1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass reassociates commutative expressions in an order that is designed
10 // to promote better constant propagation, GCSE, LICM, PRE, etc.
11 //
12 // For example: 4 + (x + 5) -> x + (4 + 5)
13 //
14 // In the implementation of this algorithm, constants are assigned rank = 0,
15 // function arguments are rank = 1, and other values are assigned ranks
16 // corresponding to the reverse post order traversal of current function
17 // (starting at 2), which effectively gives values in deep loops higher rank
18 // than values not in loops.
19 //
20 //===----------------------------------------------------------------------===//
21
22 #include "llvm/Transforms/Scalar/Reassociate.h"
23 #include "llvm/ADT/APFloat.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/PostOrderIterator.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Analysis/BasicAliasAnalysis.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/GlobalsModRef.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Operator.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/IR/PatternMatch.h"
48 #include "llvm/IR/Type.h"
49 #include "llvm/IR/User.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/IR/ValueHandle.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Transforms/Scalar.h"
58 #include "llvm/Transforms/Utils/Local.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <utility>
62
63 using namespace llvm;
64 using namespace reassociate;
65 using namespace PatternMatch;
66
67 #define DEBUG_TYPE "reassociate"
68
69 STATISTIC(NumChanged, "Number of insts reassociated");
70 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
71 STATISTIC(NumFactor , "Number of multiplies factored");
72
73 #ifndef NDEBUG
74 /// Print out the expression identified in the Ops list.
PrintOps(Instruction * I,const SmallVectorImpl<ValueEntry> & Ops)75 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
76 Module *M = I->getModule();
77 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
78 << *Ops[0].Op->getType() << '\t';
79 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
80 dbgs() << "[ ";
81 Ops[i].Op->printAsOperand(dbgs(), false, M);
82 dbgs() << ", #" << Ops[i].Rank << "] ";
83 }
84 }
85 #endif
86
87 /// Utility class representing a non-constant Xor-operand. We classify
88 /// non-constant Xor-Operands into two categories:
89 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0
90 /// C2)
91 /// C2.1) The operand is in the form of "X | C", where C is a non-zero
92 /// constant.
93 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
94 /// operand as "E | 0"
95 class llvm::reassociate::XorOpnd {
96 public:
97 XorOpnd(Value *V);
98
isInvalid() const99 bool isInvalid() const { return SymbolicPart == nullptr; }
isOrExpr() const100 bool isOrExpr() const { return isOr; }
getValue() const101 Value *getValue() const { return OrigVal; }
getSymbolicPart() const102 Value *getSymbolicPart() const { return SymbolicPart; }
getSymbolicRank() const103 unsigned getSymbolicRank() const { return SymbolicRank; }
getConstPart() const104 const APInt &getConstPart() const { return ConstPart; }
105
Invalidate()106 void Invalidate() { SymbolicPart = OrigVal = nullptr; }
setSymbolicRank(unsigned R)107 void setSymbolicRank(unsigned R) { SymbolicRank = R; }
108
109 private:
110 Value *OrigVal;
111 Value *SymbolicPart;
112 APInt ConstPart;
113 unsigned SymbolicRank;
114 bool isOr;
115 };
116
XorOpnd(Value * V)117 XorOpnd::XorOpnd(Value *V) {
118 assert(!isa<ConstantInt>(V) && "No ConstantInt");
119 OrigVal = V;
120 Instruction *I = dyn_cast<Instruction>(V);
121 SymbolicRank = 0;
122
123 if (I && (I->getOpcode() == Instruction::Or ||
124 I->getOpcode() == Instruction::And)) {
125 Value *V0 = I->getOperand(0);
126 Value *V1 = I->getOperand(1);
127 const APInt *C;
128 if (match(V0, m_APInt(C)))
129 std::swap(V0, V1);
130
131 if (match(V1, m_APInt(C))) {
132 ConstPart = *C;
133 SymbolicPart = V0;
134 isOr = (I->getOpcode() == Instruction::Or);
135 return;
136 }
137 }
138
139 // view the operand as "V | 0"
140 SymbolicPart = V;
141 ConstPart = APInt::getZero(V->getType()->getScalarSizeInBits());
142 isOr = true;
143 }
144
145 /// Return true if I is an instruction with the FastMathFlags that are needed
146 /// for general reassociation set. This is not the same as testing
147 /// Instruction::isAssociative() because it includes operations like fsub.
148 /// (This routine is only intended to be called for floating-point operations.)
hasFPAssociativeFlags(Instruction * I)149 static bool hasFPAssociativeFlags(Instruction *I) {
150 assert(I && isa<FPMathOperator>(I) && "Should only check FP ops");
151 return I->hasAllowReassoc() && I->hasNoSignedZeros();
152 }
153
154 /// Return true if V is an instruction of the specified opcode and if it
155 /// only has one use.
isReassociableOp(Value * V,unsigned Opcode)156 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
157 auto *BO = dyn_cast<BinaryOperator>(V);
158 if (BO && BO->hasOneUse() && BO->getOpcode() == Opcode)
159 if (!isa<FPMathOperator>(BO) || hasFPAssociativeFlags(BO))
160 return BO;
161 return nullptr;
162 }
163
isReassociableOp(Value * V,unsigned Opcode1,unsigned Opcode2)164 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
165 unsigned Opcode2) {
166 auto *BO = dyn_cast<BinaryOperator>(V);
167 if (BO && BO->hasOneUse() &&
168 (BO->getOpcode() == Opcode1 || BO->getOpcode() == Opcode2))
169 if (!isa<FPMathOperator>(BO) || hasFPAssociativeFlags(BO))
170 return BO;
171 return nullptr;
172 }
173
BuildRankMap(Function & F,ReversePostOrderTraversal<Function * > & RPOT)174 void ReassociatePass::BuildRankMap(Function &F,
175 ReversePostOrderTraversal<Function*> &RPOT) {
176 unsigned Rank = 2;
177
178 // Assign distinct ranks to function arguments.
179 for (auto &Arg : F.args()) {
180 ValueRankMap[&Arg] = ++Rank;
181 LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank
182 << "\n");
183 }
184
185 // Traverse basic blocks in ReversePostOrder.
186 for (BasicBlock *BB : RPOT) {
187 unsigned BBRank = RankMap[BB] = ++Rank << 16;
188
189 // Walk the basic block, adding precomputed ranks for any instructions that
190 // we cannot move. This ensures that the ranks for these instructions are
191 // all different in the block.
192 for (Instruction &I : *BB)
193 if (mayHaveNonDefUseDependency(I))
194 ValueRankMap[&I] = ++BBRank;
195 }
196 }
197
getRank(Value * V)198 unsigned ReassociatePass::getRank(Value *V) {
199 Instruction *I = dyn_cast<Instruction>(V);
200 if (!I) {
201 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
202 return 0; // Otherwise it's a global or constant, rank 0.
203 }
204
205 if (unsigned Rank = ValueRankMap[I])
206 return Rank; // Rank already known?
207
208 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
209 // we can reassociate expressions for code motion! Since we do not recurse
210 // for PHI nodes, we cannot have infinite recursion here, because there
211 // cannot be loops in the value graph that do not go through PHI nodes.
212 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
213 for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i)
214 Rank = std::max(Rank, getRank(I->getOperand(i)));
215
216 // If this is a 'not' or 'neg' instruction, do not count it for rank. This
217 // assures us that X and ~X will have the same rank.
218 if (!match(I, m_Not(m_Value())) && !match(I, m_Neg(m_Value())) &&
219 !match(I, m_FNeg(m_Value())))
220 ++Rank;
221
222 LLVM_DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank
223 << "\n");
224
225 return ValueRankMap[I] = Rank;
226 }
227
228 // Canonicalize constants to RHS. Otherwise, sort the operands by rank.
canonicalizeOperands(Instruction * I)229 void ReassociatePass::canonicalizeOperands(Instruction *I) {
230 assert(isa<BinaryOperator>(I) && "Expected binary operator.");
231 assert(I->isCommutative() && "Expected commutative operator.");
232
233 Value *LHS = I->getOperand(0);
234 Value *RHS = I->getOperand(1);
235 if (LHS == RHS || isa<Constant>(RHS))
236 return;
237 if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS))
238 cast<BinaryOperator>(I)->swapOperands();
239 }
240
CreateAdd(Value * S1,Value * S2,const Twine & Name,Instruction * InsertBefore,Value * FlagsOp)241 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
242 Instruction *InsertBefore, Value *FlagsOp) {
243 if (S1->getType()->isIntOrIntVectorTy())
244 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
245 else {
246 BinaryOperator *Res =
247 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
248 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
249 return Res;
250 }
251 }
252
CreateMul(Value * S1,Value * S2,const Twine & Name,Instruction * InsertBefore,Value * FlagsOp)253 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
254 Instruction *InsertBefore, Value *FlagsOp) {
255 if (S1->getType()->isIntOrIntVectorTy())
256 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
257 else {
258 BinaryOperator *Res =
259 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
260 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
261 return Res;
262 }
263 }
264
CreateNeg(Value * S1,const Twine & Name,Instruction * InsertBefore,Value * FlagsOp)265 static Instruction *CreateNeg(Value *S1, const Twine &Name,
266 Instruction *InsertBefore, Value *FlagsOp) {
267 if (S1->getType()->isIntOrIntVectorTy())
268 return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
269
270 if (auto *FMFSource = dyn_cast<Instruction>(FlagsOp))
271 return UnaryOperator::CreateFNegFMF(S1, FMFSource, Name, InsertBefore);
272
273 return UnaryOperator::CreateFNeg(S1, Name, InsertBefore);
274 }
275
276 /// Replace 0-X with X*-1.
LowerNegateToMultiply(Instruction * Neg)277 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
278 assert((isa<UnaryOperator>(Neg) || isa<BinaryOperator>(Neg)) &&
279 "Expected a Negate!");
280 // FIXME: It's not safe to lower a unary FNeg into a FMul by -1.0.
281 unsigned OpNo = isa<BinaryOperator>(Neg) ? 1 : 0;
282 Type *Ty = Neg->getType();
283 Constant *NegOne = Ty->isIntOrIntVectorTy() ?
284 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
285
286 BinaryOperator *Res = CreateMul(Neg->getOperand(OpNo), NegOne, "", Neg, Neg);
287 Neg->setOperand(OpNo, Constant::getNullValue(Ty)); // Drop use of op.
288 Res->takeName(Neg);
289 Neg->replaceAllUsesWith(Res);
290 Res->setDebugLoc(Neg->getDebugLoc());
291 return Res;
292 }
293
294 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
295 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
296 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
297 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
298 /// even x in Bitwidth-bit arithmetic.
CarmichaelShift(unsigned Bitwidth)299 static unsigned CarmichaelShift(unsigned Bitwidth) {
300 if (Bitwidth < 3)
301 return Bitwidth - 1;
302 return Bitwidth - 2;
303 }
304
305 /// Add the extra weight 'RHS' to the existing weight 'LHS',
306 /// reducing the combined weight using any special properties of the operation.
307 /// The existing weight LHS represents the computation X op X op ... op X where
308 /// X occurs LHS times. The combined weight represents X op X op ... op X with
309 /// X occurring LHS + RHS times. If op is "Xor" for example then the combined
310 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
311 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
IncorporateWeight(APInt & LHS,const APInt & RHS,unsigned Opcode)312 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
313 // If we were working with infinite precision arithmetic then the combined
314 // weight would be LHS + RHS. But we are using finite precision arithmetic,
315 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
316 // for nilpotent operations and addition, but not for idempotent operations
317 // and multiplication), so it is important to correctly reduce the combined
318 // weight back into range if wrapping would be wrong.
319
320 // If RHS is zero then the weight didn't change.
321 if (RHS.isMinValue())
322 return;
323 // If LHS is zero then the combined weight is RHS.
324 if (LHS.isMinValue()) {
325 LHS = RHS;
326 return;
327 }
328 // From this point on we know that neither LHS nor RHS is zero.
329
330 if (Instruction::isIdempotent(Opcode)) {
331 // Idempotent means X op X === X, so any non-zero weight is equivalent to a
332 // weight of 1. Keeping weights at zero or one also means that wrapping is
333 // not a problem.
334 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
335 return; // Return a weight of 1.
336 }
337 if (Instruction::isNilpotent(Opcode)) {
338 // Nilpotent means X op X === 0, so reduce weights modulo 2.
339 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
340 LHS = 0; // 1 + 1 === 0 modulo 2.
341 return;
342 }
343 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
344 // TODO: Reduce the weight by exploiting nsw/nuw?
345 LHS += RHS;
346 return;
347 }
348
349 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
350 "Unknown associative operation!");
351 unsigned Bitwidth = LHS.getBitWidth();
352 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
353 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
354 // bit number x, since either x is odd in which case x^CM = 1, or x is even in
355 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples
356 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
357 // which by a happy accident means that they can always be represented using
358 // Bitwidth bits.
359 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
360 // the Carmichael number).
361 if (Bitwidth > 3) {
362 /// CM - The value of Carmichael's lambda function.
363 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
364 // Any weight W >= Threshold can be replaced with W - CM.
365 APInt Threshold = CM + Bitwidth;
366 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
367 // For Bitwidth 4 or more the following sum does not overflow.
368 LHS += RHS;
369 while (LHS.uge(Threshold))
370 LHS -= CM;
371 } else {
372 // To avoid problems with overflow do everything the same as above but using
373 // a larger type.
374 unsigned CM = 1U << CarmichaelShift(Bitwidth);
375 unsigned Threshold = CM + Bitwidth;
376 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
377 "Weights not reduced!");
378 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
379 while (Total >= Threshold)
380 Total -= CM;
381 LHS = Total;
382 }
383 }
384
385 using RepeatedValue = std::pair<Value*, APInt>;
386
387 /// Given an associative binary expression, return the leaf
388 /// nodes in Ops along with their weights (how many times the leaf occurs). The
389 /// original expression is the same as
390 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
391 /// op
392 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
393 /// op
394 /// ...
395 /// op
396 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
397 ///
398 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
399 ///
400 /// This routine may modify the function, in which case it returns 'true'. The
401 /// changes it makes may well be destructive, changing the value computed by 'I'
402 /// to something completely different. Thus if the routine returns 'true' then
403 /// you MUST either replace I with a new expression computed from the Ops array,
404 /// or use RewriteExprTree to put the values back in.
405 ///
406 /// A leaf node is either not a binary operation of the same kind as the root
407 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
408 /// opcode), or is the same kind of binary operator but has a use which either
409 /// does not belong to the expression, or does belong to the expression but is
410 /// a leaf node. Every leaf node has at least one use that is a non-leaf node
411 /// of the expression, while for non-leaf nodes (except for the root 'I') every
412 /// use is a non-leaf node of the expression.
413 ///
414 /// For example:
415 /// expression graph node names
416 ///
417 /// + | I
418 /// / \ |
419 /// + + | A, B
420 /// / \ / \ |
421 /// * + * | C, D, E
422 /// / \ / \ / \ |
423 /// + * | F, G
424 ///
425 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
426 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
427 ///
428 /// The expression is maximal: if some instruction is a binary operator of the
429 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
430 /// then the instruction also belongs to the expression, is not a leaf node of
431 /// it, and its operands also belong to the expression (but may be leaf nodes).
432 ///
433 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
434 /// order to ensure that every non-root node in the expression has *exactly one*
435 /// use by a non-leaf node of the expression. This destruction means that the
436 /// caller MUST either replace 'I' with a new expression or use something like
437 /// RewriteExprTree to put the values back in if the routine indicates that it
438 /// made a change by returning 'true'.
439 ///
440 /// In the above example either the right operand of A or the left operand of B
441 /// will be replaced by undef. If it is B's operand then this gives:
442 ///
443 /// + | I
444 /// / \ |
445 /// + + | A, B - operand of B replaced with undef
446 /// / \ \ |
447 /// * + * | C, D, E
448 /// / \ / \ / \ |
449 /// + * | F, G
450 ///
451 /// Note that such undef operands can only be reached by passing through 'I'.
452 /// For example, if you visit operands recursively starting from a leaf node
453 /// then you will never see such an undef operand unless you get back to 'I',
454 /// which requires passing through a phi node.
455 ///
456 /// Note that this routine may also mutate binary operators of the wrong type
457 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
458 /// of the expression) if it can turn them into binary operators of the right
459 /// type and thus make the expression bigger.
LinearizeExprTree(Instruction * I,SmallVectorImpl<RepeatedValue> & Ops,ReassociatePass::OrderedSet & ToRedo)460 static bool LinearizeExprTree(Instruction *I,
461 SmallVectorImpl<RepeatedValue> &Ops,
462 ReassociatePass::OrderedSet &ToRedo) {
463 assert((isa<UnaryOperator>(I) || isa<BinaryOperator>(I)) &&
464 "Expected a UnaryOperator or BinaryOperator!");
465 LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
466 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
467 unsigned Opcode = I->getOpcode();
468 assert(I->isAssociative() && I->isCommutative() &&
469 "Expected an associative and commutative operation!");
470
471 // Visit all operands of the expression, keeping track of their weight (the
472 // number of paths from the expression root to the operand, or if you like
473 // the number of times that operand occurs in the linearized expression).
474 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
475 // while A has weight two.
476
477 // Worklist of non-leaf nodes (their operands are in the expression too) along
478 // with their weights, representing a certain number of paths to the operator.
479 // If an operator occurs in the worklist multiple times then we found multiple
480 // ways to get to it.
481 SmallVector<std::pair<Instruction*, APInt>, 8> Worklist; // (Op, Weight)
482 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
483 bool Changed = false;
484
485 // Leaves of the expression are values that either aren't the right kind of
486 // operation (eg: a constant, or a multiply in an add tree), or are, but have
487 // some uses that are not inside the expression. For example, in I = X + X,
488 // X = A + B, the value X has two uses (by I) that are in the expression. If
489 // X has any other uses, for example in a return instruction, then we consider
490 // X to be a leaf, and won't analyze it further. When we first visit a value,
491 // if it has more than one use then at first we conservatively consider it to
492 // be a leaf. Later, as the expression is explored, we may discover some more
493 // uses of the value from inside the expression. If all uses turn out to be
494 // from within the expression (and the value is a binary operator of the right
495 // kind) then the value is no longer considered to be a leaf, and its operands
496 // are explored.
497
498 // Leaves - Keeps track of the set of putative leaves as well as the number of
499 // paths to each leaf seen so far.
500 using LeafMap = DenseMap<Value *, APInt>;
501 LeafMap Leaves; // Leaf -> Total weight so far.
502 SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order.
503
504 #ifndef NDEBUG
505 SmallPtrSet<Value *, 8> Visited; // For checking the iteration scheme.
506 #endif
507 while (!Worklist.empty()) {
508 std::pair<Instruction*, APInt> P = Worklist.pop_back_val();
509 I = P.first; // We examine the operands of this binary operator.
510
511 for (unsigned OpIdx = 0; OpIdx < I->getNumOperands(); ++OpIdx) { // Visit operands.
512 Value *Op = I->getOperand(OpIdx);
513 APInt Weight = P.second; // Number of paths to this operand.
514 LLVM_DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
515 assert(!Op->use_empty() && "No uses, so how did we get to it?!");
516
517 // If this is a binary operation of the right kind with only one use then
518 // add its operands to the expression.
519 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
520 assert(Visited.insert(Op).second && "Not first visit!");
521 LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
522 Worklist.push_back(std::make_pair(BO, Weight));
523 continue;
524 }
525
526 // Appears to be a leaf. Is the operand already in the set of leaves?
527 LeafMap::iterator It = Leaves.find(Op);
528 if (It == Leaves.end()) {
529 // Not in the leaf map. Must be the first time we saw this operand.
530 assert(Visited.insert(Op).second && "Not first visit!");
531 if (!Op->hasOneUse()) {
532 // This value has uses not accounted for by the expression, so it is
533 // not safe to modify. Mark it as being a leaf.
534 LLVM_DEBUG(dbgs()
535 << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
536 LeafOrder.push_back(Op);
537 Leaves[Op] = Weight;
538 continue;
539 }
540 // No uses outside the expression, try morphing it.
541 } else {
542 // Already in the leaf map.
543 assert(It != Leaves.end() && Visited.count(Op) &&
544 "In leaf map but not visited!");
545
546 // Update the number of paths to the leaf.
547 IncorporateWeight(It->second, Weight, Opcode);
548
549 #if 0 // TODO: Re-enable once PR13021 is fixed.
550 // The leaf already has one use from inside the expression. As we want
551 // exactly one such use, drop this new use of the leaf.
552 assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
553 I->setOperand(OpIdx, UndefValue::get(I->getType()));
554 Changed = true;
555
556 // If the leaf is a binary operation of the right kind and we now see
557 // that its multiple original uses were in fact all by nodes belonging
558 // to the expression, then no longer consider it to be a leaf and add
559 // its operands to the expression.
560 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
561 LLVM_DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
562 Worklist.push_back(std::make_pair(BO, It->second));
563 Leaves.erase(It);
564 continue;
565 }
566 #endif
567
568 // If we still have uses that are not accounted for by the expression
569 // then it is not safe to modify the value.
570 if (!Op->hasOneUse())
571 continue;
572
573 // No uses outside the expression, try morphing it.
574 Weight = It->second;
575 Leaves.erase(It); // Since the value may be morphed below.
576 }
577
578 // At this point we have a value which, first of all, is not a binary
579 // expression of the right kind, and secondly, is only used inside the
580 // expression. This means that it can safely be modified. See if we
581 // can usefully morph it into an expression of the right kind.
582 assert((!isa<Instruction>(Op) ||
583 cast<Instruction>(Op)->getOpcode() != Opcode
584 || (isa<FPMathOperator>(Op) &&
585 !hasFPAssociativeFlags(cast<Instruction>(Op)))) &&
586 "Should have been handled above!");
587 assert(Op->hasOneUse() && "Has uses outside the expression tree!");
588
589 // If this is a multiply expression, turn any internal negations into
590 // multiplies by -1 so they can be reassociated. Add any users of the
591 // newly created multiplication by -1 to the redo list, so any
592 // reassociation opportunities that are exposed will be reassociated
593 // further.
594 Instruction *Neg;
595 if (((Opcode == Instruction::Mul && match(Op, m_Neg(m_Value()))) ||
596 (Opcode == Instruction::FMul && match(Op, m_FNeg(m_Value())))) &&
597 match(Op, m_Instruction(Neg))) {
598 LLVM_DEBUG(dbgs()
599 << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
600 Instruction *Mul = LowerNegateToMultiply(Neg);
601 LLVM_DEBUG(dbgs() << *Mul << '\n');
602 Worklist.push_back(std::make_pair(Mul, Weight));
603 for (User *U : Mul->users()) {
604 if (BinaryOperator *UserBO = dyn_cast<BinaryOperator>(U))
605 ToRedo.insert(UserBO);
606 }
607 ToRedo.insert(Neg);
608 Changed = true;
609 continue;
610 }
611
612 // Failed to morph into an expression of the right type. This really is
613 // a leaf.
614 LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
615 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
616 LeafOrder.push_back(Op);
617 Leaves[Op] = Weight;
618 }
619 }
620
621 // The leaves, repeated according to their weights, represent the linearized
622 // form of the expression.
623 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
624 Value *V = LeafOrder[i];
625 LeafMap::iterator It = Leaves.find(V);
626 if (It == Leaves.end())
627 // Node initially thought to be a leaf wasn't.
628 continue;
629 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
630 APInt Weight = It->second;
631 if (Weight.isMinValue())
632 // Leaf already output or weight reduction eliminated it.
633 continue;
634 // Ensure the leaf is only output once.
635 It->second = 0;
636 Ops.push_back(std::make_pair(V, Weight));
637 }
638
639 // For nilpotent operations or addition there may be no operands, for example
640 // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
641 // in both cases the weight reduces to 0 causing the value to be skipped.
642 if (Ops.empty()) {
643 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
644 assert(Identity && "Associative operation without identity!");
645 Ops.emplace_back(Identity, APInt(Bitwidth, 1));
646 }
647
648 return Changed;
649 }
650
651 /// Now that the operands for this expression tree are
652 /// linearized and optimized, emit them in-order.
RewriteExprTree(BinaryOperator * I,SmallVectorImpl<ValueEntry> & Ops)653 void ReassociatePass::RewriteExprTree(BinaryOperator *I,
654 SmallVectorImpl<ValueEntry> &Ops) {
655 assert(Ops.size() > 1 && "Single values should be used directly!");
656
657 // Since our optimizations should never increase the number of operations, the
658 // new expression can usually be written reusing the existing binary operators
659 // from the original expression tree, without creating any new instructions,
660 // though the rewritten expression may have a completely different topology.
661 // We take care to not change anything if the new expression will be the same
662 // as the original. If more than trivial changes (like commuting operands)
663 // were made then we are obliged to clear out any optional subclass data like
664 // nsw flags.
665
666 /// NodesToRewrite - Nodes from the original expression available for writing
667 /// the new expression into.
668 SmallVector<BinaryOperator*, 8> NodesToRewrite;
669 unsigned Opcode = I->getOpcode();
670 BinaryOperator *Op = I;
671
672 /// NotRewritable - The operands being written will be the leaves of the new
673 /// expression and must not be used as inner nodes (via NodesToRewrite) by
674 /// mistake. Inner nodes are always reassociable, and usually leaves are not
675 /// (if they were they would have been incorporated into the expression and so
676 /// would not be leaves), so most of the time there is no danger of this. But
677 /// in rare cases a leaf may become reassociable if an optimization kills uses
678 /// of it, or it may momentarily become reassociable during rewriting (below)
679 /// due it being removed as an operand of one of its uses. Ensure that misuse
680 /// of leaf nodes as inner nodes cannot occur by remembering all of the future
681 /// leaves and refusing to reuse any of them as inner nodes.
682 SmallPtrSet<Value*, 8> NotRewritable;
683 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
684 NotRewritable.insert(Ops[i].Op);
685
686 // ExpressionChanged - Non-null if the rewritten expression differs from the
687 // original in some non-trivial way, requiring the clearing of optional flags.
688 // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
689 BinaryOperator *ExpressionChanged = nullptr;
690 for (unsigned i = 0; ; ++i) {
691 // The last operation (which comes earliest in the IR) is special as both
692 // operands will come from Ops, rather than just one with the other being
693 // a subexpression.
694 if (i+2 == Ops.size()) {
695 Value *NewLHS = Ops[i].Op;
696 Value *NewRHS = Ops[i+1].Op;
697 Value *OldLHS = Op->getOperand(0);
698 Value *OldRHS = Op->getOperand(1);
699
700 if (NewLHS == OldLHS && NewRHS == OldRHS)
701 // Nothing changed, leave it alone.
702 break;
703
704 if (NewLHS == OldRHS && NewRHS == OldLHS) {
705 // The order of the operands was reversed. Swap them.
706 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
707 Op->swapOperands();
708 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
709 MadeChange = true;
710 ++NumChanged;
711 break;
712 }
713
714 // The new operation differs non-trivially from the original. Overwrite
715 // the old operands with the new ones.
716 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
717 if (NewLHS != OldLHS) {
718 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
719 if (BO && !NotRewritable.count(BO))
720 NodesToRewrite.push_back(BO);
721 Op->setOperand(0, NewLHS);
722 }
723 if (NewRHS != OldRHS) {
724 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
725 if (BO && !NotRewritable.count(BO))
726 NodesToRewrite.push_back(BO);
727 Op->setOperand(1, NewRHS);
728 }
729 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
730
731 ExpressionChanged = Op;
732 MadeChange = true;
733 ++NumChanged;
734
735 break;
736 }
737
738 // Not the last operation. The left-hand side will be a sub-expression
739 // while the right-hand side will be the current element of Ops.
740 Value *NewRHS = Ops[i].Op;
741 if (NewRHS != Op->getOperand(1)) {
742 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
743 if (NewRHS == Op->getOperand(0)) {
744 // The new right-hand side was already present as the left operand. If
745 // we are lucky then swapping the operands will sort out both of them.
746 Op->swapOperands();
747 } else {
748 // Overwrite with the new right-hand side.
749 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
750 if (BO && !NotRewritable.count(BO))
751 NodesToRewrite.push_back(BO);
752 Op->setOperand(1, NewRHS);
753 ExpressionChanged = Op;
754 }
755 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
756 MadeChange = true;
757 ++NumChanged;
758 }
759
760 // Now deal with the left-hand side. If this is already an operation node
761 // from the original expression then just rewrite the rest of the expression
762 // into it.
763 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
764 if (BO && !NotRewritable.count(BO)) {
765 Op = BO;
766 continue;
767 }
768
769 // Otherwise, grab a spare node from the original expression and use that as
770 // the left-hand side. If there are no nodes left then the optimizers made
771 // an expression with more nodes than the original! This usually means that
772 // they did something stupid but it might mean that the problem was just too
773 // hard (finding the mimimal number of multiplications needed to realize a
774 // multiplication expression is NP-complete). Whatever the reason, smart or
775 // stupid, create a new node if there are none left.
776 BinaryOperator *NewOp;
777 if (NodesToRewrite.empty()) {
778 Constant *Undef = UndefValue::get(I->getType());
779 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
780 Undef, Undef, "", I);
781 if (isa<FPMathOperator>(NewOp))
782 NewOp->setFastMathFlags(I->getFastMathFlags());
783 } else {
784 NewOp = NodesToRewrite.pop_back_val();
785 }
786
787 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
788 Op->setOperand(0, NewOp);
789 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
790 ExpressionChanged = Op;
791 MadeChange = true;
792 ++NumChanged;
793 Op = NewOp;
794 }
795
796 // If the expression changed non-trivially then clear out all subclass data
797 // starting from the operator specified in ExpressionChanged, and compactify
798 // the operators to just before the expression root to guarantee that the
799 // expression tree is dominated by all of Ops.
800 if (ExpressionChanged)
801 do {
802 // Preserve FastMathFlags.
803 if (isa<FPMathOperator>(I)) {
804 FastMathFlags Flags = I->getFastMathFlags();
805 ExpressionChanged->clearSubclassOptionalData();
806 ExpressionChanged->setFastMathFlags(Flags);
807 } else
808 ExpressionChanged->clearSubclassOptionalData();
809
810 if (ExpressionChanged == I)
811 break;
812
813 // Discard any debug info related to the expressions that has changed (we
814 // can leave debug infor related to the root, since the result of the
815 // expression tree should be the same even after reassociation).
816 replaceDbgUsesWithUndef(ExpressionChanged);
817
818 ExpressionChanged->moveBefore(I);
819 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
820 } while (true);
821
822 // Throw away any left over nodes from the original expression.
823 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
824 RedoInsts.insert(NodesToRewrite[i]);
825 }
826
827 /// Insert instructions before the instruction pointed to by BI,
828 /// that computes the negative version of the value specified. The negative
829 /// version of the value is returned, and BI is left pointing at the instruction
830 /// that should be processed next by the reassociation pass.
831 /// Also add intermediate instructions to the redo list that are modified while
832 /// pushing the negates through adds. These will be revisited to see if
833 /// additional opportunities have been exposed.
NegateValue(Value * V,Instruction * BI,ReassociatePass::OrderedSet & ToRedo)834 static Value *NegateValue(Value *V, Instruction *BI,
835 ReassociatePass::OrderedSet &ToRedo) {
836 if (auto *C = dyn_cast<Constant>(V))
837 return C->getType()->isFPOrFPVectorTy() ? ConstantExpr::getFNeg(C) :
838 ConstantExpr::getNeg(C);
839
840 // We are trying to expose opportunity for reassociation. One of the things
841 // that we want to do to achieve this is to push a negation as deep into an
842 // expression chain as possible, to expose the add instructions. In practice,
843 // this means that we turn this:
844 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
845 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
846 // the constants. We assume that instcombine will clean up the mess later if
847 // we introduce tons of unnecessary negation instructions.
848 //
849 if (BinaryOperator *I =
850 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
851 // Push the negates through the add.
852 I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
853 I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
854 if (I->getOpcode() == Instruction::Add) {
855 I->setHasNoUnsignedWrap(false);
856 I->setHasNoSignedWrap(false);
857 }
858
859 // We must move the add instruction here, because the neg instructions do
860 // not dominate the old add instruction in general. By moving it, we are
861 // assured that the neg instructions we just inserted dominate the
862 // instruction we are about to insert after them.
863 //
864 I->moveBefore(BI);
865 I->setName(I->getName()+".neg");
866
867 // Add the intermediate negates to the redo list as processing them later
868 // could expose more reassociating opportunities.
869 ToRedo.insert(I);
870 return I;
871 }
872
873 // Okay, we need to materialize a negated version of V with an instruction.
874 // Scan the use lists of V to see if we have one already.
875 for (User *U : V->users()) {
876 if (!match(U, m_Neg(m_Value())) && !match(U, m_FNeg(m_Value())))
877 continue;
878
879 // We found one! Now we have to make sure that the definition dominates
880 // this use. We do this by moving it to the entry block (if it is a
881 // non-instruction value) or right after the definition. These negates will
882 // be zapped by reassociate later, so we don't need much finesse here.
883 Instruction *TheNeg = cast<Instruction>(U);
884
885 // Verify that the negate is in this function, V might be a constant expr.
886 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
887 continue;
888
889 bool FoundCatchSwitch = false;
890
891 BasicBlock::iterator InsertPt;
892 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
893 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
894 InsertPt = II->getNormalDest()->begin();
895 } else {
896 InsertPt = ++InstInput->getIterator();
897 }
898
899 const BasicBlock *BB = InsertPt->getParent();
900
901 // Make sure we don't move anything before PHIs or exception
902 // handling pads.
903 while (InsertPt != BB->end() && (isa<PHINode>(InsertPt) ||
904 InsertPt->isEHPad())) {
905 if (isa<CatchSwitchInst>(InsertPt))
906 // A catchswitch cannot have anything in the block except
907 // itself and PHIs. We'll bail out below.
908 FoundCatchSwitch = true;
909 ++InsertPt;
910 }
911 } else {
912 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
913 }
914
915 // We found a catchswitch in the block where we want to move the
916 // neg. We cannot move anything into that block. Bail and just
917 // create the neg before BI, as if we hadn't found an existing
918 // neg.
919 if (FoundCatchSwitch)
920 break;
921
922 TheNeg->moveBefore(&*InsertPt);
923 if (TheNeg->getOpcode() == Instruction::Sub) {
924 TheNeg->setHasNoUnsignedWrap(false);
925 TheNeg->setHasNoSignedWrap(false);
926 } else {
927 TheNeg->andIRFlags(BI);
928 }
929 ToRedo.insert(TheNeg);
930 return TheNeg;
931 }
932
933 // Insert a 'neg' instruction that subtracts the value from zero to get the
934 // negation.
935 Instruction *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
936 ToRedo.insert(NewNeg);
937 return NewNeg;
938 }
939
940 // See if this `or` looks like an load widening reduction, i.e. that it
941 // consists of an `or`/`shl`/`zext`/`load` nodes only. Note that we don't
942 // ensure that the pattern is *really* a load widening reduction,
943 // we do not ensure that it can really be replaced with a widened load,
944 // only that it mostly looks like one.
isLoadCombineCandidate(Instruction * Or)945 static bool isLoadCombineCandidate(Instruction *Or) {
946 SmallVector<Instruction *, 8> Worklist;
947 SmallSet<Instruction *, 8> Visited;
948
949 auto Enqueue = [&](Value *V) {
950 auto *I = dyn_cast<Instruction>(V);
951 // Each node of an `or` reduction must be an instruction,
952 if (!I)
953 return false; // Node is certainly not part of an `or` load reduction.
954 // Only process instructions we have never processed before.
955 if (Visited.insert(I).second)
956 Worklist.emplace_back(I);
957 return true; // Will need to look at parent nodes.
958 };
959
960 if (!Enqueue(Or))
961 return false; // Not an `or` reduction pattern.
962
963 while (!Worklist.empty()) {
964 auto *I = Worklist.pop_back_val();
965
966 // Okay, which instruction is this node?
967 switch (I->getOpcode()) {
968 case Instruction::Or:
969 // Got an `or` node. That's fine, just recurse into it's operands.
970 for (Value *Op : I->operands())
971 if (!Enqueue(Op))
972 return false; // Not an `or` reduction pattern.
973 continue;
974
975 case Instruction::Shl:
976 case Instruction::ZExt:
977 // `shl`/`zext` nodes are fine, just recurse into their base operand.
978 if (!Enqueue(I->getOperand(0)))
979 return false; // Not an `or` reduction pattern.
980 continue;
981
982 case Instruction::Load:
983 // Perfect, `load` node means we've reached an edge of the graph.
984 continue;
985
986 default: // Unknown node.
987 return false; // Not an `or` reduction pattern.
988 }
989 }
990
991 return true;
992 }
993
994 /// Return true if it may be profitable to convert this (X|Y) into (X+Y).
shouldConvertOrWithNoCommonBitsToAdd(Instruction * Or)995 static bool shouldConvertOrWithNoCommonBitsToAdd(Instruction *Or) {
996 // Don't bother to convert this up unless either the LHS is an associable add
997 // or subtract or mul or if this is only used by one of the above.
998 // This is only a compile-time improvement, it is not needed for correctness!
999 auto isInteresting = [](Value *V) {
1000 for (auto Op : {Instruction::Add, Instruction::Sub, Instruction::Mul,
1001 Instruction::Shl})
1002 if (isReassociableOp(V, Op))
1003 return true;
1004 return false;
1005 };
1006
1007 if (any_of(Or->operands(), isInteresting))
1008 return true;
1009
1010 Value *VB = Or->user_back();
1011 if (Or->hasOneUse() && isInteresting(VB))
1012 return true;
1013
1014 return false;
1015 }
1016
1017 /// If we have (X|Y), and iff X and Y have no common bits set,
1018 /// transform this into (X+Y) to allow arithmetics reassociation.
convertOrWithNoCommonBitsToAdd(Instruction * Or)1019 static BinaryOperator *convertOrWithNoCommonBitsToAdd(Instruction *Or) {
1020 // Convert an or into an add.
1021 BinaryOperator *New =
1022 CreateAdd(Or->getOperand(0), Or->getOperand(1), "", Or, Or);
1023 New->setHasNoSignedWrap();
1024 New->setHasNoUnsignedWrap();
1025 New->takeName(Or);
1026
1027 // Everyone now refers to the add instruction.
1028 Or->replaceAllUsesWith(New);
1029 New->setDebugLoc(Or->getDebugLoc());
1030
1031 LLVM_DEBUG(dbgs() << "Converted or into an add: " << *New << '\n');
1032 return New;
1033 }
1034
1035 /// Return true if we should break up this subtract of X-Y into (X + -Y).
ShouldBreakUpSubtract(Instruction * Sub)1036 static bool ShouldBreakUpSubtract(Instruction *Sub) {
1037 // If this is a negation, we can't split it up!
1038 if (match(Sub, m_Neg(m_Value())) || match(Sub, m_FNeg(m_Value())))
1039 return false;
1040
1041 // Don't breakup X - undef.
1042 if (isa<UndefValue>(Sub->getOperand(1)))
1043 return false;
1044
1045 // Don't bother to break this up unless either the LHS is an associable add or
1046 // subtract or if this is only used by one.
1047 Value *V0 = Sub->getOperand(0);
1048 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
1049 isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
1050 return true;
1051 Value *V1 = Sub->getOperand(1);
1052 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
1053 isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
1054 return true;
1055 Value *VB = Sub->user_back();
1056 if (Sub->hasOneUse() &&
1057 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
1058 isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
1059 return true;
1060
1061 return false;
1062 }
1063
1064 /// If we have (X-Y), and if either X is an add, or if this is only used by an
1065 /// add, transform this into (X+(0-Y)) to promote better reassociation.
BreakUpSubtract(Instruction * Sub,ReassociatePass::OrderedSet & ToRedo)1066 static BinaryOperator *BreakUpSubtract(Instruction *Sub,
1067 ReassociatePass::OrderedSet &ToRedo) {
1068 // Convert a subtract into an add and a neg instruction. This allows sub
1069 // instructions to be commuted with other add instructions.
1070 //
1071 // Calculate the negative value of Operand 1 of the sub instruction,
1072 // and set it as the RHS of the add instruction we just made.
1073 Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
1074 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
1075 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
1076 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
1077 New->takeName(Sub);
1078
1079 // Everyone now refers to the add instruction.
1080 Sub->replaceAllUsesWith(New);
1081 New->setDebugLoc(Sub->getDebugLoc());
1082
1083 LLVM_DEBUG(dbgs() << "Negated: " << *New << '\n');
1084 return New;
1085 }
1086
1087 /// If this is a shift of a reassociable multiply or is used by one, change
1088 /// this into a multiply by a constant to assist with further reassociation.
ConvertShiftToMul(Instruction * Shl)1089 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
1090 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
1091 auto *SA = cast<ConstantInt>(Shl->getOperand(1));
1092 MulCst = ConstantExpr::getShl(MulCst, SA);
1093
1094 BinaryOperator *Mul =
1095 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
1096 Shl->setOperand(0, PoisonValue::get(Shl->getType())); // Drop use of op.
1097 Mul->takeName(Shl);
1098
1099 // Everyone now refers to the mul instruction.
1100 Shl->replaceAllUsesWith(Mul);
1101 Mul->setDebugLoc(Shl->getDebugLoc());
1102
1103 // We can safely preserve the nuw flag in all cases. It's also safe to turn a
1104 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special
1105 // handling. It can be preserved as long as we're not left shifting by
1106 // bitwidth - 1.
1107 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
1108 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
1109 unsigned BitWidth = Shl->getType()->getIntegerBitWidth();
1110 if (NSW && (NUW || SA->getValue().ult(BitWidth - 1)))
1111 Mul->setHasNoSignedWrap(true);
1112 Mul->setHasNoUnsignedWrap(NUW);
1113 return Mul;
1114 }
1115
1116 /// Scan backwards and forwards among values with the same rank as element i
1117 /// to see if X exists. If X does not exist, return i. This is useful when
1118 /// scanning for 'x' when we see '-x' because they both get the same rank.
FindInOperandList(const SmallVectorImpl<ValueEntry> & Ops,unsigned i,Value * X)1119 static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops,
1120 unsigned i, Value *X) {
1121 unsigned XRank = Ops[i].Rank;
1122 unsigned e = Ops.size();
1123 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
1124 if (Ops[j].Op == X)
1125 return j;
1126 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1127 if (Instruction *I2 = dyn_cast<Instruction>(X))
1128 if (I1->isIdenticalTo(I2))
1129 return j;
1130 }
1131 // Scan backwards.
1132 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
1133 if (Ops[j].Op == X)
1134 return j;
1135 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1136 if (Instruction *I2 = dyn_cast<Instruction>(X))
1137 if (I1->isIdenticalTo(I2))
1138 return j;
1139 }
1140 return i;
1141 }
1142
1143 /// Emit a tree of add instructions, summing Ops together
1144 /// and returning the result. Insert the tree before I.
EmitAddTreeOfValues(Instruction * I,SmallVectorImpl<WeakTrackingVH> & Ops)1145 static Value *EmitAddTreeOfValues(Instruction *I,
1146 SmallVectorImpl<WeakTrackingVH> &Ops) {
1147 if (Ops.size() == 1) return Ops.back();
1148
1149 Value *V1 = Ops.pop_back_val();
1150 Value *V2 = EmitAddTreeOfValues(I, Ops);
1151 return CreateAdd(V2, V1, "reass.add", I, I);
1152 }
1153
1154 /// If V is an expression tree that is a multiplication sequence,
1155 /// and if this sequence contains a multiply by Factor,
1156 /// remove Factor from the tree and return the new tree.
RemoveFactorFromExpression(Value * V,Value * Factor)1157 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
1158 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1159 if (!BO)
1160 return nullptr;
1161
1162 SmallVector<RepeatedValue, 8> Tree;
1163 MadeChange |= LinearizeExprTree(BO, Tree, RedoInsts);
1164 SmallVector<ValueEntry, 8> Factors;
1165 Factors.reserve(Tree.size());
1166 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1167 RepeatedValue E = Tree[i];
1168 Factors.append(E.second.getZExtValue(),
1169 ValueEntry(getRank(E.first), E.first));
1170 }
1171
1172 bool FoundFactor = false;
1173 bool NeedsNegate = false;
1174 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1175 if (Factors[i].Op == Factor) {
1176 FoundFactor = true;
1177 Factors.erase(Factors.begin()+i);
1178 break;
1179 }
1180
1181 // If this is a negative version of this factor, remove it.
1182 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
1183 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1184 if (FC1->getValue() == -FC2->getValue()) {
1185 FoundFactor = NeedsNegate = true;
1186 Factors.erase(Factors.begin()+i);
1187 break;
1188 }
1189 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1190 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
1191 const APFloat &F1 = FC1->getValueAPF();
1192 APFloat F2(FC2->getValueAPF());
1193 F2.changeSign();
1194 if (F1 == F2) {
1195 FoundFactor = NeedsNegate = true;
1196 Factors.erase(Factors.begin() + i);
1197 break;
1198 }
1199 }
1200 }
1201 }
1202
1203 if (!FoundFactor) {
1204 // Make sure to restore the operands to the expression tree.
1205 RewriteExprTree(BO, Factors);
1206 return nullptr;
1207 }
1208
1209 BasicBlock::iterator InsertPt = ++BO->getIterator();
1210
1211 // If this was just a single multiply, remove the multiply and return the only
1212 // remaining operand.
1213 if (Factors.size() == 1) {
1214 RedoInsts.insert(BO);
1215 V = Factors[0].Op;
1216 } else {
1217 RewriteExprTree(BO, Factors);
1218 V = BO;
1219 }
1220
1221 if (NeedsNegate)
1222 V = CreateNeg(V, "neg", &*InsertPt, BO);
1223
1224 return V;
1225 }
1226
1227 /// If V is a single-use multiply, recursively add its operands as factors,
1228 /// otherwise add V to the list of factors.
1229 ///
1230 /// Ops is the top-level list of add operands we're trying to factor.
FindSingleUseMultiplyFactors(Value * V,SmallVectorImpl<Value * > & Factors)1231 static void FindSingleUseMultiplyFactors(Value *V,
1232 SmallVectorImpl<Value*> &Factors) {
1233 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1234 if (!BO) {
1235 Factors.push_back(V);
1236 return;
1237 }
1238
1239 // Otherwise, add the LHS and RHS to the list of factors.
1240 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
1241 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
1242 }
1243
1244 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1245 /// This optimizes based on identities. If it can be reduced to a single Value,
1246 /// it is returned, otherwise the Ops list is mutated as necessary.
OptimizeAndOrXor(unsigned Opcode,SmallVectorImpl<ValueEntry> & Ops)1247 static Value *OptimizeAndOrXor(unsigned Opcode,
1248 SmallVectorImpl<ValueEntry> &Ops) {
1249 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1250 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1251 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1252 // First, check for X and ~X in the operand list.
1253 assert(i < Ops.size());
1254 Value *X;
1255 if (match(Ops[i].Op, m_Not(m_Value(X)))) { // Cannot occur for ^.
1256 unsigned FoundX = FindInOperandList(Ops, i, X);
1257 if (FoundX != i) {
1258 if (Opcode == Instruction::And) // ...&X&~X = 0
1259 return Constant::getNullValue(X->getType());
1260
1261 if (Opcode == Instruction::Or) // ...|X|~X = -1
1262 return Constant::getAllOnesValue(X->getType());
1263 }
1264 }
1265
1266 // Next, check for duplicate pairs of values, which we assume are next to
1267 // each other, due to our sorting criteria.
1268 assert(i < Ops.size());
1269 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1270 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1271 // Drop duplicate values for And and Or.
1272 Ops.erase(Ops.begin()+i);
1273 --i; --e;
1274 ++NumAnnihil;
1275 continue;
1276 }
1277
1278 // Drop pairs of values for Xor.
1279 assert(Opcode == Instruction::Xor);
1280 if (e == 2)
1281 return Constant::getNullValue(Ops[0].Op->getType());
1282
1283 // Y ^ X^X -> Y
1284 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1285 i -= 1; e -= 2;
1286 ++NumAnnihil;
1287 }
1288 }
1289 return nullptr;
1290 }
1291
1292 /// Helper function of CombineXorOpnd(). It creates a bitwise-and
1293 /// instruction with the given two operands, and return the resulting
1294 /// instruction. There are two special cases: 1) if the constant operand is 0,
1295 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1296 /// be returned.
createAndInstr(Instruction * InsertBefore,Value * Opnd,const APInt & ConstOpnd)1297 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1298 const APInt &ConstOpnd) {
1299 if (ConstOpnd.isZero())
1300 return nullptr;
1301
1302 if (ConstOpnd.isAllOnes())
1303 return Opnd;
1304
1305 Instruction *I = BinaryOperator::CreateAnd(
1306 Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra",
1307 InsertBefore);
1308 I->setDebugLoc(InsertBefore->getDebugLoc());
1309 return I;
1310 }
1311
1312 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1313 // into "R ^ C", where C would be 0, and R is a symbolic value.
1314 //
1315 // If it was successful, true is returned, and the "R" and "C" is returned
1316 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1317 // and both "Res" and "ConstOpnd" remain unchanged.
CombineXorOpnd(Instruction * I,XorOpnd * Opnd1,APInt & ConstOpnd,Value * & Res)1318 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1319 APInt &ConstOpnd, Value *&Res) {
1320 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1321 // = ((x | c1) ^ c1) ^ (c1 ^ c2)
1322 // = (x & ~c1) ^ (c1 ^ c2)
1323 // It is useful only when c1 == c2.
1324 if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isZero())
1325 return false;
1326
1327 if (!Opnd1->getValue()->hasOneUse())
1328 return false;
1329
1330 const APInt &C1 = Opnd1->getConstPart();
1331 if (C1 != ConstOpnd)
1332 return false;
1333
1334 Value *X = Opnd1->getSymbolicPart();
1335 Res = createAndInstr(I, X, ~C1);
1336 // ConstOpnd was C2, now C1 ^ C2.
1337 ConstOpnd ^= C1;
1338
1339 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1340 RedoInsts.insert(T);
1341 return true;
1342 }
1343
1344 // Helper function of OptimizeXor(). It tries to simplify
1345 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1346 // symbolic value.
1347 //
1348 // If it was successful, true is returned, and the "R" and "C" is returned
1349 // via "Res" and "ConstOpnd", respectively (If the entire expression is
1350 // evaluated to a constant, the Res is set to NULL); otherwise, false is
1351 // returned, and both "Res" and "ConstOpnd" remain unchanged.
CombineXorOpnd(Instruction * I,XorOpnd * Opnd1,XorOpnd * Opnd2,APInt & ConstOpnd,Value * & Res)1352 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1353 XorOpnd *Opnd2, APInt &ConstOpnd,
1354 Value *&Res) {
1355 Value *X = Opnd1->getSymbolicPart();
1356 if (X != Opnd2->getSymbolicPart())
1357 return false;
1358
1359 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1360 int DeadInstNum = 1;
1361 if (Opnd1->getValue()->hasOneUse())
1362 DeadInstNum++;
1363 if (Opnd2->getValue()->hasOneUse())
1364 DeadInstNum++;
1365
1366 // Xor-Rule 2:
1367 // (x | c1) ^ (x & c2)
1368 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1369 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1
1370 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3
1371 //
1372 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1373 if (Opnd2->isOrExpr())
1374 std::swap(Opnd1, Opnd2);
1375
1376 const APInt &C1 = Opnd1->getConstPart();
1377 const APInt &C2 = Opnd2->getConstPart();
1378 APInt C3((~C1) ^ C2);
1379
1380 // Do not increase code size!
1381 if (!C3.isZero() && !C3.isAllOnes()) {
1382 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1383 if (NewInstNum > DeadInstNum)
1384 return false;
1385 }
1386
1387 Res = createAndInstr(I, X, C3);
1388 ConstOpnd ^= C1;
1389 } else if (Opnd1->isOrExpr()) {
1390 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1391 //
1392 const APInt &C1 = Opnd1->getConstPart();
1393 const APInt &C2 = Opnd2->getConstPart();
1394 APInt C3 = C1 ^ C2;
1395
1396 // Do not increase code size
1397 if (!C3.isZero() && !C3.isAllOnes()) {
1398 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1399 if (NewInstNum > DeadInstNum)
1400 return false;
1401 }
1402
1403 Res = createAndInstr(I, X, C3);
1404 ConstOpnd ^= C3;
1405 } else {
1406 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1407 //
1408 const APInt &C1 = Opnd1->getConstPart();
1409 const APInt &C2 = Opnd2->getConstPart();
1410 APInt C3 = C1 ^ C2;
1411 Res = createAndInstr(I, X, C3);
1412 }
1413
1414 // Put the original operands in the Redo list; hope they will be deleted
1415 // as dead code.
1416 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1417 RedoInsts.insert(T);
1418 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1419 RedoInsts.insert(T);
1420
1421 return true;
1422 }
1423
1424 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1425 /// to a single Value, it is returned, otherwise the Ops list is mutated as
1426 /// necessary.
OptimizeXor(Instruction * I,SmallVectorImpl<ValueEntry> & Ops)1427 Value *ReassociatePass::OptimizeXor(Instruction *I,
1428 SmallVectorImpl<ValueEntry> &Ops) {
1429 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1430 return V;
1431
1432 if (Ops.size() == 1)
1433 return nullptr;
1434
1435 SmallVector<XorOpnd, 8> Opnds;
1436 SmallVector<XorOpnd*, 8> OpndPtrs;
1437 Type *Ty = Ops[0].Op->getType();
1438 APInt ConstOpnd(Ty->getScalarSizeInBits(), 0);
1439
1440 // Step 1: Convert ValueEntry to XorOpnd
1441 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1442 Value *V = Ops[i].Op;
1443 const APInt *C;
1444 // TODO: Support non-splat vectors.
1445 if (match(V, m_APInt(C))) {
1446 ConstOpnd ^= *C;
1447 } else {
1448 XorOpnd O(V);
1449 O.setSymbolicRank(getRank(O.getSymbolicPart()));
1450 Opnds.push_back(O);
1451 }
1452 }
1453
1454 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1455 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1456 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1457 // with the previous loop --- the iterator of the "Opnds" may be invalidated
1458 // when new elements are added to the vector.
1459 for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1460 OpndPtrs.push_back(&Opnds[i]);
1461
1462 // Step 2: Sort the Xor-Operands in a way such that the operands containing
1463 // the same symbolic value cluster together. For instance, the input operand
1464 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1465 // ("x | 123", "x & 789", "y & 456").
1466 //
1467 // The purpose is twofold:
1468 // 1) Cluster together the operands sharing the same symbolic-value.
1469 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
1470 // could potentially shorten crital path, and expose more loop-invariants.
1471 // Note that values' rank are basically defined in RPO order (FIXME).
1472 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
1473 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
1474 // "z" in the order of X-Y-Z is better than any other orders.
1475 llvm::stable_sort(OpndPtrs, [](XorOpnd *LHS, XorOpnd *RHS) {
1476 return LHS->getSymbolicRank() < RHS->getSymbolicRank();
1477 });
1478
1479 // Step 3: Combine adjacent operands
1480 XorOpnd *PrevOpnd = nullptr;
1481 bool Changed = false;
1482 for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
1483 XorOpnd *CurrOpnd = OpndPtrs[i];
1484 // The combined value
1485 Value *CV;
1486
1487 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1488 if (!ConstOpnd.isZero() && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1489 Changed = true;
1490 if (CV)
1491 *CurrOpnd = XorOpnd(CV);
1492 else {
1493 CurrOpnd->Invalidate();
1494 continue;
1495 }
1496 }
1497
1498 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1499 PrevOpnd = CurrOpnd;
1500 continue;
1501 }
1502
1503 // step 3.2: When previous and current operands share the same symbolic
1504 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1505 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1506 // Remove previous operand
1507 PrevOpnd->Invalidate();
1508 if (CV) {
1509 *CurrOpnd = XorOpnd(CV);
1510 PrevOpnd = CurrOpnd;
1511 } else {
1512 CurrOpnd->Invalidate();
1513 PrevOpnd = nullptr;
1514 }
1515 Changed = true;
1516 }
1517 }
1518
1519 // Step 4: Reassemble the Ops
1520 if (Changed) {
1521 Ops.clear();
1522 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1523 XorOpnd &O = Opnds[i];
1524 if (O.isInvalid())
1525 continue;
1526 ValueEntry VE(getRank(O.getValue()), O.getValue());
1527 Ops.push_back(VE);
1528 }
1529 if (!ConstOpnd.isZero()) {
1530 Value *C = ConstantInt::get(Ty, ConstOpnd);
1531 ValueEntry VE(getRank(C), C);
1532 Ops.push_back(VE);
1533 }
1534 unsigned Sz = Ops.size();
1535 if (Sz == 1)
1536 return Ops.back().Op;
1537 if (Sz == 0) {
1538 assert(ConstOpnd.isZero());
1539 return ConstantInt::get(Ty, ConstOpnd);
1540 }
1541 }
1542
1543 return nullptr;
1544 }
1545
1546 /// Optimize a series of operands to an 'add' instruction. This
1547 /// optimizes based on identities. If it can be reduced to a single Value, it
1548 /// is returned, otherwise the Ops list is mutated as necessary.
OptimizeAdd(Instruction * I,SmallVectorImpl<ValueEntry> & Ops)1549 Value *ReassociatePass::OptimizeAdd(Instruction *I,
1550 SmallVectorImpl<ValueEntry> &Ops) {
1551 // Scan the operand lists looking for X and -X pairs. If we find any, we
1552 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it,
1553 // scan for any
1554 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1555
1556 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1557 Value *TheOp = Ops[i].Op;
1558 // Check to see if we've seen this operand before. If so, we factor all
1559 // instances of the operand together. Due to our sorting criteria, we know
1560 // that these need to be next to each other in the vector.
1561 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1562 // Rescan the list, remove all instances of this operand from the expr.
1563 unsigned NumFound = 0;
1564 do {
1565 Ops.erase(Ops.begin()+i);
1566 ++NumFound;
1567 } while (i != Ops.size() && Ops[i].Op == TheOp);
1568
1569 LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp
1570 << '\n');
1571 ++NumFactor;
1572
1573 // Insert a new multiply.
1574 Type *Ty = TheOp->getType();
1575 Constant *C = Ty->isIntOrIntVectorTy() ?
1576 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
1577 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
1578
1579 // Now that we have inserted a multiply, optimize it. This allows us to
1580 // handle cases that require multiple factoring steps, such as this:
1581 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1582 RedoInsts.insert(Mul);
1583
1584 // If every add operand was a duplicate, return the multiply.
1585 if (Ops.empty())
1586 return Mul;
1587
1588 // Otherwise, we had some input that didn't have the dupe, such as
1589 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
1590 // things being added by this operation.
1591 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1592
1593 --i;
1594 e = Ops.size();
1595 continue;
1596 }
1597
1598 // Check for X and -X or X and ~X in the operand list.
1599 Value *X;
1600 if (!match(TheOp, m_Neg(m_Value(X))) && !match(TheOp, m_Not(m_Value(X))) &&
1601 !match(TheOp, m_FNeg(m_Value(X))))
1602 continue;
1603
1604 unsigned FoundX = FindInOperandList(Ops, i, X);
1605 if (FoundX == i)
1606 continue;
1607
1608 // Remove X and -X from the operand list.
1609 if (Ops.size() == 2 &&
1610 (match(TheOp, m_Neg(m_Value())) || match(TheOp, m_FNeg(m_Value()))))
1611 return Constant::getNullValue(X->getType());
1612
1613 // Remove X and ~X from the operand list.
1614 if (Ops.size() == 2 && match(TheOp, m_Not(m_Value())))
1615 return Constant::getAllOnesValue(X->getType());
1616
1617 Ops.erase(Ops.begin()+i);
1618 if (i < FoundX)
1619 --FoundX;
1620 else
1621 --i; // Need to back up an extra one.
1622 Ops.erase(Ops.begin()+FoundX);
1623 ++NumAnnihil;
1624 --i; // Revisit element.
1625 e -= 2; // Removed two elements.
1626
1627 // if X and ~X we append -1 to the operand list.
1628 if (match(TheOp, m_Not(m_Value()))) {
1629 Value *V = Constant::getAllOnesValue(X->getType());
1630 Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1631 e += 1;
1632 }
1633 }
1634
1635 // Scan the operand list, checking to see if there are any common factors
1636 // between operands. Consider something like A*A+A*B*C+D. We would like to
1637 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1638 // To efficiently find this, we count the number of times a factor occurs
1639 // for any ADD operands that are MULs.
1640 DenseMap<Value*, unsigned> FactorOccurrences;
1641
1642 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1643 // where they are actually the same multiply.
1644 unsigned MaxOcc = 0;
1645 Value *MaxOccVal = nullptr;
1646 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1647 BinaryOperator *BOp =
1648 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1649 if (!BOp)
1650 continue;
1651
1652 // Compute all of the factors of this added value.
1653 SmallVector<Value*, 8> Factors;
1654 FindSingleUseMultiplyFactors(BOp, Factors);
1655 assert(Factors.size() > 1 && "Bad linearize!");
1656
1657 // Add one to FactorOccurrences for each unique factor in this op.
1658 SmallPtrSet<Value*, 8> Duplicates;
1659 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1660 Value *Factor = Factors[i];
1661 if (!Duplicates.insert(Factor).second)
1662 continue;
1663
1664 unsigned Occ = ++FactorOccurrences[Factor];
1665 if (Occ > MaxOcc) {
1666 MaxOcc = Occ;
1667 MaxOccVal = Factor;
1668 }
1669
1670 // If Factor is a negative constant, add the negated value as a factor
1671 // because we can percolate the negate out. Watch for minint, which
1672 // cannot be positivified.
1673 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
1674 if (CI->isNegative() && !CI->isMinValue(true)) {
1675 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1676 if (!Duplicates.insert(Factor).second)
1677 continue;
1678 unsigned Occ = ++FactorOccurrences[Factor];
1679 if (Occ > MaxOcc) {
1680 MaxOcc = Occ;
1681 MaxOccVal = Factor;
1682 }
1683 }
1684 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1685 if (CF->isNegative()) {
1686 APFloat F(CF->getValueAPF());
1687 F.changeSign();
1688 Factor = ConstantFP::get(CF->getContext(), F);
1689 if (!Duplicates.insert(Factor).second)
1690 continue;
1691 unsigned Occ = ++FactorOccurrences[Factor];
1692 if (Occ > MaxOcc) {
1693 MaxOcc = Occ;
1694 MaxOccVal = Factor;
1695 }
1696 }
1697 }
1698 }
1699 }
1700
1701 // If any factor occurred more than one time, we can pull it out.
1702 if (MaxOcc > 1) {
1703 LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal
1704 << '\n');
1705 ++NumFactor;
1706
1707 // Create a new instruction that uses the MaxOccVal twice. If we don't do
1708 // this, we could otherwise run into situations where removing a factor
1709 // from an expression will drop a use of maxocc, and this can cause
1710 // RemoveFactorFromExpression on successive values to behave differently.
1711 Instruction *DummyInst =
1712 I->getType()->isIntOrIntVectorTy()
1713 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1714 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1715
1716 SmallVector<WeakTrackingVH, 4> NewMulOps;
1717 for (unsigned i = 0; i != Ops.size(); ++i) {
1718 // Only try to remove factors from expressions we're allowed to.
1719 BinaryOperator *BOp =
1720 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1721 if (!BOp)
1722 continue;
1723
1724 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1725 // The factorized operand may occur several times. Convert them all in
1726 // one fell swoop.
1727 for (unsigned j = Ops.size(); j != i;) {
1728 --j;
1729 if (Ops[j].Op == Ops[i].Op) {
1730 NewMulOps.push_back(V);
1731 Ops.erase(Ops.begin()+j);
1732 }
1733 }
1734 --i;
1735 }
1736 }
1737
1738 // No need for extra uses anymore.
1739 DummyInst->deleteValue();
1740
1741 unsigned NumAddedValues = NewMulOps.size();
1742 Value *V = EmitAddTreeOfValues(I, NewMulOps);
1743
1744 // Now that we have inserted the add tree, optimize it. This allows us to
1745 // handle cases that require multiple factoring steps, such as this:
1746 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
1747 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1748 (void)NumAddedValues;
1749 if (Instruction *VI = dyn_cast<Instruction>(V))
1750 RedoInsts.insert(VI);
1751
1752 // Create the multiply.
1753 Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I);
1754
1755 // Rerun associate on the multiply in case the inner expression turned into
1756 // a multiply. We want to make sure that we keep things in canonical form.
1757 RedoInsts.insert(V2);
1758
1759 // If every add operand included the factor (e.g. "A*B + A*C"), then the
1760 // entire result expression is just the multiply "A*(B+C)".
1761 if (Ops.empty())
1762 return V2;
1763
1764 // Otherwise, we had some input that didn't have the factor, such as
1765 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
1766 // things being added by this operation.
1767 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1768 }
1769
1770 return nullptr;
1771 }
1772
1773 /// Build up a vector of value/power pairs factoring a product.
1774 ///
1775 /// Given a series of multiplication operands, build a vector of factors and
1776 /// the powers each is raised to when forming the final product. Sort them in
1777 /// the order of descending power.
1778 ///
1779 /// (x*x) -> [(x, 2)]
1780 /// ((x*x)*x) -> [(x, 3)]
1781 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1782 ///
1783 /// \returns Whether any factors have a power greater than one.
collectMultiplyFactors(SmallVectorImpl<ValueEntry> & Ops,SmallVectorImpl<Factor> & Factors)1784 static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1785 SmallVectorImpl<Factor> &Factors) {
1786 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1787 // Compute the sum of powers of simplifiable factors.
1788 unsigned FactorPowerSum = 0;
1789 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1790 Value *Op = Ops[Idx-1].Op;
1791
1792 // Count the number of occurrences of this value.
1793 unsigned Count = 1;
1794 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1795 ++Count;
1796 // Track for simplification all factors which occur 2 or more times.
1797 if (Count > 1)
1798 FactorPowerSum += Count;
1799 }
1800
1801 // We can only simplify factors if the sum of the powers of our simplifiable
1802 // factors is 4 or higher. When that is the case, we will *always* have
1803 // a simplification. This is an important invariant to prevent cyclicly
1804 // trying to simplify already minimal formations.
1805 if (FactorPowerSum < 4)
1806 return false;
1807
1808 // Now gather the simplifiable factors, removing them from Ops.
1809 FactorPowerSum = 0;
1810 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1811 Value *Op = Ops[Idx-1].Op;
1812
1813 // Count the number of occurrences of this value.
1814 unsigned Count = 1;
1815 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1816 ++Count;
1817 if (Count == 1)
1818 continue;
1819 // Move an even number of occurrences to Factors.
1820 Count &= ~1U;
1821 Idx -= Count;
1822 FactorPowerSum += Count;
1823 Factors.push_back(Factor(Op, Count));
1824 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1825 }
1826
1827 // None of the adjustments above should have reduced the sum of factor powers
1828 // below our mininum of '4'.
1829 assert(FactorPowerSum >= 4);
1830
1831 llvm::stable_sort(Factors, [](const Factor &LHS, const Factor &RHS) {
1832 return LHS.Power > RHS.Power;
1833 });
1834 return true;
1835 }
1836
1837 /// Build a tree of multiplies, computing the product of Ops.
buildMultiplyTree(IRBuilderBase & Builder,SmallVectorImpl<Value * > & Ops)1838 static Value *buildMultiplyTree(IRBuilderBase &Builder,
1839 SmallVectorImpl<Value*> &Ops) {
1840 if (Ops.size() == 1)
1841 return Ops.back();
1842
1843 Value *LHS = Ops.pop_back_val();
1844 do {
1845 if (LHS->getType()->isIntOrIntVectorTy())
1846 LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1847 else
1848 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
1849 } while (!Ops.empty());
1850
1851 return LHS;
1852 }
1853
1854 /// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1855 ///
1856 /// Given a vector of values raised to various powers, where no two values are
1857 /// equal and the powers are sorted in decreasing order, compute the minimal
1858 /// DAG of multiplies to compute the final product, and return that product
1859 /// value.
1860 Value *
buildMinimalMultiplyDAG(IRBuilderBase & Builder,SmallVectorImpl<Factor> & Factors)1861 ReassociatePass::buildMinimalMultiplyDAG(IRBuilderBase &Builder,
1862 SmallVectorImpl<Factor> &Factors) {
1863 assert(Factors[0].Power);
1864 SmallVector<Value *, 4> OuterProduct;
1865 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1866 Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1867 if (Factors[Idx].Power != Factors[LastIdx].Power) {
1868 LastIdx = Idx;
1869 continue;
1870 }
1871
1872 // We want to multiply across all the factors with the same power so that
1873 // we can raise them to that power as a single entity. Build a mini tree
1874 // for that.
1875 SmallVector<Value *, 4> InnerProduct;
1876 InnerProduct.push_back(Factors[LastIdx].Base);
1877 do {
1878 InnerProduct.push_back(Factors[Idx].Base);
1879 ++Idx;
1880 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1881
1882 // Reset the base value of the first factor to the new expression tree.
1883 // We'll remove all the factors with the same power in a second pass.
1884 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1885 if (Instruction *MI = dyn_cast<Instruction>(M))
1886 RedoInsts.insert(MI);
1887
1888 LastIdx = Idx;
1889 }
1890 // Unique factors with equal powers -- we've folded them into the first one's
1891 // base.
1892 Factors.erase(std::unique(Factors.begin(), Factors.end(),
1893 [](const Factor &LHS, const Factor &RHS) {
1894 return LHS.Power == RHS.Power;
1895 }),
1896 Factors.end());
1897
1898 // Iteratively collect the base of each factor with an add power into the
1899 // outer product, and halve each power in preparation for squaring the
1900 // expression.
1901 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1902 if (Factors[Idx].Power & 1)
1903 OuterProduct.push_back(Factors[Idx].Base);
1904 Factors[Idx].Power >>= 1;
1905 }
1906 if (Factors[0].Power) {
1907 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1908 OuterProduct.push_back(SquareRoot);
1909 OuterProduct.push_back(SquareRoot);
1910 }
1911 if (OuterProduct.size() == 1)
1912 return OuterProduct.front();
1913
1914 Value *V = buildMultiplyTree(Builder, OuterProduct);
1915 return V;
1916 }
1917
OptimizeMul(BinaryOperator * I,SmallVectorImpl<ValueEntry> & Ops)1918 Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
1919 SmallVectorImpl<ValueEntry> &Ops) {
1920 // We can only optimize the multiplies when there is a chain of more than
1921 // three, such that a balanced tree might require fewer total multiplies.
1922 if (Ops.size() < 4)
1923 return nullptr;
1924
1925 // Try to turn linear trees of multiplies without other uses of the
1926 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1927 // re-use.
1928 SmallVector<Factor, 4> Factors;
1929 if (!collectMultiplyFactors(Ops, Factors))
1930 return nullptr; // All distinct factors, so nothing left for us to do.
1931
1932 IRBuilder<> Builder(I);
1933 // The reassociate transformation for FP operations is performed only
1934 // if unsafe algebra is permitted by FastMathFlags. Propagate those flags
1935 // to the newly generated operations.
1936 if (auto FPI = dyn_cast<FPMathOperator>(I))
1937 Builder.setFastMathFlags(FPI->getFastMathFlags());
1938
1939 Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1940 if (Ops.empty())
1941 return V;
1942
1943 ValueEntry NewEntry = ValueEntry(getRank(V), V);
1944 Ops.insert(llvm::lower_bound(Ops, NewEntry), NewEntry);
1945 return nullptr;
1946 }
1947
OptimizeExpression(BinaryOperator * I,SmallVectorImpl<ValueEntry> & Ops)1948 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
1949 SmallVectorImpl<ValueEntry> &Ops) {
1950 // Now that we have the linearized expression tree, try to optimize it.
1951 // Start by folding any constants that we found.
1952 const DataLayout &DL = I->getModule()->getDataLayout();
1953 Constant *Cst = nullptr;
1954 unsigned Opcode = I->getOpcode();
1955 while (!Ops.empty()) {
1956 if (auto *C = dyn_cast<Constant>(Ops.back().Op)) {
1957 if (!Cst) {
1958 Ops.pop_back();
1959 Cst = C;
1960 continue;
1961 }
1962 if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, C, Cst, DL)) {
1963 Ops.pop_back();
1964 Cst = Res;
1965 continue;
1966 }
1967 }
1968 break;
1969 }
1970 // If there was nothing but constants then we are done.
1971 if (Ops.empty())
1972 return Cst;
1973
1974 // Put the combined constant back at the end of the operand list, except if
1975 // there is no point. For example, an add of 0 gets dropped here, while a
1976 // multiplication by zero turns the whole expression into zero.
1977 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1978 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1979 return Cst;
1980 Ops.push_back(ValueEntry(0, Cst));
1981 }
1982
1983 if (Ops.size() == 1) return Ops[0].Op;
1984
1985 // Handle destructive annihilation due to identities between elements in the
1986 // argument list here.
1987 unsigned NumOps = Ops.size();
1988 switch (Opcode) {
1989 default: break;
1990 case Instruction::And:
1991 case Instruction::Or:
1992 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1993 return Result;
1994 break;
1995
1996 case Instruction::Xor:
1997 if (Value *Result = OptimizeXor(I, Ops))
1998 return Result;
1999 break;
2000
2001 case Instruction::Add:
2002 case Instruction::FAdd:
2003 if (Value *Result = OptimizeAdd(I, Ops))
2004 return Result;
2005 break;
2006
2007 case Instruction::Mul:
2008 case Instruction::FMul:
2009 if (Value *Result = OptimizeMul(I, Ops))
2010 return Result;
2011 break;
2012 }
2013
2014 if (Ops.size() != NumOps)
2015 return OptimizeExpression(I, Ops);
2016 return nullptr;
2017 }
2018
2019 // Remove dead instructions and if any operands are trivially dead add them to
2020 // Insts so they will be removed as well.
RecursivelyEraseDeadInsts(Instruction * I,OrderedSet & Insts)2021 void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I,
2022 OrderedSet &Insts) {
2023 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
2024 SmallVector<Value *, 4> Ops(I->operands());
2025 ValueRankMap.erase(I);
2026 Insts.remove(I);
2027 RedoInsts.remove(I);
2028 llvm::salvageDebugInfo(*I);
2029 I->eraseFromParent();
2030 for (auto Op : Ops)
2031 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
2032 if (OpInst->use_empty())
2033 Insts.insert(OpInst);
2034 }
2035
2036 /// Zap the given instruction, adding interesting operands to the work list.
EraseInst(Instruction * I)2037 void ReassociatePass::EraseInst(Instruction *I) {
2038 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
2039 LLVM_DEBUG(dbgs() << "Erasing dead inst: "; I->dump());
2040
2041 SmallVector<Value *, 8> Ops(I->operands());
2042 // Erase the dead instruction.
2043 ValueRankMap.erase(I);
2044 RedoInsts.remove(I);
2045 llvm::salvageDebugInfo(*I);
2046 I->eraseFromParent();
2047 // Optimize its operands.
2048 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
2049 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2050 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
2051 // If this is a node in an expression tree, climb to the expression root
2052 // and add that since that's where optimization actually happens.
2053 unsigned Opcode = Op->getOpcode();
2054 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
2055 Visited.insert(Op).second)
2056 Op = Op->user_back();
2057
2058 // The instruction we're going to push may be coming from a
2059 // dead block, and Reassociate skips the processing of unreachable
2060 // blocks because it's a waste of time and also because it can
2061 // lead to infinite loop due to LLVM's non-standard definition
2062 // of dominance.
2063 if (ValueRankMap.find(Op) != ValueRankMap.end())
2064 RedoInsts.insert(Op);
2065 }
2066
2067 MadeChange = true;
2068 }
2069
2070 /// Recursively analyze an expression to build a list of instructions that have
2071 /// negative floating-point constant operands. The caller can then transform
2072 /// the list to create positive constants for better reassociation and CSE.
getNegatibleInsts(Value * V,SmallVectorImpl<Instruction * > & Candidates)2073 static void getNegatibleInsts(Value *V,
2074 SmallVectorImpl<Instruction *> &Candidates) {
2075 // Handle only one-use instructions. Combining negations does not justify
2076 // replicating instructions.
2077 Instruction *I;
2078 if (!match(V, m_OneUse(m_Instruction(I))))
2079 return;
2080
2081 // Handle expressions of multiplications and divisions.
2082 // TODO: This could look through floating-point casts.
2083 const APFloat *C;
2084 switch (I->getOpcode()) {
2085 case Instruction::FMul:
2086 // Not expecting non-canonical code here. Bail out and wait.
2087 if (match(I->getOperand(0), m_Constant()))
2088 break;
2089
2090 if (match(I->getOperand(1), m_APFloat(C)) && C->isNegative()) {
2091 Candidates.push_back(I);
2092 LLVM_DEBUG(dbgs() << "FMul with negative constant: " << *I << '\n');
2093 }
2094 getNegatibleInsts(I->getOperand(0), Candidates);
2095 getNegatibleInsts(I->getOperand(1), Candidates);
2096 break;
2097 case Instruction::FDiv:
2098 // Not expecting non-canonical code here. Bail out and wait.
2099 if (match(I->getOperand(0), m_Constant()) &&
2100 match(I->getOperand(1), m_Constant()))
2101 break;
2102
2103 if ((match(I->getOperand(0), m_APFloat(C)) && C->isNegative()) ||
2104 (match(I->getOperand(1), m_APFloat(C)) && C->isNegative())) {
2105 Candidates.push_back(I);
2106 LLVM_DEBUG(dbgs() << "FDiv with negative constant: " << *I << '\n');
2107 }
2108 getNegatibleInsts(I->getOperand(0), Candidates);
2109 getNegatibleInsts(I->getOperand(1), Candidates);
2110 break;
2111 default:
2112 break;
2113 }
2114 }
2115
2116 /// Given an fadd/fsub with an operand that is a one-use instruction
2117 /// (the fadd/fsub), try to change negative floating-point constants into
2118 /// positive constants to increase potential for reassociation and CSE.
canonicalizeNegFPConstantsForOp(Instruction * I,Instruction * Op,Value * OtherOp)2119 Instruction *ReassociatePass::canonicalizeNegFPConstantsForOp(Instruction *I,
2120 Instruction *Op,
2121 Value *OtherOp) {
2122 assert((I->getOpcode() == Instruction::FAdd ||
2123 I->getOpcode() == Instruction::FSub) && "Expected fadd/fsub");
2124
2125 // Collect instructions with negative FP constants from the subtree that ends
2126 // in Op.
2127 SmallVector<Instruction *, 4> Candidates;
2128 getNegatibleInsts(Op, Candidates);
2129 if (Candidates.empty())
2130 return nullptr;
2131
2132 // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the
2133 // resulting subtract will be broken up later. This can get us into an
2134 // infinite loop during reassociation.
2135 bool IsFSub = I->getOpcode() == Instruction::FSub;
2136 bool NeedsSubtract = !IsFSub && Candidates.size() % 2 == 1;
2137 if (NeedsSubtract && ShouldBreakUpSubtract(I))
2138 return nullptr;
2139
2140 for (Instruction *Negatible : Candidates) {
2141 const APFloat *C;
2142 if (match(Negatible->getOperand(0), m_APFloat(C))) {
2143 assert(!match(Negatible->getOperand(1), m_Constant()) &&
2144 "Expecting only 1 constant operand");
2145 assert(C->isNegative() && "Expected negative FP constant");
2146 Negatible->setOperand(0, ConstantFP::get(Negatible->getType(), abs(*C)));
2147 MadeChange = true;
2148 }
2149 if (match(Negatible->getOperand(1), m_APFloat(C))) {
2150 assert(!match(Negatible->getOperand(0), m_Constant()) &&
2151 "Expecting only 1 constant operand");
2152 assert(C->isNegative() && "Expected negative FP constant");
2153 Negatible->setOperand(1, ConstantFP::get(Negatible->getType(), abs(*C)));
2154 MadeChange = true;
2155 }
2156 }
2157 assert(MadeChange == true && "Negative constant candidate was not changed");
2158
2159 // Negations cancelled out.
2160 if (Candidates.size() % 2 == 0)
2161 return I;
2162
2163 // Negate the final operand in the expression by flipping the opcode of this
2164 // fadd/fsub.
2165 assert(Candidates.size() % 2 == 1 && "Expected odd number");
2166 IRBuilder<> Builder(I);
2167 Value *NewInst = IsFSub ? Builder.CreateFAddFMF(OtherOp, Op, I)
2168 : Builder.CreateFSubFMF(OtherOp, Op, I);
2169 I->replaceAllUsesWith(NewInst);
2170 RedoInsts.insert(I);
2171 return dyn_cast<Instruction>(NewInst);
2172 }
2173
2174 /// Canonicalize expressions that contain a negative floating-point constant
2175 /// of the following form:
2176 /// OtherOp + (subtree) -> OtherOp {+/-} (canonical subtree)
2177 /// (subtree) + OtherOp -> OtherOp {+/-} (canonical subtree)
2178 /// OtherOp - (subtree) -> OtherOp {+/-} (canonical subtree)
2179 ///
2180 /// The fadd/fsub opcode may be switched to allow folding a negation into the
2181 /// input instruction.
canonicalizeNegFPConstants(Instruction * I)2182 Instruction *ReassociatePass::canonicalizeNegFPConstants(Instruction *I) {
2183 LLVM_DEBUG(dbgs() << "Combine negations for: " << *I << '\n');
2184 Value *X;
2185 Instruction *Op;
2186 if (match(I, m_FAdd(m_Value(X), m_OneUse(m_Instruction(Op)))))
2187 if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
2188 I = R;
2189 if (match(I, m_FAdd(m_OneUse(m_Instruction(Op)), m_Value(X))))
2190 if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
2191 I = R;
2192 if (match(I, m_FSub(m_Value(X), m_OneUse(m_Instruction(Op)))))
2193 if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
2194 I = R;
2195 return I;
2196 }
2197
2198 /// Inspect and optimize the given instruction. Note that erasing
2199 /// instructions is not allowed.
OptimizeInst(Instruction * I)2200 void ReassociatePass::OptimizeInst(Instruction *I) {
2201 // Only consider operations that we understand.
2202 if (!isa<UnaryOperator>(I) && !isa<BinaryOperator>(I))
2203 return;
2204
2205 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
2206 // If an operand of this shift is a reassociable multiply, or if the shift
2207 // is used by a reassociable multiply or add, turn into a multiply.
2208 if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
2209 (I->hasOneUse() &&
2210 (isReassociableOp(I->user_back(), Instruction::Mul) ||
2211 isReassociableOp(I->user_back(), Instruction::Add)))) {
2212 Instruction *NI = ConvertShiftToMul(I);
2213 RedoInsts.insert(I);
2214 MadeChange = true;
2215 I = NI;
2216 }
2217
2218 // Commute binary operators, to canonicalize the order of their operands.
2219 // This can potentially expose more CSE opportunities, and makes writing other
2220 // transformations simpler.
2221 if (I->isCommutative())
2222 canonicalizeOperands(I);
2223
2224 // Canonicalize negative constants out of expressions.
2225 if (Instruction *Res = canonicalizeNegFPConstants(I))
2226 I = Res;
2227
2228 // Don't optimize floating-point instructions unless they have the
2229 // appropriate FastMathFlags for reassociation enabled.
2230 if (isa<FPMathOperator>(I) && !hasFPAssociativeFlags(I))
2231 return;
2232
2233 // Do not reassociate boolean (i1) expressions. We want to preserve the
2234 // original order of evaluation for short-circuited comparisons that
2235 // SimplifyCFG has folded to AND/OR expressions. If the expression
2236 // is not further optimized, it is likely to be transformed back to a
2237 // short-circuited form for code gen, and the source order may have been
2238 // optimized for the most likely conditions.
2239 if (I->getType()->isIntegerTy(1))
2240 return;
2241
2242 // If this is a bitwise or instruction of operands
2243 // with no common bits set, convert it to X+Y.
2244 if (I->getOpcode() == Instruction::Or &&
2245 shouldConvertOrWithNoCommonBitsToAdd(I) && !isLoadCombineCandidate(I) &&
2246 haveNoCommonBitsSet(I->getOperand(0), I->getOperand(1),
2247 I->getModule()->getDataLayout(), /*AC=*/nullptr, I,
2248 /*DT=*/nullptr)) {
2249 Instruction *NI = convertOrWithNoCommonBitsToAdd(I);
2250 RedoInsts.insert(I);
2251 MadeChange = true;
2252 I = NI;
2253 }
2254
2255 // If this is a subtract instruction which is not already in negate form,
2256 // see if we can convert it to X+-Y.
2257 if (I->getOpcode() == Instruction::Sub) {
2258 if (ShouldBreakUpSubtract(I)) {
2259 Instruction *NI = BreakUpSubtract(I, RedoInsts);
2260 RedoInsts.insert(I);
2261 MadeChange = true;
2262 I = NI;
2263 } else if (match(I, m_Neg(m_Value()))) {
2264 // Otherwise, this is a negation. See if the operand is a multiply tree
2265 // and if this is not an inner node of a multiply tree.
2266 if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2267 (!I->hasOneUse() ||
2268 !isReassociableOp(I->user_back(), Instruction::Mul))) {
2269 Instruction *NI = LowerNegateToMultiply(I);
2270 // If the negate was simplified, revisit the users to see if we can
2271 // reassociate further.
2272 for (User *U : NI->users()) {
2273 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2274 RedoInsts.insert(Tmp);
2275 }
2276 RedoInsts.insert(I);
2277 MadeChange = true;
2278 I = NI;
2279 }
2280 }
2281 } else if (I->getOpcode() == Instruction::FNeg ||
2282 I->getOpcode() == Instruction::FSub) {
2283 if (ShouldBreakUpSubtract(I)) {
2284 Instruction *NI = BreakUpSubtract(I, RedoInsts);
2285 RedoInsts.insert(I);
2286 MadeChange = true;
2287 I = NI;
2288 } else if (match(I, m_FNeg(m_Value()))) {
2289 // Otherwise, this is a negation. See if the operand is a multiply tree
2290 // and if this is not an inner node of a multiply tree.
2291 Value *Op = isa<BinaryOperator>(I) ? I->getOperand(1) :
2292 I->getOperand(0);
2293 if (isReassociableOp(Op, Instruction::FMul) &&
2294 (!I->hasOneUse() ||
2295 !isReassociableOp(I->user_back(), Instruction::FMul))) {
2296 // If the negate was simplified, revisit the users to see if we can
2297 // reassociate further.
2298 Instruction *NI = LowerNegateToMultiply(I);
2299 for (User *U : NI->users()) {
2300 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2301 RedoInsts.insert(Tmp);
2302 }
2303 RedoInsts.insert(I);
2304 MadeChange = true;
2305 I = NI;
2306 }
2307 }
2308 }
2309
2310 // If this instruction is an associative binary operator, process it.
2311 if (!I->isAssociative()) return;
2312 BinaryOperator *BO = cast<BinaryOperator>(I);
2313
2314 // If this is an interior node of a reassociable tree, ignore it until we
2315 // get to the root of the tree, to avoid N^2 analysis.
2316 unsigned Opcode = BO->getOpcode();
2317 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2318 // During the initial run we will get to the root of the tree.
2319 // But if we get here while we are redoing instructions, there is no
2320 // guarantee that the root will be visited. So Redo later
2321 if (BO->user_back() != BO &&
2322 BO->getParent() == BO->user_back()->getParent())
2323 RedoInsts.insert(BO->user_back());
2324 return;
2325 }
2326
2327 // If this is an add tree that is used by a sub instruction, ignore it
2328 // until we process the subtract.
2329 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
2330 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
2331 return;
2332 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2333 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2334 return;
2335
2336 ReassociateExpression(BO);
2337 }
2338
ReassociateExpression(BinaryOperator * I)2339 void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
2340 // First, walk the expression tree, linearizing the tree, collecting the
2341 // operand information.
2342 SmallVector<RepeatedValue, 8> Tree;
2343 MadeChange |= LinearizeExprTree(I, Tree, RedoInsts);
2344 SmallVector<ValueEntry, 8> Ops;
2345 Ops.reserve(Tree.size());
2346 for (const RepeatedValue &E : Tree)
2347 Ops.append(E.second.getZExtValue(), ValueEntry(getRank(E.first), E.first));
2348
2349 LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2350
2351 // Now that we have linearized the tree to a list and have gathered all of
2352 // the operands and their ranks, sort the operands by their rank. Use a
2353 // stable_sort so that values with equal ranks will have their relative
2354 // positions maintained (and so the compiler is deterministic). Note that
2355 // this sorts so that the highest ranking values end up at the beginning of
2356 // the vector.
2357 llvm::stable_sort(Ops);
2358
2359 // Now that we have the expression tree in a convenient
2360 // sorted form, optimize it globally if possible.
2361 if (Value *V = OptimizeExpression(I, Ops)) {
2362 if (V == I)
2363 // Self-referential expression in unreachable code.
2364 return;
2365 // This expression tree simplified to something that isn't a tree,
2366 // eliminate it.
2367 LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
2368 I->replaceAllUsesWith(V);
2369 if (Instruction *VI = dyn_cast<Instruction>(V))
2370 if (I->getDebugLoc())
2371 VI->setDebugLoc(I->getDebugLoc());
2372 RedoInsts.insert(I);
2373 ++NumAnnihil;
2374 return;
2375 }
2376
2377 // We want to sink immediates as deeply as possible except in the case where
2378 // this is a multiply tree used only by an add, and the immediate is a -1.
2379 // In this case we reassociate to put the negation on the outside so that we
2380 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
2381 if (I->hasOneUse()) {
2382 if (I->getOpcode() == Instruction::Mul &&
2383 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2384 isa<ConstantInt>(Ops.back().Op) &&
2385 cast<ConstantInt>(Ops.back().Op)->isMinusOne()) {
2386 ValueEntry Tmp = Ops.pop_back_val();
2387 Ops.insert(Ops.begin(), Tmp);
2388 } else if (I->getOpcode() == Instruction::FMul &&
2389 cast<Instruction>(I->user_back())->getOpcode() ==
2390 Instruction::FAdd &&
2391 isa<ConstantFP>(Ops.back().Op) &&
2392 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2393 ValueEntry Tmp = Ops.pop_back_val();
2394 Ops.insert(Ops.begin(), Tmp);
2395 }
2396 }
2397
2398 LLVM_DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
2399
2400 if (Ops.size() == 1) {
2401 if (Ops[0].Op == I)
2402 // Self-referential expression in unreachable code.
2403 return;
2404
2405 // This expression tree simplified to something that isn't a tree,
2406 // eliminate it.
2407 I->replaceAllUsesWith(Ops[0].Op);
2408 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2409 OI->setDebugLoc(I->getDebugLoc());
2410 RedoInsts.insert(I);
2411 return;
2412 }
2413
2414 if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) {
2415 // Find the pair with the highest count in the pairmap and move it to the
2416 // back of the list so that it can later be CSE'd.
2417 // example:
2418 // a*b*c*d*e
2419 // if c*e is the most "popular" pair, we can express this as
2420 // (((c*e)*d)*b)*a
2421 unsigned Max = 1;
2422 unsigned BestRank = 0;
2423 std::pair<unsigned, unsigned> BestPair;
2424 unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin;
2425 for (unsigned i = 0; i < Ops.size() - 1; ++i)
2426 for (unsigned j = i + 1; j < Ops.size(); ++j) {
2427 unsigned Score = 0;
2428 Value *Op0 = Ops[i].Op;
2429 Value *Op1 = Ops[j].Op;
2430 if (std::less<Value *>()(Op1, Op0))
2431 std::swap(Op0, Op1);
2432 auto it = PairMap[Idx].find({Op0, Op1});
2433 if (it != PairMap[Idx].end()) {
2434 // Functions like BreakUpSubtract() can erase the Values we're using
2435 // as keys and create new Values after we built the PairMap. There's a
2436 // small chance that the new nodes can have the same address as
2437 // something already in the table. We shouldn't accumulate the stored
2438 // score in that case as it refers to the wrong Value.
2439 if (it->second.isValid())
2440 Score += it->second.Score;
2441 }
2442
2443 unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank);
2444 if (Score > Max || (Score == Max && MaxRank < BestRank)) {
2445 BestPair = {i, j};
2446 Max = Score;
2447 BestRank = MaxRank;
2448 }
2449 }
2450 if (Max > 1) {
2451 auto Op0 = Ops[BestPair.first];
2452 auto Op1 = Ops[BestPair.second];
2453 Ops.erase(&Ops[BestPair.second]);
2454 Ops.erase(&Ops[BestPair.first]);
2455 Ops.push_back(Op0);
2456 Ops.push_back(Op1);
2457 }
2458 }
2459 // Now that we ordered and optimized the expressions, splat them back into
2460 // the expression tree, removing any unneeded nodes.
2461 RewriteExprTree(I, Ops);
2462 }
2463
2464 void
BuildPairMap(ReversePostOrderTraversal<Function * > & RPOT)2465 ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) {
2466 // Make a "pairmap" of how often each operand pair occurs.
2467 for (BasicBlock *BI : RPOT) {
2468 for (Instruction &I : *BI) {
2469 if (!I.isAssociative())
2470 continue;
2471
2472 // Ignore nodes that aren't at the root of trees.
2473 if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode())
2474 continue;
2475
2476 // Collect all operands in a single reassociable expression.
2477 // Since Reassociate has already been run once, we can assume things
2478 // are already canonical according to Reassociation's regime.
2479 SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) };
2480 SmallVector<Value *, 8> Ops;
2481 while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) {
2482 Value *Op = Worklist.pop_back_val();
2483 Instruction *OpI = dyn_cast<Instruction>(Op);
2484 if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) {
2485 Ops.push_back(Op);
2486 continue;
2487 }
2488 // Be paranoid about self-referencing expressions in unreachable code.
2489 if (OpI->getOperand(0) != OpI)
2490 Worklist.push_back(OpI->getOperand(0));
2491 if (OpI->getOperand(1) != OpI)
2492 Worklist.push_back(OpI->getOperand(1));
2493 }
2494 // Skip extremely long expressions.
2495 if (Ops.size() > GlobalReassociateLimit)
2496 continue;
2497
2498 // Add all pairwise combinations of operands to the pair map.
2499 unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin;
2500 SmallSet<std::pair<Value *, Value*>, 32> Visited;
2501 for (unsigned i = 0; i < Ops.size() - 1; ++i) {
2502 for (unsigned j = i + 1; j < Ops.size(); ++j) {
2503 // Canonicalize operand orderings.
2504 Value *Op0 = Ops[i];
2505 Value *Op1 = Ops[j];
2506 if (std::less<Value *>()(Op1, Op0))
2507 std::swap(Op0, Op1);
2508 if (!Visited.insert({Op0, Op1}).second)
2509 continue;
2510 auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, {Op0, Op1, 1}});
2511 if (!res.second) {
2512 // If either key value has been erased then we've got the same
2513 // address by coincidence. That can't happen here because nothing is
2514 // erasing values but it can happen by the time we're querying the
2515 // map.
2516 assert(res.first->second.isValid() && "WeakVH invalidated");
2517 ++res.first->second.Score;
2518 }
2519 }
2520 }
2521 }
2522 }
2523 }
2524
run(Function & F,FunctionAnalysisManager &)2525 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
2526 // Get the functions basic blocks in Reverse Post Order. This order is used by
2527 // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic
2528 // blocks (it has been seen that the analysis in this pass could hang when
2529 // analysing dead basic blocks).
2530 ReversePostOrderTraversal<Function *> RPOT(&F);
2531
2532 // Calculate the rank map for F.
2533 BuildRankMap(F, RPOT);
2534
2535 // Build the pair map before running reassociate.
2536 // Technically this would be more accurate if we did it after one round
2537 // of reassociation, but in practice it doesn't seem to help much on
2538 // real-world code, so don't waste the compile time running reassociate
2539 // twice.
2540 // If a user wants, they could expicitly run reassociate twice in their
2541 // pass pipeline for further potential gains.
2542 // It might also be possible to update the pair map during runtime, but the
2543 // overhead of that may be large if there's many reassociable chains.
2544 BuildPairMap(RPOT);
2545
2546 MadeChange = false;
2547
2548 // Traverse the same blocks that were analysed by BuildRankMap.
2549 for (BasicBlock *BI : RPOT) {
2550 assert(RankMap.count(&*BI) && "BB should be ranked.");
2551 // Optimize every instruction in the basic block.
2552 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;)
2553 if (isInstructionTriviallyDead(&*II)) {
2554 EraseInst(&*II++);
2555 } else {
2556 OptimizeInst(&*II);
2557 assert(II->getParent() == &*BI && "Moved to a different block!");
2558 ++II;
2559 }
2560
2561 // Make a copy of all the instructions to be redone so we can remove dead
2562 // instructions.
2563 OrderedSet ToRedo(RedoInsts);
2564 // Iterate over all instructions to be reevaluated and remove trivially dead
2565 // instructions. If any operand of the trivially dead instruction becomes
2566 // dead mark it for deletion as well. Continue this process until all
2567 // trivially dead instructions have been removed.
2568 while (!ToRedo.empty()) {
2569 Instruction *I = ToRedo.pop_back_val();
2570 if (isInstructionTriviallyDead(I)) {
2571 RecursivelyEraseDeadInsts(I, ToRedo);
2572 MadeChange = true;
2573 }
2574 }
2575
2576 // Now that we have removed dead instructions, we can reoptimize the
2577 // remaining instructions.
2578 while (!RedoInsts.empty()) {
2579 Instruction *I = RedoInsts.front();
2580 RedoInsts.erase(RedoInsts.begin());
2581 if (isInstructionTriviallyDead(I))
2582 EraseInst(I);
2583 else
2584 OptimizeInst(I);
2585 }
2586 }
2587
2588 // We are done with the rank map and pair map.
2589 RankMap.clear();
2590 ValueRankMap.clear();
2591 for (auto &Entry : PairMap)
2592 Entry.clear();
2593
2594 if (MadeChange) {
2595 PreservedAnalyses PA;
2596 PA.preserveSet<CFGAnalyses>();
2597 return PA;
2598 }
2599
2600 return PreservedAnalyses::all();
2601 }
2602
2603 namespace {
2604
2605 class ReassociateLegacyPass : public FunctionPass {
2606 ReassociatePass Impl;
2607
2608 public:
2609 static char ID; // Pass identification, replacement for typeid
2610
ReassociateLegacyPass()2611 ReassociateLegacyPass() : FunctionPass(ID) {
2612 initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
2613 }
2614
runOnFunction(Function & F)2615 bool runOnFunction(Function &F) override {
2616 if (skipFunction(F))
2617 return false;
2618
2619 FunctionAnalysisManager DummyFAM;
2620 auto PA = Impl.run(F, DummyFAM);
2621 return !PA.areAllPreserved();
2622 }
2623
getAnalysisUsage(AnalysisUsage & AU) const2624 void getAnalysisUsage(AnalysisUsage &AU) const override {
2625 AU.setPreservesCFG();
2626 AU.addPreserved<AAResultsWrapperPass>();
2627 AU.addPreserved<BasicAAWrapperPass>();
2628 AU.addPreserved<GlobalsAAWrapperPass>();
2629 }
2630 };
2631
2632 } // end anonymous namespace
2633
2634 char ReassociateLegacyPass::ID = 0;
2635
2636 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
2637 "Reassociate expressions", false, false)
2638
2639 // Public interface to the Reassociate pass
createReassociatePass()2640 FunctionPass *llvm::createReassociatePass() {
2641 return new ReassociateLegacyPass();
2642 }
2643