1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform manipulations on basic blocks, and
10 // instructions contained within basic blocks.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/DomTreeUpdater.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/Analysis/PostDominators.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/PseudoProbe.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/User.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/IR/ValueHandle.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Transforms/Utils/Local.h"
45 #include <cassert>
46 #include <cstdint>
47 #include <string>
48 #include <utility>
49 #include <vector>
50 
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "basicblock-utils"
54 
55 void llvm::DetatchDeadBlocks(
56     ArrayRef<BasicBlock *> BBs,
57     SmallVectorImpl<DominatorTree::UpdateType> *Updates,
58     bool KeepOneInputPHIs) {
59   for (auto *BB : BBs) {
60     // Loop through all of our successors and make sure they know that one
61     // of their predecessors is going away.
62     SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
63     for (BasicBlock *Succ : successors(BB)) {
64       Succ->removePredecessor(BB, KeepOneInputPHIs);
65       if (Updates && UniqueSuccessors.insert(Succ).second)
66         Updates->push_back({DominatorTree::Delete, BB, Succ});
67     }
68 
69     // Zap all the instructions in the block.
70     while (!BB->empty()) {
71       Instruction &I = BB->back();
72       // If this instruction is used, replace uses with an arbitrary value.
73       // Because control flow can't get here, we don't care what we replace the
74       // value with.  Note that since this block is unreachable, and all values
75       // contained within it must dominate their uses, that all uses will
76       // eventually be removed (they are themselves dead).
77       if (!I.use_empty())
78         I.replaceAllUsesWith(UndefValue::get(I.getType()));
79       BB->getInstList().pop_back();
80     }
81     new UnreachableInst(BB->getContext(), BB);
82     assert(BB->getInstList().size() == 1 &&
83            isa<UnreachableInst>(BB->getTerminator()) &&
84            "The successor list of BB isn't empty before "
85            "applying corresponding DTU updates.");
86   }
87 }
88 
89 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
90                            bool KeepOneInputPHIs) {
91   DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
92 }
93 
94 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
95                             bool KeepOneInputPHIs) {
96 #ifndef NDEBUG
97   // Make sure that all predecessors of each dead block is also dead.
98   SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
99   assert(Dead.size() == BBs.size() && "Duplicating blocks?");
100   for (auto *BB : Dead)
101     for (BasicBlock *Pred : predecessors(BB))
102       assert(Dead.count(Pred) && "All predecessors must be dead!");
103 #endif
104 
105   SmallVector<DominatorTree::UpdateType, 4> Updates;
106   DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
107 
108   if (DTU)
109     DTU->applyUpdates(Updates);
110 
111   for (BasicBlock *BB : BBs)
112     if (DTU)
113       DTU->deleteBB(BB);
114     else
115       BB->eraseFromParent();
116 }
117 
118 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
119                                       bool KeepOneInputPHIs) {
120   df_iterator_default_set<BasicBlock*> Reachable;
121 
122   // Mark all reachable blocks.
123   for (BasicBlock *BB : depth_first_ext(&F, Reachable))
124     (void)BB/* Mark all reachable blocks */;
125 
126   // Collect all dead blocks.
127   std::vector<BasicBlock*> DeadBlocks;
128   for (BasicBlock &BB : F)
129     if (!Reachable.count(&BB))
130       DeadBlocks.push_back(&BB);
131 
132   // Delete the dead blocks.
133   DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
134 
135   return !DeadBlocks.empty();
136 }
137 
138 bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
139                                    MemoryDependenceResults *MemDep) {
140   if (!isa<PHINode>(BB->begin()))
141     return false;
142 
143   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
144     if (PN->getIncomingValue(0) != PN)
145       PN->replaceAllUsesWith(PN->getIncomingValue(0));
146     else
147       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
148 
149     if (MemDep)
150       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
151 
152     PN->eraseFromParent();
153   }
154   return true;
155 }
156 
157 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI,
158                           MemorySSAUpdater *MSSAU) {
159   // Recursively deleting a PHI may cause multiple PHIs to be deleted
160   // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
161   SmallVector<WeakTrackingVH, 8> PHIs;
162   for (PHINode &PN : BB->phis())
163     PHIs.push_back(&PN);
164 
165   bool Changed = false;
166   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
167     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
168       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU);
169 
170   return Changed;
171 }
172 
173 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
174                                      LoopInfo *LI, MemorySSAUpdater *MSSAU,
175                                      MemoryDependenceResults *MemDep,
176                                      bool PredecessorWithTwoSuccessors) {
177   if (BB->hasAddressTaken())
178     return false;
179 
180   // Can't merge if there are multiple predecessors, or no predecessors.
181   BasicBlock *PredBB = BB->getUniquePredecessor();
182   if (!PredBB) return false;
183 
184   // Don't break self-loops.
185   if (PredBB == BB) return false;
186   // Don't break unwinding instructions.
187   if (PredBB->getTerminator()->isExceptionalTerminator())
188     return false;
189 
190   // Can't merge if there are multiple distinct successors.
191   if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
192     return false;
193 
194   // Currently only allow PredBB to have two predecessors, one being BB.
195   // Update BI to branch to BB's only successor instead of BB.
196   BranchInst *PredBB_BI;
197   BasicBlock *NewSucc = nullptr;
198   unsigned FallThruPath;
199   if (PredecessorWithTwoSuccessors) {
200     if (!(PredBB_BI = dyn_cast<BranchInst>(PredBB->getTerminator())))
201       return false;
202     BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
203     if (!BB_JmpI || !BB_JmpI->isUnconditional())
204       return false;
205     NewSucc = BB_JmpI->getSuccessor(0);
206     FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
207   }
208 
209   // Can't merge if there is PHI loop.
210   for (PHINode &PN : BB->phis())
211     if (llvm::is_contained(PN.incoming_values(), &PN))
212       return false;
213 
214   LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
215                     << PredBB->getName() << "\n");
216 
217   // Begin by getting rid of unneeded PHIs.
218   SmallVector<AssertingVH<Value>, 4> IncomingValues;
219   if (isa<PHINode>(BB->front())) {
220     for (PHINode &PN : BB->phis())
221       if (!isa<PHINode>(PN.getIncomingValue(0)) ||
222           cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
223         IncomingValues.push_back(PN.getIncomingValue(0));
224     FoldSingleEntryPHINodes(BB, MemDep);
225   }
226 
227   // DTU update: Collect all the edges that exit BB.
228   // These dominator edges will be redirected from Pred.
229   std::vector<DominatorTree::UpdateType> Updates;
230   if (DTU) {
231     SmallSetVector<BasicBlock *, 2> UniqueSuccessors(succ_begin(BB),
232                                                      succ_end(BB));
233     Updates.reserve(1 + (2 * UniqueSuccessors.size()));
234     // Add insert edges first. Experimentally, for the particular case of two
235     // blocks that can be merged, with a single successor and single predecessor
236     // respectively, it is beneficial to have all insert updates first. Deleting
237     // edges first may lead to unreachable blocks, followed by inserting edges
238     // making the blocks reachable again. Such DT updates lead to high compile
239     // times. We add inserts before deletes here to reduce compile time.
240     for (BasicBlock *UniqueSuccessor : UniqueSuccessors)
241       // This successor of BB may already have PredBB as a predecessor.
242       if (!llvm::is_contained(successors(PredBB), UniqueSuccessor))
243         Updates.push_back({DominatorTree::Insert, PredBB, UniqueSuccessor});
244     for (BasicBlock *UniqueSuccessor : UniqueSuccessors)
245       Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor});
246     Updates.push_back({DominatorTree::Delete, PredBB, BB});
247   }
248 
249   Instruction *PTI = PredBB->getTerminator();
250   Instruction *STI = BB->getTerminator();
251   Instruction *Start = &*BB->begin();
252   // If there's nothing to move, mark the starting instruction as the last
253   // instruction in the block. Terminator instruction is handled separately.
254   if (Start == STI)
255     Start = PTI;
256 
257   // Move all definitions in the successor to the predecessor...
258   PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(),
259                                BB->begin(), STI->getIterator());
260 
261   if (MSSAU)
262     MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);
263 
264   // Make all PHI nodes that referred to BB now refer to Pred as their
265   // source...
266   BB->replaceAllUsesWith(PredBB);
267 
268   if (PredecessorWithTwoSuccessors) {
269     // Delete the unconditional branch from BB.
270     BB->getInstList().pop_back();
271 
272     // Update branch in the predecessor.
273     PredBB_BI->setSuccessor(FallThruPath, NewSucc);
274   } else {
275     // Delete the unconditional branch from the predecessor.
276     PredBB->getInstList().pop_back();
277 
278     // Move terminator instruction.
279     PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
280 
281     // Terminator may be a memory accessing instruction too.
282     if (MSSAU)
283       if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>(
284               MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator())))
285         MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End);
286   }
287   // Add unreachable to now empty BB.
288   new UnreachableInst(BB->getContext(), BB);
289 
290   // Inherit predecessors name if it exists.
291   if (!PredBB->hasName())
292     PredBB->takeName(BB);
293 
294   if (LI)
295     LI->removeBlock(BB);
296 
297   if (MemDep)
298     MemDep->invalidateCachedPredecessors();
299 
300   // Finally, erase the old block and update dominator info.
301   if (DTU) {
302     assert(BB->getInstList().size() == 1 &&
303            isa<UnreachableInst>(BB->getTerminator()) &&
304            "The successor list of BB isn't empty before "
305            "applying corresponding DTU updates.");
306     DTU->applyUpdates(Updates);
307     DTU->deleteBB(BB);
308   } else {
309     BB->eraseFromParent(); // Nuke BB if DTU is nullptr.
310   }
311 
312   return true;
313 }
314 
315 bool llvm::MergeBlockSuccessorsIntoGivenBlocks(
316     SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU,
317     LoopInfo *LI) {
318   assert(!MergeBlocks.empty() && "MergeBlocks should not be empty");
319 
320   bool BlocksHaveBeenMerged = false;
321   while (!MergeBlocks.empty()) {
322     BasicBlock *BB = *MergeBlocks.begin();
323     BasicBlock *Dest = BB->getSingleSuccessor();
324     if (Dest && (!L || L->contains(Dest))) {
325       BasicBlock *Fold = Dest->getUniquePredecessor();
326       (void)Fold;
327       if (MergeBlockIntoPredecessor(Dest, DTU, LI)) {
328         assert(Fold == BB &&
329                "Expecting BB to be unique predecessor of the Dest block");
330         MergeBlocks.erase(Dest);
331         BlocksHaveBeenMerged = true;
332       } else
333         MergeBlocks.erase(BB);
334     } else
335       MergeBlocks.erase(BB);
336   }
337   return BlocksHaveBeenMerged;
338 }
339 
340 /// Remove redundant instructions within sequences of consecutive dbg.value
341 /// instructions. This is done using a backward scan to keep the last dbg.value
342 /// describing a specific variable/fragment.
343 ///
344 /// BackwardScan strategy:
345 /// ----------------------
346 /// Given a sequence of consecutive DbgValueInst like this
347 ///
348 ///   dbg.value ..., "x", FragmentX1  (*)
349 ///   dbg.value ..., "y", FragmentY1
350 ///   dbg.value ..., "x", FragmentX2
351 ///   dbg.value ..., "x", FragmentX1  (**)
352 ///
353 /// then the instruction marked with (*) can be removed (it is guaranteed to be
354 /// obsoleted by the instruction marked with (**) as the latter instruction is
355 /// describing the same variable using the same fragment info).
356 ///
357 /// Possible improvements:
358 /// - Check fully overlapping fragments and not only identical fragments.
359 /// - Support dbg.addr, dbg.declare. dbg.label, and possibly other meta
360 ///   instructions being part of the sequence of consecutive instructions.
361 static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
362   SmallVector<DbgValueInst *, 8> ToBeRemoved;
363   SmallDenseSet<DebugVariable> VariableSet;
364   for (auto &I : reverse(*BB)) {
365     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
366       DebugVariable Key(DVI->getVariable(),
367                         DVI->getExpression(),
368                         DVI->getDebugLoc()->getInlinedAt());
369       auto R = VariableSet.insert(Key);
370       // If the same variable fragment is described more than once it is enough
371       // to keep the last one (i.e. the first found since we for reverse
372       // iteration).
373       if (!R.second)
374         ToBeRemoved.push_back(DVI);
375       continue;
376     }
377     // Sequence with consecutive dbg.value instrs ended. Clear the map to
378     // restart identifying redundant instructions if case we find another
379     // dbg.value sequence.
380     VariableSet.clear();
381   }
382 
383   for (auto &Instr : ToBeRemoved)
384     Instr->eraseFromParent();
385 
386   return !ToBeRemoved.empty();
387 }
388 
389 /// Remove redundant dbg.value instructions using a forward scan. This can
390 /// remove a dbg.value instruction that is redundant due to indicating that a
391 /// variable has the same value as already being indicated by an earlier
392 /// dbg.value.
393 ///
394 /// ForwardScan strategy:
395 /// ---------------------
396 /// Given two identical dbg.value instructions, separated by a block of
397 /// instructions that isn't describing the same variable, like this
398 ///
399 ///   dbg.value X1, "x", FragmentX1  (**)
400 ///   <block of instructions, none being "dbg.value ..., "x", ...">
401 ///   dbg.value X1, "x", FragmentX1  (*)
402 ///
403 /// then the instruction marked with (*) can be removed. Variable "x" is already
404 /// described as being mapped to the SSA value X1.
405 ///
406 /// Possible improvements:
407 /// - Keep track of non-overlapping fragments.
408 static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
409   SmallVector<DbgValueInst *, 8> ToBeRemoved;
410   DenseMap<DebugVariable, std::pair<Value *, DIExpression *> > VariableMap;
411   for (auto &I : *BB) {
412     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
413       DebugVariable Key(DVI->getVariable(),
414                         NoneType(),
415                         DVI->getDebugLoc()->getInlinedAt());
416       auto VMI = VariableMap.find(Key);
417       // Update the map if we found a new value/expression describing the
418       // variable, or if the variable wasn't mapped already.
419       if (VMI == VariableMap.end() ||
420           VMI->second.first != DVI->getValue() ||
421           VMI->second.second != DVI->getExpression()) {
422         VariableMap[Key] = { DVI->getValue(), DVI->getExpression() };
423         continue;
424       }
425       // Found an identical mapping. Remember the instruction for later removal.
426       ToBeRemoved.push_back(DVI);
427     }
428   }
429 
430   for (auto &Instr : ToBeRemoved)
431     Instr->eraseFromParent();
432 
433   return !ToBeRemoved.empty();
434 }
435 
436 bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB, bool RemovePseudoOp) {
437   bool MadeChanges = false;
438   // By using the "backward scan" strategy before the "forward scan" strategy we
439   // can remove both dbg.value (2) and (3) in a situation like this:
440   //
441   //   (1) dbg.value V1, "x", DIExpression()
442   //       ...
443   //   (2) dbg.value V2, "x", DIExpression()
444   //   (3) dbg.value V1, "x", DIExpression()
445   //
446   // The backward scan will remove (2), it is made obsolete by (3). After
447   // getting (2) out of the way, the foward scan will remove (3) since "x"
448   // already is described as having the value V1 at (1).
449   MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB);
450   MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB);
451   if (RemovePseudoOp)
452     MadeChanges |= removeRedundantPseudoProbes(BB);
453 
454   if (MadeChanges)
455     LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: "
456                       << BB->getName() << "\n");
457   return MadeChanges;
458 }
459 
460 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
461                                 BasicBlock::iterator &BI, Value *V) {
462   Instruction &I = *BI;
463   // Replaces all of the uses of the instruction with uses of the value
464   I.replaceAllUsesWith(V);
465 
466   // Make sure to propagate a name if there is one already.
467   if (I.hasName() && !V->hasName())
468     V->takeName(&I);
469 
470   // Delete the unnecessary instruction now...
471   BI = BIL.erase(BI);
472 }
473 
474 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
475                                BasicBlock::iterator &BI, Instruction *I) {
476   assert(I->getParent() == nullptr &&
477          "ReplaceInstWithInst: Instruction already inserted into basic block!");
478 
479   // Copy debug location to newly added instruction, if it wasn't already set
480   // by the caller.
481   if (!I->getDebugLoc())
482     I->setDebugLoc(BI->getDebugLoc());
483 
484   // Insert the new instruction into the basic block...
485   BasicBlock::iterator New = BIL.insert(BI, I);
486 
487   // Replace all uses of the old instruction, and delete it.
488   ReplaceInstWithValue(BIL, BI, I);
489 
490   // Move BI back to point to the newly inserted instruction
491   BI = New;
492 }
493 
494 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
495   BasicBlock::iterator BI(From);
496   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
497 }
498 
499 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
500                             LoopInfo *LI, MemorySSAUpdater *MSSAU,
501                             const Twine &BBName) {
502   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
503 
504   // If this is a critical edge, let SplitCriticalEdge do it.
505   Instruction *LatchTerm = BB->getTerminator();
506   if (SplitCriticalEdge(
507           LatchTerm, SuccNum,
508           CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA(),
509           BBName))
510     return LatchTerm->getSuccessor(SuccNum);
511 
512   // If the edge isn't critical, then BB has a single successor or Succ has a
513   // single pred.  Split the block.
514   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
515     // If the successor only has a single pred, split the top of the successor
516     // block.
517     assert(SP == BB && "CFG broken");
518     SP = nullptr;
519     return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName,
520                       /*Before=*/true);
521   }
522 
523   // Otherwise, if BB has a single successor, split it at the bottom of the
524   // block.
525   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
526          "Should have a single succ!");
527   return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName);
528 }
529 
530 unsigned
531 llvm::SplitAllCriticalEdges(Function &F,
532                             const CriticalEdgeSplittingOptions &Options) {
533   unsigned NumBroken = 0;
534   for (BasicBlock &BB : F) {
535     Instruction *TI = BB.getTerminator();
536     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI) &&
537         !isa<CallBrInst>(TI))
538       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
539         if (SplitCriticalEdge(TI, i, Options))
540           ++NumBroken;
541   }
542   return NumBroken;
543 }
544 
545 static BasicBlock *SplitBlockImpl(BasicBlock *Old, Instruction *SplitPt,
546                                   DomTreeUpdater *DTU, DominatorTree *DT,
547                                   LoopInfo *LI, MemorySSAUpdater *MSSAU,
548                                   const Twine &BBName, bool Before) {
549   if (Before) {
550     DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
551     return splitBlockBefore(Old, SplitPt,
552                             DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU,
553                             BBName);
554   }
555   BasicBlock::iterator SplitIt = SplitPt->getIterator();
556   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
557     ++SplitIt;
558   std::string Name = BBName.str();
559   BasicBlock *New = Old->splitBasicBlock(
560       SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
561 
562   // The new block lives in whichever loop the old one did. This preserves
563   // LCSSA as well, because we force the split point to be after any PHI nodes.
564   if (LI)
565     if (Loop *L = LI->getLoopFor(Old))
566       L->addBasicBlockToLoop(New, *LI);
567 
568   if (DTU) {
569     SmallVector<DominatorTree::UpdateType, 8> Updates;
570     // Old dominates New. New node dominates all other nodes dominated by Old.
571     SmallSetVector<BasicBlock *, 8> UniqueSuccessorsOfOld(succ_begin(New),
572                                                           succ_end(New));
573     Updates.push_back({DominatorTree::Insert, Old, New});
574     Updates.reserve(Updates.size() + 2 * UniqueSuccessorsOfOld.size());
575     for (BasicBlock *UniqueSuccessorOfOld : UniqueSuccessorsOfOld) {
576       Updates.push_back({DominatorTree::Insert, New, UniqueSuccessorOfOld});
577       Updates.push_back({DominatorTree::Delete, Old, UniqueSuccessorOfOld});
578     }
579 
580     DTU->applyUpdates(Updates);
581   } else if (DT)
582     // Old dominates New. New node dominates all other nodes dominated by Old.
583     if (DomTreeNode *OldNode = DT->getNode(Old)) {
584       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
585 
586       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
587       for (DomTreeNode *I : Children)
588         DT->changeImmediateDominator(I, NewNode);
589     }
590 
591   // Move MemoryAccesses still tracked in Old, but part of New now.
592   // Update accesses in successor blocks accordingly.
593   if (MSSAU)
594     MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
595 
596   return New;
597 }
598 
599 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
600                              DominatorTree *DT, LoopInfo *LI,
601                              MemorySSAUpdater *MSSAU, const Twine &BBName,
602                              bool Before) {
603   return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName,
604                         Before);
605 }
606 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
607                              DomTreeUpdater *DTU, LoopInfo *LI,
608                              MemorySSAUpdater *MSSAU, const Twine &BBName,
609                              bool Before) {
610   return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName,
611                         Before);
612 }
613 
614 BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, Instruction *SplitPt,
615                                    DomTreeUpdater *DTU, LoopInfo *LI,
616                                    MemorySSAUpdater *MSSAU,
617                                    const Twine &BBName) {
618 
619   BasicBlock::iterator SplitIt = SplitPt->getIterator();
620   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
621     ++SplitIt;
622   std::string Name = BBName.str();
623   BasicBlock *New = Old->splitBasicBlock(
624       SplitIt, Name.empty() ? Old->getName() + ".split" : Name,
625       /* Before=*/true);
626 
627   // The new block lives in whichever loop the old one did. This preserves
628   // LCSSA as well, because we force the split point to be after any PHI nodes.
629   if (LI)
630     if (Loop *L = LI->getLoopFor(Old))
631       L->addBasicBlockToLoop(New, *LI);
632 
633   if (DTU) {
634     SmallVector<DominatorTree::UpdateType, 8> DTUpdates;
635     // New dominates Old. The predecessor nodes of the Old node dominate
636     // New node.
637     SmallSetVector<BasicBlock *, 8> UniquePredecessorsOfOld(pred_begin(New),
638                                                             pred_end(New));
639     DTUpdates.push_back({DominatorTree::Insert, New, Old});
640     DTUpdates.reserve(DTUpdates.size() + 2 * UniquePredecessorsOfOld.size());
641     for (BasicBlock *UniquePredecessorOfOld : UniquePredecessorsOfOld) {
642       DTUpdates.push_back({DominatorTree::Insert, UniquePredecessorOfOld, New});
643       DTUpdates.push_back({DominatorTree::Delete, UniquePredecessorOfOld, Old});
644     }
645 
646     DTU->applyUpdates(DTUpdates);
647 
648     // Move MemoryAccesses still tracked in Old, but part of New now.
649     // Update accesses in successor blocks accordingly.
650     if (MSSAU) {
651       MSSAU->applyUpdates(DTUpdates, DTU->getDomTree());
652       if (VerifyMemorySSA)
653         MSSAU->getMemorySSA()->verifyMemorySSA();
654     }
655   }
656   return New;
657 }
658 
659 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
660 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
661                                       ArrayRef<BasicBlock *> Preds,
662                                       DomTreeUpdater *DTU, DominatorTree *DT,
663                                       LoopInfo *LI, MemorySSAUpdater *MSSAU,
664                                       bool PreserveLCSSA, bool &HasLoopExit) {
665   // Update dominator tree if available.
666   if (DTU) {
667     // Recalculation of DomTree is needed when updating a forward DomTree and
668     // the Entry BB is replaced.
669     if (NewBB == &NewBB->getParent()->getEntryBlock() && DTU->hasDomTree()) {
670       // The entry block was removed and there is no external interface for
671       // the dominator tree to be notified of this change. In this corner-case
672       // we recalculate the entire tree.
673       DTU->recalculate(*NewBB->getParent());
674     } else {
675       // Split block expects NewBB to have a non-empty set of predecessors.
676       SmallVector<DominatorTree::UpdateType, 8> Updates;
677       SmallSetVector<BasicBlock *, 8> UniquePreds(Preds.begin(), Preds.end());
678       Updates.push_back({DominatorTree::Insert, NewBB, OldBB});
679       Updates.reserve(Updates.size() + 2 * UniquePreds.size());
680       for (auto *UniquePred : UniquePreds) {
681         Updates.push_back({DominatorTree::Insert, UniquePred, NewBB});
682         Updates.push_back({DominatorTree::Delete, UniquePred, OldBB});
683       }
684       DTU->applyUpdates(Updates);
685     }
686   } else if (DT) {
687     if (OldBB == DT->getRootNode()->getBlock()) {
688       assert(NewBB == &NewBB->getParent()->getEntryBlock());
689       DT->setNewRoot(NewBB);
690     } else {
691       // Split block expects NewBB to have a non-empty set of predecessors.
692       DT->splitBlock(NewBB);
693     }
694   }
695 
696   // Update MemoryPhis after split if MemorySSA is available
697   if (MSSAU)
698     MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
699 
700   // The rest of the logic is only relevant for updating the loop structures.
701   if (!LI)
702     return;
703 
704   if (DTU && DTU->hasDomTree())
705     DT = &DTU->getDomTree();
706   assert(DT && "DT should be available to update LoopInfo!");
707   Loop *L = LI->getLoopFor(OldBB);
708 
709   // If we need to preserve loop analyses, collect some information about how
710   // this split will affect loops.
711   bool IsLoopEntry = !!L;
712   bool SplitMakesNewLoopHeader = false;
713   for (BasicBlock *Pred : Preds) {
714     // Preds that are not reachable from entry should not be used to identify if
715     // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
716     // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
717     // as true and make the NewBB the header of some loop. This breaks LI.
718     if (!DT->isReachableFromEntry(Pred))
719       continue;
720     // If we need to preserve LCSSA, determine if any of the preds is a loop
721     // exit.
722     if (PreserveLCSSA)
723       if (Loop *PL = LI->getLoopFor(Pred))
724         if (!PL->contains(OldBB))
725           HasLoopExit = true;
726 
727     // If we need to preserve LoopInfo, note whether any of the preds crosses
728     // an interesting loop boundary.
729     if (!L)
730       continue;
731     if (L->contains(Pred))
732       IsLoopEntry = false;
733     else
734       SplitMakesNewLoopHeader = true;
735   }
736 
737   // Unless we have a loop for OldBB, nothing else to do here.
738   if (!L)
739     return;
740 
741   if (IsLoopEntry) {
742     // Add the new block to the nearest enclosing loop (and not an adjacent
743     // loop). To find this, examine each of the predecessors and determine which
744     // loops enclose them, and select the most-nested loop which contains the
745     // loop containing the block being split.
746     Loop *InnermostPredLoop = nullptr;
747     for (BasicBlock *Pred : Preds) {
748       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
749         // Seek a loop which actually contains the block being split (to avoid
750         // adjacent loops).
751         while (PredLoop && !PredLoop->contains(OldBB))
752           PredLoop = PredLoop->getParentLoop();
753 
754         // Select the most-nested of these loops which contains the block.
755         if (PredLoop && PredLoop->contains(OldBB) &&
756             (!InnermostPredLoop ||
757              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
758           InnermostPredLoop = PredLoop;
759       }
760     }
761 
762     if (InnermostPredLoop)
763       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
764   } else {
765     L->addBasicBlockToLoop(NewBB, *LI);
766     if (SplitMakesNewLoopHeader)
767       L->moveToHeader(NewBB);
768   }
769 }
770 
771 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
772 /// This also updates AliasAnalysis, if available.
773 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
774                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
775                            bool HasLoopExit) {
776   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
777   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
778   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
779     PHINode *PN = cast<PHINode>(I++);
780 
781     // Check to see if all of the values coming in are the same.  If so, we
782     // don't need to create a new PHI node, unless it's needed for LCSSA.
783     Value *InVal = nullptr;
784     if (!HasLoopExit) {
785       InVal = PN->getIncomingValueForBlock(Preds[0]);
786       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
787         if (!PredSet.count(PN->getIncomingBlock(i)))
788           continue;
789         if (!InVal)
790           InVal = PN->getIncomingValue(i);
791         else if (InVal != PN->getIncomingValue(i)) {
792           InVal = nullptr;
793           break;
794         }
795       }
796     }
797 
798     if (InVal) {
799       // If all incoming values for the new PHI would be the same, just don't
800       // make a new PHI.  Instead, just remove the incoming values from the old
801       // PHI.
802 
803       // NOTE! This loop walks backwards for a reason! First off, this minimizes
804       // the cost of removal if we end up removing a large number of values, and
805       // second off, this ensures that the indices for the incoming values
806       // aren't invalidated when we remove one.
807       for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
808         if (PredSet.count(PN->getIncomingBlock(i)))
809           PN->removeIncomingValue(i, false);
810 
811       // Add an incoming value to the PHI node in the loop for the preheader
812       // edge.
813       PN->addIncoming(InVal, NewBB);
814       continue;
815     }
816 
817     // If the values coming into the block are not the same, we need a new
818     // PHI.
819     // Create the new PHI node, insert it into NewBB at the end of the block
820     PHINode *NewPHI =
821         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
822 
823     // NOTE! This loop walks backwards for a reason! First off, this minimizes
824     // the cost of removal if we end up removing a large number of values, and
825     // second off, this ensures that the indices for the incoming values aren't
826     // invalidated when we remove one.
827     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
828       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
829       if (PredSet.count(IncomingBB)) {
830         Value *V = PN->removeIncomingValue(i, false);
831         NewPHI->addIncoming(V, IncomingBB);
832       }
833     }
834 
835     PN->addIncoming(NewPHI, NewBB);
836   }
837 }
838 
839 static void SplitLandingPadPredecessorsImpl(
840     BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
841     const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
842     DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
843     MemorySSAUpdater *MSSAU, bool PreserveLCSSA);
844 
845 static BasicBlock *
846 SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds,
847                            const char *Suffix, DomTreeUpdater *DTU,
848                            DominatorTree *DT, LoopInfo *LI,
849                            MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
850   // Do not attempt to split that which cannot be split.
851   if (!BB->canSplitPredecessors())
852     return nullptr;
853 
854   // For the landingpads we need to act a bit differently.
855   // Delegate this work to the SplitLandingPadPredecessors.
856   if (BB->isLandingPad()) {
857     SmallVector<BasicBlock*, 2> NewBBs;
858     std::string NewName = std::string(Suffix) + ".split-lp";
859 
860     SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs,
861                                     DTU, DT, LI, MSSAU, PreserveLCSSA);
862     return NewBBs[0];
863   }
864 
865   // Create new basic block, insert right before the original block.
866   BasicBlock *NewBB = BasicBlock::Create(
867       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
868 
869   // The new block unconditionally branches to the old block.
870   BranchInst *BI = BranchInst::Create(BB, NewBB);
871 
872   Loop *L = nullptr;
873   BasicBlock *OldLatch = nullptr;
874   // Splitting the predecessors of a loop header creates a preheader block.
875   if (LI && LI->isLoopHeader(BB)) {
876     L = LI->getLoopFor(BB);
877     // Using the loop start line number prevents debuggers stepping into the
878     // loop body for this instruction.
879     BI->setDebugLoc(L->getStartLoc());
880 
881     // If BB is the header of the Loop, it is possible that the loop is
882     // modified, such that the current latch does not remain the latch of the
883     // loop. If that is the case, the loop metadata from the current latch needs
884     // to be applied to the new latch.
885     OldLatch = L->getLoopLatch();
886   } else
887     BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
888 
889   // Move the edges from Preds to point to NewBB instead of BB.
890   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
891     // This is slightly more strict than necessary; the minimum requirement
892     // is that there be no more than one indirectbr branching to BB. And
893     // all BlockAddress uses would need to be updated.
894     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
895            "Cannot split an edge from an IndirectBrInst");
896     assert(!isa<CallBrInst>(Preds[i]->getTerminator()) &&
897            "Cannot split an edge from a CallBrInst");
898     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
899   }
900 
901   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
902   // node becomes an incoming value for BB's phi node.  However, if the Preds
903   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
904   // account for the newly created predecessor.
905   if (Preds.empty()) {
906     // Insert dummy values as the incoming value.
907     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
908       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
909   }
910 
911   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
912   bool HasLoopExit = false;
913   UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA,
914                             HasLoopExit);
915 
916   if (!Preds.empty()) {
917     // Update the PHI nodes in BB with the values coming from NewBB.
918     UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
919   }
920 
921   if (OldLatch) {
922     BasicBlock *NewLatch = L->getLoopLatch();
923     if (NewLatch != OldLatch) {
924       MDNode *MD = OldLatch->getTerminator()->getMetadata("llvm.loop");
925       NewLatch->getTerminator()->setMetadata("llvm.loop", MD);
926       OldLatch->getTerminator()->setMetadata("llvm.loop", nullptr);
927     }
928   }
929 
930   return NewBB;
931 }
932 
933 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
934                                          ArrayRef<BasicBlock *> Preds,
935                                          const char *Suffix, DominatorTree *DT,
936                                          LoopInfo *LI, MemorySSAUpdater *MSSAU,
937                                          bool PreserveLCSSA) {
938   return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI,
939                                     MSSAU, PreserveLCSSA);
940 }
941 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
942                                          ArrayRef<BasicBlock *> Preds,
943                                          const char *Suffix,
944                                          DomTreeUpdater *DTU, LoopInfo *LI,
945                                          MemorySSAUpdater *MSSAU,
946                                          bool PreserveLCSSA) {
947   return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU,
948                                     /*DT=*/nullptr, LI, MSSAU, PreserveLCSSA);
949 }
950 
951 static void SplitLandingPadPredecessorsImpl(
952     BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
953     const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
954     DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
955     MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
956   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
957 
958   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
959   // it right before the original block.
960   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
961                                           OrigBB->getName() + Suffix1,
962                                           OrigBB->getParent(), OrigBB);
963   NewBBs.push_back(NewBB1);
964 
965   // The new block unconditionally branches to the old block.
966   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
967   BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
968 
969   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
970   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
971     // This is slightly more strict than necessary; the minimum requirement
972     // is that there be no more than one indirectbr branching to BB. And
973     // all BlockAddress uses would need to be updated.
974     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
975            "Cannot split an edge from an IndirectBrInst");
976     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
977   }
978 
979   bool HasLoopExit = false;
980   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU,
981                             PreserveLCSSA, HasLoopExit);
982 
983   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
984   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
985 
986   // Move the remaining edges from OrigBB to point to NewBB2.
987   SmallVector<BasicBlock*, 8> NewBB2Preds;
988   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
989        i != e; ) {
990     BasicBlock *Pred = *i++;
991     if (Pred == NewBB1) continue;
992     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
993            "Cannot split an edge from an IndirectBrInst");
994     NewBB2Preds.push_back(Pred);
995     e = pred_end(OrigBB);
996   }
997 
998   BasicBlock *NewBB2 = nullptr;
999   if (!NewBB2Preds.empty()) {
1000     // Create another basic block for the rest of OrigBB's predecessors.
1001     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
1002                                 OrigBB->getName() + Suffix2,
1003                                 OrigBB->getParent(), OrigBB);
1004     NewBBs.push_back(NewBB2);
1005 
1006     // The new block unconditionally branches to the old block.
1007     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
1008     BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
1009 
1010     // Move the remaining edges from OrigBB to point to NewBB2.
1011     for (BasicBlock *NewBB2Pred : NewBB2Preds)
1012       NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
1013 
1014     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
1015     HasLoopExit = false;
1016     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU,
1017                               PreserveLCSSA, HasLoopExit);
1018 
1019     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
1020     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
1021   }
1022 
1023   LandingPadInst *LPad = OrigBB->getLandingPadInst();
1024   Instruction *Clone1 = LPad->clone();
1025   Clone1->setName(Twine("lpad") + Suffix1);
1026   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
1027 
1028   if (NewBB2) {
1029     Instruction *Clone2 = LPad->clone();
1030     Clone2->setName(Twine("lpad") + Suffix2);
1031     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
1032 
1033     // Create a PHI node for the two cloned landingpad instructions only
1034     // if the original landingpad instruction has some uses.
1035     if (!LPad->use_empty()) {
1036       assert(!LPad->getType()->isTokenTy() &&
1037              "Split cannot be applied if LPad is token type. Otherwise an "
1038              "invalid PHINode of token type would be created.");
1039       PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
1040       PN->addIncoming(Clone1, NewBB1);
1041       PN->addIncoming(Clone2, NewBB2);
1042       LPad->replaceAllUsesWith(PN);
1043     }
1044     LPad->eraseFromParent();
1045   } else {
1046     // There is no second clone. Just replace the landing pad with the first
1047     // clone.
1048     LPad->replaceAllUsesWith(Clone1);
1049     LPad->eraseFromParent();
1050   }
1051 }
1052 
1053 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
1054                                        ArrayRef<BasicBlock *> Preds,
1055                                        const char *Suffix1, const char *Suffix2,
1056                                        SmallVectorImpl<BasicBlock *> &NewBBs,
1057                                        DominatorTree *DT, LoopInfo *LI,
1058                                        MemorySSAUpdater *MSSAU,
1059                                        bool PreserveLCSSA) {
1060   return SplitLandingPadPredecessorsImpl(
1061       OrigBB, Preds, Suffix1, Suffix2, NewBBs,
1062       /*DTU=*/nullptr, DT, LI, MSSAU, PreserveLCSSA);
1063 }
1064 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
1065                                        ArrayRef<BasicBlock *> Preds,
1066                                        const char *Suffix1, const char *Suffix2,
1067                                        SmallVectorImpl<BasicBlock *> &NewBBs,
1068                                        DomTreeUpdater *DTU, LoopInfo *LI,
1069                                        MemorySSAUpdater *MSSAU,
1070                                        bool PreserveLCSSA) {
1071   return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2,
1072                                          NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU,
1073                                          PreserveLCSSA);
1074 }
1075 
1076 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
1077                                              BasicBlock *Pred,
1078                                              DomTreeUpdater *DTU) {
1079   Instruction *UncondBranch = Pred->getTerminator();
1080   // Clone the return and add it to the end of the predecessor.
1081   Instruction *NewRet = RI->clone();
1082   Pred->getInstList().push_back(NewRet);
1083 
1084   // If the return instruction returns a value, and if the value was a
1085   // PHI node in "BB", propagate the right value into the return.
1086   for (Use &Op : NewRet->operands()) {
1087     Value *V = Op;
1088     Instruction *NewBC = nullptr;
1089     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
1090       // Return value might be bitcasted. Clone and insert it before the
1091       // return instruction.
1092       V = BCI->getOperand(0);
1093       NewBC = BCI->clone();
1094       Pred->getInstList().insert(NewRet->getIterator(), NewBC);
1095       Op = NewBC;
1096     }
1097 
1098     Instruction *NewEV = nullptr;
1099     if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
1100       V = EVI->getOperand(0);
1101       NewEV = EVI->clone();
1102       if (NewBC) {
1103         NewBC->setOperand(0, NewEV);
1104         Pred->getInstList().insert(NewBC->getIterator(), NewEV);
1105       } else {
1106         Pred->getInstList().insert(NewRet->getIterator(), NewEV);
1107         Op = NewEV;
1108       }
1109     }
1110 
1111     if (PHINode *PN = dyn_cast<PHINode>(V)) {
1112       if (PN->getParent() == BB) {
1113         if (NewEV) {
1114           NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred));
1115         } else if (NewBC)
1116           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
1117         else
1118           Op = PN->getIncomingValueForBlock(Pred);
1119       }
1120     }
1121   }
1122 
1123   // Update any PHI nodes in the returning block to realize that we no
1124   // longer branch to them.
1125   BB->removePredecessor(Pred);
1126   UncondBranch->eraseFromParent();
1127 
1128   if (DTU)
1129     DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
1130 
1131   return cast<ReturnInst>(NewRet);
1132 }
1133 
1134 static Instruction *
1135 SplitBlockAndInsertIfThenImpl(Value *Cond, Instruction *SplitBefore,
1136                               bool Unreachable, MDNode *BranchWeights,
1137                               DomTreeUpdater *DTU, DominatorTree *DT,
1138                               LoopInfo *LI, BasicBlock *ThenBlock) {
1139   SmallVector<DominatorTree::UpdateType, 8> Updates;
1140   BasicBlock *Head = SplitBefore->getParent();
1141   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
1142   if (DTU) {
1143     SmallSetVector<BasicBlock *, 8> UniqueSuccessorsOfHead(succ_begin(Tail),
1144                                                            succ_end(Tail));
1145     Updates.push_back({DominatorTree::Insert, Head, Tail});
1146     Updates.reserve(Updates.size() + 2 * UniqueSuccessorsOfHead.size());
1147     for (BasicBlock *UniqueSuccessorOfHead : UniqueSuccessorsOfHead) {
1148       Updates.push_back({DominatorTree::Insert, Tail, UniqueSuccessorOfHead});
1149       Updates.push_back({DominatorTree::Delete, Head, UniqueSuccessorOfHead});
1150     }
1151   }
1152   Instruction *HeadOldTerm = Head->getTerminator();
1153   LLVMContext &C = Head->getContext();
1154   Instruction *CheckTerm;
1155   bool CreateThenBlock = (ThenBlock == nullptr);
1156   if (CreateThenBlock) {
1157     ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1158     if (Unreachable)
1159       CheckTerm = new UnreachableInst(C, ThenBlock);
1160     else {
1161       CheckTerm = BranchInst::Create(Tail, ThenBlock);
1162       if (DTU)
1163         Updates.push_back({DominatorTree::Insert, ThenBlock, Tail});
1164     }
1165     CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
1166   } else
1167     CheckTerm = ThenBlock->getTerminator();
1168   BranchInst *HeadNewTerm =
1169       BranchInst::Create(/*ifTrue*/ ThenBlock, /*ifFalse*/ Tail, Cond);
1170   if (DTU)
1171     Updates.push_back({DominatorTree::Insert, Head, ThenBlock});
1172   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1173   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1174 
1175   if (DTU)
1176     DTU->applyUpdates(Updates);
1177   else if (DT) {
1178     if (DomTreeNode *OldNode = DT->getNode(Head)) {
1179       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
1180 
1181       DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
1182       for (DomTreeNode *Child : Children)
1183         DT->changeImmediateDominator(Child, NewNode);
1184 
1185       // Head dominates ThenBlock.
1186       if (CreateThenBlock)
1187         DT->addNewBlock(ThenBlock, Head);
1188       else
1189         DT->changeImmediateDominator(ThenBlock, Head);
1190     }
1191   }
1192 
1193   if (LI) {
1194     if (Loop *L = LI->getLoopFor(Head)) {
1195       L->addBasicBlockToLoop(ThenBlock, *LI);
1196       L->addBasicBlockToLoop(Tail, *LI);
1197     }
1198   }
1199 
1200   return CheckTerm;
1201 }
1202 
1203 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
1204                                              Instruction *SplitBefore,
1205                                              bool Unreachable,
1206                                              MDNode *BranchWeights,
1207                                              DominatorTree *DT, LoopInfo *LI,
1208                                              BasicBlock *ThenBlock) {
1209   return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable,
1210                                        BranchWeights,
1211                                        /*DTU=*/nullptr, DT, LI, ThenBlock);
1212 }
1213 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
1214                                              Instruction *SplitBefore,
1215                                              bool Unreachable,
1216                                              MDNode *BranchWeights,
1217                                              DomTreeUpdater *DTU, LoopInfo *LI,
1218                                              BasicBlock *ThenBlock) {
1219   return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable,
1220                                        BranchWeights, DTU, /*DT=*/nullptr, LI,
1221                                        ThenBlock);
1222 }
1223 
1224 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
1225                                          Instruction **ThenTerm,
1226                                          Instruction **ElseTerm,
1227                                          MDNode *BranchWeights) {
1228   BasicBlock *Head = SplitBefore->getParent();
1229   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
1230   Instruction *HeadOldTerm = Head->getTerminator();
1231   LLVMContext &C = Head->getContext();
1232   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1233   BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1234   *ThenTerm = BranchInst::Create(Tail, ThenBlock);
1235   (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
1236   *ElseTerm = BranchInst::Create(Tail, ElseBlock);
1237   (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
1238   BranchInst *HeadNewTerm =
1239     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
1240   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1241   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1242 }
1243 
1244 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
1245                              BasicBlock *&IfFalse) {
1246   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
1247   BasicBlock *Pred1 = nullptr;
1248   BasicBlock *Pred2 = nullptr;
1249 
1250   if (SomePHI) {
1251     if (SomePHI->getNumIncomingValues() != 2)
1252       return nullptr;
1253     Pred1 = SomePHI->getIncomingBlock(0);
1254     Pred2 = SomePHI->getIncomingBlock(1);
1255   } else {
1256     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1257     if (PI == PE) // No predecessor
1258       return nullptr;
1259     Pred1 = *PI++;
1260     if (PI == PE) // Only one predecessor
1261       return nullptr;
1262     Pred2 = *PI++;
1263     if (PI != PE) // More than two predecessors
1264       return nullptr;
1265   }
1266 
1267   // We can only handle branches.  Other control flow will be lowered to
1268   // branches if possible anyway.
1269   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
1270   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
1271   if (!Pred1Br || !Pred2Br)
1272     return nullptr;
1273 
1274   // Eliminate code duplication by ensuring that Pred1Br is conditional if
1275   // either are.
1276   if (Pred2Br->isConditional()) {
1277     // If both branches are conditional, we don't have an "if statement".  In
1278     // reality, we could transform this case, but since the condition will be
1279     // required anyway, we stand no chance of eliminating it, so the xform is
1280     // probably not profitable.
1281     if (Pred1Br->isConditional())
1282       return nullptr;
1283 
1284     std::swap(Pred1, Pred2);
1285     std::swap(Pred1Br, Pred2Br);
1286   }
1287 
1288   if (Pred1Br->isConditional()) {
1289     // The only thing we have to watch out for here is to make sure that Pred2
1290     // doesn't have incoming edges from other blocks.  If it does, the condition
1291     // doesn't dominate BB.
1292     if (!Pred2->getSinglePredecessor())
1293       return nullptr;
1294 
1295     // If we found a conditional branch predecessor, make sure that it branches
1296     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
1297     if (Pred1Br->getSuccessor(0) == BB &&
1298         Pred1Br->getSuccessor(1) == Pred2) {
1299       IfTrue = Pred1;
1300       IfFalse = Pred2;
1301     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
1302                Pred1Br->getSuccessor(1) == BB) {
1303       IfTrue = Pred2;
1304       IfFalse = Pred1;
1305     } else {
1306       // We know that one arm of the conditional goes to BB, so the other must
1307       // go somewhere unrelated, and this must not be an "if statement".
1308       return nullptr;
1309     }
1310 
1311     return Pred1Br->getCondition();
1312   }
1313 
1314   // Ok, if we got here, both predecessors end with an unconditional branch to
1315   // BB.  Don't panic!  If both blocks only have a single (identical)
1316   // predecessor, and THAT is a conditional branch, then we're all ok!
1317   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
1318   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
1319     return nullptr;
1320 
1321   // Otherwise, if this is a conditional branch, then we can use it!
1322   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
1323   if (!BI) return nullptr;
1324 
1325   assert(BI->isConditional() && "Two successors but not conditional?");
1326   if (BI->getSuccessor(0) == Pred1) {
1327     IfTrue = Pred1;
1328     IfFalse = Pred2;
1329   } else {
1330     IfTrue = Pred2;
1331     IfFalse = Pred1;
1332   }
1333   return BI->getCondition();
1334 }
1335 
1336 // After creating a control flow hub, the operands of PHINodes in an outgoing
1337 // block Out no longer match the predecessors of that block. Predecessors of Out
1338 // that are incoming blocks to the hub are now replaced by just one edge from
1339 // the hub. To match this new control flow, the corresponding values from each
1340 // PHINode must now be moved a new PHINode in the first guard block of the hub.
1341 //
1342 // This operation cannot be performed with SSAUpdater, because it involves one
1343 // new use: If the block Out is in the list of Incoming blocks, then the newly
1344 // created PHI in the Hub will use itself along that edge from Out to Hub.
1345 static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock,
1346                           const SetVector<BasicBlock *> &Incoming,
1347                           BasicBlock *FirstGuardBlock) {
1348   auto I = Out->begin();
1349   while (I != Out->end() && isa<PHINode>(I)) {
1350     auto Phi = cast<PHINode>(I);
1351     auto NewPhi =
1352         PHINode::Create(Phi->getType(), Incoming.size(),
1353                         Phi->getName() + ".moved", &FirstGuardBlock->back());
1354     for (auto In : Incoming) {
1355       Value *V = UndefValue::get(Phi->getType());
1356       if (In == Out) {
1357         V = NewPhi;
1358       } else if (Phi->getBasicBlockIndex(In) != -1) {
1359         V = Phi->removeIncomingValue(In, false);
1360       }
1361       NewPhi->addIncoming(V, In);
1362     }
1363     assert(NewPhi->getNumIncomingValues() == Incoming.size());
1364     if (Phi->getNumOperands() == 0) {
1365       Phi->replaceAllUsesWith(NewPhi);
1366       I = Phi->eraseFromParent();
1367       continue;
1368     }
1369     Phi->addIncoming(NewPhi, GuardBlock);
1370     ++I;
1371   }
1372 }
1373 
1374 using BBPredicates = DenseMap<BasicBlock *, PHINode *>;
1375 using BBSetVector = SetVector<BasicBlock *>;
1376 
1377 // Redirects the terminator of the incoming block to the first guard
1378 // block in the hub. The condition of the original terminator (if it
1379 // was conditional) and its original successors are returned as a
1380 // tuple <condition, succ0, succ1>. The function additionally filters
1381 // out successors that are not in the set of outgoing blocks.
1382 //
1383 // - condition is non-null iff the branch is conditional.
1384 // - Succ1 is non-null iff the sole/taken target is an outgoing block.
1385 // - Succ2 is non-null iff condition is non-null and the fallthrough
1386 //         target is an outgoing block.
1387 static std::tuple<Value *, BasicBlock *, BasicBlock *>
1388 redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock,
1389               const BBSetVector &Outgoing) {
1390   auto Branch = cast<BranchInst>(BB->getTerminator());
1391   auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr;
1392 
1393   BasicBlock *Succ0 = Branch->getSuccessor(0);
1394   BasicBlock *Succ1 = nullptr;
1395   Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr;
1396 
1397   if (Branch->isUnconditional()) {
1398     Branch->setSuccessor(0, FirstGuardBlock);
1399     assert(Succ0);
1400   } else {
1401     Succ1 = Branch->getSuccessor(1);
1402     Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr;
1403     assert(Succ0 || Succ1);
1404     if (Succ0 && !Succ1) {
1405       Branch->setSuccessor(0, FirstGuardBlock);
1406     } else if (Succ1 && !Succ0) {
1407       Branch->setSuccessor(1, FirstGuardBlock);
1408     } else {
1409       Branch->eraseFromParent();
1410       BranchInst::Create(FirstGuardBlock, BB);
1411     }
1412   }
1413 
1414   assert(Succ0 || Succ1);
1415   return std::make_tuple(Condition, Succ0, Succ1);
1416 }
1417 
1418 // Capture the existing control flow as guard predicates, and redirect
1419 // control flow from every incoming block to the first guard block in
1420 // the hub.
1421 //
1422 // There is one guard predicate for each outgoing block OutBB. The
1423 // predicate is a PHINode with one input for each InBB which
1424 // represents whether the hub should transfer control flow to OutBB if
1425 // it arrived from InBB. These predicates are NOT ORTHOGONAL. The Hub
1426 // evaluates them in the same order as the Outgoing set-vector, and
1427 // control branches to the first outgoing block whose predicate
1428 // evaluates to true.
1429 static void convertToGuardPredicates(
1430     BasicBlock *FirstGuardBlock, BBPredicates &GuardPredicates,
1431     SmallVectorImpl<WeakVH> &DeletionCandidates, const BBSetVector &Incoming,
1432     const BBSetVector &Outgoing) {
1433   auto &Context = Incoming.front()->getContext();
1434   auto BoolTrue = ConstantInt::getTrue(Context);
1435   auto BoolFalse = ConstantInt::getFalse(Context);
1436 
1437   // The predicate for the last outgoing is trivially true, and so we
1438   // process only the first N-1 successors.
1439   for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1440     auto Out = Outgoing[i];
1441     LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n");
1442     auto Phi =
1443         PHINode::Create(Type::getInt1Ty(Context), Incoming.size(),
1444                         StringRef("Guard.") + Out->getName(), FirstGuardBlock);
1445     GuardPredicates[Out] = Phi;
1446   }
1447 
1448   for (auto In : Incoming) {
1449     Value *Condition;
1450     BasicBlock *Succ0;
1451     BasicBlock *Succ1;
1452     std::tie(Condition, Succ0, Succ1) =
1453         redirectToHub(In, FirstGuardBlock, Outgoing);
1454 
1455     // Optimization: Consider an incoming block A with both successors
1456     // Succ0 and Succ1 in the set of outgoing blocks. The predicates
1457     // for Succ0 and Succ1 complement each other. If Succ0 is visited
1458     // first in the loop below, control will branch to Succ0 using the
1459     // corresponding predicate. But if that branch is not taken, then
1460     // control must reach Succ1, which means that the predicate for
1461     // Succ1 is always true.
1462     bool OneSuccessorDone = false;
1463     for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1464       auto Out = Outgoing[i];
1465       auto Phi = GuardPredicates[Out];
1466       if (Out != Succ0 && Out != Succ1) {
1467         Phi->addIncoming(BoolFalse, In);
1468         continue;
1469       }
1470       // Optimization: When only one successor is an outgoing block,
1471       // the predicate is always true.
1472       if (!Succ0 || !Succ1 || OneSuccessorDone) {
1473         Phi->addIncoming(BoolTrue, In);
1474         continue;
1475       }
1476       assert(Succ0 && Succ1);
1477       OneSuccessorDone = true;
1478       if (Out == Succ0) {
1479         Phi->addIncoming(Condition, In);
1480         continue;
1481       }
1482       auto Inverted = invertCondition(Condition);
1483       DeletionCandidates.push_back(Condition);
1484       Phi->addIncoming(Inverted, In);
1485     }
1486   }
1487 }
1488 
1489 // For each outgoing block OutBB, create a guard block in the Hub. The
1490 // first guard block was already created outside, and available as the
1491 // first element in the vector of guard blocks.
1492 //
1493 // Each guard block terminates in a conditional branch that transfers
1494 // control to the corresponding outgoing block or the next guard
1495 // block. The last guard block has two outgoing blocks as successors
1496 // since the condition for the final outgoing block is trivially
1497 // true. So we create one less block (including the first guard block)
1498 // than the number of outgoing blocks.
1499 static void createGuardBlocks(SmallVectorImpl<BasicBlock *> &GuardBlocks,
1500                               Function *F, const BBSetVector &Outgoing,
1501                               BBPredicates &GuardPredicates, StringRef Prefix) {
1502   for (int i = 0, e = Outgoing.size() - 2; i != e; ++i) {
1503     GuardBlocks.push_back(
1504         BasicBlock::Create(F->getContext(), Prefix + ".guard", F));
1505   }
1506   assert(GuardBlocks.size() == GuardPredicates.size());
1507 
1508   // To help keep the loop simple, temporarily append the last
1509   // outgoing block to the list of guard blocks.
1510   GuardBlocks.push_back(Outgoing.back());
1511 
1512   for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) {
1513     auto Out = Outgoing[i];
1514     assert(GuardPredicates.count(Out));
1515     BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out],
1516                        GuardBlocks[i]);
1517   }
1518 
1519   // Remove the last block from the guard list.
1520   GuardBlocks.pop_back();
1521 }
1522 
1523 BasicBlock *llvm::CreateControlFlowHub(
1524     DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks,
1525     const BBSetVector &Incoming, const BBSetVector &Outgoing,
1526     const StringRef Prefix) {
1527   auto F = Incoming.front()->getParent();
1528   auto FirstGuardBlock =
1529       BasicBlock::Create(F->getContext(), Prefix + ".guard", F);
1530 
1531   SmallVector<DominatorTree::UpdateType, 16> Updates;
1532   if (DTU) {
1533     for (auto In : Incoming) {
1534       Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock});
1535       for (auto Succ : successors(In)) {
1536         if (Outgoing.count(Succ))
1537           Updates.push_back({DominatorTree::Delete, In, Succ});
1538       }
1539     }
1540   }
1541 
1542   BBPredicates GuardPredicates;
1543   SmallVector<WeakVH, 8> DeletionCandidates;
1544   convertToGuardPredicates(FirstGuardBlock, GuardPredicates, DeletionCandidates,
1545                            Incoming, Outgoing);
1546 
1547   GuardBlocks.push_back(FirstGuardBlock);
1548   createGuardBlocks(GuardBlocks, F, Outgoing, GuardPredicates, Prefix);
1549 
1550   // Update the PHINodes in each outgoing block to match the new control flow.
1551   for (int i = 0, e = GuardBlocks.size(); i != e; ++i) {
1552     reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock);
1553   }
1554   reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock);
1555 
1556   if (DTU) {
1557     int NumGuards = GuardBlocks.size();
1558     assert((int)Outgoing.size() == NumGuards + 1);
1559     for (int i = 0; i != NumGuards - 1; ++i) {
1560       Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]});
1561       Updates.push_back(
1562           {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]});
1563     }
1564     Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
1565                        Outgoing[NumGuards - 1]});
1566     Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
1567                        Outgoing[NumGuards]});
1568     DTU->applyUpdates(Updates);
1569   }
1570 
1571   for (auto I : DeletionCandidates) {
1572     if (I->use_empty())
1573       if (auto Inst = dyn_cast_or_null<Instruction>(I))
1574         Inst->eraseFromParent();
1575   }
1576 
1577   return FirstGuardBlock;
1578 }
1579