) 395 if (!PL->contains(OldBB)) 396 HasLoopExit = true; 397 398 // If we need to preserve LoopInfo, note whether any of the preds crosses 399 // an interesting loop boundary. 400 if (!L) 401 continue; 402 if (L->contains(Pred)) 403 IsLoopEntry = false; 404 else 405 SplitMakesNewLoopHeader = true; 406 } 407 408 // Unless we have a loop for OldBB, nothing else to do here. 409 if (!L) 410 return; 411 412 if (IsLoopEntry) { 413 // Add the new block to the nearest enclosing loop (and not an adjacent 414 // loop). To find this, examine each of the predecessors and determine which 415 // loops enclose them, and select the most-nested loop which contains the 416 // loop containing the block being split. 417 Loop *InnermostPredLoop = nullptr; 418 for (BasicBlock *Pred : Preds) { 419 if (Loop *PredLoop = LI->getLoopFor(Pred)) { 420 // Seek a loop which actually contains the block being split (to avoid 421 // adjacent loops). 422 while (PredLoop && !PredLoop->contains(OldBB)) 423 PredLoop = PredLoop->getParentLoop(); 424 425 // Select the most-nested of these loops which contains the block. 426 if (PredLoop && PredLoop->contains(OldBB) && 427 (!InnermostPredLoop || 428 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) 429 InnermostPredLoop = PredLoop; 430 } 431 } 432 433 if (InnermostPredLoop) 434 InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI); 435 } else { 436 L->addBasicBlockToLoop(NewBB, *LI); 437 if (SplitMakesNewLoopHeader) 438 L->moveToHeader(NewBB); 439 } 440 } 441 442 /// Update the PHI nodes in OrigBB to include the values coming from NewBB. 443 /// This also updates AliasAnalysis, if available. 444 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, 445 ArrayRef<BasicBlock *> Preds, BranchInst *BI, 446 bool HasLoopExit) { 447 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. 448 SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end()); 449 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) { 450 PHINode *PN = cast<PHINode>(I++); 451 452 // Check to see if all of the values coming in are the same. If so, we 453 // don't need to create a new PHI node, unless it's needed for LCSSA. 454 Value *InVal = nullptr; 455 if (!HasLoopExit) { 456 InVal = PN->getIncomingValueForBlock(Preds[0]); 457 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 458 if (!PredSet.count(PN->getIncomingBlock(i))) 459 continue; 460 if (!InVal) 461 InVal = PN->getIncomingValue(i); 462 else if (InVal != PN->getIncomingValue(i)) { 463 InVal = nullptr; 464 break; 465 } 466 } 467 } 468 469 if (InVal) { 470 // If all incoming values for the new PHI would be the same, just don't 471 // make a new PHI. Instead, just remove the incoming values from the old 472 // PHI. 473 474 // NOTE! This loop walks backwards for a reason! First off, this minimizes 475 // the cost of removal if we end up removing a large number of values, and 476 // second off, this ensures that the indices for the incoming values 477 // aren't invalidated when we remove one. 478 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) 479 if (PredSet.count(PN->getIncomingBlock(i))) 480 PN->removeIncomingValue(i, false); 481 482 // Add an incoming value to the PHI node in the loop for the preheader 483 // edge. 484 PN->addIncoming(InVal, NewBB); 485 continue; 486 } 487 488 // If the values coming into the block are not the same, we need a new 489 // PHI. 490 // Create the new PHI node, insert it into NewBB at the end of the block 491 PHINode *NewPHI = 492 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI); 493 494 // NOTE! This loop walks backwards for a reason! First off, this minimizes 495 // the cost of removal if we end up removing a large number of values, and 496 // second off, this ensures that the indices for the incoming values aren't 497 // invalidated when we remove one. 498 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) { 499 BasicBlock *IncomingBB = PN->getIncomingBlock(i); 500 if (PredSet.count(IncomingBB)) { 501 Value *V = PN->removeIncomingValue(i, false); 502 NewPHI->addIncoming(V, IncomingBB); 503 } 504 } 505 506 PN->addIncoming(NewPHI, NewBB); 507 } 508 } 509 510 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 511 ArrayRef<BasicBlock *> Preds, 512 const char *Suffix, DominatorTree *DT, 513 LoopInfo *LI, MemorySSAUpdater *MSSAU, 514 bool PreserveLCSSA) { 515 // Do not attempt to split that which cannot be split. 516 if (!BB->canSplitPredecessors()) 517 return nullptr; 518 519 // For the landingpads we need to act a bit differently. 520 // Delegate this work to the SplitLandingPadPredecessors. 521 if (BB->isLandingPad()) { 522 SmallVector<BasicBlock*, 2> NewBBs; 523 std::string NewName = std::string(Suffix) + ".split-lp"; 524 525 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT, 526 LI, MSSAU, PreserveLCSSA); 527 return NewBBs[0]; 528 } 529 530 // Create new basic block, insert right before the original block. 531 BasicBlock *NewBB = BasicBlock::Create( 532 BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB); 533 534 // The new block unconditionally branches to the old block. 535 BranchInst *BI = BranchInst::Create(BB, NewBB); 536 BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc()); 537 538 // Move the edges from Preds to point to NewBB instead of BB. 539 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 540 // This is slightly more strict than necessary; the minimum requirement 541 // is that there be no more than one indirectbr branching to BB. And 542 // all BlockAddress uses would need to be updated. 543 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 544 "Cannot split an edge from an IndirectBrInst"); 545 Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB); 546 } 547 548 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI 549 // node becomes an incoming value for BB's phi node. However, if the Preds 550 // list is empty, we need to insert dummy entries into the PHI nodes in BB to 551 // account for the newly created predecessor. 552 if (Preds.empty()) { 553 // Insert dummy values as the incoming value. 554 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) 555 cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB); 556 } 557 558 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 559 bool HasLoopExit = false; 560 UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, MSSAU, PreserveLCSSA, 561 HasLoopExit); 562 563 if (!Preds.empty()) { 564 // Update the PHI nodes in BB with the values coming from NewBB. 565 UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit); 566 } 567 568 return NewBB; 569 } 570 571 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 572 ArrayRef<BasicBlock *> Preds, 573 const char *Suffix1, const char *Suffix2, 574 SmallVectorImpl<BasicBlock *> &NewBBs, 575 DominatorTree *DT, LoopInfo *LI, 576 MemorySSAUpdater *MSSAU, 577 bool PreserveLCSSA) { 578 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!"); 579 580 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert 581 // it right before the original block. 582 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(), 583 OrigBB->getName() + Suffix1, 584 OrigBB->getParent(), OrigBB); 585 NewBBs.push_back(NewBB1); 586 587 // The new block unconditionally branches to the old block. 588 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1); 589 BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 590 591 // Move the edges from Preds to point to NewBB1 instead of OrigBB. 592 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 593 // This is slightly more strict than necessary; the minimum requirement 594 // is that there be no more than one indirectbr branching to BB. And 595 // all BlockAddress uses would need to be updated. 596 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 597 "Cannot split an edge from an IndirectBrInst"); 598 Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1); 599 } 600 601 bool HasLoopExit = false; 602 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, MSSAU, PreserveLCSSA, 603 HasLoopExit); 604 605 // Update the PHI nodes in OrigBB with the values coming from NewBB1. 606 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit); 607 608 // Move the remaining edges from OrigBB to point to NewBB2. 609 SmallVector<BasicBlock*, 8> NewBB2Preds; 610 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB); 611 i != e; ) { 612 BasicBlock *Pred = *i++; 613 if (Pred == NewBB1) continue; 614 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 615 "Cannot split an edge from an IndirectBrInst"); 616 NewBB2Preds.push_back(Pred); 617 e = pred_end(OrigBB); 618 } 619 620 BasicBlock *NewBB2 = nullptr; 621 if (!NewBB2Preds.empty()) { 622 // Create another basic block for the rest of OrigBB's predecessors. 623 NewBB2 = BasicBlock::Create(OrigBB->getContext(), 624 OrigBB->getName() + Suffix2, 625 OrigBB->getParent(), OrigBB); 626 NewBBs.push_back(NewBB2); 627 628 // The new block unconditionally branches to the old block. 629 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2); 630 BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 631 632 // Move the remaining edges from OrigBB to point to NewBB2. 633 for (BasicBlock *NewBB2Pred : NewBB2Preds) 634 NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2); 635 636 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 637 HasLoopExit = false; 638 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, MSSAU, 639 PreserveLCSSA, HasLoopExit); 640 641 // Update the PHI nodes in OrigBB with the values coming from NewBB2. 642 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit); 643 } 644 645 LandingPadInst *LPad = OrigBB->getLandingPadInst(); 646 Instruction *Clone1 = LPad->clone(); 647 Clone1->setName(Twine("lpad") + Suffix1); 648 NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1); 649 650 if (NewBB2) { 651 Instruction *Clone2 = LPad->clone(); 652 Clone2->setName(Twine("lpad") + Suffix2); 653 NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2); 654 655 // Create a PHI node for the two cloned landingpad instructions only 656 // if the original landingpad instruction has some uses. 657 if (!LPad->use_empty()) { 658 assert(!LPad->getType()->isTokenTy() && 659 "Split cannot be applied if LPad is token type. Otherwise an " 660 "invalid PHINode of token type would be created."); 661 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad); 662 PN->addIncoming(Clone1, NewBB1); 663 PN->addIncoming(Clone2, NewBB2); 664 LPad->replaceAllUsesWith(PN); 665 } 666 LPad->eraseFromParent(); 667 } else { 668 // There is no second clone. Just replace the landing pad with the first 669 // clone. 670 LPad->replaceAllUsesWith(Clone1); 671 LPad->eraseFromParent(); 672 } 673 } 674 675 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, 676 BasicBlock *Pred, 677 DomTreeUpdater *DTU) { 678 Instruction *UncondBranch = Pred->getTerminator(); 679 // Clone the return and add it to the end of the predecessor. 680 Instruction *NewRet = RI->clone(); 681 Pred->getInstList().push_back(NewRet); 682 683 // If the return instruction returns a value, and if the value was a 684 // PHI node in "BB", propagate the right value into the return. 685 for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end(); 686 i != e; ++i) { 687 Value *V = *i; 688 Instruction *NewBC = nullptr; 689 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) { 690 // Return value might be bitcasted. Clone and insert it before the 691 // return instruction. 692 V = BCI->getOperand(0); 693 NewBC = BCI->clone(); 694 Pred->getInstList().insert(NewRet->getIterator(), NewBC); 695 *i = NewBC; 696 } 697 if (PHINode *PN = dyn_cast<PHINode>(V)) { 698 if (PN->getParent() == BB) { 699 if (NewBC) 700 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred)); 701 else 702 *i = PN->getIncomingValueForBlock(Pred); 703 } 704 } 705 } 706 707 // Update any PHI nodes in the returning block to realize that we no 708 // longer branch to them. 709 BB->removePredecessor(Pred); 710 UncondBranch->eraseFromParent(); 711 712 if (DTU) 713 DTU->deleteEdge(Pred, BB); 714 715 return cast<ReturnInst>(NewRet); 716 } 717 718 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond, 719 Instruction *SplitBefore, 720 bool Unreachable, 721 MDNode *BranchWeights, 722 DominatorTree *DT, LoopInfo *LI) { 723 BasicBlock *Head = SplitBefore->getParent(); 724 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 725 Instruction *HeadOldTerm = Head->getTerminator(); 726 LLVMContext &C = Head->getContext(); 727 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 728 Instruction *CheckTerm; 729 if (Unreachable) 730 CheckTerm = new UnreachableInst(C, ThenBlock); 731 else 732 CheckTerm = BranchInst::Create(Tail, ThenBlock); 733 CheckTerm->setDebugLoc(SplitBefore->getDebugLoc()); 734 BranchInst *HeadNewTerm = 735 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond); 736 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 737 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 738 739 if (DT) { 740 if (DomTreeNode *OldNode = DT->getNode(Head)) { 741 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 742 743 DomTreeNode *NewNode = DT->addNewBlock(Tail, Head); 744 for (DomTreeNode *Child : Children) 745 DT->changeImmediateDominator(Child, NewNode); 746 747 // Head dominates ThenBlock. 748 DT->addNewBlock(ThenBlock, Head); 749 } 750 } 751 752 if (LI) { 753 if (Loop *L = LI->getLoopFor(Head)) { 754 L->addBasicBlockToLoop(ThenBlock, *LI); 755 L->addBasicBlockToLoop(Tail, *LI); 756 } 757 } 758 759 return CheckTerm; 760 } 761 762 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore, 763 Instruction **ThenTerm, 764 Instruction **ElseTerm, 765 MDNode *BranchWeights) { 766 BasicBlock *Head = SplitBefore->getParent(); 767 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 768 Instruction *HeadOldTerm = Head->getTerminator(); 769 LLVMContext &C = Head->getContext(); 770 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 771 BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 772 *ThenTerm = BranchInst::Create(Tail, ThenBlock); 773 (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 774 *ElseTerm = BranchInst::Create(Tail, ElseBlock); 775 (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 776 BranchInst *HeadNewTerm = 777 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond); 778 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 779 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 780 } 781 782 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 783 BasicBlock *&IfFalse) { 784 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin()); 785 BasicBlock *Pred1 = nullptr; 786 BasicBlock *Pred2 = nullptr; 787 788 if (SomePHI) { 789 if (SomePHI->getNumIncomingValues() != 2) 790 return nullptr; 791 Pred1 = SomePHI->getIncomingBlock(0); 792 Pred2 = SomePHI->getIncomingBlock(1); 793 } else { 794 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 795 if (PI == PE) // No predecessor 796 return nullptr; 797 Pred1 = *PI++; 798 if (PI == PE) // Only one predecessor 799 return nullptr; 800 Pred2 = *PI++; 801 if (PI != PE) // More than two predecessors 802 return nullptr; 803 } 804 805 // We can only handle branches. Other control flow will be lowered to 806 // branches if possible anyway. 807 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 808 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 809 if (!Pred1Br || !Pred2Br) 810 return nullptr; 811 812 // Eliminate code duplication by ensuring that Pred1Br is conditional if 813 // either are. 814 if (Pred2Br->isConditional()) { 815 // If both branches are conditional, we don't have an "if statement". In 816 // reality, we could transform this case, but since the condition will be 817 // required anyway, we stand no chance of eliminating it, so the xform is 818 // probably not profitable. 819 if (Pred1Br->isConditional()) 820 return nullptr; 821 822 std::swap(Pred1, Pred2); 823 std::swap(Pred1Br, Pred2Br); 824 } 825 826 if (Pred1Br->isConditional()) { 827 // The only thing we have to watch out for here is to make sure that Pred2 828 // doesn't have incoming edges from other blocks. If it does, the condition 829 // doesn't dominate BB. 830 if (!Pred2->getSinglePredecessor()) 831 return nullptr; 832 833 // If we found a conditional branch predecessor, make sure that it branches 834 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 835 if (Pred1Br->getSuccessor(0) == BB && 836 Pred1Br->getSuccessor(1) == Pred2) { 837 IfTrue = Pred1; 838 IfFalse = Pred2; 839 } else if (Pred1Br->getSuccessor(0) == Pred2 && 840 Pred1Br->getSuccessor(1) == BB) { 841 IfTrue = Pred2; 842 IfFalse = Pred1; 843 } else { 844 // We know that one arm of the conditional goes to BB, so the other must 845 // go somewhere unrelated, and this must not be an "if statement". 846 return nullptr; 847 } 848 849 return Pred1Br->getCondition(); 850 } 851 852 // Ok, if we got here, both predecessors end with an unconditional branch to 853 // BB. Don't panic! If both blocks only have a single (identical) 854 // predecessor, and THAT is a conditional branch, then we're all ok! 855 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 856 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor()) 857 return nullptr; 858 859 // Otherwise, if this is a conditional branch, then we can use it! 860 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 861 if (!BI) return nullptr; 862 863 assert(BI->isConditional() && "Two successors but not conditional?"); 864 if (BI->getSuccessor(0) == Pred1) { 865 IfTrue = Pred1; 866 IfFalse = Pred2; 867 } else { 868 IfTrue = Pred2; 869 IfFalse = Pred1; 870 } 871 return BI->getCondition(); 872 } 873