1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass reassociates commutative expressions in an order that is designed
11 // to promote better constant propagation, GCSE, LICM, PRE, etc.
12 //
13 // For example: 4 + (x + 5) -> x + (4 + 5)
14 //
15 // In the implementation of this algorithm, constants are assigned rank = 0,
16 // function arguments are rank = 1, and other values are assigned ranks
17 // corresponding to the reverse post order traversal of current function
18 // (starting at 2), which effectively gives values in deep loops higher rank
19 // than values not in loops.
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/Transforms/Scalar/Reassociate.h"
24 #include "llvm/ADT/APFloat.h"
25 #include "llvm/ADT/APInt.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/SetVector.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/GlobalsModRef.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Argument.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/IRBuilder.h"
41 #include "llvm/IR/InstrTypes.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/IR/PassManager.h"
46 #include "llvm/IR/PatternMatch.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/User.h"
49 #include "llvm/IR/Value.h"
50 #include "llvm/IR/ValueHandle.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Transforms/Scalar.h"
57 #include "llvm/Transforms/Utils/Local.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <utility>
61 
62 using namespace llvm;
63 using namespace reassociate;
64 
65 #define DEBUG_TYPE "reassociate"
66 
67 STATISTIC(NumChanged, "Number of insts reassociated");
68 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
69 STATISTIC(NumFactor , "Number of multiplies factored");
70 
71 #ifndef NDEBUG
72 /// Print out the expression identified in the Ops list.
73 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
74   Module *M = I->getModule();
75   dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
76        << *Ops[0].Op->getType() << '\t';
77   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
78     dbgs() << "[ ";
79     Ops[i].Op->printAsOperand(dbgs(), false, M);
80     dbgs() << ", #" << Ops[i].Rank << "] ";
81   }
82 }
83 #endif
84 
85 /// Utility class representing a non-constant Xor-operand. We classify
86 /// non-constant Xor-Operands into two categories:
87 ///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
88 ///  C2)
89 ///    C2.1) The operand is in the form of "X | C", where C is a non-zero
90 ///          constant.
91 ///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
92 ///          operand as "E | 0"
93 class llvm::reassociate::XorOpnd {
94 public:
95   XorOpnd(Value *V);
96 
97   bool isInvalid() const { return SymbolicPart == nullptr; }
98   bool isOrExpr() const { return isOr; }
99   Value *getValue() const { return OrigVal; }
100   Value *getSymbolicPart() const { return SymbolicPart; }
101   unsigned getSymbolicRank() const { return SymbolicRank; }
102   const APInt &getConstPart() const { return ConstPart; }
103 
104   void Invalidate() { SymbolicPart = OrigVal = nullptr; }
105   void setSymbolicRank(unsigned R) { SymbolicRank = R; }
106 
107 private:
108   Value *OrigVal;
109   Value *SymbolicPart;
110   APInt ConstPart;
111   unsigned SymbolicRank;
112   bool isOr;
113 };
114 
115 XorOpnd::XorOpnd(Value *V) {
116   assert(!isa<ConstantInt>(V) && "No ConstantInt");
117   OrigVal = V;
118   Instruction *I = dyn_cast<Instruction>(V);
119   SymbolicRank = 0;
120 
121   if (I && (I->getOpcode() == Instruction::Or ||
122             I->getOpcode() == Instruction::And)) {
123     Value *V0 = I->getOperand(0);
124     Value *V1 = I->getOperand(1);
125     const APInt *C;
126     if (match(V0, PatternMatch::m_APInt(C)))
127       std::swap(V0, V1);
128 
129     if (match(V1, PatternMatch::m_APInt(C))) {
130       ConstPart = *C;
131       SymbolicPart = V0;
132       isOr = (I->getOpcode() == Instruction::Or);
133       return;
134     }
135   }
136 
137   // view the operand as "V | 0"
138   SymbolicPart = V;
139   ConstPart = APInt::getNullValue(V->getType()->getScalarSizeInBits());
140   isOr = true;
141 }
142 
143 /// Return true if V is an instruction of the specified opcode and if it
144 /// only has one use.
145 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
146   auto *I = dyn_cast<Instruction>(V);
147   if (I && I->hasOneUse() && I->getOpcode() == Opcode)
148     if (!isa<FPMathOperator>(I) || I->isFast())
149       return cast<BinaryOperator>(I);
150   return nullptr;
151 }
152 
153 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
154                                         unsigned Opcode2) {
155   auto *I = dyn_cast<Instruction>(V);
156   if (I && I->hasOneUse() &&
157       (I->getOpcode() == Opcode1 || I->getOpcode() == Opcode2))
158     if (!isa<FPMathOperator>(I) || I->isFast())
159       return cast<BinaryOperator>(I);
160   return nullptr;
161 }
162 
163 void ReassociatePass::BuildRankMap(Function &F,
164                                    ReversePostOrderTraversal<Function*> &RPOT) {
165   unsigned Rank = 2;
166 
167   // Assign distinct ranks to function arguments.
168   for (auto &Arg : F.args()) {
169     ValueRankMap[&Arg] = ++Rank;
170     DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank
171                  << "\n");
172   }
173 
174   // Traverse basic blocks in ReversePostOrder
175   for (BasicBlock *BB : RPOT) {
176     unsigned BBRank = RankMap[BB] = ++Rank << 16;
177 
178     // Walk the basic block, adding precomputed ranks for any instructions that
179     // we cannot move.  This ensures that the ranks for these instructions are
180     // all different in the block.
181     for (Instruction &I : *BB)
182       if (mayBeMemoryDependent(I))
183         ValueRankMap[&I] = ++BBRank;
184   }
185 }
186 
187 unsigned ReassociatePass::getRank(Value *V) {
188   Instruction *I = dyn_cast<Instruction>(V);
189   if (!I) {
190     if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
191     return 0;  // Otherwise it's a global or constant, rank 0.
192   }
193 
194   if (unsigned Rank = ValueRankMap[I])
195     return Rank;    // Rank already known?
196 
197   // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
198   // we can reassociate expressions for code motion!  Since we do not recurse
199   // for PHI nodes, we cannot have infinite recursion here, because there
200   // cannot be loops in the value graph that do not go through PHI nodes.
201   unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
202   for (unsigned i = 0, e = I->getNumOperands();
203        i != e && Rank != MaxRank; ++i)
204     Rank = std::max(Rank, getRank(I->getOperand(i)));
205 
206   // If this is a not or neg instruction, do not count it for rank.  This
207   // assures us that X and ~X will have the same rank.
208   if  (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
209        !BinaryOperator::isFNeg(I))
210     ++Rank;
211 
212   DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n");
213 
214   return ValueRankMap[I] = Rank;
215 }
216 
217 // Canonicalize constants to RHS.  Otherwise, sort the operands by rank.
218 void ReassociatePass::canonicalizeOperands(Instruction *I) {
219   assert(isa<BinaryOperator>(I) && "Expected binary operator.");
220   assert(I->isCommutative() && "Expected commutative operator.");
221 
222   Value *LHS = I->getOperand(0);
223   Value *RHS = I->getOperand(1);
224   if (LHS == RHS || isa<Constant>(RHS))
225     return;
226   if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS))
227     cast<BinaryOperator>(I)->swapOperands();
228 }
229 
230 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
231                                  Instruction *InsertBefore, Value *FlagsOp) {
232   if (S1->getType()->isIntOrIntVectorTy())
233     return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
234   else {
235     BinaryOperator *Res =
236         BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
237     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
238     return Res;
239   }
240 }
241 
242 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
243                                  Instruction *InsertBefore, Value *FlagsOp) {
244   if (S1->getType()->isIntOrIntVectorTy())
245     return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
246   else {
247     BinaryOperator *Res =
248       BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
249     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
250     return Res;
251   }
252 }
253 
254 static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
255                                  Instruction *InsertBefore, Value *FlagsOp) {
256   if (S1->getType()->isIntOrIntVectorTy())
257     return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
258   else {
259     BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
260     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
261     return Res;
262   }
263 }
264 
265 /// Replace 0-X with X*-1.
266 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
267   Type *Ty = Neg->getType();
268   Constant *NegOne = Ty->isIntOrIntVectorTy() ?
269     ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
270 
271   BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
272   Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
273   Res->takeName(Neg);
274   Neg->replaceAllUsesWith(Res);
275   Res->setDebugLoc(Neg->getDebugLoc());
276   return Res;
277 }
278 
279 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
280 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
281 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
282 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
283 /// even x in Bitwidth-bit arithmetic.
284 static unsigned CarmichaelShift(unsigned Bitwidth) {
285   if (Bitwidth < 3)
286     return Bitwidth - 1;
287   return Bitwidth - 2;
288 }
289 
290 /// Add the extra weight 'RHS' to the existing weight 'LHS',
291 /// reducing the combined weight using any special properties of the operation.
292 /// The existing weight LHS represents the computation X op X op ... op X where
293 /// X occurs LHS times.  The combined weight represents  X op X op ... op X with
294 /// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
295 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
296 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
297 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
298   // If we were working with infinite precision arithmetic then the combined
299   // weight would be LHS + RHS.  But we are using finite precision arithmetic,
300   // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
301   // for nilpotent operations and addition, but not for idempotent operations
302   // and multiplication), so it is important to correctly reduce the combined
303   // weight back into range if wrapping would be wrong.
304 
305   // If RHS is zero then the weight didn't change.
306   if (RHS.isMinValue())
307     return;
308   // If LHS is zero then the combined weight is RHS.
309   if (LHS.isMinValue()) {
310     LHS = RHS;
311     return;
312   }
313   // From this point on we know that neither LHS nor RHS is zero.
314 
315   if (Instruction::isIdempotent(Opcode)) {
316     // Idempotent means X op X === X, so any non-zero weight is equivalent to a
317     // weight of 1.  Keeping weights at zero or one also means that wrapping is
318     // not a problem.
319     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
320     return; // Return a weight of 1.
321   }
322   if (Instruction::isNilpotent(Opcode)) {
323     // Nilpotent means X op X === 0, so reduce weights modulo 2.
324     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
325     LHS = 0; // 1 + 1 === 0 modulo 2.
326     return;
327   }
328   if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
329     // TODO: Reduce the weight by exploiting nsw/nuw?
330     LHS += RHS;
331     return;
332   }
333 
334   assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
335          "Unknown associative operation!");
336   unsigned Bitwidth = LHS.getBitWidth();
337   // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
338   // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
339   // bit number x, since either x is odd in which case x^CM = 1, or x is even in
340   // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
341   // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
342   // which by a happy accident means that they can always be represented using
343   // Bitwidth bits.
344   // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
345   // the Carmichael number).
346   if (Bitwidth > 3) {
347     /// CM - The value of Carmichael's lambda function.
348     APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
349     // Any weight W >= Threshold can be replaced with W - CM.
350     APInt Threshold = CM + Bitwidth;
351     assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
352     // For Bitwidth 4 or more the following sum does not overflow.
353     LHS += RHS;
354     while (LHS.uge(Threshold))
355       LHS -= CM;
356   } else {
357     // To avoid problems with overflow do everything the same as above but using
358     // a larger type.
359     unsigned CM = 1U << CarmichaelShift(Bitwidth);
360     unsigned Threshold = CM + Bitwidth;
361     assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
362            "Weights not reduced!");
363     unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
364     while (Total >= Threshold)
365       Total -= CM;
366     LHS = Total;
367   }
368 }
369 
370 using RepeatedValue = std::pair<Value*, APInt>;
371 
372 /// Given an associative binary expression, return the leaf
373 /// nodes in Ops along with their weights (how many times the leaf occurs).  The
374 /// original expression is the same as
375 ///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
376 /// op
377 ///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
378 /// op
379 ///   ...
380 /// op
381 ///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
382 ///
383 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
384 ///
385 /// This routine may modify the function, in which case it returns 'true'.  The
386 /// changes it makes may well be destructive, changing the value computed by 'I'
387 /// to something completely different.  Thus if the routine returns 'true' then
388 /// you MUST either replace I with a new expression computed from the Ops array,
389 /// or use RewriteExprTree to put the values back in.
390 ///
391 /// A leaf node is either not a binary operation of the same kind as the root
392 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
393 /// opcode), or is the same kind of binary operator but has a use which either
394 /// does not belong to the expression, or does belong to the expression but is
395 /// a leaf node.  Every leaf node has at least one use that is a non-leaf node
396 /// of the expression, while for non-leaf nodes (except for the root 'I') every
397 /// use is a non-leaf node of the expression.
398 ///
399 /// For example:
400 ///           expression graph        node names
401 ///
402 ///                     +        |        I
403 ///                    / \       |
404 ///                   +   +      |      A,  B
405 ///                  / \ / \     |
406 ///                 *   +   *    |    C,  D,  E
407 ///                / \ / \ / \   |
408 ///                   +   *      |      F,  G
409 ///
410 /// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
411 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
412 ///
413 /// The expression is maximal: if some instruction is a binary operator of the
414 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
415 /// then the instruction also belongs to the expression, is not a leaf node of
416 /// it, and its operands also belong to the expression (but may be leaf nodes).
417 ///
418 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
419 /// order to ensure that every non-root node in the expression has *exactly one*
420 /// use by a non-leaf node of the expression.  This destruction means that the
421 /// caller MUST either replace 'I' with a new expression or use something like
422 /// RewriteExprTree to put the values back in if the routine indicates that it
423 /// made a change by returning 'true'.
424 ///
425 /// In the above example either the right operand of A or the left operand of B
426 /// will be replaced by undef.  If it is B's operand then this gives:
427 ///
428 ///                     +        |        I
429 ///                    / \       |
430 ///                   +   +      |      A,  B - operand of B replaced with undef
431 ///                  / \   \     |
432 ///                 *   +   *    |    C,  D,  E
433 ///                / \ / \ / \   |
434 ///                   +   *      |      F,  G
435 ///
436 /// Note that such undef operands can only be reached by passing through 'I'.
437 /// For example, if you visit operands recursively starting from a leaf node
438 /// then you will never see such an undef operand unless you get back to 'I',
439 /// which requires passing through a phi node.
440 ///
441 /// Note that this routine may also mutate binary operators of the wrong type
442 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
443 /// of the expression) if it can turn them into binary operators of the right
444 /// type and thus make the expression bigger.
445 static bool LinearizeExprTree(BinaryOperator *I,
446                               SmallVectorImpl<RepeatedValue> &Ops) {
447   DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
448   unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
449   unsigned Opcode = I->getOpcode();
450   assert(I->isAssociative() && I->isCommutative() &&
451          "Expected an associative and commutative operation!");
452 
453   // Visit all operands of the expression, keeping track of their weight (the
454   // number of paths from the expression root to the operand, or if you like
455   // the number of times that operand occurs in the linearized expression).
456   // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
457   // while A has weight two.
458 
459   // Worklist of non-leaf nodes (their operands are in the expression too) along
460   // with their weights, representing a certain number of paths to the operator.
461   // If an operator occurs in the worklist multiple times then we found multiple
462   // ways to get to it.
463   SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
464   Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
465   bool Changed = false;
466 
467   // Leaves of the expression are values that either aren't the right kind of
468   // operation (eg: a constant, or a multiply in an add tree), or are, but have
469   // some uses that are not inside the expression.  For example, in I = X + X,
470   // X = A + B, the value X has two uses (by I) that are in the expression.  If
471   // X has any other uses, for example in a return instruction, then we consider
472   // X to be a leaf, and won't analyze it further.  When we first visit a value,
473   // if it has more than one use then at first we conservatively consider it to
474   // be a leaf.  Later, as the expression is explored, we may discover some more
475   // uses of the value from inside the expression.  If all uses turn out to be
476   // from within the expression (and the value is a binary operator of the right
477   // kind) then the value is no longer considered to be a leaf, and its operands
478   // are explored.
479 
480   // Leaves - Keeps track of the set of putative leaves as well as the number of
481   // paths to each leaf seen so far.
482   using LeafMap = DenseMap<Value *, APInt>;
483   LeafMap Leaves; // Leaf -> Total weight so far.
484   SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order.
485 
486 #ifndef NDEBUG
487   SmallPtrSet<Value *, 8> Visited; // For sanity checking the iteration scheme.
488 #endif
489   while (!Worklist.empty()) {
490     std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
491     I = P.first; // We examine the operands of this binary operator.
492 
493     for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
494       Value *Op = I->getOperand(OpIdx);
495       APInt Weight = P.second; // Number of paths to this operand.
496       DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
497       assert(!Op->use_empty() && "No uses, so how did we get to it?!");
498 
499       // If this is a binary operation of the right kind with only one use then
500       // add its operands to the expression.
501       if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
502         assert(Visited.insert(Op).second && "Not first visit!");
503         DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
504         Worklist.push_back(std::make_pair(BO, Weight));
505         continue;
506       }
507 
508       // Appears to be a leaf.  Is the operand already in the set of leaves?
509       LeafMap::iterator It = Leaves.find(Op);
510       if (It == Leaves.end()) {
511         // Not in the leaf map.  Must be the first time we saw this operand.
512         assert(Visited.insert(Op).second && "Not first visit!");
513         if (!Op->hasOneUse()) {
514           // This value has uses not accounted for by the expression, so it is
515           // not safe to modify.  Mark it as being a leaf.
516           DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
517           LeafOrder.push_back(Op);
518           Leaves[Op] = Weight;
519           continue;
520         }
521         // No uses outside the expression, try morphing it.
522       } else {
523         // Already in the leaf map.
524         assert(It != Leaves.end() && Visited.count(Op) &&
525                "In leaf map but not visited!");
526 
527         // Update the number of paths to the leaf.
528         IncorporateWeight(It->second, Weight, Opcode);
529 
530 #if 0   // TODO: Re-enable once PR13021 is fixed.
531         // The leaf already has one use from inside the expression.  As we want
532         // exactly one such use, drop this new use of the leaf.
533         assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
534         I->setOperand(OpIdx, UndefValue::get(I->getType()));
535         Changed = true;
536 
537         // If the leaf is a binary operation of the right kind and we now see
538         // that its multiple original uses were in fact all by nodes belonging
539         // to the expression, then no longer consider it to be a leaf and add
540         // its operands to the expression.
541         if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
542           DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
543           Worklist.push_back(std::make_pair(BO, It->second));
544           Leaves.erase(It);
545           continue;
546         }
547 #endif
548 
549         // If we still have uses that are not accounted for by the expression
550         // then it is not safe to modify the value.
551         if (!Op->hasOneUse())
552           continue;
553 
554         // No uses outside the expression, try morphing it.
555         Weight = It->second;
556         Leaves.erase(It); // Since the value may be morphed below.
557       }
558 
559       // At this point we have a value which, first of all, is not a binary
560       // expression of the right kind, and secondly, is only used inside the
561       // expression.  This means that it can safely be modified.  See if we
562       // can usefully morph it into an expression of the right kind.
563       assert((!isa<Instruction>(Op) ||
564               cast<Instruction>(Op)->getOpcode() != Opcode
565               || (isa<FPMathOperator>(Op) &&
566                   !cast<Instruction>(Op)->isFast())) &&
567              "Should have been handled above!");
568       assert(Op->hasOneUse() && "Has uses outside the expression tree!");
569 
570       // If this is a multiply expression, turn any internal negations into
571       // multiplies by -1 so they can be reassociated.
572       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
573         if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) ||
574             (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) {
575           DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
576           BO = LowerNegateToMultiply(BO);
577           DEBUG(dbgs() << *BO << '\n');
578           Worklist.push_back(std::make_pair(BO, Weight));
579           Changed = true;
580           continue;
581         }
582 
583       // Failed to morph into an expression of the right type.  This really is
584       // a leaf.
585       DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
586       assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
587       LeafOrder.push_back(Op);
588       Leaves[Op] = Weight;
589     }
590   }
591 
592   // The leaves, repeated according to their weights, represent the linearized
593   // form of the expression.
594   for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
595     Value *V = LeafOrder[i];
596     LeafMap::iterator It = Leaves.find(V);
597     if (It == Leaves.end())
598       // Node initially thought to be a leaf wasn't.
599       continue;
600     assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
601     APInt Weight = It->second;
602     if (Weight.isMinValue())
603       // Leaf already output or weight reduction eliminated it.
604       continue;
605     // Ensure the leaf is only output once.
606     It->second = 0;
607     Ops.push_back(std::make_pair(V, Weight));
608   }
609 
610   // For nilpotent operations or addition there may be no operands, for example
611   // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
612   // in both cases the weight reduces to 0 causing the value to be skipped.
613   if (Ops.empty()) {
614     Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
615     assert(Identity && "Associative operation without identity!");
616     Ops.emplace_back(Identity, APInt(Bitwidth, 1));
617   }
618 
619   return Changed;
620 }
621 
622 /// Now that the operands for this expression tree are
623 /// linearized and optimized, emit them in-order.
624 void ReassociatePass::RewriteExprTree(BinaryOperator *I,
625                                       SmallVectorImpl<ValueEntry> &Ops) {
626   assert(Ops.size() > 1 && "Single values should be used directly!");
627 
628   // Since our optimizations should never increase the number of operations, the
629   // new expression can usually be written reusing the existing binary operators
630   // from the original expression tree, without creating any new instructions,
631   // though the rewritten expression may have a completely different topology.
632   // We take care to not change anything if the new expression will be the same
633   // as the original.  If more than trivial changes (like commuting operands)
634   // were made then we are obliged to clear out any optional subclass data like
635   // nsw flags.
636 
637   /// NodesToRewrite - Nodes from the original expression available for writing
638   /// the new expression into.
639   SmallVector<BinaryOperator*, 8> NodesToRewrite;
640   unsigned Opcode = I->getOpcode();
641   BinaryOperator *Op = I;
642 
643   /// NotRewritable - The operands being written will be the leaves of the new
644   /// expression and must not be used as inner nodes (via NodesToRewrite) by
645   /// mistake.  Inner nodes are always reassociable, and usually leaves are not
646   /// (if they were they would have been incorporated into the expression and so
647   /// would not be leaves), so most of the time there is no danger of this.  But
648   /// in rare cases a leaf may become reassociable if an optimization kills uses
649   /// of it, or it may momentarily become reassociable during rewriting (below)
650   /// due it being removed as an operand of one of its uses.  Ensure that misuse
651   /// of leaf nodes as inner nodes cannot occur by remembering all of the future
652   /// leaves and refusing to reuse any of them as inner nodes.
653   SmallPtrSet<Value*, 8> NotRewritable;
654   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
655     NotRewritable.insert(Ops[i].Op);
656 
657   // ExpressionChanged - Non-null if the rewritten expression differs from the
658   // original in some non-trivial way, requiring the clearing of optional flags.
659   // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
660   BinaryOperator *ExpressionChanged = nullptr;
661   for (unsigned i = 0; ; ++i) {
662     // The last operation (which comes earliest in the IR) is special as both
663     // operands will come from Ops, rather than just one with the other being
664     // a subexpression.
665     if (i+2 == Ops.size()) {
666       Value *NewLHS = Ops[i].Op;
667       Value *NewRHS = Ops[i+1].Op;
668       Value *OldLHS = Op->getOperand(0);
669       Value *OldRHS = Op->getOperand(1);
670 
671       if (NewLHS == OldLHS && NewRHS == OldRHS)
672         // Nothing changed, leave it alone.
673         break;
674 
675       if (NewLHS == OldRHS && NewRHS == OldLHS) {
676         // The order of the operands was reversed.  Swap them.
677         DEBUG(dbgs() << "RA: " << *Op << '\n');
678         Op->swapOperands();
679         DEBUG(dbgs() << "TO: " << *Op << '\n');
680         MadeChange = true;
681         ++NumChanged;
682         break;
683       }
684 
685       // The new operation differs non-trivially from the original. Overwrite
686       // the old operands with the new ones.
687       DEBUG(dbgs() << "RA: " << *Op << '\n');
688       if (NewLHS != OldLHS) {
689         BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
690         if (BO && !NotRewritable.count(BO))
691           NodesToRewrite.push_back(BO);
692         Op->setOperand(0, NewLHS);
693       }
694       if (NewRHS != OldRHS) {
695         BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
696         if (BO && !NotRewritable.count(BO))
697           NodesToRewrite.push_back(BO);
698         Op->setOperand(1, NewRHS);
699       }
700       DEBUG(dbgs() << "TO: " << *Op << '\n');
701 
702       ExpressionChanged = Op;
703       MadeChange = true;
704       ++NumChanged;
705 
706       break;
707     }
708 
709     // Not the last operation.  The left-hand side will be a sub-expression
710     // while the right-hand side will be the current element of Ops.
711     Value *NewRHS = Ops[i].Op;
712     if (NewRHS != Op->getOperand(1)) {
713       DEBUG(dbgs() << "RA: " << *Op << '\n');
714       if (NewRHS == Op->getOperand(0)) {
715         // The new right-hand side was already present as the left operand.  If
716         // we are lucky then swapping the operands will sort out both of them.
717         Op->swapOperands();
718       } else {
719         // Overwrite with the new right-hand side.
720         BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
721         if (BO && !NotRewritable.count(BO))
722           NodesToRewrite.push_back(BO);
723         Op->setOperand(1, NewRHS);
724         ExpressionChanged = Op;
725       }
726       DEBUG(dbgs() << "TO: " << *Op << '\n');
727       MadeChange = true;
728       ++NumChanged;
729     }
730 
731     // Now deal with the left-hand side.  If this is already an operation node
732     // from the original expression then just rewrite the rest of the expression
733     // into it.
734     BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
735     if (BO && !NotRewritable.count(BO)) {
736       Op = BO;
737       continue;
738     }
739 
740     // Otherwise, grab a spare node from the original expression and use that as
741     // the left-hand side.  If there are no nodes left then the optimizers made
742     // an expression with more nodes than the original!  This usually means that
743     // they did something stupid but it might mean that the problem was just too
744     // hard (finding the mimimal number of multiplications needed to realize a
745     // multiplication expression is NP-complete).  Whatever the reason, smart or
746     // stupid, create a new node if there are none left.
747     BinaryOperator *NewOp;
748     if (NodesToRewrite.empty()) {
749       Constant *Undef = UndefValue::get(I->getType());
750       NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
751                                      Undef, Undef, "", I);
752       if (NewOp->getType()->isFPOrFPVectorTy())
753         NewOp->setFastMathFlags(I->getFastMathFlags());
754     } else {
755       NewOp = NodesToRewrite.pop_back_val();
756     }
757 
758     DEBUG(dbgs() << "RA: " << *Op << '\n');
759     Op->setOperand(0, NewOp);
760     DEBUG(dbgs() << "TO: " << *Op << '\n');
761     ExpressionChanged = Op;
762     MadeChange = true;
763     ++NumChanged;
764     Op = NewOp;
765   }
766 
767   // If the expression changed non-trivially then clear out all subclass data
768   // starting from the operator specified in ExpressionChanged, and compactify
769   // the operators to just before the expression root to guarantee that the
770   // expression tree is dominated by all of Ops.
771   if (ExpressionChanged)
772     do {
773       // Preserve FastMathFlags.
774       if (isa<FPMathOperator>(I)) {
775         FastMathFlags Flags = I->getFastMathFlags();
776         ExpressionChanged->clearSubclassOptionalData();
777         ExpressionChanged->setFastMathFlags(Flags);
778       } else
779         ExpressionChanged->clearSubclassOptionalData();
780 
781       if (ExpressionChanged == I)
782         break;
783       ExpressionChanged->moveBefore(I);
784       ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
785     } while (true);
786 
787   // Throw away any left over nodes from the original expression.
788   for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
789     RedoInsts.insert(NodesToRewrite[i]);
790 }
791 
792 /// Insert instructions before the instruction pointed to by BI,
793 /// that computes the negative version of the value specified.  The negative
794 /// version of the value is returned, and BI is left pointing at the instruction
795 /// that should be processed next by the reassociation pass.
796 /// Also add intermediate instructions to the redo list that are modified while
797 /// pushing the negates through adds.  These will be revisited to see if
798 /// additional opportunities have been exposed.
799 static Value *NegateValue(Value *V, Instruction *BI,
800                           SetVector<AssertingVH<Instruction>> &ToRedo) {
801   if (auto *C = dyn_cast<Constant>(V))
802     return C->getType()->isFPOrFPVectorTy() ? ConstantExpr::getFNeg(C) :
803                                               ConstantExpr::getNeg(C);
804 
805   // We are trying to expose opportunity for reassociation.  One of the things
806   // that we want to do to achieve this is to push a negation as deep into an
807   // expression chain as possible, to expose the add instructions.  In practice,
808   // this means that we turn this:
809   //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
810   // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
811   // the constants.  We assume that instcombine will clean up the mess later if
812   // we introduce tons of unnecessary negation instructions.
813   //
814   if (BinaryOperator *I =
815           isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
816     // Push the negates through the add.
817     I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
818     I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
819     if (I->getOpcode() == Instruction::Add) {
820       I->setHasNoUnsignedWrap(false);
821       I->setHasNoSignedWrap(false);
822     }
823 
824     // We must move the add instruction here, because the neg instructions do
825     // not dominate the old add instruction in general.  By moving it, we are
826     // assured that the neg instructions we just inserted dominate the
827     // instruction we are about to insert after them.
828     //
829     I->moveBefore(BI);
830     I->setName(I->getName()+".neg");
831 
832     // Add the intermediate negates to the redo list as processing them later
833     // could expose more reassociating opportunities.
834     ToRedo.insert(I);
835     return I;
836   }
837 
838   // Okay, we need to materialize a negated version of V with an instruction.
839   // Scan the use lists of V to see if we have one already.
840   for (User *U : V->users()) {
841     if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U))
842       continue;
843 
844     // We found one!  Now we have to make sure that the definition dominates
845     // this use.  We do this by moving it to the entry block (if it is a
846     // non-instruction value) or right after the definition.  These negates will
847     // be zapped by reassociate later, so we don't need much finesse here.
848     BinaryOperator *TheNeg = cast<BinaryOperator>(U);
849 
850     // Verify that the negate is in this function, V might be a constant expr.
851     if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
852       continue;
853 
854     BasicBlock::iterator InsertPt;
855     if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
856       if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
857         InsertPt = II->getNormalDest()->begin();
858       } else {
859         InsertPt = ++InstInput->getIterator();
860       }
861       while (isa<PHINode>(InsertPt)) ++InsertPt;
862     } else {
863       InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
864     }
865     TheNeg->moveBefore(&*InsertPt);
866     if (TheNeg->getOpcode() == Instruction::Sub) {
867       TheNeg->setHasNoUnsignedWrap(false);
868       TheNeg->setHasNoSignedWrap(false);
869     } else {
870       TheNeg->andIRFlags(BI);
871     }
872     ToRedo.insert(TheNeg);
873     return TheNeg;
874   }
875 
876   // Insert a 'neg' instruction that subtracts the value from zero to get the
877   // negation.
878   BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
879   ToRedo.insert(NewNeg);
880   return NewNeg;
881 }
882 
883 /// Return true if we should break up this subtract of X-Y into (X + -Y).
884 static bool ShouldBreakUpSubtract(Instruction *Sub) {
885   // If this is a negation, we can't split it up!
886   if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub))
887     return false;
888 
889   // Don't breakup X - undef.
890   if (isa<UndefValue>(Sub->getOperand(1)))
891     return false;
892 
893   // Don't bother to break this up unless either the LHS is an associable add or
894   // subtract or if this is only used by one.
895   Value *V0 = Sub->getOperand(0);
896   if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
897       isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
898     return true;
899   Value *V1 = Sub->getOperand(1);
900   if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
901       isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
902     return true;
903   Value *VB = Sub->user_back();
904   if (Sub->hasOneUse() &&
905       (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
906        isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
907     return true;
908 
909   return false;
910 }
911 
912 /// If we have (X-Y), and if either X is an add, or if this is only used by an
913 /// add, transform this into (X+(0-Y)) to promote better reassociation.
914 static BinaryOperator *
915 BreakUpSubtract(Instruction *Sub, SetVector<AssertingVH<Instruction>> &ToRedo) {
916   // Convert a subtract into an add and a neg instruction. This allows sub
917   // instructions to be commuted with other add instructions.
918   //
919   // Calculate the negative value of Operand 1 of the sub instruction,
920   // and set it as the RHS of the add instruction we just made.
921   Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
922   BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
923   Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
924   Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
925   New->takeName(Sub);
926 
927   // Everyone now refers to the add instruction.
928   Sub->replaceAllUsesWith(New);
929   New->setDebugLoc(Sub->getDebugLoc());
930 
931   DEBUG(dbgs() << "Negated: " << *New << '\n');
932   return New;
933 }
934 
935 /// If this is a shift of a reassociable multiply or is used by one, change
936 /// this into a multiply by a constant to assist with further reassociation.
937 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
938   Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
939   MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
940 
941   BinaryOperator *Mul =
942     BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
943   Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
944   Mul->takeName(Shl);
945 
946   // Everyone now refers to the mul instruction.
947   Shl->replaceAllUsesWith(Mul);
948   Mul->setDebugLoc(Shl->getDebugLoc());
949 
950   // We can safely preserve the nuw flag in all cases.  It's also safe to turn a
951   // nuw nsw shl into a nuw nsw mul.  However, nsw in isolation requires special
952   // handling.
953   bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
954   bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
955   if (NSW && NUW)
956     Mul->setHasNoSignedWrap(true);
957   Mul->setHasNoUnsignedWrap(NUW);
958   return Mul;
959 }
960 
961 /// Scan backwards and forwards among values with the same rank as element i
962 /// to see if X exists.  If X does not exist, return i.  This is useful when
963 /// scanning for 'x' when we see '-x' because they both get the same rank.
964 static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops,
965                                   unsigned i, Value *X) {
966   unsigned XRank = Ops[i].Rank;
967   unsigned e = Ops.size();
968   for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
969     if (Ops[j].Op == X)
970       return j;
971     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
972       if (Instruction *I2 = dyn_cast<Instruction>(X))
973         if (I1->isIdenticalTo(I2))
974           return j;
975   }
976   // Scan backwards.
977   for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
978     if (Ops[j].Op == X)
979       return j;
980     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
981       if (Instruction *I2 = dyn_cast<Instruction>(X))
982         if (I1->isIdenticalTo(I2))
983           return j;
984   }
985   return i;
986 }
987 
988 /// Emit a tree of add instructions, summing Ops together
989 /// and returning the result.  Insert the tree before I.
990 static Value *EmitAddTreeOfValues(Instruction *I,
991                                   SmallVectorImpl<WeakTrackingVH> &Ops) {
992   if (Ops.size() == 1) return Ops.back();
993 
994   Value *V1 = Ops.back();
995   Ops.pop_back();
996   Value *V2 = EmitAddTreeOfValues(I, Ops);
997   return CreateAdd(V2, V1, "reass.add", I, I);
998 }
999 
1000 /// If V is an expression tree that is a multiplication sequence,
1001 /// and if this sequence contains a multiply by Factor,
1002 /// remove Factor from the tree and return the new tree.
1003 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
1004   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1005   if (!BO)
1006     return nullptr;
1007 
1008   SmallVector<RepeatedValue, 8> Tree;
1009   MadeChange |= LinearizeExprTree(BO, Tree);
1010   SmallVector<ValueEntry, 8> Factors;
1011   Factors.reserve(Tree.size());
1012   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1013     RepeatedValue E = Tree[i];
1014     Factors.append(E.second.getZExtValue(),
1015                    ValueEntry(getRank(E.first), E.first));
1016   }
1017 
1018   bool FoundFactor = false;
1019   bool NeedsNegate = false;
1020   for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1021     if (Factors[i].Op == Factor) {
1022       FoundFactor = true;
1023       Factors.erase(Factors.begin()+i);
1024       break;
1025     }
1026 
1027     // If this is a negative version of this factor, remove it.
1028     if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
1029       if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1030         if (FC1->getValue() == -FC2->getValue()) {
1031           FoundFactor = NeedsNegate = true;
1032           Factors.erase(Factors.begin()+i);
1033           break;
1034         }
1035     } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1036       if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
1037         const APFloat &F1 = FC1->getValueAPF();
1038         APFloat F2(FC2->getValueAPF());
1039         F2.changeSign();
1040         if (F1.compare(F2) == APFloat::cmpEqual) {
1041           FoundFactor = NeedsNegate = true;
1042           Factors.erase(Factors.begin() + i);
1043           break;
1044         }
1045       }
1046     }
1047   }
1048 
1049   if (!FoundFactor) {
1050     // Make sure to restore the operands to the expression tree.
1051     RewriteExprTree(BO, Factors);
1052     return nullptr;
1053   }
1054 
1055   BasicBlock::iterator InsertPt = ++BO->getIterator();
1056 
1057   // If this was just a single multiply, remove the multiply and return the only
1058   // remaining operand.
1059   if (Factors.size() == 1) {
1060     RedoInsts.insert(BO);
1061     V = Factors[0].Op;
1062   } else {
1063     RewriteExprTree(BO, Factors);
1064     V = BO;
1065   }
1066 
1067   if (NeedsNegate)
1068     V = CreateNeg(V, "neg", &*InsertPt, BO);
1069 
1070   return V;
1071 }
1072 
1073 /// If V is a single-use multiply, recursively add its operands as factors,
1074 /// otherwise add V to the list of factors.
1075 ///
1076 /// Ops is the top-level list of add operands we're trying to factor.
1077 static void FindSingleUseMultiplyFactors(Value *V,
1078                                          SmallVectorImpl<Value*> &Factors) {
1079   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1080   if (!BO) {
1081     Factors.push_back(V);
1082     return;
1083   }
1084 
1085   // Otherwise, add the LHS and RHS to the list of factors.
1086   FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
1087   FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
1088 }
1089 
1090 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1091 /// This optimizes based on identities.  If it can be reduced to a single Value,
1092 /// it is returned, otherwise the Ops list is mutated as necessary.
1093 static Value *OptimizeAndOrXor(unsigned Opcode,
1094                                SmallVectorImpl<ValueEntry> &Ops) {
1095   // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1096   // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1097   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1098     // First, check for X and ~X in the operand list.
1099     assert(i < Ops.size());
1100     if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
1101       Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1102       unsigned FoundX = FindInOperandList(Ops, i, X);
1103       if (FoundX != i) {
1104         if (Opcode == Instruction::And)   // ...&X&~X = 0
1105           return Constant::getNullValue(X->getType());
1106 
1107         if (Opcode == Instruction::Or)    // ...|X|~X = -1
1108           return Constant::getAllOnesValue(X->getType());
1109       }
1110     }
1111 
1112     // Next, check for duplicate pairs of values, which we assume are next to
1113     // each other, due to our sorting criteria.
1114     assert(i < Ops.size());
1115     if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1116       if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1117         // Drop duplicate values for And and Or.
1118         Ops.erase(Ops.begin()+i);
1119         --i; --e;
1120         ++NumAnnihil;
1121         continue;
1122       }
1123 
1124       // Drop pairs of values for Xor.
1125       assert(Opcode == Instruction::Xor);
1126       if (e == 2)
1127         return Constant::getNullValue(Ops[0].Op->getType());
1128 
1129       // Y ^ X^X -> Y
1130       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1131       i -= 1; e -= 2;
1132       ++NumAnnihil;
1133     }
1134   }
1135   return nullptr;
1136 }
1137 
1138 /// Helper function of CombineXorOpnd(). It creates a bitwise-and
1139 /// instruction with the given two operands, and return the resulting
1140 /// instruction. There are two special cases: 1) if the constant operand is 0,
1141 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1142 /// be returned.
1143 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1144                              const APInt &ConstOpnd) {
1145   if (ConstOpnd.isNullValue())
1146     return nullptr;
1147 
1148   if (ConstOpnd.isAllOnesValue())
1149     return Opnd;
1150 
1151   Instruction *I = BinaryOperator::CreateAnd(
1152       Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra",
1153       InsertBefore);
1154   I->setDebugLoc(InsertBefore->getDebugLoc());
1155   return I;
1156 }
1157 
1158 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1159 // into "R ^ C", where C would be 0, and R is a symbolic value.
1160 //
1161 // If it was successful, true is returned, and the "R" and "C" is returned
1162 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1163 // and both "Res" and "ConstOpnd" remain unchanged.
1164 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1165                                      APInt &ConstOpnd, Value *&Res) {
1166   // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1167   //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
1168   //                       = (x & ~c1) ^ (c1 ^ c2)
1169   // It is useful only when c1 == c2.
1170   if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isNullValue())
1171     return false;
1172 
1173   if (!Opnd1->getValue()->hasOneUse())
1174     return false;
1175 
1176   const APInt &C1 = Opnd1->getConstPart();
1177   if (C1 != ConstOpnd)
1178     return false;
1179 
1180   Value *X = Opnd1->getSymbolicPart();
1181   Res = createAndInstr(I, X, ~C1);
1182   // ConstOpnd was C2, now C1 ^ C2.
1183   ConstOpnd ^= C1;
1184 
1185   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1186     RedoInsts.insert(T);
1187   return true;
1188 }
1189 
1190 // Helper function of OptimizeXor(). It tries to simplify
1191 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1192 // symbolic value.
1193 //
1194 // If it was successful, true is returned, and the "R" and "C" is returned
1195 // via "Res" and "ConstOpnd", respectively (If the entire expression is
1196 // evaluated to a constant, the Res is set to NULL); otherwise, false is
1197 // returned, and both "Res" and "ConstOpnd" remain unchanged.
1198 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1199                                      XorOpnd *Opnd2, APInt &ConstOpnd,
1200                                      Value *&Res) {
1201   Value *X = Opnd1->getSymbolicPart();
1202   if (X != Opnd2->getSymbolicPart())
1203     return false;
1204 
1205   // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1206   int DeadInstNum = 1;
1207   if (Opnd1->getValue()->hasOneUse())
1208     DeadInstNum++;
1209   if (Opnd2->getValue()->hasOneUse())
1210     DeadInstNum++;
1211 
1212   // Xor-Rule 2:
1213   //  (x | c1) ^ (x & c2)
1214   //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1215   //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
1216   //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
1217   //
1218   if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1219     if (Opnd2->isOrExpr())
1220       std::swap(Opnd1, Opnd2);
1221 
1222     const APInt &C1 = Opnd1->getConstPart();
1223     const APInt &C2 = Opnd2->getConstPart();
1224     APInt C3((~C1) ^ C2);
1225 
1226     // Do not increase code size!
1227     if (!C3.isNullValue() && !C3.isAllOnesValue()) {
1228       int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1229       if (NewInstNum > DeadInstNum)
1230         return false;
1231     }
1232 
1233     Res = createAndInstr(I, X, C3);
1234     ConstOpnd ^= C1;
1235   } else if (Opnd1->isOrExpr()) {
1236     // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1237     //
1238     const APInt &C1 = Opnd1->getConstPart();
1239     const APInt &C2 = Opnd2->getConstPart();
1240     APInt C3 = C1 ^ C2;
1241 
1242     // Do not increase code size
1243     if (!C3.isNullValue() && !C3.isAllOnesValue()) {
1244       int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1245       if (NewInstNum > DeadInstNum)
1246         return false;
1247     }
1248 
1249     Res = createAndInstr(I, X, C3);
1250     ConstOpnd ^= C3;
1251   } else {
1252     // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1253     //
1254     const APInt &C1 = Opnd1->getConstPart();
1255     const APInt &C2 = Opnd2->getConstPart();
1256     APInt C3 = C1 ^ C2;
1257     Res = createAndInstr(I, X, C3);
1258   }
1259 
1260   // Put the original operands in the Redo list; hope they will be deleted
1261   // as dead code.
1262   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1263     RedoInsts.insert(T);
1264   if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1265     RedoInsts.insert(T);
1266 
1267   return true;
1268 }
1269 
1270 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1271 /// to a single Value, it is returned, otherwise the Ops list is mutated as
1272 /// necessary.
1273 Value *ReassociatePass::OptimizeXor(Instruction *I,
1274                                     SmallVectorImpl<ValueEntry> &Ops) {
1275   if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1276     return V;
1277 
1278   if (Ops.size() == 1)
1279     return nullptr;
1280 
1281   SmallVector<XorOpnd, 8> Opnds;
1282   SmallVector<XorOpnd*, 8> OpndPtrs;
1283   Type *Ty = Ops[0].Op->getType();
1284   APInt ConstOpnd(Ty->getScalarSizeInBits(), 0);
1285 
1286   // Step 1: Convert ValueEntry to XorOpnd
1287   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1288     Value *V = Ops[i].Op;
1289     const APInt *C;
1290     // TODO: Support non-splat vectors.
1291     if (match(V, PatternMatch::m_APInt(C))) {
1292       ConstOpnd ^= *C;
1293     } else {
1294       XorOpnd O(V);
1295       O.setSymbolicRank(getRank(O.getSymbolicPart()));
1296       Opnds.push_back(O);
1297     }
1298   }
1299 
1300   // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1301   //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1302   //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1303   //  with the previous loop --- the iterator of the "Opnds" may be invalidated
1304   //  when new elements are added to the vector.
1305   for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1306     OpndPtrs.push_back(&Opnds[i]);
1307 
1308   // Step 2: Sort the Xor-Operands in a way such that the operands containing
1309   //  the same symbolic value cluster together. For instance, the input operand
1310   //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1311   //  ("x | 123", "x & 789", "y & 456").
1312   //
1313   //  The purpose is twofold:
1314   //  1) Cluster together the operands sharing the same symbolic-value.
1315   //  2) Operand having smaller symbolic-value-rank is permuted earlier, which
1316   //     could potentially shorten crital path, and expose more loop-invariants.
1317   //     Note that values' rank are basically defined in RPO order (FIXME).
1318   //     So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
1319   //     than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
1320   //     "z" in the order of X-Y-Z is better than any other orders.
1321   std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(),
1322                    [](XorOpnd *LHS, XorOpnd *RHS) {
1323     return LHS->getSymbolicRank() < RHS->getSymbolicRank();
1324   });
1325 
1326   // Step 3: Combine adjacent operands
1327   XorOpnd *PrevOpnd = nullptr;
1328   bool Changed = false;
1329   for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
1330     XorOpnd *CurrOpnd = OpndPtrs[i];
1331     // The combined value
1332     Value *CV;
1333 
1334     // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1335     if (!ConstOpnd.isNullValue() &&
1336         CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1337       Changed = true;
1338       if (CV)
1339         *CurrOpnd = XorOpnd(CV);
1340       else {
1341         CurrOpnd->Invalidate();
1342         continue;
1343       }
1344     }
1345 
1346     if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1347       PrevOpnd = CurrOpnd;
1348       continue;
1349     }
1350 
1351     // step 3.2: When previous and current operands share the same symbolic
1352     //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1353     if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1354       // Remove previous operand
1355       PrevOpnd->Invalidate();
1356       if (CV) {
1357         *CurrOpnd = XorOpnd(CV);
1358         PrevOpnd = CurrOpnd;
1359       } else {
1360         CurrOpnd->Invalidate();
1361         PrevOpnd = nullptr;
1362       }
1363       Changed = true;
1364     }
1365   }
1366 
1367   // Step 4: Reassemble the Ops
1368   if (Changed) {
1369     Ops.clear();
1370     for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1371       XorOpnd &O = Opnds[i];
1372       if (O.isInvalid())
1373         continue;
1374       ValueEntry VE(getRank(O.getValue()), O.getValue());
1375       Ops.push_back(VE);
1376     }
1377     if (!ConstOpnd.isNullValue()) {
1378       Value *C = ConstantInt::get(Ty, ConstOpnd);
1379       ValueEntry VE(getRank(C), C);
1380       Ops.push_back(VE);
1381     }
1382     unsigned Sz = Ops.size();
1383     if (Sz == 1)
1384       return Ops.back().Op;
1385     if (Sz == 0) {
1386       assert(ConstOpnd.isNullValue());
1387       return ConstantInt::get(Ty, ConstOpnd);
1388     }
1389   }
1390 
1391   return nullptr;
1392 }
1393 
1394 /// Optimize a series of operands to an 'add' instruction.  This
1395 /// optimizes based on identities.  If it can be reduced to a single Value, it
1396 /// is returned, otherwise the Ops list is mutated as necessary.
1397 Value *ReassociatePass::OptimizeAdd(Instruction *I,
1398                                     SmallVectorImpl<ValueEntry> &Ops) {
1399   // Scan the operand lists looking for X and -X pairs.  If we find any, we
1400   // can simplify expressions like X+-X == 0 and X+~X ==-1.  While we're at it,
1401   // scan for any
1402   // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1403 
1404   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1405     Value *TheOp = Ops[i].Op;
1406     // Check to see if we've seen this operand before.  If so, we factor all
1407     // instances of the operand together.  Due to our sorting criteria, we know
1408     // that these need to be next to each other in the vector.
1409     if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1410       // Rescan the list, remove all instances of this operand from the expr.
1411       unsigned NumFound = 0;
1412       do {
1413         Ops.erase(Ops.begin()+i);
1414         ++NumFound;
1415       } while (i != Ops.size() && Ops[i].Op == TheOp);
1416 
1417       DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
1418       ++NumFactor;
1419 
1420       // Insert a new multiply.
1421       Type *Ty = TheOp->getType();
1422       Constant *C = Ty->isIntOrIntVectorTy() ?
1423         ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
1424       Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
1425 
1426       // Now that we have inserted a multiply, optimize it. This allows us to
1427       // handle cases that require multiple factoring steps, such as this:
1428       // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1429       RedoInsts.insert(Mul);
1430 
1431       // If every add operand was a duplicate, return the multiply.
1432       if (Ops.empty())
1433         return Mul;
1434 
1435       // Otherwise, we had some input that didn't have the dupe, such as
1436       // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
1437       // things being added by this operation.
1438       Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1439 
1440       --i;
1441       e = Ops.size();
1442       continue;
1443     }
1444 
1445     // Check for X and -X or X and ~X in the operand list.
1446     if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) &&
1447         !BinaryOperator::isNot(TheOp))
1448       continue;
1449 
1450     Value *X = nullptr;
1451     if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))
1452       X = BinaryOperator::getNegArgument(TheOp);
1453     else if (BinaryOperator::isNot(TheOp))
1454       X = BinaryOperator::getNotArgument(TheOp);
1455 
1456     unsigned FoundX = FindInOperandList(Ops, i, X);
1457     if (FoundX == i)
1458       continue;
1459 
1460     // Remove X and -X from the operand list.
1461     if (Ops.size() == 2 &&
1462         (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)))
1463       return Constant::getNullValue(X->getType());
1464 
1465     // Remove X and ~X from the operand list.
1466     if (Ops.size() == 2 && BinaryOperator::isNot(TheOp))
1467       return Constant::getAllOnesValue(X->getType());
1468 
1469     Ops.erase(Ops.begin()+i);
1470     if (i < FoundX)
1471       --FoundX;
1472     else
1473       --i;   // Need to back up an extra one.
1474     Ops.erase(Ops.begin()+FoundX);
1475     ++NumAnnihil;
1476     --i;     // Revisit element.
1477     e -= 2;  // Removed two elements.
1478 
1479     // if X and ~X we append -1 to the operand list.
1480     if (BinaryOperator::isNot(TheOp)) {
1481       Value *V = Constant::getAllOnesValue(X->getType());
1482       Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1483       e += 1;
1484     }
1485   }
1486 
1487   // Scan the operand list, checking to see if there are any common factors
1488   // between operands.  Consider something like A*A+A*B*C+D.  We would like to
1489   // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1490   // To efficiently find this, we count the number of times a factor occurs
1491   // for any ADD operands that are MULs.
1492   DenseMap<Value*, unsigned> FactorOccurrences;
1493 
1494   // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1495   // where they are actually the same multiply.
1496   unsigned MaxOcc = 0;
1497   Value *MaxOccVal = nullptr;
1498   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1499     BinaryOperator *BOp =
1500         isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1501     if (!BOp)
1502       continue;
1503 
1504     // Compute all of the factors of this added value.
1505     SmallVector<Value*, 8> Factors;
1506     FindSingleUseMultiplyFactors(BOp, Factors);
1507     assert(Factors.size() > 1 && "Bad linearize!");
1508 
1509     // Add one to FactorOccurrences for each unique factor in this op.
1510     SmallPtrSet<Value*, 8> Duplicates;
1511     for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1512       Value *Factor = Factors[i];
1513       if (!Duplicates.insert(Factor).second)
1514         continue;
1515 
1516       unsigned Occ = ++FactorOccurrences[Factor];
1517       if (Occ > MaxOcc) {
1518         MaxOcc = Occ;
1519         MaxOccVal = Factor;
1520       }
1521 
1522       // If Factor is a negative constant, add the negated value as a factor
1523       // because we can percolate the negate out.  Watch for minint, which
1524       // cannot be positivified.
1525       if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
1526         if (CI->isNegative() && !CI->isMinValue(true)) {
1527           Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1528           if (!Duplicates.insert(Factor).second)
1529             continue;
1530           unsigned Occ = ++FactorOccurrences[Factor];
1531           if (Occ > MaxOcc) {
1532             MaxOcc = Occ;
1533             MaxOccVal = Factor;
1534           }
1535         }
1536       } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1537         if (CF->isNegative()) {
1538           APFloat F(CF->getValueAPF());
1539           F.changeSign();
1540           Factor = ConstantFP::get(CF->getContext(), F);
1541           if (!Duplicates.insert(Factor).second)
1542             continue;
1543           unsigned Occ = ++FactorOccurrences[Factor];
1544           if (Occ > MaxOcc) {
1545             MaxOcc = Occ;
1546             MaxOccVal = Factor;
1547           }
1548         }
1549       }
1550     }
1551   }
1552 
1553   // If any factor occurred more than one time, we can pull it out.
1554   if (MaxOcc > 1) {
1555     DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
1556     ++NumFactor;
1557 
1558     // Create a new instruction that uses the MaxOccVal twice.  If we don't do
1559     // this, we could otherwise run into situations where removing a factor
1560     // from an expression will drop a use of maxocc, and this can cause
1561     // RemoveFactorFromExpression on successive values to behave differently.
1562     Instruction *DummyInst =
1563         I->getType()->isIntOrIntVectorTy()
1564             ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1565             : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1566 
1567     SmallVector<WeakTrackingVH, 4> NewMulOps;
1568     for (unsigned i = 0; i != Ops.size(); ++i) {
1569       // Only try to remove factors from expressions we're allowed to.
1570       BinaryOperator *BOp =
1571           isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1572       if (!BOp)
1573         continue;
1574 
1575       if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1576         // The factorized operand may occur several times.  Convert them all in
1577         // one fell swoop.
1578         for (unsigned j = Ops.size(); j != i;) {
1579           --j;
1580           if (Ops[j].Op == Ops[i].Op) {
1581             NewMulOps.push_back(V);
1582             Ops.erase(Ops.begin()+j);
1583           }
1584         }
1585         --i;
1586       }
1587     }
1588 
1589     // No need for extra uses anymore.
1590     DummyInst->deleteValue();
1591 
1592     unsigned NumAddedValues = NewMulOps.size();
1593     Value *V = EmitAddTreeOfValues(I, NewMulOps);
1594 
1595     // Now that we have inserted the add tree, optimize it. This allows us to
1596     // handle cases that require multiple factoring steps, such as this:
1597     // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
1598     assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1599     (void)NumAddedValues;
1600     if (Instruction *VI = dyn_cast<Instruction>(V))
1601       RedoInsts.insert(VI);
1602 
1603     // Create the multiply.
1604     Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I);
1605 
1606     // Rerun associate on the multiply in case the inner expression turned into
1607     // a multiply.  We want to make sure that we keep things in canonical form.
1608     RedoInsts.insert(V2);
1609 
1610     // If every add operand included the factor (e.g. "A*B + A*C"), then the
1611     // entire result expression is just the multiply "A*(B+C)".
1612     if (Ops.empty())
1613       return V2;
1614 
1615     // Otherwise, we had some input that didn't have the factor, such as
1616     // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
1617     // things being added by this operation.
1618     Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1619   }
1620 
1621   return nullptr;
1622 }
1623 
1624 /// \brief Build up a vector of value/power pairs factoring a product.
1625 ///
1626 /// Given a series of multiplication operands, build a vector of factors and
1627 /// the powers each is raised to when forming the final product. Sort them in
1628 /// the order of descending power.
1629 ///
1630 ///      (x*x)          -> [(x, 2)]
1631 ///     ((x*x)*x)       -> [(x, 3)]
1632 ///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1633 ///
1634 /// \returns Whether any factors have a power greater than one.
1635 static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1636                                    SmallVectorImpl<Factor> &Factors) {
1637   // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1638   // Compute the sum of powers of simplifiable factors.
1639   unsigned FactorPowerSum = 0;
1640   for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1641     Value *Op = Ops[Idx-1].Op;
1642 
1643     // Count the number of occurrences of this value.
1644     unsigned Count = 1;
1645     for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1646       ++Count;
1647     // Track for simplification all factors which occur 2 or more times.
1648     if (Count > 1)
1649       FactorPowerSum += Count;
1650   }
1651 
1652   // We can only simplify factors if the sum of the powers of our simplifiable
1653   // factors is 4 or higher. When that is the case, we will *always* have
1654   // a simplification. This is an important invariant to prevent cyclicly
1655   // trying to simplify already minimal formations.
1656   if (FactorPowerSum < 4)
1657     return false;
1658 
1659   // Now gather the simplifiable factors, removing them from Ops.
1660   FactorPowerSum = 0;
1661   for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1662     Value *Op = Ops[Idx-1].Op;
1663 
1664     // Count the number of occurrences of this value.
1665     unsigned Count = 1;
1666     for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1667       ++Count;
1668     if (Count == 1)
1669       continue;
1670     // Move an even number of occurrences to Factors.
1671     Count &= ~1U;
1672     Idx -= Count;
1673     FactorPowerSum += Count;
1674     Factors.push_back(Factor(Op, Count));
1675     Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1676   }
1677 
1678   // None of the adjustments above should have reduced the sum of factor powers
1679   // below our mininum of '4'.
1680   assert(FactorPowerSum >= 4);
1681 
1682   std::stable_sort(Factors.begin(), Factors.end(),
1683                    [](const Factor &LHS, const Factor &RHS) {
1684     return LHS.Power > RHS.Power;
1685   });
1686   return true;
1687 }
1688 
1689 /// \brief Build a tree of multiplies, computing the product of Ops.
1690 static Value *buildMultiplyTree(IRBuilder<> &Builder,
1691                                 SmallVectorImpl<Value*> &Ops) {
1692   if (Ops.size() == 1)
1693     return Ops.back();
1694 
1695   Value *LHS = Ops.pop_back_val();
1696   do {
1697     if (LHS->getType()->isIntOrIntVectorTy())
1698       LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1699     else
1700       LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
1701   } while (!Ops.empty());
1702 
1703   return LHS;
1704 }
1705 
1706 /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1707 ///
1708 /// Given a vector of values raised to various powers, where no two values are
1709 /// equal and the powers are sorted in decreasing order, compute the minimal
1710 /// DAG of multiplies to compute the final product, and return that product
1711 /// value.
1712 Value *
1713 ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1714                                          SmallVectorImpl<Factor> &Factors) {
1715   assert(Factors[0].Power);
1716   SmallVector<Value *, 4> OuterProduct;
1717   for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1718        Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1719     if (Factors[Idx].Power != Factors[LastIdx].Power) {
1720       LastIdx = Idx;
1721       continue;
1722     }
1723 
1724     // We want to multiply across all the factors with the same power so that
1725     // we can raise them to that power as a single entity. Build a mini tree
1726     // for that.
1727     SmallVector<Value *, 4> InnerProduct;
1728     InnerProduct.push_back(Factors[LastIdx].Base);
1729     do {
1730       InnerProduct.push_back(Factors[Idx].Base);
1731       ++Idx;
1732     } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1733 
1734     // Reset the base value of the first factor to the new expression tree.
1735     // We'll remove all the factors with the same power in a second pass.
1736     Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1737     if (Instruction *MI = dyn_cast<Instruction>(M))
1738       RedoInsts.insert(MI);
1739 
1740     LastIdx = Idx;
1741   }
1742   // Unique factors with equal powers -- we've folded them into the first one's
1743   // base.
1744   Factors.erase(std::unique(Factors.begin(), Factors.end(),
1745                             [](const Factor &LHS, const Factor &RHS) {
1746                               return LHS.Power == RHS.Power;
1747                             }),
1748                 Factors.end());
1749 
1750   // Iteratively collect the base of each factor with an add power into the
1751   // outer product, and halve each power in preparation for squaring the
1752   // expression.
1753   for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1754     if (Factors[Idx].Power & 1)
1755       OuterProduct.push_back(Factors[Idx].Base);
1756     Factors[Idx].Power >>= 1;
1757   }
1758   if (Factors[0].Power) {
1759     Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1760     OuterProduct.push_back(SquareRoot);
1761     OuterProduct.push_back(SquareRoot);
1762   }
1763   if (OuterProduct.size() == 1)
1764     return OuterProduct.front();
1765 
1766   Value *V = buildMultiplyTree(Builder, OuterProduct);
1767   return V;
1768 }
1769 
1770 Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
1771                                     SmallVectorImpl<ValueEntry> &Ops) {
1772   // We can only optimize the multiplies when there is a chain of more than
1773   // three, such that a balanced tree might require fewer total multiplies.
1774   if (Ops.size() < 4)
1775     return nullptr;
1776 
1777   // Try to turn linear trees of multiplies without other uses of the
1778   // intermediate stages into minimal multiply DAGs with perfect sub-expression
1779   // re-use.
1780   SmallVector<Factor, 4> Factors;
1781   if (!collectMultiplyFactors(Ops, Factors))
1782     return nullptr; // All distinct factors, so nothing left for us to do.
1783 
1784   IRBuilder<> Builder(I);
1785   // The reassociate transformation for FP operations is performed only
1786   // if unsafe algebra is permitted by FastMathFlags. Propagate those flags
1787   // to the newly generated operations.
1788   if (auto FPI = dyn_cast<FPMathOperator>(I))
1789     Builder.setFastMathFlags(FPI->getFastMathFlags());
1790 
1791   Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1792   if (Ops.empty())
1793     return V;
1794 
1795   ValueEntry NewEntry = ValueEntry(getRank(V), V);
1796   Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
1797   return nullptr;
1798 }
1799 
1800 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
1801                                            SmallVectorImpl<ValueEntry> &Ops) {
1802   // Now that we have the linearized expression tree, try to optimize it.
1803   // Start by folding any constants that we found.
1804   Constant *Cst = nullptr;
1805   unsigned Opcode = I->getOpcode();
1806   while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1807     Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1808     Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1809   }
1810   // If there was nothing but constants then we are done.
1811   if (Ops.empty())
1812     return Cst;
1813 
1814   // Put the combined constant back at the end of the operand list, except if
1815   // there is no point.  For example, an add of 0 gets dropped here, while a
1816   // multiplication by zero turns the whole expression into zero.
1817   if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1818     if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1819       return Cst;
1820     Ops.push_back(ValueEntry(0, Cst));
1821   }
1822 
1823   if (Ops.size() == 1) return Ops[0].Op;
1824 
1825   // Handle destructive annihilation due to identities between elements in the
1826   // argument list here.
1827   unsigned NumOps = Ops.size();
1828   switch (Opcode) {
1829   default: break;
1830   case Instruction::And:
1831   case Instruction::Or:
1832     if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1833       return Result;
1834     break;
1835 
1836   case Instruction::Xor:
1837     if (Value *Result = OptimizeXor(I, Ops))
1838       return Result;
1839     break;
1840 
1841   case Instruction::Add:
1842   case Instruction::FAdd:
1843     if (Value *Result = OptimizeAdd(I, Ops))
1844       return Result;
1845     break;
1846 
1847   case Instruction::Mul:
1848   case Instruction::FMul:
1849     if (Value *Result = OptimizeMul(I, Ops))
1850       return Result;
1851     break;
1852   }
1853 
1854   if (Ops.size() != NumOps)
1855     return OptimizeExpression(I, Ops);
1856   return nullptr;
1857 }
1858 
1859 // Remove dead instructions and if any operands are trivially dead add them to
1860 // Insts so they will be removed as well.
1861 void ReassociatePass::RecursivelyEraseDeadInsts(
1862     Instruction *I, SetVector<AssertingVH<Instruction>> &Insts) {
1863   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1864   SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end());
1865   ValueRankMap.erase(I);
1866   Insts.remove(I);
1867   RedoInsts.remove(I);
1868   I->eraseFromParent();
1869   for (auto Op : Ops)
1870     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1871       if (OpInst->use_empty())
1872         Insts.insert(OpInst);
1873 }
1874 
1875 /// Zap the given instruction, adding interesting operands to the work list.
1876 void ReassociatePass::EraseInst(Instruction *I) {
1877   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1878   DEBUG(dbgs() << "Erasing dead inst: "; I->dump());
1879 
1880   SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1881   // Erase the dead instruction.
1882   ValueRankMap.erase(I);
1883   RedoInsts.remove(I);
1884   I->eraseFromParent();
1885   // Optimize its operands.
1886   SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
1887   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1888     if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1889       // If this is a node in an expression tree, climb to the expression root
1890       // and add that since that's where optimization actually happens.
1891       unsigned Opcode = Op->getOpcode();
1892       while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
1893              Visited.insert(Op).second)
1894         Op = Op->user_back();
1895       RedoInsts.insert(Op);
1896     }
1897 
1898   MadeChange = true;
1899 }
1900 
1901 // Canonicalize expressions of the following form:
1902 //  x + (-Constant * y) -> x - (Constant * y)
1903 //  x - (-Constant * y) -> x + (Constant * y)
1904 Instruction *ReassociatePass::canonicalizeNegConstExpr(Instruction *I) {
1905   if (!I->hasOneUse() || I->getType()->isVectorTy())
1906     return nullptr;
1907 
1908   // Must be a fmul or fdiv instruction.
1909   unsigned Opcode = I->getOpcode();
1910   if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv)
1911     return nullptr;
1912 
1913   auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
1914   auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
1915 
1916   // Both operands are constant, let it get constant folded away.
1917   if (C0 && C1)
1918     return nullptr;
1919 
1920   ConstantFP *CF = C0 ? C0 : C1;
1921 
1922   // Must have one constant operand.
1923   if (!CF)
1924     return nullptr;
1925 
1926   // Must be a negative ConstantFP.
1927   if (!CF->isNegative())
1928     return nullptr;
1929 
1930   // User must be a binary operator with one or more uses.
1931   Instruction *User = I->user_back();
1932   if (!isa<BinaryOperator>(User) || User->use_empty())
1933     return nullptr;
1934 
1935   unsigned UserOpcode = User->getOpcode();
1936   if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub)
1937     return nullptr;
1938 
1939   // Subtraction is not commutative. Explicitly, the following transform is
1940   // not valid: (-Constant * y) - x  -> x + (Constant * y)
1941   if (!User->isCommutative() && User->getOperand(1) != I)
1942     return nullptr;
1943 
1944   // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the
1945   // resulting subtract will be broken up later.  This can get us into an
1946   // infinite loop during reassociation.
1947   if (UserOpcode == Instruction::FAdd && ShouldBreakUpSubtract(User))
1948     return nullptr;
1949 
1950   // Change the sign of the constant.
1951   APFloat Val = CF->getValueAPF();
1952   Val.changeSign();
1953   I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val));
1954 
1955   // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
1956   // ((-Const*y) + x) -> (x + (-Const*y)).
1957   if (User->getOperand(0) == I && User->isCommutative())
1958     cast<BinaryOperator>(User)->swapOperands();
1959 
1960   Value *Op0 = User->getOperand(0);
1961   Value *Op1 = User->getOperand(1);
1962   BinaryOperator *NI;
1963   switch (UserOpcode) {
1964   default:
1965     llvm_unreachable("Unexpected Opcode!");
1966   case Instruction::FAdd:
1967     NI = BinaryOperator::CreateFSub(Op0, Op1);
1968     NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1969     break;
1970   case Instruction::FSub:
1971     NI = BinaryOperator::CreateFAdd(Op0, Op1);
1972     NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1973     break;
1974   }
1975 
1976   NI->insertBefore(User);
1977   NI->setName(User->getName());
1978   User->replaceAllUsesWith(NI);
1979   NI->setDebugLoc(I->getDebugLoc());
1980   RedoInsts.insert(I);
1981   MadeChange = true;
1982   return NI;
1983 }
1984 
1985 /// Inspect and optimize the given instruction. Note that erasing
1986 /// instructions is not allowed.
1987 void ReassociatePass::OptimizeInst(Instruction *I) {
1988   // Only consider operations that we understand.
1989   if (!isa<BinaryOperator>(I))
1990     return;
1991 
1992   if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
1993     // If an operand of this shift is a reassociable multiply, or if the shift
1994     // is used by a reassociable multiply or add, turn into a multiply.
1995     if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
1996         (I->hasOneUse() &&
1997          (isReassociableOp(I->user_back(), Instruction::Mul) ||
1998           isReassociableOp(I->user_back(), Instruction::Add)))) {
1999       Instruction *NI = ConvertShiftToMul(I);
2000       RedoInsts.insert(I);
2001       MadeChange = true;
2002       I = NI;
2003     }
2004 
2005   // Canonicalize negative constants out of expressions.
2006   if (Instruction *Res = canonicalizeNegConstExpr(I))
2007     I = Res;
2008 
2009   // Commute binary operators, to canonicalize the order of their operands.
2010   // This can potentially expose more CSE opportunities, and makes writing other
2011   // transformations simpler.
2012   if (I->isCommutative())
2013     canonicalizeOperands(I);
2014 
2015   // Don't optimize floating-point instructions unless they are 'fast'.
2016   if (I->getType()->isFPOrFPVectorTy() && !I->isFast())
2017     return;
2018 
2019   // Do not reassociate boolean (i1) expressions.  We want to preserve the
2020   // original order of evaluation for short-circuited comparisons that
2021   // SimplifyCFG has folded to AND/OR expressions.  If the expression
2022   // is not further optimized, it is likely to be transformed back to a
2023   // short-circuited form for code gen, and the source order may have been
2024   // optimized for the most likely conditions.
2025   if (I->getType()->isIntegerTy(1))
2026     return;
2027 
2028   // If this is a subtract instruction which is not already in negate form,
2029   // see if we can convert it to X+-Y.
2030   if (I->getOpcode() == Instruction::Sub) {
2031     if (ShouldBreakUpSubtract(I)) {
2032       Instruction *NI = BreakUpSubtract(I, RedoInsts);
2033       RedoInsts.insert(I);
2034       MadeChange = true;
2035       I = NI;
2036     } else if (BinaryOperator::isNeg(I)) {
2037       // Otherwise, this is a negation.  See if the operand is a multiply tree
2038       // and if this is not an inner node of a multiply tree.
2039       if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2040           (!I->hasOneUse() ||
2041            !isReassociableOp(I->user_back(), Instruction::Mul))) {
2042         Instruction *NI = LowerNegateToMultiply(I);
2043         // If the negate was simplified, revisit the users to see if we can
2044         // reassociate further.
2045         for (User *U : NI->users()) {
2046           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2047             RedoInsts.insert(Tmp);
2048         }
2049         RedoInsts.insert(I);
2050         MadeChange = true;
2051         I = NI;
2052       }
2053     }
2054   } else if (I->getOpcode() == Instruction::FSub) {
2055     if (ShouldBreakUpSubtract(I)) {
2056       Instruction *NI = BreakUpSubtract(I, RedoInsts);
2057       RedoInsts.insert(I);
2058       MadeChange = true;
2059       I = NI;
2060     } else if (BinaryOperator::isFNeg(I)) {
2061       // Otherwise, this is a negation.  See if the operand is a multiply tree
2062       // and if this is not an inner node of a multiply tree.
2063       if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
2064           (!I->hasOneUse() ||
2065            !isReassociableOp(I->user_back(), Instruction::FMul))) {
2066         // If the negate was simplified, revisit the users to see if we can
2067         // reassociate further.
2068         Instruction *NI = LowerNegateToMultiply(I);
2069         for (User *U : NI->users()) {
2070           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2071             RedoInsts.insert(Tmp);
2072         }
2073         RedoInsts.insert(I);
2074         MadeChange = true;
2075         I = NI;
2076       }
2077     }
2078   }
2079 
2080   // If this instruction is an associative binary operator, process it.
2081   if (!I->isAssociative()) return;
2082   BinaryOperator *BO = cast<BinaryOperator>(I);
2083 
2084   // If this is an interior node of a reassociable tree, ignore it until we
2085   // get to the root of the tree, to avoid N^2 analysis.
2086   unsigned Opcode = BO->getOpcode();
2087   if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2088     // During the initial run we will get to the root of the tree.
2089     // But if we get here while we are redoing instructions, there is no
2090     // guarantee that the root will be visited. So Redo later
2091     if (BO->user_back() != BO &&
2092         BO->getParent() == BO->user_back()->getParent())
2093       RedoInsts.insert(BO->user_back());
2094     return;
2095   }
2096 
2097   // If this is an add tree that is used by a sub instruction, ignore it
2098   // until we process the subtract.
2099   if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
2100       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
2101     return;
2102   if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2103       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2104     return;
2105 
2106   ReassociateExpression(BO);
2107 }
2108 
2109 void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
2110   // First, walk the expression tree, linearizing the tree, collecting the
2111   // operand information.
2112   SmallVector<RepeatedValue, 8> Tree;
2113   MadeChange |= LinearizeExprTree(I, Tree);
2114   SmallVector<ValueEntry, 8> Ops;
2115   Ops.reserve(Tree.size());
2116   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
2117     RepeatedValue E = Tree[i];
2118     Ops.append(E.second.getZExtValue(),
2119                ValueEntry(getRank(E.first), E.first));
2120   }
2121 
2122   DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2123 
2124   // Now that we have linearized the tree to a list and have gathered all of
2125   // the operands and their ranks, sort the operands by their rank.  Use a
2126   // stable_sort so that values with equal ranks will have their relative
2127   // positions maintained (and so the compiler is deterministic).  Note that
2128   // this sorts so that the highest ranking values end up at the beginning of
2129   // the vector.
2130   std::stable_sort(Ops.begin(), Ops.end());
2131 
2132   // Now that we have the expression tree in a convenient
2133   // sorted form, optimize it globally if possible.
2134   if (Value *V = OptimizeExpression(I, Ops)) {
2135     if (V == I)
2136       // Self-referential expression in unreachable code.
2137       return;
2138     // This expression tree simplified to something that isn't a tree,
2139     // eliminate it.
2140     DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
2141     I->replaceAllUsesWith(V);
2142     if (Instruction *VI = dyn_cast<Instruction>(V))
2143       if (I->getDebugLoc())
2144         VI->setDebugLoc(I->getDebugLoc());
2145     RedoInsts.insert(I);
2146     ++NumAnnihil;
2147     return;
2148   }
2149 
2150   // We want to sink immediates as deeply as possible except in the case where
2151   // this is a multiply tree used only by an add, and the immediate is a -1.
2152   // In this case we reassociate to put the negation on the outside so that we
2153   // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
2154   if (I->hasOneUse()) {
2155     if (I->getOpcode() == Instruction::Mul &&
2156         cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2157         isa<ConstantInt>(Ops.back().Op) &&
2158         cast<ConstantInt>(Ops.back().Op)->isMinusOne()) {
2159       ValueEntry Tmp = Ops.pop_back_val();
2160       Ops.insert(Ops.begin(), Tmp);
2161     } else if (I->getOpcode() == Instruction::FMul &&
2162                cast<Instruction>(I->user_back())->getOpcode() ==
2163                    Instruction::FAdd &&
2164                isa<ConstantFP>(Ops.back().Op) &&
2165                cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2166       ValueEntry Tmp = Ops.pop_back_val();
2167       Ops.insert(Ops.begin(), Tmp);
2168     }
2169   }
2170 
2171   DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
2172 
2173   if (Ops.size() == 1) {
2174     if (Ops[0].Op == I)
2175       // Self-referential expression in unreachable code.
2176       return;
2177 
2178     // This expression tree simplified to something that isn't a tree,
2179     // eliminate it.
2180     I->replaceAllUsesWith(Ops[0].Op);
2181     if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2182       OI->setDebugLoc(I->getDebugLoc());
2183     RedoInsts.insert(I);
2184     return;
2185   }
2186 
2187   // Now that we ordered and optimized the expressions, splat them back into
2188   // the expression tree, removing any unneeded nodes.
2189   RewriteExprTree(I, Ops);
2190 }
2191 
2192 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
2193   // Get the functions basic blocks in Reverse Post Order. This order is used by
2194   // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic
2195   // blocks (it has been seen that the analysis in this pass could hang when
2196   // analysing dead basic blocks).
2197   ReversePostOrderTraversal<Function *> RPOT(&F);
2198 
2199   // Calculate the rank map for F.
2200   BuildRankMap(F, RPOT);
2201 
2202   MadeChange = false;
2203   // Traverse the same blocks that was analysed by BuildRankMap.
2204   for (BasicBlock *BI : RPOT) {
2205     assert(RankMap.count(&*BI) && "BB should be ranked.");
2206     // Optimize every instruction in the basic block.
2207     for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;)
2208       if (isInstructionTriviallyDead(&*II)) {
2209         EraseInst(&*II++);
2210       } else {
2211         OptimizeInst(&*II);
2212         assert(II->getParent() == &*BI && "Moved to a different block!");
2213         ++II;
2214       }
2215 
2216     // Make a copy of all the instructions to be redone so we can remove dead
2217     // instructions.
2218     SetVector<AssertingVH<Instruction>> ToRedo(RedoInsts);
2219     // Iterate over all instructions to be reevaluated and remove trivially dead
2220     // instructions. If any operand of the trivially dead instruction becomes
2221     // dead mark it for deletion as well. Continue this process until all
2222     // trivially dead instructions have been removed.
2223     while (!ToRedo.empty()) {
2224       Instruction *I = ToRedo.pop_back_val();
2225       if (isInstructionTriviallyDead(I)) {
2226         RecursivelyEraseDeadInsts(I, ToRedo);
2227         MadeChange = true;
2228       }
2229     }
2230 
2231     // Now that we have removed dead instructions, we can reoptimize the
2232     // remaining instructions.
2233     while (!RedoInsts.empty()) {
2234       Instruction *I = RedoInsts.pop_back_val();
2235       if (isInstructionTriviallyDead(I))
2236         EraseInst(I);
2237       else
2238         OptimizeInst(I);
2239     }
2240   }
2241 
2242   // We are done with the rank map.
2243   RankMap.clear();
2244   ValueRankMap.clear();
2245 
2246   if (MadeChange) {
2247     PreservedAnalyses PA;
2248     PA.preserveSet<CFGAnalyses>();
2249     PA.preserve<GlobalsAA>();
2250     return PA;
2251   }
2252 
2253   return PreservedAnalyses::all();
2254 }
2255 
2256 namespace {
2257 
2258   class ReassociateLegacyPass : public FunctionPass {
2259     ReassociatePass Impl;
2260 
2261   public:
2262     static char ID; // Pass identification, replacement for typeid
2263 
2264     ReassociateLegacyPass() : FunctionPass(ID) {
2265       initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
2266     }
2267 
2268     bool runOnFunction(Function &F) override {
2269       if (skipFunction(F))
2270         return false;
2271 
2272       FunctionAnalysisManager DummyFAM;
2273       auto PA = Impl.run(F, DummyFAM);
2274       return !PA.areAllPreserved();
2275     }
2276 
2277     void getAnalysisUsage(AnalysisUsage &AU) const override {
2278       AU.setPreservesCFG();
2279       AU.addPreserved<GlobalsAAWrapperPass>();
2280     }
2281   };
2282 
2283 } // end anonymous namespace
2284 
2285 char ReassociateLegacyPass::ID = 0;
2286 
2287 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
2288                 "Reassociate expressions", false, false)
2289 
2290 // Public interface to the Reassociate pass
2291 FunctionPass *llvm::createReassociatePass() {
2292   return new ReassociateLegacyPass();
2293 }
2294