1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform manipulations on basic blocks, and 10 // instructions contained within basic blocks. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/DomTreeUpdater.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 23 #include "llvm/Analysis/MemorySSAUpdater.h" 24 #include "llvm/Analysis/PostDominators.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/InstrTypes.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/User.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/IR/ValueHandle.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include <cassert> 45 #include <cstdint> 46 #include <string> 47 #include <utility> 48 #include <vector> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "basicblock-utils" 53 54 void llvm::DetatchDeadBlocks( 55 ArrayRef<BasicBlock *> BBs, 56 SmallVectorImpl<DominatorTree::UpdateType> *Updates, 57 bool KeepOneInputPHIs) { 58 for (auto *BB : BBs) { 59 // Loop through all of our successors and make sure they know that one 60 // of their predecessors is going away. 61 SmallPtrSet<BasicBlock *, 4> UniqueSuccessors; 62 for (BasicBlock *Succ : successors(BB)) { 63 Succ->removePredecessor(BB, KeepOneInputPHIs); 64 if (Updates && UniqueSuccessors.insert(Succ).second) 65 Updates->push_back({DominatorTree::Delete, BB, Succ}); 66 } 67 68 // Zap all the instructions in the block. 69 while (!BB->empty()) { 70 Instruction &I = BB->back(); 71 // If this instruction is used, replace uses with an arbitrary value. 72 // Because control flow can't get here, we don't care what we replace the 73 // value with. Note that since this block is unreachable, and all values 74 // contained within it must dominate their uses, that all uses will 75 // eventually be removed (they are themselves dead). 76 if (!I.use_empty()) 77 I.replaceAllUsesWith(UndefValue::get(I.getType())); 78 BB->getInstList().pop_back(); 79 } 80 new UnreachableInst(BB->getContext(), BB); 81 assert(BB->getInstList().size() == 1 && 82 isa<UnreachableInst>(BB->getTerminator()) && 83 "The successor list of BB isn't empty before " 84 "applying corresponding DTU updates."); 85 } 86 } 87 88 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU, 89 bool KeepOneInputPHIs) { 90 DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs); 91 } 92 93 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU, 94 bool KeepOneInputPHIs) { 95 #ifndef NDEBUG 96 // Make sure that all predecessors of each dead block is also dead. 97 SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end()); 98 assert(Dead.size() == BBs.size() && "Duplicating blocks?"); 99 for (auto *BB : Dead) 100 for (BasicBlock *Pred : predecessors(BB)) 101 assert(Dead.count(Pred) && "All predecessors must be dead!"); 102 #endif 103 104 SmallVector<DominatorTree::UpdateType, 4> Updates; 105 DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs); 106 107 if (DTU) 108 DTU->applyUpdatesPermissive(Updates); 109 110 for (BasicBlock *BB : BBs) 111 if (DTU) 112 DTU->deleteBB(BB); 113 else 114 BB->eraseFromParent(); 115 } 116 117 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 118 bool KeepOneInputPHIs) { 119 df_iterator_default_set<BasicBlock*> Reachable; 120 121 // Mark all reachable blocks. 122 for (BasicBlock *BB : depth_first_ext(&F, Reachable)) 123 (void)BB/* Mark all reachable blocks */; 124 125 // Collect all dead blocks. 126 std::vector<BasicBlock*> DeadBlocks; 127 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) 128 if (!Reachable.count(&*I)) { 129 BasicBlock *BB = &*I; 130 DeadBlocks.push_back(BB); 131 } 132 133 // Delete the dead blocks. 134 DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs); 135 136 return !DeadBlocks.empty(); 137 } 138 139 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, 140 MemoryDependenceResults *MemDep) { 141 if (!isa<PHINode>(BB->begin())) return; 142 143 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 144 if (PN->getIncomingValue(0) != PN) 145 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 146 else 147 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 148 149 if (MemDep) 150 MemDep->removeInstruction(PN); // Memdep updates AA itself. 151 152 PN->eraseFromParent(); 153 } 154 } 155 156 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) { 157 // Recursively deleting a PHI may cause multiple PHIs to be deleted 158 // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete. 159 SmallVector<WeakTrackingVH, 8> PHIs; 160 for (PHINode &PN : BB->phis()) 161 PHIs.push_back(&PN); 162 163 bool Changed = false; 164 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 165 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) 166 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI); 167 168 return Changed; 169 } 170 171 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU, 172 LoopInfo *LI, MemorySSAUpdater *MSSAU, 173 MemoryDependenceResults *MemDep) { 174 if (BB->hasAddressTaken()) 175 return false; 176 177 // Can't merge if there are multiple predecessors, or no predecessors. 178 BasicBlock *PredBB = BB->getUniquePredecessor(); 179 if (!PredBB) return false; 180 181 // Don't break self-loops. 182 if (PredBB == BB) return false; 183 // Don't break unwinding instructions. 184 if (PredBB->getTerminator()->isExceptionalTerminator()) 185 return false; 186 187 // Can't merge if there are multiple distinct successors. 188 if (PredBB->getUniqueSuccessor() != BB) 189 return false; 190 191 // Can't merge if there is PHI loop. 192 for (PHINode &PN : BB->phis()) 193 for (Value *IncValue : PN.incoming_values()) 194 if (IncValue == &PN) 195 return false; 196 197 LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into " 198 << PredBB->getName() << "\n"); 199 200 // Begin by getting rid of unneeded PHIs. 201 SmallVector<AssertingVH<Value>, 4> IncomingValues; 202 if (isa<PHINode>(BB->front())) { 203 for (PHINode &PN : BB->phis()) 204 if (!isa<PHINode>(PN.getIncomingValue(0)) || 205 cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB) 206 IncomingValues.push_back(PN.getIncomingValue(0)); 207 FoldSingleEntryPHINodes(BB, MemDep); 208 } 209 210 // DTU update: Collect all the edges that exit BB. 211 // These dominator edges will be redirected from Pred. 212 std::vector<DominatorTree::UpdateType> Updates; 213 if (DTU) { 214 Updates.reserve(1 + (2 * succ_size(BB))); 215 // Add insert edges first. Experimentally, for the particular case of two 216 // blocks that can be merged, with a single successor and single predecessor 217 // respectively, it is beneficial to have all insert updates first. Deleting 218 // edges first may lead to unreachable blocks, followed by inserting edges 219 // making the blocks reachable again. Such DT updates lead to high compile 220 // times. We add inserts before deletes here to reduce compile time. 221 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I) 222 // This successor of BB may already have PredBB as a predecessor. 223 if (llvm::find(successors(PredBB), *I) == succ_end(PredBB)) 224 Updates.push_back({DominatorTree::Insert, PredBB, *I}); 225 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I) 226 Updates.push_back({DominatorTree::Delete, BB, *I}); 227 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 228 } 229 230 Instruction *PTI = PredBB->getTerminator(); 231 Instruction *STI = BB->getTerminator(); 232 Instruction *Start = &*BB->begin(); 233 // If there's nothing to move, mark the starting instruction as the last 234 // instruction in the block. 235 if (Start == STI) 236 Start = PTI; 237 238 // Move all definitions in the successor to the predecessor... 239 PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(), 240 BB->begin(), STI->getIterator()); 241 242 if (MSSAU) 243 MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start); 244 245 // Make all PHI nodes that referred to BB now refer to Pred as their 246 // source... 247 BB->replaceAllUsesWith(PredBB); 248 249 // Delete the unconditional branch from the predecessor... 250 PredBB->getInstList().pop_back(); 251 252 // Move terminator instruction and add unreachable to now empty BB. 253 PredBB->getInstList().splice(PredBB->end(), BB->getInstList()); 254 new UnreachableInst(BB->getContext(), BB); 255 256 // Eliminate duplicate dbg.values describing the entry PHI node post-splice. 257 for (auto Incoming : IncomingValues) { 258 if (isa<Instruction>(*Incoming)) { 259 SmallVector<DbgValueInst *, 2> DbgValues; 260 SmallDenseSet<std::pair<DILocalVariable *, DIExpression *>, 2> 261 DbgValueSet; 262 llvm::findDbgValues(DbgValues, Incoming); 263 for (auto &DVI : DbgValues) { 264 auto R = DbgValueSet.insert({DVI->getVariable(), DVI->getExpression()}); 265 if (!R.second) 266 DVI->eraseFromParent(); 267 } 268 } 269 } 270 271 // Inherit predecessors name if it exists. 272 if (!PredBB->hasName()) 273 PredBB->takeName(BB); 274 275 if (LI) 276 LI->removeBlock(BB); 277 278 if (MemDep) 279 MemDep->invalidateCachedPredecessors(); 280 281 // Finally, erase the old block and update dominator info. 282 if (DTU) { 283 assert(BB->getInstList().size() == 1 && 284 isa<UnreachableInst>(BB->getTerminator()) && 285 "The successor list of BB isn't empty before " 286 "applying corresponding DTU updates."); 287 DTU->applyUpdatesPermissive(Updates); 288 DTU->deleteBB(BB); 289 } else { 290 BB->eraseFromParent(); // Nuke BB if DTU is nullptr. 291 } 292 293 return true; 294 } 295 296 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL, 297 BasicBlock::iterator &BI, Value *V) { 298 Instruction &I = *BI; 299 // Replaces all of the uses of the instruction with uses of the value 300 I.replaceAllUsesWith(V); 301 302 // Make sure to propagate a name if there is one already. 303 if (I.hasName() && !V->hasName()) 304 V->takeName(&I); 305 306 // Delete the unnecessary instruction now... 307 BI = BIL.erase(BI); 308 } 309 310 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL, 311 BasicBlock::iterator &BI, Instruction *I) { 312 assert(I->getParent() == nullptr && 313 "ReplaceInstWithInst: Instruction already inserted into basic block!"); 314 315 // Copy debug location to newly added instruction, if it wasn't already set 316 // by the caller. 317 if (!I->getDebugLoc()) 318 I->setDebugLoc(BI->getDebugLoc()); 319 320 // Insert the new instruction into the basic block... 321 BasicBlock::iterator New = BIL.insert(BI, I); 322 323 // Replace all uses of the old instruction, and delete it. 324 ReplaceInstWithValue(BIL, BI, I); 325 326 // Move BI back to point to the newly inserted instruction 327 BI = New; 328 } 329 330 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { 331 BasicBlock::iterator BI(From); 332 ReplaceInstWithInst(From->getParent()->getInstList(), BI, To); 333 } 334 335 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT, 336 LoopInfo *LI, MemorySSAUpdater *MSSAU) { 337 unsigned SuccNum = GetSuccessorNumber(BB, Succ); 338 339 // If this is a critical edge, let SplitCriticalEdge do it. 340 Instruction *LatchTerm = BB->getTerminator(); 341 if (SplitCriticalEdge( 342 LatchTerm, SuccNum, 343 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA())) 344 return LatchTerm->getSuccessor(SuccNum); 345 346 // If the edge isn't critical, then BB has a single successor or Succ has a 347 // single pred. Split the block. 348 if (BasicBlock *SP = Succ->getSinglePredecessor()) { 349 // If the successor only has a single pred, split the top of the successor 350 // block. 351 assert(SP == BB && "CFG broken"); 352 SP = nullptr; 353 return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU); 354 } 355 356 // Otherwise, if BB has a single successor, split it at the bottom of the 357 // block. 358 assert(BB->getTerminator()->getNumSuccessors() == 1 && 359 "Should have a single succ!"); 360 return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU); 361 } 362 363 unsigned 364 llvm::SplitAllCriticalEdges(Function &F, 365 const CriticalEdgeSplittingOptions &Options) { 366 unsigned NumBroken = 0; 367 for (BasicBlock &BB : F) { 368 Instruction *TI = BB.getTerminator(); 369 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI)) 370 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 371 if (SplitCriticalEdge(TI, i, Options)) 372 ++NumBroken; 373 } 374 return NumBroken; 375 } 376 377 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, 378 DominatorTree *DT, LoopInfo *LI, 379 MemorySSAUpdater *MSSAU, const Twine &BBName) { 380 BasicBlock::iterator SplitIt = SplitPt->getIterator(); 381 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) 382 ++SplitIt; 383 std::string Name = BBName.str(); 384 BasicBlock *New = Old->splitBasicBlock( 385 SplitIt, Name.empty() ? Old->getName() + ".split" : Name); 386 387 // The new block lives in whichever loop the old one did. This preserves 388 // LCSSA as well, because we force the split point to be after any PHI nodes. 389 if (LI) 390 if (Loop *L = LI->getLoopFor(Old)) 391 L->addBasicBlockToLoop(New, *LI); 392 393 if (DT) 394 // Old dominates New. New node dominates all other nodes dominated by Old. 395 if (DomTreeNode *OldNode = DT->getNode(Old)) { 396 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 397 398 DomTreeNode *NewNode = DT->addNewBlock(New, Old); 399 for (DomTreeNode *I : Children) 400 DT->changeImmediateDominator(I, NewNode); 401 } 402 403 // Move MemoryAccesses still tracked in Old, but part of New now. 404 // Update accesses in successor blocks accordingly. 405 if (MSSAU) 406 MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin())); 407 408 return New; 409 } 410 411 /// Update DominatorTree, LoopInfo, and LCCSA analysis information. 412 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, 413 ArrayRef<BasicBlock *> Preds, 414 DominatorTree *DT, LoopInfo *LI, 415 MemorySSAUpdater *MSSAU, 416 bool PreserveLCSSA, bool &HasLoopExit) { 417 // Update dominator tree if available. 418 if (DT) { 419 if (OldBB == DT->getRootNode()->getBlock()) { 420 assert(NewBB == &NewBB->getParent()->getEntryBlock()); 421 DT->setNewRoot(NewBB); 422 } else { 423 // Split block expects NewBB to have a non-empty set of predecessors. 424 DT->splitBlock(NewBB); 425 } 426 } 427 428 // Update MemoryPhis after split if MemorySSA is available 429 if (MSSAU) 430 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds); 431 432 // The rest of the logic is only relevant for updating the loop structures. 433 if (!LI) 434 return; 435 436 assert(DT && "DT should be available to update LoopInfo!"); 437 Loop *L = LI->getLoopFor(OldBB); 438 439 // If we need to preserve loop analyses, collect some information about how 440 // this split will affect loops. 441 bool IsLoopEntry = !!L; 442 bool SplitMakesNewLoopHeader = false; 443 for (BasicBlock *Pred : Preds) { 444 // Preds that are not reachable from entry should not be used to identify if 445 // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks 446 // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader 447 // as true and make the NewBB the header of some loop. This breaks LI. 448 if (!DT->isReachableFromEntry(Pred)) 449 continue; 450 // If we need to preserve LCSSA, determine if any of the preds is a loop 451 // exit. 452 if (PreserveLCSSA) 453 if (Loop *PL = LI->getLoopFor(Pred)) 454 if (!PL->contains(OldBB)) 455 HasLoopExit = true; 456 457 // If we need to preserve LoopInfo, note whether any of the preds crosses 458 // an interesting loop boundary. 459 if (!L) 460 continue; 461 if (L->contains(Pred)) 462 IsLoopEntry = false; 463 else 464 SplitMakesNewLoopHeader = true; 465 } 466 467 // Unless we have a loop for OldBB, nothing else to do here. 468 if (!L) 469 return; 470 471 if (IsLoopEntry) { 472 // Add the new block to the nearest enclosing loop (and not an adjacent 473 // loop). To find this, examine each of the predecessors and determine which 474 // loops enclose them, and select the most-nested loop which contains the 475 // loop containing the block being split. 476 Loop *InnermostPredLoop = nullptr; 477 for (BasicBlock *Pred : Preds) { 478 if (Loop *PredLoop = LI->getLoopFor(Pred)) { 479 // Seek a loop which actually contains the block being split (to avoid 480 // adjacent loops). 481 while (PredLoop && !PredLoop->contains(OldBB)) 482 PredLoop = PredLoop->getParentLoop(); 483 484 // Select the most-nested of these loops which contains the block. 485 if (PredLoop && PredLoop->contains(OldBB) && 486 (!InnermostPredLoop || 487 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) 488 InnermostPredLoop = PredLoop; 489 } 490 } 491 492 if (InnermostPredLoop) 493 InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI); 494 } else { 495 L->addBasicBlockToLoop(NewBB, *LI); 496 if (SplitMakesNewLoopHeader) 497 L->moveToHeader(NewBB); 498 } 499 } 500 501 /// Update the PHI nodes in OrigBB to include the values coming from NewBB. 502 /// This also updates AliasAnalysis, if available. 503 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, 504 ArrayRef<BasicBlock *> Preds, BranchInst *BI, 505 bool HasLoopExit) { 506 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. 507 SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end()); 508 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) { 509 PHINode *PN = cast<PHINode>(I++); 510 511 // Check to see if all of the values coming in are the same. If so, we 512 // don't need to create a new PHI node, unless it's needed for LCSSA. 513 Value *InVal = nullptr; 514 if (!HasLoopExit) { 515 InVal = PN->getIncomingValueForBlock(Preds[0]); 516 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 517 if (!PredSet.count(PN->getIncomingBlock(i))) 518 continue; 519 if (!InVal) 520 InVal = PN->getIncomingValue(i); 521 else if (InVal != PN->getIncomingValue(i)) { 522 InVal = nullptr; 523 break; 524 } 525 } 526 } 527 528 if (InVal) { 529 // If all incoming values for the new PHI would be the same, just don't 530 // make a new PHI. Instead, just remove the incoming values from the old 531 // PHI. 532 533 // NOTE! This loop walks backwards for a reason! First off, this minimizes 534 // the cost of removal if we end up removing a large number of values, and 535 // second off, this ensures that the indices for the incoming values 536 // aren't invalidated when we remove one. 537 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) 538 if (PredSet.count(PN->getIncomingBlock(i))) 539 PN->removeIncomingValue(i, false); 540 541 // Add an incoming value to the PHI node in the loop for the preheader 542 // edge. 543 PN->addIncoming(InVal, NewBB); 544 continue; 545 } 546 547 // If the values coming into the block are not the same, we need a new 548 // PHI. 549 // Create the new PHI node, insert it into NewBB at the end of the block 550 PHINode *NewPHI = 551 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI); 552 553 // NOTE! This loop walks backwards for a reason! First off, this minimizes 554 // the cost of removal if we end up removing a large number of values, and 555 // second off, this ensures that the indices for the incoming values aren't 556 // invalidated when we remove one. 557 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) { 558 BasicBlock *IncomingBB = PN->getIncomingBlock(i); 559 if (PredSet.count(IncomingBB)) { 560 Value *V = PN->removeIncomingValue(i, false); 561 NewPHI->addIncoming(V, IncomingBB); 562 } 563 } 564 565 PN->addIncoming(NewPHI, NewBB); 566 } 567 } 568 569 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 570 ArrayRef<BasicBlock *> Preds, 571 const char *Suffix, DominatorTree *DT, 572 LoopInfo *LI, MemorySSAUpdater *MSSAU, 573 bool PreserveLCSSA) { 574 // Do not attempt to split that which cannot be split. 575 if (!BB->canSplitPredecessors()) 576 return nullptr; 577 578 // For the landingpads we need to act a bit differently. 579 // Delegate this work to the SplitLandingPadPredecessors. 580 if (BB->isLandingPad()) { 581 SmallVector<BasicBlock*, 2> NewBBs; 582 std::string NewName = std::string(Suffix) + ".split-lp"; 583 584 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT, 585 LI, MSSAU, PreserveLCSSA); 586 return NewBBs[0]; 587 } 588 589 // Create new basic block, insert right before the original block. 590 BasicBlock *NewBB = BasicBlock::Create( 591 BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB); 592 593 // The new block unconditionally branches to the old block. 594 BranchInst *BI = BranchInst::Create(BB, NewBB); 595 // Splitting the predecessors of a loop header creates a preheader block. 596 if (LI && LI->isLoopHeader(BB)) 597 // Using the loop start line number prevents debuggers stepping into the 598 // loop body for this instruction. 599 BI->setDebugLoc(LI->getLoopFor(BB)->getStartLoc()); 600 else 601 BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc()); 602 603 // Move the edges from Preds to point to NewBB instead of BB. 604 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 605 // This is slightly more strict than necessary; the minimum requirement 606 // is that there be no more than one indirectbr branching to BB. And 607 // all BlockAddress uses would need to be updated. 608 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 609 "Cannot split an edge from an IndirectBrInst"); 610 assert(!isa<CallBrInst>(Preds[i]->getTerminator()) && 611 "Cannot split an edge from a CallBrInst"); 612 Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB); 613 } 614 615 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI 616 // node becomes an incoming value for BB's phi node. However, if the Preds 617 // list is empty, we need to insert dummy entries into the PHI nodes in BB to 618 // account for the newly created predecessor. 619 if (Preds.empty()) { 620 // Insert dummy values as the incoming value. 621 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) 622 cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB); 623 } 624 625 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 626 bool HasLoopExit = false; 627 UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, MSSAU, PreserveLCSSA, 628 HasLoopExit); 629 630 if (!Preds.empty()) { 631 // Update the PHI nodes in BB with the values coming from NewBB. 632 UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit); 633 } 634 635 return NewBB; 636 } 637 638 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 639 ArrayRef<BasicBlock *> Preds, 640 const char *Suffix1, const char *Suffix2, 641 SmallVectorImpl<BasicBlock *> &NewBBs, 642 DominatorTree *DT, LoopInfo *LI, 643 MemorySSAUpdater *MSSAU, 644 bool PreserveLCSSA) { 645 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!"); 646 647 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert 648 // it right before the original block. 649 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(), 650 OrigBB->getName() + Suffix1, 651 OrigBB->getParent(), OrigBB); 652 NewBBs.push_back(NewBB1); 653 654 // The new block unconditionally branches to the old block. 655 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1); 656 BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 657 658 // Move the edges from Preds to point to NewBB1 instead of OrigBB. 659 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 660 // This is slightly more strict than necessary; the minimum requirement 661 // is that there be no more than one indirectbr branching to BB. And 662 // all BlockAddress uses would need to be updated. 663 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 664 "Cannot split an edge from an IndirectBrInst"); 665 Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1); 666 } 667 668 bool HasLoopExit = false; 669 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, MSSAU, PreserveLCSSA, 670 HasLoopExit); 671 672 // Update the PHI nodes in OrigBB with the values coming from NewBB1. 673 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit); 674 675 // Move the remaining edges from OrigBB to point to NewBB2. 676 SmallVector<BasicBlock*, 8> NewBB2Preds; 677 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB); 678 i != e; ) { 679 BasicBlock *Pred = *i++; 680 if (Pred == NewBB1) continue; 681 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 682 "Cannot split an edge from an IndirectBrInst"); 683 NewBB2Preds.push_back(Pred); 684 e = pred_end(OrigBB); 685 } 686 687 BasicBlock *NewBB2 = nullptr; 688 if (!NewBB2Preds.empty()) { 689 // Create another basic block for the rest of OrigBB's predecessors. 690 NewBB2 = BasicBlock::Create(OrigBB->getContext(), 691 OrigBB->getName() + Suffix2, 692 OrigBB->getParent(), OrigBB); 693 NewBBs.push_back(NewBB2); 694 695 // The new block unconditionally branches to the old block. 696 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2); 697 BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 698 699 // Move the remaining edges from OrigBB to point to NewBB2. 700 for (BasicBlock *NewBB2Pred : NewBB2Preds) 701 NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2); 702 703 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 704 HasLoopExit = false; 705 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, MSSAU, 706 PreserveLCSSA, HasLoopExit); 707 708 // Update the PHI nodes in OrigBB with the values coming from NewBB2. 709 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit); 710 } 711 712 LandingPadInst *LPad = OrigBB->getLandingPadInst(); 713 Instruction *Clone1 = LPad->clone(); 714 Clone1->setName(Twine("lpad") + Suffix1); 715 NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1); 716 717 if (NewBB2) { 718 Instruction *Clone2 = LPad->clone(); 719 Clone2->setName(Twine("lpad") + Suffix2); 720 NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2); 721 722 // Create a PHI node for the two cloned landingpad instructions only 723 // if the original landingpad instruction has some uses. 724 if (!LPad->use_empty()) { 725 assert(!LPad->getType()->isTokenTy() && 726 "Split cannot be applied if LPad is token type. Otherwise an " 727 "invalid PHINode of token type would be created."); 728 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad); 729 PN->addIncoming(Clone1, NewBB1); 730 PN->addIncoming(Clone2, NewBB2); 731 LPad->replaceAllUsesWith(PN); 732 } 733 LPad->eraseFromParent(); 734 } else { 735 // There is no second clone. Just replace the landing pad with the first 736 // clone. 737 LPad->replaceAllUsesWith(Clone1); 738 LPad->eraseFromParent(); 739 } 740 } 741 742 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, 743 BasicBlock *Pred, 744 DomTreeUpdater *DTU) { 745 Instruction *UncondBranch = Pred->getTerminator(); 746 // Clone the return and add it to the end of the predecessor. 747 Instruction *NewRet = RI->clone(); 748 Pred->getInstList().push_back(NewRet); 749 750 // If the return instruction returns a value, and if the value was a 751 // PHI node in "BB", propagate the right value into the return. 752 for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end(); 753 i != e; ++i) { 754 Value *V = *i; 755 Instruction *NewBC = nullptr; 756 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) { 757 // Return value might be bitcasted. Clone and insert it before the 758 // return instruction. 759 V = BCI->getOperand(0); 760 NewBC = BCI->clone(); 761 Pred->getInstList().insert(NewRet->getIterator(), NewBC); 762 *i = NewBC; 763 } 764 if (PHINode *PN = dyn_cast<PHINode>(V)) { 765 if (PN->getParent() == BB) { 766 if (NewBC) 767 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred)); 768 else 769 *i = PN->getIncomingValueForBlock(Pred); 770 } 771 } 772 } 773 774 // Update any PHI nodes in the returning block to realize that we no 775 // longer branch to them. 776 BB->removePredecessor(Pred); 777 UncondBranch->eraseFromParent(); 778 779 if (DTU) 780 DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}}); 781 782 return cast<ReturnInst>(NewRet); 783 } 784 785 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond, 786 Instruction *SplitBefore, 787 bool Unreachable, 788 MDNode *BranchWeights, 789 DominatorTree *DT, LoopInfo *LI, 790 BasicBlock *ThenBlock) { 791 BasicBlock *Head = SplitBefore->getParent(); 792 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 793 Instruction *HeadOldTerm = Head->getTerminator(); 794 LLVMContext &C = Head->getContext(); 795 Instruction *CheckTerm; 796 bool CreateThenBlock = (ThenBlock == nullptr); 797 if (CreateThenBlock) { 798 ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 799 if (Unreachable) 800 CheckTerm = new UnreachableInst(C, ThenBlock); 801 else 802 CheckTerm = BranchInst::Create(Tail, ThenBlock); 803 CheckTerm->setDebugLoc(SplitBefore->getDebugLoc()); 804 } else 805 CheckTerm = ThenBlock->getTerminator(); 806 BranchInst *HeadNewTerm = 807 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond); 808 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 809 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 810 811 if (DT) { 812 if (DomTreeNode *OldNode = DT->getNode(Head)) { 813 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 814 815 DomTreeNode *NewNode = DT->addNewBlock(Tail, Head); 816 for (DomTreeNode *Child : Children) 817 DT->changeImmediateDominator(Child, NewNode); 818 819 // Head dominates ThenBlock. 820 if (CreateThenBlock) 821 DT->addNewBlock(ThenBlock, Head); 822 else 823 DT->changeImmediateDominator(ThenBlock, Head); 824 } 825 } 826 827 if (LI) { 828 if (Loop *L = LI->getLoopFor(Head)) { 829 L->addBasicBlockToLoop(ThenBlock, *LI); 830 L->addBasicBlockToLoop(Tail, *LI); 831 } 832 } 833 834 return CheckTerm; 835 } 836 837 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore, 838 Instruction **ThenTerm, 839 Instruction **ElseTerm, 840 MDNode *BranchWeights) { 841 BasicBlock *Head = SplitBefore->getParent(); 842 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 843 Instruction *HeadOldTerm = Head->getTerminator(); 844 LLVMContext &C = Head->getContext(); 845 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 846 BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 847 *ThenTerm = BranchInst::Create(Tail, ThenBlock); 848 (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 849 *ElseTerm = BranchInst::Create(Tail, ElseBlock); 850 (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 851 BranchInst *HeadNewTerm = 852 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond); 853 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 854 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 855 } 856 857 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 858 BasicBlock *&IfFalse) { 859 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin()); 860 BasicBlock *Pred1 = nullptr; 861 BasicBlock *Pred2 = nullptr; 862 863 if (SomePHI) { 864 if (SomePHI->getNumIncomingValues() != 2) 865 return nullptr; 866 Pred1 = SomePHI->getIncomingBlock(0); 867 Pred2 = SomePHI->getIncomingBlock(1); 868 } else { 869 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 870 if (PI == PE) // No predecessor 871 return nullptr; 872 Pred1 = *PI++; 873 if (PI == PE) // Only one predecessor 874 return nullptr; 875 Pred2 = *PI++; 876 if (PI != PE) // More than two predecessors 877 return nullptr; 878 } 879 880 // We can only handle branches. Other control flow will be lowered to 881 // branches if possible anyway. 882 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 883 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 884 if (!Pred1Br || !Pred2Br) 885 return nullptr; 886 887 // Eliminate code duplication by ensuring that Pred1Br is conditional if 888 // either are. 889 if (Pred2Br->isConditional()) { 890 // If both branches are conditional, we don't have an "if statement". In 891 // reality, we could transform this case, but since the condition will be 892 // required anyway, we stand no chance of eliminating it, so the xform is 893 // probably not profitable. 894 if (Pred1Br->isConditional()) 895 return nullptr; 896 897 std::swap(Pred1, Pred2); 898 std::swap(Pred1Br, Pred2Br); 899 } 900 901 if (Pred1Br->isConditional()) { 902 // The only thing we have to watch out for here is to make sure that Pred2 903 // doesn't have incoming edges from other blocks. If it does, the condition 904 // doesn't dominate BB. 905 if (!Pred2->getSinglePredecessor()) 906 return nullptr; 907 908 // If we found a conditional branch predecessor, make sure that it branches 909 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 910 if (Pred1Br->getSuccessor(0) == BB && 911 Pred1Br->getSuccessor(1) == Pred2) { 912 IfTrue = Pred1; 913 IfFalse = Pred2; 914 } else if (Pred1Br->getSuccessor(0) == Pred2 && 915 Pred1Br->getSuccessor(1) == BB) { 916 IfTrue = Pred2; 917 IfFalse = Pred1; 918 } else { 919 // We know that one arm of the conditional goes to BB, so the other must 920 // go somewhere unrelated, and this must not be an "if statement". 921 return nullptr; 922 } 923 924 return Pred1Br->getCondition(); 925 } 926 927 // Ok, if we got here, both predecessors end with an unconditional branch to 928 // BB. Don't panic! If both blocks only have a single (identical) 929 // predecessor, and THAT is a conditional branch, then we're all ok! 930 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 931 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor()) 932 return nullptr; 933 934 // Otherwise, if this is a conditional branch, then we can use it! 935 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 936 if (!BI) return nullptr; 937 938 assert(BI->isConditional() && "Two successors but not conditional?"); 939 if (BI->getSuccessor(0) == Pred1) { 940 IfTrue = Pred1; 941 IfFalse = Pred2; 942 } else { 943 IfTrue = Pred2; 944 IfFalse = Pred1; 945 } 946 return BI->getCondition(); 947 } 948