1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass reassociates commutative expressions in an order that is designed 11 // to promote better constant propagation, GCSE, LICM, PRE, etc. 12 // 13 // For example: 4 + (x + 5) -> x + (4 + 5) 14 // 15 // In the implementation of this algorithm, constants are assigned rank = 0, 16 // function arguments are rank = 1, and other values are assigned ranks 17 // corresponding to the reverse post order traversal of current function 18 // (starting at 2), which effectively gives values in deep loops higher rank 19 // than values not in loops. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/Transforms/Scalar.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/PostOrderIterator.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/ValueHandle.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Transforms/Utils/Local.h" 41 #include <algorithm> 42 using namespace llvm; 43 44 #define DEBUG_TYPE "reassociate" 45 46 STATISTIC(NumChanged, "Number of insts reassociated"); 47 STATISTIC(NumAnnihil, "Number of expr tree annihilated"); 48 STATISTIC(NumFactor , "Number of multiplies factored"); 49 50 namespace { 51 struct ValueEntry { 52 unsigned Rank; 53 Value *Op; 54 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {} 55 }; 56 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) { 57 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start. 58 } 59 } 60 61 #ifndef NDEBUG 62 /// PrintOps - Print out the expression identified in the Ops list. 63 /// 64 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) { 65 Module *M = I->getParent()->getParent()->getParent(); 66 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " " 67 << *Ops[0].Op->getType() << '\t'; 68 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 69 dbgs() << "[ "; 70 Ops[i].Op->printAsOperand(dbgs(), false, M); 71 dbgs() << ", #" << Ops[i].Rank << "] "; 72 } 73 } 74 #endif 75 76 namespace { 77 /// \brief Utility class representing a base and exponent pair which form one 78 /// factor of some product. 79 struct Factor { 80 Value *Base; 81 unsigned Power; 82 83 Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {} 84 85 /// \brief Sort factors by their Base. 86 struct BaseSorter { 87 bool operator()(const Factor &LHS, const Factor &RHS) { 88 return LHS.Base < RHS.Base; 89 } 90 }; 91 92 /// \brief Compare factors for equal bases. 93 struct BaseEqual { 94 bool operator()(const Factor &LHS, const Factor &RHS) { 95 return LHS.Base == RHS.Base; 96 } 97 }; 98 99 /// \brief Sort factors in descending order by their power. 100 struct PowerDescendingSorter { 101 bool operator()(const Factor &LHS, const Factor &RHS) { 102 return LHS.Power > RHS.Power; 103 } 104 }; 105 106 /// \brief Compare factors for equal powers. 107 struct PowerEqual { 108 bool operator()(const Factor &LHS, const Factor &RHS) { 109 return LHS.Power == RHS.Power; 110 } 111 }; 112 }; 113 114 /// Utility class representing a non-constant Xor-operand. We classify 115 /// non-constant Xor-Operands into two categories: 116 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0 117 /// C2) 118 /// C2.1) The operand is in the form of "X | C", where C is a non-zero 119 /// constant. 120 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this 121 /// operand as "E | 0" 122 class XorOpnd { 123 public: 124 XorOpnd(Value *V); 125 126 bool isInvalid() const { return SymbolicPart == nullptr; } 127 bool isOrExpr() const { return isOr; } 128 Value *getValue() const { return OrigVal; } 129 Value *getSymbolicPart() const { return SymbolicPart; } 130 unsigned getSymbolicRank() const { return SymbolicRank; } 131 const APInt &getConstPart() const { return ConstPart; } 132 133 void Invalidate() { SymbolicPart = OrigVal = nullptr; } 134 void setSymbolicRank(unsigned R) { SymbolicRank = R; } 135 136 // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank. 137 // The purpose is twofold: 138 // 1) Cluster together the operands sharing the same symbolic-value. 139 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which 140 // could potentially shorten crital path, and expose more loop-invariants. 141 // Note that values' rank are basically defined in RPO order (FIXME). 142 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier 143 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2", 144 // "z" in the order of X-Y-Z is better than any other orders. 145 struct PtrSortFunctor { 146 bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) { 147 return LHS->getSymbolicRank() < RHS->getSymbolicRank(); 148 } 149 }; 150 private: 151 Value *OrigVal; 152 Value *SymbolicPart; 153 APInt ConstPart; 154 unsigned SymbolicRank; 155 bool isOr; 156 }; 157 } 158 159 namespace { 160 class Reassociate : public FunctionPass { 161 DenseMap<BasicBlock*, unsigned> RankMap; 162 DenseMap<AssertingVH<Value>, unsigned> ValueRankMap; 163 SetVector<AssertingVH<Instruction> > RedoInsts; 164 bool MadeChange; 165 public: 166 static char ID; // Pass identification, replacement for typeid 167 Reassociate() : FunctionPass(ID) { 168 initializeReassociatePass(*PassRegistry::getPassRegistry()); 169 } 170 171 bool runOnFunction(Function &F) override; 172 173 void getAnalysisUsage(AnalysisUsage &AU) const override { 174 AU.setPreservesCFG(); 175 } 176 private: 177 void BuildRankMap(Function &F); 178 unsigned getRank(Value *V); 179 void ReassociateExpression(BinaryOperator *I); 180 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops); 181 Value *OptimizeExpression(BinaryOperator *I, 182 SmallVectorImpl<ValueEntry> &Ops); 183 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops); 184 Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops); 185 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd, 186 Value *&Res); 187 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2, 188 APInt &ConstOpnd, Value *&Res); 189 bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, 190 SmallVectorImpl<Factor> &Factors); 191 Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder, 192 SmallVectorImpl<Factor> &Factors); 193 Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops); 194 Value *RemoveFactorFromExpression(Value *V, Value *Factor); 195 void EraseInst(Instruction *I); 196 void OptimizeInst(Instruction *I); 197 }; 198 } 199 200 XorOpnd::XorOpnd(Value *V) { 201 assert(!isa<ConstantInt>(V) && "No ConstantInt"); 202 OrigVal = V; 203 Instruction *I = dyn_cast<Instruction>(V); 204 SymbolicRank = 0; 205 206 if (I && (I->getOpcode() == Instruction::Or || 207 I->getOpcode() == Instruction::And)) { 208 Value *V0 = I->getOperand(0); 209 Value *V1 = I->getOperand(1); 210 if (isa<ConstantInt>(V0)) 211 std::swap(V0, V1); 212 213 if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) { 214 ConstPart = C->getValue(); 215 SymbolicPart = V0; 216 isOr = (I->getOpcode() == Instruction::Or); 217 return; 218 } 219 } 220 221 // view the operand as "V | 0" 222 SymbolicPart = V; 223 ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth()); 224 isOr = true; 225 } 226 227 char Reassociate::ID = 0; 228 INITIALIZE_PASS(Reassociate, "reassociate", 229 "Reassociate expressions", false, false) 230 231 // Public interface to the Reassociate pass 232 FunctionPass *llvm::createReassociatePass() { return new Reassociate(); } 233 234 /// isReassociableOp - Return true if V is an instruction of the specified 235 /// opcode and if it only has one use. 236 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) { 237 if (V->hasOneUse() && isa<Instruction>(V) && 238 cast<Instruction>(V)->getOpcode() == Opcode) 239 return cast<BinaryOperator>(V); 240 return nullptr; 241 } 242 243 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1, 244 unsigned Opcode2) { 245 if (V->hasOneUse() && isa<Instruction>(V) && 246 (cast<Instruction>(V)->getOpcode() == Opcode1 || 247 cast<Instruction>(V)->getOpcode() == Opcode2)) 248 return cast<BinaryOperator>(V); 249 return nullptr; 250 } 251 252 static bool isUnmovableInstruction(Instruction *I) { 253 switch (I->getOpcode()) { 254 case Instruction::PHI: 255 case Instruction::LandingPad: 256 case Instruction::Alloca: 257 case Instruction::Load: 258 case Instruction::Invoke: 259 case Instruction::UDiv: 260 case Instruction::SDiv: 261 case Instruction::FDiv: 262 case Instruction::URem: 263 case Instruction::SRem: 264 case Instruction::FRem: 265 return true; 266 case Instruction::Call: 267 return !isa<DbgInfoIntrinsic>(I); 268 default: 269 return false; 270 } 271 } 272 273 void Reassociate::BuildRankMap(Function &F) { 274 unsigned i = 2; 275 276 // Assign distinct ranks to function arguments 277 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) 278 ValueRankMap[&*I] = ++i; 279 280 ReversePostOrderTraversal<Function*> RPOT(&F); 281 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(), 282 E = RPOT.end(); I != E; ++I) { 283 BasicBlock *BB = *I; 284 unsigned BBRank = RankMap[BB] = ++i << 16; 285 286 // Walk the basic block, adding precomputed ranks for any instructions that 287 // we cannot move. This ensures that the ranks for these instructions are 288 // all different in the block. 289 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 290 if (isUnmovableInstruction(I)) 291 ValueRankMap[&*I] = ++BBRank; 292 } 293 } 294 295 unsigned Reassociate::getRank(Value *V) { 296 Instruction *I = dyn_cast<Instruction>(V); 297 if (!I) { 298 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument. 299 return 0; // Otherwise it's a global or constant, rank 0. 300 } 301 302 if (unsigned Rank = ValueRankMap[I]) 303 return Rank; // Rank already known? 304 305 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that 306 // we can reassociate expressions for code motion! Since we do not recurse 307 // for PHI nodes, we cannot have infinite recursion here, because there 308 // cannot be loops in the value graph that do not go through PHI nodes. 309 unsigned Rank = 0, MaxRank = RankMap[I->getParent()]; 310 for (unsigned i = 0, e = I->getNumOperands(); 311 i != e && Rank != MaxRank; ++i) 312 Rank = std::max(Rank, getRank(I->getOperand(i))); 313 314 // If this is a not or neg instruction, do not count it for rank. This 315 // assures us that X and ~X will have the same rank. 316 Type *Ty = V->getType(); 317 if ((!Ty->isIntegerTy() && !Ty->isFloatingPointTy()) || 318 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) && 319 !BinaryOperator::isFNeg(I))) 320 ++Rank; 321 322 //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " 323 // << Rank << "\n"); 324 325 return ValueRankMap[I] = Rank; 326 } 327 328 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name, 329 Instruction *InsertBefore, Value *FlagsOp) { 330 if (S1->getType()->isIntegerTy()) 331 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore); 332 else { 333 BinaryOperator *Res = 334 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore); 335 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 336 return Res; 337 } 338 } 339 340 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name, 341 Instruction *InsertBefore, Value *FlagsOp) { 342 if (S1->getType()->isIntegerTy()) 343 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore); 344 else { 345 BinaryOperator *Res = 346 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore); 347 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 348 return Res; 349 } 350 } 351 352 static BinaryOperator *CreateNeg(Value *S1, const Twine &Name, 353 Instruction *InsertBefore, Value *FlagsOp) { 354 if (S1->getType()->isIntegerTy()) 355 return BinaryOperator::CreateNeg(S1, Name, InsertBefore); 356 else { 357 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore); 358 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 359 return Res; 360 } 361 } 362 363 /// LowerNegateToMultiply - Replace 0-X with X*-1. 364 /// 365 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) { 366 Type *Ty = Neg->getType(); 367 Constant *NegOne = Ty->isIntegerTy() ? ConstantInt::getAllOnesValue(Ty) 368 : ConstantFP::get(Ty, -1.0); 369 370 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg); 371 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op. 372 Res->takeName(Neg); 373 Neg->replaceAllUsesWith(Res); 374 Res->setDebugLoc(Neg->getDebugLoc()); 375 return Res; 376 } 377 378 /// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda 379 /// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for 380 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic. 381 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every 382 /// even x in Bitwidth-bit arithmetic. 383 static unsigned CarmichaelShift(unsigned Bitwidth) { 384 if (Bitwidth < 3) 385 return Bitwidth - 1; 386 return Bitwidth - 2; 387 } 388 389 /// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS', 390 /// reducing the combined weight using any special properties of the operation. 391 /// The existing weight LHS represents the computation X op X op ... op X where 392 /// X occurs LHS times. The combined weight represents X op X op ... op X with 393 /// X occurring LHS + RHS times. If op is "Xor" for example then the combined 394 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even; 395 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second. 396 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) { 397 // If we were working with infinite precision arithmetic then the combined 398 // weight would be LHS + RHS. But we are using finite precision arithmetic, 399 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct 400 // for nilpotent operations and addition, but not for idempotent operations 401 // and multiplication), so it is important to correctly reduce the combined 402 // weight back into range if wrapping would be wrong. 403 404 // If RHS is zero then the weight didn't change. 405 if (RHS.isMinValue()) 406 return; 407 // If LHS is zero then the combined weight is RHS. 408 if (LHS.isMinValue()) { 409 LHS = RHS; 410 return; 411 } 412 // From this point on we know that neither LHS nor RHS is zero. 413 414 if (Instruction::isIdempotent(Opcode)) { 415 // Idempotent means X op X === X, so any non-zero weight is equivalent to a 416 // weight of 1. Keeping weights at zero or one also means that wrapping is 417 // not a problem. 418 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 419 return; // Return a weight of 1. 420 } 421 if (Instruction::isNilpotent(Opcode)) { 422 // Nilpotent means X op X === 0, so reduce weights modulo 2. 423 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 424 LHS = 0; // 1 + 1 === 0 modulo 2. 425 return; 426 } 427 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) { 428 // TODO: Reduce the weight by exploiting nsw/nuw? 429 LHS += RHS; 430 return; 431 } 432 433 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) && 434 "Unknown associative operation!"); 435 unsigned Bitwidth = LHS.getBitWidth(); 436 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth 437 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth 438 // bit number x, since either x is odd in which case x^CM = 1, or x is even in 439 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples 440 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth) 441 // which by a happy accident means that they can always be represented using 442 // Bitwidth bits. 443 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than 444 // the Carmichael number). 445 if (Bitwidth > 3) { 446 /// CM - The value of Carmichael's lambda function. 447 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth)); 448 // Any weight W >= Threshold can be replaced with W - CM. 449 APInt Threshold = CM + Bitwidth; 450 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!"); 451 // For Bitwidth 4 or more the following sum does not overflow. 452 LHS += RHS; 453 while (LHS.uge(Threshold)) 454 LHS -= CM; 455 } else { 456 // To avoid problems with overflow do everything the same as above but using 457 // a larger type. 458 unsigned CM = 1U << CarmichaelShift(Bitwidth); 459 unsigned Threshold = CM + Bitwidth; 460 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold && 461 "Weights not reduced!"); 462 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue(); 463 while (Total >= Threshold) 464 Total -= CM; 465 LHS = Total; 466 } 467 } 468 469 typedef std::pair<Value*, APInt> RepeatedValue; 470 471 /// LinearizeExprTree - Given an associative binary expression, return the leaf 472 /// nodes in Ops along with their weights (how many times the leaf occurs). The 473 /// original expression is the same as 474 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times 475 /// op 476 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times 477 /// op 478 /// ... 479 /// op 480 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times 481 /// 482 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct. 483 /// 484 /// This routine may modify the function, in which case it returns 'true'. The 485 /// changes it makes may well be destructive, changing the value computed by 'I' 486 /// to something completely different. Thus if the routine returns 'true' then 487 /// you MUST either replace I with a new expression computed from the Ops array, 488 /// or use RewriteExprTree to put the values back in. 489 /// 490 /// A leaf node is either not a binary operation of the same kind as the root 491 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different 492 /// opcode), or is the same kind of binary operator but has a use which either 493 /// does not belong to the expression, or does belong to the expression but is 494 /// a leaf node. Every leaf node has at least one use that is a non-leaf node 495 /// of the expression, while for non-leaf nodes (except for the root 'I') every 496 /// use is a non-leaf node of the expression. 497 /// 498 /// For example: 499 /// expression graph node names 500 /// 501 /// + | I 502 /// / \ | 503 /// + + | A, B 504 /// / \ / \ | 505 /// * + * | C, D, E 506 /// / \ / \ / \ | 507 /// + * | F, G 508 /// 509 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in 510 /// that order) (C, 1), (E, 1), (F, 2), (G, 2). 511 /// 512 /// The expression is maximal: if some instruction is a binary operator of the 513 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression, 514 /// then the instruction also belongs to the expression, is not a leaf node of 515 /// it, and its operands also belong to the expression (but may be leaf nodes). 516 /// 517 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in 518 /// order to ensure that every non-root node in the expression has *exactly one* 519 /// use by a non-leaf node of the expression. This destruction means that the 520 /// caller MUST either replace 'I' with a new expression or use something like 521 /// RewriteExprTree to put the values back in if the routine indicates that it 522 /// made a change by returning 'true'. 523 /// 524 /// In the above example either the right operand of A or the left operand of B 525 /// will be replaced by undef. If it is B's operand then this gives: 526 /// 527 /// + | I 528 /// / \ | 529 /// + + | A, B - operand of B replaced with undef 530 /// / \ \ | 531 /// * + * | C, D, E 532 /// / \ / \ / \ | 533 /// + * | F, G 534 /// 535 /// Note that such undef operands can only be reached by passing through 'I'. 536 /// For example, if you visit operands recursively starting from a leaf node 537 /// then you will never see such an undef operand unless you get back to 'I', 538 /// which requires passing through a phi node. 539 /// 540 /// Note that this routine may also mutate binary operators of the wrong type 541 /// that have all uses inside the expression (i.e. only used by non-leaf nodes 542 /// of the expression) if it can turn them into binary operators of the right 543 /// type and thus make the expression bigger. 544 545 static bool LinearizeExprTree(BinaryOperator *I, 546 SmallVectorImpl<RepeatedValue> &Ops) { 547 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n'); 548 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits(); 549 unsigned Opcode = I->getOpcode(); 550 assert(I->isAssociative() && I->isCommutative() && 551 "Expected an associative and commutative operation!"); 552 553 // Visit all operands of the expression, keeping track of their weight (the 554 // number of paths from the expression root to the operand, or if you like 555 // the number of times that operand occurs in the linearized expression). 556 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1 557 // while A has weight two. 558 559 // Worklist of non-leaf nodes (their operands are in the expression too) along 560 // with their weights, representing a certain number of paths to the operator. 561 // If an operator occurs in the worklist multiple times then we found multiple 562 // ways to get to it. 563 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight) 564 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1))); 565 bool MadeChange = false; 566 567 // Leaves of the expression are values that either aren't the right kind of 568 // operation (eg: a constant, or a multiply in an add tree), or are, but have 569 // some uses that are not inside the expression. For example, in I = X + X, 570 // X = A + B, the value X has two uses (by I) that are in the expression. If 571 // X has any other uses, for example in a return instruction, then we consider 572 // X to be a leaf, and won't analyze it further. When we first visit a value, 573 // if it has more than one use then at first we conservatively consider it to 574 // be a leaf. Later, as the expression is explored, we may discover some more 575 // uses of the value from inside the expression. If all uses turn out to be 576 // from within the expression (and the value is a binary operator of the right 577 // kind) then the value is no longer considered to be a leaf, and its operands 578 // are explored. 579 580 // Leaves - Keeps track of the set of putative leaves as well as the number of 581 // paths to each leaf seen so far. 582 typedef DenseMap<Value*, APInt> LeafMap; 583 LeafMap Leaves; // Leaf -> Total weight so far. 584 SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order. 585 586 #ifndef NDEBUG 587 SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme. 588 #endif 589 while (!Worklist.empty()) { 590 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val(); 591 I = P.first; // We examine the operands of this binary operator. 592 593 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands. 594 Value *Op = I->getOperand(OpIdx); 595 APInt Weight = P.second; // Number of paths to this operand. 596 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n"); 597 assert(!Op->use_empty() && "No uses, so how did we get to it?!"); 598 599 // If this is a binary operation of the right kind with only one use then 600 // add its operands to the expression. 601 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 602 assert(Visited.insert(Op) && "Not first visit!"); 603 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n"); 604 Worklist.push_back(std::make_pair(BO, Weight)); 605 continue; 606 } 607 608 // Appears to be a leaf. Is the operand already in the set of leaves? 609 LeafMap::iterator It = Leaves.find(Op); 610 if (It == Leaves.end()) { 611 // Not in the leaf map. Must be the first time we saw this operand. 612 assert(Visited.insert(Op) && "Not first visit!"); 613 if (!Op->hasOneUse()) { 614 // This value has uses not accounted for by the expression, so it is 615 // not safe to modify. Mark it as being a leaf. 616 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n"); 617 LeafOrder.push_back(Op); 618 Leaves[Op] = Weight; 619 continue; 620 } 621 // No uses outside the expression, try morphing it. 622 } else if (It != Leaves.end()) { 623 // Already in the leaf map. 624 assert(Visited.count(Op) && "In leaf map but not visited!"); 625 626 // Update the number of paths to the leaf. 627 IncorporateWeight(It->second, Weight, Opcode); 628 629 #if 0 // TODO: Re-enable once PR13021 is fixed. 630 // The leaf already has one use from inside the expression. As we want 631 // exactly one such use, drop this new use of the leaf. 632 assert(!Op->hasOneUse() && "Only one use, but we got here twice!"); 633 I->setOperand(OpIdx, UndefValue::get(I->getType())); 634 MadeChange = true; 635 636 // If the leaf is a binary operation of the right kind and we now see 637 // that its multiple original uses were in fact all by nodes belonging 638 // to the expression, then no longer consider it to be a leaf and add 639 // its operands to the expression. 640 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 641 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n"); 642 Worklist.push_back(std::make_pair(BO, It->second)); 643 Leaves.erase(It); 644 continue; 645 } 646 #endif 647 648 // If we still have uses that are not accounted for by the expression 649 // then it is not safe to modify the value. 650 if (!Op->hasOneUse()) 651 continue; 652 653 // No uses outside the expression, try morphing it. 654 Weight = It->second; 655 Leaves.erase(It); // Since the value may be morphed below. 656 } 657 658 // At this point we have a value which, first of all, is not a binary 659 // expression of the right kind, and secondly, is only used inside the 660 // expression. This means that it can safely be modified. See if we 661 // can usefully morph it into an expression of the right kind. 662 assert((!isa<Instruction>(Op) || 663 cast<Instruction>(Op)->getOpcode() != Opcode) && 664 "Should have been handled above!"); 665 assert(Op->hasOneUse() && "Has uses outside the expression tree!"); 666 667 // If this is a multiply expression, turn any internal negations into 668 // multiplies by -1 so they can be reassociated. 669 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) 670 if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) || 671 (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) { 672 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO "); 673 BO = LowerNegateToMultiply(BO); 674 DEBUG(dbgs() << *BO << '\n'); 675 Worklist.push_back(std::make_pair(BO, Weight)); 676 MadeChange = true; 677 continue; 678 } 679 680 // Failed to morph into an expression of the right type. This really is 681 // a leaf. 682 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n"); 683 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?"); 684 LeafOrder.push_back(Op); 685 Leaves[Op] = Weight; 686 } 687 } 688 689 // The leaves, repeated according to their weights, represent the linearized 690 // form of the expression. 691 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) { 692 Value *V = LeafOrder[i]; 693 LeafMap::iterator It = Leaves.find(V); 694 if (It == Leaves.end()) 695 // Node initially thought to be a leaf wasn't. 696 continue; 697 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!"); 698 APInt Weight = It->second; 699 if (Weight.isMinValue()) 700 // Leaf already output or weight reduction eliminated it. 701 continue; 702 // Ensure the leaf is only output once. 703 It->second = 0; 704 Ops.push_back(std::make_pair(V, Weight)); 705 } 706 707 // For nilpotent operations or addition there may be no operands, for example 708 // because the expression was "X xor X" or consisted of 2^Bitwidth additions: 709 // in both cases the weight reduces to 0 causing the value to be skipped. 710 if (Ops.empty()) { 711 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType()); 712 assert(Identity && "Associative operation without identity!"); 713 Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1))); 714 } 715 716 return MadeChange; 717 } 718 719 // RewriteExprTree - Now that the operands for this expression tree are 720 // linearized and optimized, emit them in-order. 721 void Reassociate::RewriteExprTree(BinaryOperator *I, 722 SmallVectorImpl<ValueEntry> &Ops) { 723 assert(Ops.size() > 1 && "Single values should be used directly!"); 724 725 // Since our optimizations should never increase the number of operations, the 726 // new expression can usually be written reusing the existing binary operators 727 // from the original expression tree, without creating any new instructions, 728 // though the rewritten expression may have a completely different topology. 729 // We take care to not change anything if the new expression will be the same 730 // as the original. If more than trivial changes (like commuting operands) 731 // were made then we are obliged to clear out any optional subclass data like 732 // nsw flags. 733 734 /// NodesToRewrite - Nodes from the original expression available for writing 735 /// the new expression into. 736 SmallVector<BinaryOperator*, 8> NodesToRewrite; 737 unsigned Opcode = I->getOpcode(); 738 BinaryOperator *Op = I; 739 740 /// NotRewritable - The operands being written will be the leaves of the new 741 /// expression and must not be used as inner nodes (via NodesToRewrite) by 742 /// mistake. Inner nodes are always reassociable, and usually leaves are not 743 /// (if they were they would have been incorporated into the expression and so 744 /// would not be leaves), so most of the time there is no danger of this. But 745 /// in rare cases a leaf may become reassociable if an optimization kills uses 746 /// of it, or it may momentarily become reassociable during rewriting (below) 747 /// due it being removed as an operand of one of its uses. Ensure that misuse 748 /// of leaf nodes as inner nodes cannot occur by remembering all of the future 749 /// leaves and refusing to reuse any of them as inner nodes. 750 SmallPtrSet<Value*, 8> NotRewritable; 751 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 752 NotRewritable.insert(Ops[i].Op); 753 754 // ExpressionChanged - Non-null if the rewritten expression differs from the 755 // original in some non-trivial way, requiring the clearing of optional flags. 756 // Flags are cleared from the operator in ExpressionChanged up to I inclusive. 757 BinaryOperator *ExpressionChanged = nullptr; 758 for (unsigned i = 0; ; ++i) { 759 // The last operation (which comes earliest in the IR) is special as both 760 // operands will come from Ops, rather than just one with the other being 761 // a subexpression. 762 if (i+2 == Ops.size()) { 763 Value *NewLHS = Ops[i].Op; 764 Value *NewRHS = Ops[i+1].Op; 765 Value *OldLHS = Op->getOperand(0); 766 Value *OldRHS = Op->getOperand(1); 767 768 if (NewLHS == OldLHS && NewRHS == OldRHS) 769 // Nothing changed, leave it alone. 770 break; 771 772 if (NewLHS == OldRHS && NewRHS == OldLHS) { 773 // The order of the operands was reversed. Swap them. 774 DEBUG(dbgs() << "RA: " << *Op << '\n'); 775 Op->swapOperands(); 776 DEBUG(dbgs() << "TO: " << *Op << '\n'); 777 MadeChange = true; 778 ++NumChanged; 779 break; 780 } 781 782 // The new operation differs non-trivially from the original. Overwrite 783 // the old operands with the new ones. 784 DEBUG(dbgs() << "RA: " << *Op << '\n'); 785 if (NewLHS != OldLHS) { 786 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode); 787 if (BO && !NotRewritable.count(BO)) 788 NodesToRewrite.push_back(BO); 789 Op->setOperand(0, NewLHS); 790 } 791 if (NewRHS != OldRHS) { 792 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode); 793 if (BO && !NotRewritable.count(BO)) 794 NodesToRewrite.push_back(BO); 795 Op->setOperand(1, NewRHS); 796 } 797 DEBUG(dbgs() << "TO: " << *Op << '\n'); 798 799 ExpressionChanged = Op; 800 MadeChange = true; 801 ++NumChanged; 802 803 break; 804 } 805 806 // Not the last operation. The left-hand side will be a sub-expression 807 // while the right-hand side will be the current element of Ops. 808 Value *NewRHS = Ops[i].Op; 809 if (NewRHS != Op->getOperand(1)) { 810 DEBUG(dbgs() << "RA: " << *Op << '\n'); 811 if (NewRHS == Op->getOperand(0)) { 812 // The new right-hand side was already present as the left operand. If 813 // we are lucky then swapping the operands will sort out both of them. 814 Op->swapOperands(); 815 } else { 816 // Overwrite with the new right-hand side. 817 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode); 818 if (BO && !NotRewritable.count(BO)) 819 NodesToRewrite.push_back(BO); 820 Op->setOperand(1, NewRHS); 821 ExpressionChanged = Op; 822 } 823 DEBUG(dbgs() << "TO: " << *Op << '\n'); 824 MadeChange = true; 825 ++NumChanged; 826 } 827 828 // Now deal with the left-hand side. If this is already an operation node 829 // from the original expression then just rewrite the rest of the expression 830 // into it. 831 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode); 832 if (BO && !NotRewritable.count(BO)) { 833 Op = BO; 834 continue; 835 } 836 837 // Otherwise, grab a spare node from the original expression and use that as 838 // the left-hand side. If there are no nodes left then the optimizers made 839 // an expression with more nodes than the original! This usually means that 840 // they did something stupid but it might mean that the problem was just too 841 // hard (finding the mimimal number of multiplications needed to realize a 842 // multiplication expression is NP-complete). Whatever the reason, smart or 843 // stupid, create a new node if there are none left. 844 BinaryOperator *NewOp; 845 if (NodesToRewrite.empty()) { 846 Constant *Undef = UndefValue::get(I->getType()); 847 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode), 848 Undef, Undef, "", I); 849 if (NewOp->getType()->isFloatingPointTy()) 850 NewOp->setFastMathFlags(I->getFastMathFlags()); 851 } else { 852 NewOp = NodesToRewrite.pop_back_val(); 853 } 854 855 DEBUG(dbgs() << "RA: " << *Op << '\n'); 856 Op->setOperand(0, NewOp); 857 DEBUG(dbgs() << "TO: " << *Op << '\n'); 858 ExpressionChanged = Op; 859 MadeChange = true; 860 ++NumChanged; 861 Op = NewOp; 862 } 863 864 // If the expression changed non-trivially then clear out all subclass data 865 // starting from the operator specified in ExpressionChanged, and compactify 866 // the operators to just before the expression root to guarantee that the 867 // expression tree is dominated by all of Ops. 868 if (ExpressionChanged) 869 do { 870 // Preserve FastMathFlags. 871 if (isa<FPMathOperator>(I)) { 872 FastMathFlags Flags = I->getFastMathFlags(); 873 ExpressionChanged->clearSubclassOptionalData(); 874 ExpressionChanged->setFastMathFlags(Flags); 875 } else 876 ExpressionChanged->clearSubclassOptionalData(); 877 878 if (ExpressionChanged == I) 879 break; 880 ExpressionChanged->moveBefore(I); 881 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin()); 882 } while (1); 883 884 // Throw away any left over nodes from the original expression. 885 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i) 886 RedoInsts.insert(NodesToRewrite[i]); 887 } 888 889 /// NegateValue - Insert instructions before the instruction pointed to by BI, 890 /// that computes the negative version of the value specified. The negative 891 /// version of the value is returned, and BI is left pointing at the instruction 892 /// that should be processed next by the reassociation pass. 893 static Value *NegateValue(Value *V, Instruction *BI) { 894 if (ConstantFP *C = dyn_cast<ConstantFP>(V)) 895 return ConstantExpr::getFNeg(C); 896 if (Constant *C = dyn_cast<Constant>(V)) 897 return ConstantExpr::getNeg(C); 898 899 // We are trying to expose opportunity for reassociation. One of the things 900 // that we want to do to achieve this is to push a negation as deep into an 901 // expression chain as possible, to expose the add instructions. In practice, 902 // this means that we turn this: 903 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D 904 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate 905 // the constants. We assume that instcombine will clean up the mess later if 906 // we introduce tons of unnecessary negation instructions. 907 // 908 if (BinaryOperator *I = 909 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) { 910 // Push the negates through the add. 911 I->setOperand(0, NegateValue(I->getOperand(0), BI)); 912 I->setOperand(1, NegateValue(I->getOperand(1), BI)); 913 914 // We must move the add instruction here, because the neg instructions do 915 // not dominate the old add instruction in general. By moving it, we are 916 // assured that the neg instructions we just inserted dominate the 917 // instruction we are about to insert after them. 918 // 919 I->moveBefore(BI); 920 I->setName(I->getName()+".neg"); 921 return I; 922 } 923 924 // Okay, we need to materialize a negated version of V with an instruction. 925 // Scan the use lists of V to see if we have one already. 926 for (User *U : V->users()) { 927 if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U)) 928 continue; 929 930 // We found one! Now we have to make sure that the definition dominates 931 // this use. We do this by moving it to the entry block (if it is a 932 // non-instruction value) or right after the definition. These negates will 933 // be zapped by reassociate later, so we don't need much finesse here. 934 BinaryOperator *TheNeg = cast<BinaryOperator>(U); 935 936 // Verify that the negate is in this function, V might be a constant expr. 937 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent()) 938 continue; 939 940 BasicBlock::iterator InsertPt; 941 if (Instruction *InstInput = dyn_cast<Instruction>(V)) { 942 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) { 943 InsertPt = II->getNormalDest()->begin(); 944 } else { 945 InsertPt = InstInput; 946 ++InsertPt; 947 } 948 while (isa<PHINode>(InsertPt)) ++InsertPt; 949 } else { 950 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin(); 951 } 952 TheNeg->moveBefore(InsertPt); 953 return TheNeg; 954 } 955 956 // Insert a 'neg' instruction that subtracts the value from zero to get the 957 // negation. 958 return CreateNeg(V, V->getName() + ".neg", BI, BI); 959 } 960 961 /// ShouldBreakUpSubtract - Return true if we should break up this subtract of 962 /// X-Y into (X + -Y). 963 static bool ShouldBreakUpSubtract(Instruction *Sub) { 964 // If this is a negation, we can't split it up! 965 if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub)) 966 return false; 967 968 // Don't bother to break this up unless either the LHS is an associable add or 969 // subtract or if this is only used by one. 970 Value *V0 = Sub->getOperand(0); 971 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) || 972 isReassociableOp(V0, Instruction::Sub, Instruction::FSub)) 973 return true; 974 Value *V1 = Sub->getOperand(1); 975 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) || 976 isReassociableOp(V1, Instruction::Sub, Instruction::FSub)) 977 return true; 978 Value *VB = Sub->user_back(); 979 if (Sub->hasOneUse() && 980 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) || 981 isReassociableOp(VB, Instruction::Sub, Instruction::FSub))) 982 return true; 983 984 return false; 985 } 986 987 /// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is 988 /// only used by an add, transform this into (X+(0-Y)) to promote better 989 /// reassociation. 990 static BinaryOperator *BreakUpSubtract(Instruction *Sub) { 991 // Convert a subtract into an add and a neg instruction. This allows sub 992 // instructions to be commuted with other add instructions. 993 // 994 // Calculate the negative value of Operand 1 of the sub instruction, 995 // and set it as the RHS of the add instruction we just made. 996 // 997 Value *NegVal = NegateValue(Sub->getOperand(1), Sub); 998 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub); 999 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op. 1000 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op. 1001 New->takeName(Sub); 1002 1003 // Everyone now refers to the add instruction. 1004 Sub->replaceAllUsesWith(New); 1005 New->setDebugLoc(Sub->getDebugLoc()); 1006 1007 DEBUG(dbgs() << "Negated: " << *New << '\n'); 1008 return New; 1009 } 1010 1011 /// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used 1012 /// by one, change this into a multiply by a constant to assist with further 1013 /// reassociation. 1014 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) { 1015 Constant *MulCst = ConstantInt::get(Shl->getType(), 1); 1016 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1))); 1017 1018 BinaryOperator *Mul = 1019 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl); 1020 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op. 1021 Mul->takeName(Shl); 1022 Shl->replaceAllUsesWith(Mul); 1023 Mul->setDebugLoc(Shl->getDebugLoc()); 1024 return Mul; 1025 } 1026 1027 /// FindInOperandList - Scan backwards and forwards among values with the same 1028 /// rank as element i to see if X exists. If X does not exist, return i. This 1029 /// is useful when scanning for 'x' when we see '-x' because they both get the 1030 /// same rank. 1031 static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i, 1032 Value *X) { 1033 unsigned XRank = Ops[i].Rank; 1034 unsigned e = Ops.size(); 1035 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) 1036 if (Ops[j].Op == X) 1037 return j; 1038 // Scan backwards. 1039 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) 1040 if (Ops[j].Op == X) 1041 return j; 1042 return i; 1043 } 1044 1045 /// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together 1046 /// and returning the result. Insert the tree before I. 1047 static Value *EmitAddTreeOfValues(Instruction *I, 1048 SmallVectorImpl<WeakVH> &Ops){ 1049 if (Ops.size() == 1) return Ops.back(); 1050 1051 Value *V1 = Ops.back(); 1052 Ops.pop_back(); 1053 Value *V2 = EmitAddTreeOfValues(I, Ops); 1054 return CreateAdd(V2, V1, "tmp", I, I); 1055 } 1056 1057 /// RemoveFactorFromExpression - If V is an expression tree that is a 1058 /// multiplication sequence, and if this sequence contains a multiply by Factor, 1059 /// remove Factor from the tree and return the new tree. 1060 Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) { 1061 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1062 if (!BO) 1063 return nullptr; 1064 1065 SmallVector<RepeatedValue, 8> Tree; 1066 MadeChange |= LinearizeExprTree(BO, Tree); 1067 SmallVector<ValueEntry, 8> Factors; 1068 Factors.reserve(Tree.size()); 1069 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 1070 RepeatedValue E = Tree[i]; 1071 Factors.append(E.second.getZExtValue(), 1072 ValueEntry(getRank(E.first), E.first)); 1073 } 1074 1075 bool FoundFactor = false; 1076 bool NeedsNegate = false; 1077 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1078 if (Factors[i].Op == Factor) { 1079 FoundFactor = true; 1080 Factors.erase(Factors.begin()+i); 1081 break; 1082 } 1083 1084 // If this is a negative version of this factor, remove it. 1085 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) { 1086 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op)) 1087 if (FC1->getValue() == -FC2->getValue()) { 1088 FoundFactor = NeedsNegate = true; 1089 Factors.erase(Factors.begin()+i); 1090 break; 1091 } 1092 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) { 1093 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) { 1094 APFloat F1(FC1->getValueAPF()); 1095 APFloat F2(FC2->getValueAPF()); 1096 F2.changeSign(); 1097 if (F1.compare(F2) == APFloat::cmpEqual) { 1098 FoundFactor = NeedsNegate = true; 1099 Factors.erase(Factors.begin() + i); 1100 break; 1101 } 1102 } 1103 } 1104 } 1105 1106 if (!FoundFactor) { 1107 // Make sure to restore the operands to the expression tree. 1108 RewriteExprTree(BO, Factors); 1109 return nullptr; 1110 } 1111 1112 BasicBlock::iterator InsertPt = BO; ++InsertPt; 1113 1114 // If this was just a single multiply, remove the multiply and return the only 1115 // remaining operand. 1116 if (Factors.size() == 1) { 1117 RedoInsts.insert(BO); 1118 V = Factors[0].Op; 1119 } else { 1120 RewriteExprTree(BO, Factors); 1121 V = BO; 1122 } 1123 1124 if (NeedsNegate) 1125 V = CreateNeg(V, "neg", InsertPt, BO); 1126 1127 return V; 1128 } 1129 1130 /// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively 1131 /// add its operands as factors, otherwise add V to the list of factors. 1132 /// 1133 /// Ops is the top-level list of add operands we're trying to factor. 1134 static void FindSingleUseMultiplyFactors(Value *V, 1135 SmallVectorImpl<Value*> &Factors, 1136 const SmallVectorImpl<ValueEntry> &Ops) { 1137 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1138 if (!BO) { 1139 Factors.push_back(V); 1140 return; 1141 } 1142 1143 // Otherwise, add the LHS and RHS to the list of factors. 1144 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops); 1145 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops); 1146 } 1147 1148 /// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor' 1149 /// instruction. This optimizes based on identities. If it can be reduced to 1150 /// a single Value, it is returned, otherwise the Ops list is mutated as 1151 /// necessary. 1152 static Value *OptimizeAndOrXor(unsigned Opcode, 1153 SmallVectorImpl<ValueEntry> &Ops) { 1154 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs. 1155 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1. 1156 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1157 // First, check for X and ~X in the operand list. 1158 assert(i < Ops.size()); 1159 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^. 1160 Value *X = BinaryOperator::getNotArgument(Ops[i].Op); 1161 unsigned FoundX = FindInOperandList(Ops, i, X); 1162 if (FoundX != i) { 1163 if (Opcode == Instruction::And) // ...&X&~X = 0 1164 return Constant::getNullValue(X->getType()); 1165 1166 if (Opcode == Instruction::Or) // ...|X|~X = -1 1167 return Constant::getAllOnesValue(X->getType()); 1168 } 1169 } 1170 1171 // Next, check for duplicate pairs of values, which we assume are next to 1172 // each other, due to our sorting criteria. 1173 assert(i < Ops.size()); 1174 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) { 1175 if (Opcode == Instruction::And || Opcode == Instruction::Or) { 1176 // Drop duplicate values for And and Or. 1177 Ops.erase(Ops.begin()+i); 1178 --i; --e; 1179 ++NumAnnihil; 1180 continue; 1181 } 1182 1183 // Drop pairs of values for Xor. 1184 assert(Opcode == Instruction::Xor); 1185 if (e == 2) 1186 return Constant::getNullValue(Ops[0].Op->getType()); 1187 1188 // Y ^ X^X -> Y 1189 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1190 i -= 1; e -= 2; 1191 ++NumAnnihil; 1192 } 1193 } 1194 return nullptr; 1195 } 1196 1197 /// Helper funciton of CombineXorOpnd(). It creates a bitwise-and 1198 /// instruction with the given two operands, and return the resulting 1199 /// instruction. There are two special cases: 1) if the constant operand is 0, 1200 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will 1201 /// be returned. 1202 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd, 1203 const APInt &ConstOpnd) { 1204 if (ConstOpnd != 0) { 1205 if (!ConstOpnd.isAllOnesValue()) { 1206 LLVMContext &Ctx = Opnd->getType()->getContext(); 1207 Instruction *I; 1208 I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd), 1209 "and.ra", InsertBefore); 1210 I->setDebugLoc(InsertBefore->getDebugLoc()); 1211 return I; 1212 } 1213 return Opnd; 1214 } 1215 return nullptr; 1216 } 1217 1218 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd" 1219 // into "R ^ C", where C would be 0, and R is a symbolic value. 1220 // 1221 // If it was successful, true is returned, and the "R" and "C" is returned 1222 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned, 1223 // and both "Res" and "ConstOpnd" remain unchanged. 1224 // 1225 bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1226 APInt &ConstOpnd, Value *&Res) { 1227 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2 1228 // = ((x | c1) ^ c1) ^ (c1 ^ c2) 1229 // = (x & ~c1) ^ (c1 ^ c2) 1230 // It is useful only when c1 == c2. 1231 if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) { 1232 if (!Opnd1->getValue()->hasOneUse()) 1233 return false; 1234 1235 const APInt &C1 = Opnd1->getConstPart(); 1236 if (C1 != ConstOpnd) 1237 return false; 1238 1239 Value *X = Opnd1->getSymbolicPart(); 1240 Res = createAndInstr(I, X, ~C1); 1241 // ConstOpnd was C2, now C1 ^ C2. 1242 ConstOpnd ^= C1; 1243 1244 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1245 RedoInsts.insert(T); 1246 return true; 1247 } 1248 return false; 1249 } 1250 1251 1252 // Helper function of OptimizeXor(). It tries to simplify 1253 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a 1254 // symbolic value. 1255 // 1256 // If it was successful, true is returned, and the "R" and "C" is returned 1257 // via "Res" and "ConstOpnd", respectively (If the entire expression is 1258 // evaluated to a constant, the Res is set to NULL); otherwise, false is 1259 // returned, and both "Res" and "ConstOpnd" remain unchanged. 1260 bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2, 1261 APInt &ConstOpnd, Value *&Res) { 1262 Value *X = Opnd1->getSymbolicPart(); 1263 if (X != Opnd2->getSymbolicPart()) 1264 return false; 1265 1266 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.) 1267 int DeadInstNum = 1; 1268 if (Opnd1->getValue()->hasOneUse()) 1269 DeadInstNum++; 1270 if (Opnd2->getValue()->hasOneUse()) 1271 DeadInstNum++; 1272 1273 // Xor-Rule 2: 1274 // (x | c1) ^ (x & c2) 1275 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1 1276 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1 1277 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3 1278 // 1279 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) { 1280 if (Opnd2->isOrExpr()) 1281 std::swap(Opnd1, Opnd2); 1282 1283 const APInt &C1 = Opnd1->getConstPart(); 1284 const APInt &C2 = Opnd2->getConstPart(); 1285 APInt C3((~C1) ^ C2); 1286 1287 // Do not increase code size! 1288 if (C3 != 0 && !C3.isAllOnesValue()) { 1289 int NewInstNum = ConstOpnd != 0 ? 1 : 2; 1290 if (NewInstNum > DeadInstNum) 1291 return false; 1292 } 1293 1294 Res = createAndInstr(I, X, C3); 1295 ConstOpnd ^= C1; 1296 1297 } else if (Opnd1->isOrExpr()) { 1298 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2 1299 // 1300 const APInt &C1 = Opnd1->getConstPart(); 1301 const APInt &C2 = Opnd2->getConstPart(); 1302 APInt C3 = C1 ^ C2; 1303 1304 // Do not increase code size 1305 if (C3 != 0 && !C3.isAllOnesValue()) { 1306 int NewInstNum = ConstOpnd != 0 ? 1 : 2; 1307 if (NewInstNum > DeadInstNum) 1308 return false; 1309 } 1310 1311 Res = createAndInstr(I, X, C3); 1312 ConstOpnd ^= C3; 1313 } else { 1314 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2)) 1315 // 1316 const APInt &C1 = Opnd1->getConstPart(); 1317 const APInt &C2 = Opnd2->getConstPart(); 1318 APInt C3 = C1 ^ C2; 1319 Res = createAndInstr(I, X, C3); 1320 } 1321 1322 // Put the original operands in the Redo list; hope they will be deleted 1323 // as dead code. 1324 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1325 RedoInsts.insert(T); 1326 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue())) 1327 RedoInsts.insert(T); 1328 1329 return true; 1330 } 1331 1332 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced 1333 /// to a single Value, it is returned, otherwise the Ops list is mutated as 1334 /// necessary. 1335 Value *Reassociate::OptimizeXor(Instruction *I, 1336 SmallVectorImpl<ValueEntry> &Ops) { 1337 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops)) 1338 return V; 1339 1340 if (Ops.size() == 1) 1341 return nullptr; 1342 1343 SmallVector<XorOpnd, 8> Opnds; 1344 SmallVector<XorOpnd*, 8> OpndPtrs; 1345 Type *Ty = Ops[0].Op->getType(); 1346 APInt ConstOpnd(Ty->getIntegerBitWidth(), 0); 1347 1348 // Step 1: Convert ValueEntry to XorOpnd 1349 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1350 Value *V = Ops[i].Op; 1351 if (!isa<ConstantInt>(V)) { 1352 XorOpnd O(V); 1353 O.setSymbolicRank(getRank(O.getSymbolicPart())); 1354 Opnds.push_back(O); 1355 } else 1356 ConstOpnd ^= cast<ConstantInt>(V)->getValue(); 1357 } 1358 1359 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds". 1360 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate 1361 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop 1362 // with the previous loop --- the iterator of the "Opnds" may be invalidated 1363 // when new elements are added to the vector. 1364 for (unsigned i = 0, e = Opnds.size(); i != e; ++i) 1365 OpndPtrs.push_back(&Opnds[i]); 1366 1367 // Step 2: Sort the Xor-Operands in a way such that the operands containing 1368 // the same symbolic value cluster together. For instance, the input operand 1369 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into: 1370 // ("x | 123", "x & 789", "y & 456"). 1371 std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor()); 1372 1373 // Step 3: Combine adjacent operands 1374 XorOpnd *PrevOpnd = nullptr; 1375 bool Changed = false; 1376 for (unsigned i = 0, e = Opnds.size(); i < e; i++) { 1377 XorOpnd *CurrOpnd = OpndPtrs[i]; 1378 // The combined value 1379 Value *CV; 1380 1381 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd" 1382 if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) { 1383 Changed = true; 1384 if (CV) 1385 *CurrOpnd = XorOpnd(CV); 1386 else { 1387 CurrOpnd->Invalidate(); 1388 continue; 1389 } 1390 } 1391 1392 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) { 1393 PrevOpnd = CurrOpnd; 1394 continue; 1395 } 1396 1397 // step 3.2: When previous and current operands share the same symbolic 1398 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd" 1399 // 1400 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) { 1401 // Remove previous operand 1402 PrevOpnd->Invalidate(); 1403 if (CV) { 1404 *CurrOpnd = XorOpnd(CV); 1405 PrevOpnd = CurrOpnd; 1406 } else { 1407 CurrOpnd->Invalidate(); 1408 PrevOpnd = nullptr; 1409 } 1410 Changed = true; 1411 } 1412 } 1413 1414 // Step 4: Reassemble the Ops 1415 if (Changed) { 1416 Ops.clear(); 1417 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) { 1418 XorOpnd &O = Opnds[i]; 1419 if (O.isInvalid()) 1420 continue; 1421 ValueEntry VE(getRank(O.getValue()), O.getValue()); 1422 Ops.push_back(VE); 1423 } 1424 if (ConstOpnd != 0) { 1425 Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd); 1426 ValueEntry VE(getRank(C), C); 1427 Ops.push_back(VE); 1428 } 1429 int Sz = Ops.size(); 1430 if (Sz == 1) 1431 return Ops.back().Op; 1432 else if (Sz == 0) { 1433 assert(ConstOpnd == 0); 1434 return ConstantInt::get(Ty->getContext(), ConstOpnd); 1435 } 1436 } 1437 1438 return nullptr; 1439 } 1440 1441 /// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This 1442 /// optimizes based on identities. If it can be reduced to a single Value, it 1443 /// is returned, otherwise the Ops list is mutated as necessary. 1444 Value *Reassociate::OptimizeAdd(Instruction *I, 1445 SmallVectorImpl<ValueEntry> &Ops) { 1446 // Scan the operand lists looking for X and -X pairs. If we find any, we 1447 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it, 1448 // scan for any 1449 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z. 1450 1451 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1452 Value *TheOp = Ops[i].Op; 1453 // Check to see if we've seen this operand before. If so, we factor all 1454 // instances of the operand together. Due to our sorting criteria, we know 1455 // that these need to be next to each other in the vector. 1456 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) { 1457 // Rescan the list, remove all instances of this operand from the expr. 1458 unsigned NumFound = 0; 1459 do { 1460 Ops.erase(Ops.begin()+i); 1461 ++NumFound; 1462 } while (i != Ops.size() && Ops[i].Op == TheOp); 1463 1464 DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n'); 1465 ++NumFactor; 1466 1467 // Insert a new multiply. 1468 Type *Ty = TheOp->getType(); 1469 Constant *C = Ty->isIntegerTy() ? ConstantInt::get(Ty, NumFound) 1470 : ConstantFP::get(Ty, NumFound); 1471 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I); 1472 1473 // Now that we have inserted a multiply, optimize it. This allows us to 1474 // handle cases that require multiple factoring steps, such as this: 1475 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6 1476 RedoInsts.insert(Mul); 1477 1478 // If every add operand was a duplicate, return the multiply. 1479 if (Ops.empty()) 1480 return Mul; 1481 1482 // Otherwise, we had some input that didn't have the dupe, such as 1483 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of 1484 // things being added by this operation. 1485 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul)); 1486 1487 --i; 1488 e = Ops.size(); 1489 continue; 1490 } 1491 1492 // Check for X and -X or X and ~X in the operand list. 1493 if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) && 1494 !BinaryOperator::isNot(TheOp)) 1495 continue; 1496 1497 Value *X = nullptr; 1498 if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)) 1499 X = BinaryOperator::getNegArgument(TheOp); 1500 else if (BinaryOperator::isNot(TheOp)) 1501 X = BinaryOperator::getNotArgument(TheOp); 1502 1503 unsigned FoundX = FindInOperandList(Ops, i, X); 1504 if (FoundX == i) 1505 continue; 1506 1507 // Remove X and -X from the operand list. 1508 if (Ops.size() == 2 && 1509 (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))) 1510 return Constant::getNullValue(X->getType()); 1511 1512 // Remove X and ~X from the operand list. 1513 if (Ops.size() == 2 && BinaryOperator::isNot(TheOp)) 1514 return Constant::getAllOnesValue(X->getType()); 1515 1516 Ops.erase(Ops.begin()+i); 1517 if (i < FoundX) 1518 --FoundX; 1519 else 1520 --i; // Need to back up an extra one. 1521 Ops.erase(Ops.begin()+FoundX); 1522 ++NumAnnihil; 1523 --i; // Revisit element. 1524 e -= 2; // Removed two elements. 1525 1526 // if X and ~X we append -1 to the operand list. 1527 if (BinaryOperator::isNot(TheOp)) { 1528 Value *V = Constant::getAllOnesValue(X->getType()); 1529 Ops.insert(Ops.end(), ValueEntry(getRank(V), V)); 1530 e += 1; 1531 } 1532 } 1533 1534 // Scan the operand list, checking to see if there are any common factors 1535 // between operands. Consider something like A*A+A*B*C+D. We would like to 1536 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies. 1537 // To efficiently find this, we count the number of times a factor occurs 1538 // for any ADD operands that are MULs. 1539 DenseMap<Value*, unsigned> FactorOccurrences; 1540 1541 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4) 1542 // where they are actually the same multiply. 1543 unsigned MaxOcc = 0; 1544 Value *MaxOccVal = nullptr; 1545 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1546 BinaryOperator *BOp = 1547 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1548 if (!BOp) 1549 continue; 1550 1551 // Compute all of the factors of this added value. 1552 SmallVector<Value*, 8> Factors; 1553 FindSingleUseMultiplyFactors(BOp, Factors, Ops); 1554 assert(Factors.size() > 1 && "Bad linearize!"); 1555 1556 // Add one to FactorOccurrences for each unique factor in this op. 1557 SmallPtrSet<Value*, 8> Duplicates; 1558 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1559 Value *Factor = Factors[i]; 1560 if (!Duplicates.insert(Factor)) 1561 continue; 1562 1563 unsigned Occ = ++FactorOccurrences[Factor]; 1564 if (Occ > MaxOcc) { 1565 MaxOcc = Occ; 1566 MaxOccVal = Factor; 1567 } 1568 1569 // If Factor is a negative constant, add the negated value as a factor 1570 // because we can percolate the negate out. Watch for minint, which 1571 // cannot be positivified. 1572 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) { 1573 if (CI->isNegative() && !CI->isMinValue(true)) { 1574 Factor = ConstantInt::get(CI->getContext(), -CI->getValue()); 1575 assert(!Duplicates.count(Factor) && 1576 "Shouldn't have two constant factors, missed a canonicalize"); 1577 unsigned Occ = ++FactorOccurrences[Factor]; 1578 if (Occ > MaxOcc) { 1579 MaxOcc = Occ; 1580 MaxOccVal = Factor; 1581 } 1582 } 1583 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) { 1584 if (CF->isNegative()) { 1585 APFloat F(CF->getValueAPF()); 1586 F.changeSign(); 1587 Factor = ConstantFP::get(CF->getContext(), F); 1588 assert(!Duplicates.count(Factor) && 1589 "Shouldn't have two constant factors, missed a canonicalize"); 1590 unsigned Occ = ++FactorOccurrences[Factor]; 1591 if (Occ > MaxOcc) { 1592 MaxOcc = Occ; 1593 MaxOccVal = Factor; 1594 } 1595 } 1596 } 1597 } 1598 } 1599 1600 // If any factor occurred more than one time, we can pull it out. 1601 if (MaxOcc > 1) { 1602 DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n'); 1603 ++NumFactor; 1604 1605 // Create a new instruction that uses the MaxOccVal twice. If we don't do 1606 // this, we could otherwise run into situations where removing a factor 1607 // from an expression will drop a use of maxocc, and this can cause 1608 // RemoveFactorFromExpression on successive values to behave differently. 1609 Instruction *DummyInst = 1610 I->getType()->isIntegerTy() 1611 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal) 1612 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal); 1613 1614 SmallVector<WeakVH, 4> NewMulOps; 1615 for (unsigned i = 0; i != Ops.size(); ++i) { 1616 // Only try to remove factors from expressions we're allowed to. 1617 BinaryOperator *BOp = 1618 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1619 if (!BOp) 1620 continue; 1621 1622 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) { 1623 // The factorized operand may occur several times. Convert them all in 1624 // one fell swoop. 1625 for (unsigned j = Ops.size(); j != i;) { 1626 --j; 1627 if (Ops[j].Op == Ops[i].Op) { 1628 NewMulOps.push_back(V); 1629 Ops.erase(Ops.begin()+j); 1630 } 1631 } 1632 --i; 1633 } 1634 } 1635 1636 // No need for extra uses anymore. 1637 delete DummyInst; 1638 1639 unsigned NumAddedValues = NewMulOps.size(); 1640 Value *V = EmitAddTreeOfValues(I, NewMulOps); 1641 1642 // Now that we have inserted the add tree, optimize it. This allows us to 1643 // handle cases that require multiple factoring steps, such as this: 1644 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C)) 1645 assert(NumAddedValues > 1 && "Each occurrence should contribute a value"); 1646 (void)NumAddedValues; 1647 if (Instruction *VI = dyn_cast<Instruction>(V)) 1648 RedoInsts.insert(VI); 1649 1650 // Create the multiply. 1651 Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I); 1652 1653 // Rerun associate on the multiply in case the inner expression turned into 1654 // a multiply. We want to make sure that we keep things in canonical form. 1655 RedoInsts.insert(V2); 1656 1657 // If every add operand included the factor (e.g. "A*B + A*C"), then the 1658 // entire result expression is just the multiply "A*(B+C)". 1659 if (Ops.empty()) 1660 return V2; 1661 1662 // Otherwise, we had some input that didn't have the factor, such as 1663 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of 1664 // things being added by this operation. 1665 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2)); 1666 } 1667 1668 return nullptr; 1669 } 1670 1671 /// \brief Build up a vector of value/power pairs factoring a product. 1672 /// 1673 /// Given a series of multiplication operands, build a vector of factors and 1674 /// the powers each is raised to when forming the final product. Sort them in 1675 /// the order of descending power. 1676 /// 1677 /// (x*x) -> [(x, 2)] 1678 /// ((x*x)*x) -> [(x, 3)] 1679 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)] 1680 /// 1681 /// \returns Whether any factors have a power greater than one. 1682 bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, 1683 SmallVectorImpl<Factor> &Factors) { 1684 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this. 1685 // Compute the sum of powers of simplifiable factors. 1686 unsigned FactorPowerSum = 0; 1687 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) { 1688 Value *Op = Ops[Idx-1].Op; 1689 1690 // Count the number of occurrences of this value. 1691 unsigned Count = 1; 1692 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx) 1693 ++Count; 1694 // Track for simplification all factors which occur 2 or more times. 1695 if (Count > 1) 1696 FactorPowerSum += Count; 1697 } 1698 1699 // We can only simplify factors if the sum of the powers of our simplifiable 1700 // factors is 4 or higher. When that is the case, we will *always* have 1701 // a simplification. This is an important invariant to prevent cyclicly 1702 // trying to simplify already minimal formations. 1703 if (FactorPowerSum < 4) 1704 return false; 1705 1706 // Now gather the simplifiable factors, removing them from Ops. 1707 FactorPowerSum = 0; 1708 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) { 1709 Value *Op = Ops[Idx-1].Op; 1710 1711 // Count the number of occurrences of this value. 1712 unsigned Count = 1; 1713 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx) 1714 ++Count; 1715 if (Count == 1) 1716 continue; 1717 // Move an even number of occurrences to Factors. 1718 Count &= ~1U; 1719 Idx -= Count; 1720 FactorPowerSum += Count; 1721 Factors.push_back(Factor(Op, Count)); 1722 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count); 1723 } 1724 1725 // None of the adjustments above should have reduced the sum of factor powers 1726 // below our mininum of '4'. 1727 assert(FactorPowerSum >= 4); 1728 1729 std::stable_sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter()); 1730 return true; 1731 } 1732 1733 /// \brief Build a tree of multiplies, computing the product of Ops. 1734 static Value *buildMultiplyTree(IRBuilder<> &Builder, 1735 SmallVectorImpl<Value*> &Ops) { 1736 if (Ops.size() == 1) 1737 return Ops.back(); 1738 1739 Value *LHS = Ops.pop_back_val(); 1740 do { 1741 if (LHS->getType()->isIntegerTy()) 1742 LHS = Builder.CreateMul(LHS, Ops.pop_back_val()); 1743 else 1744 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val()); 1745 } while (!Ops.empty()); 1746 1747 return LHS; 1748 } 1749 1750 /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*... 1751 /// 1752 /// Given a vector of values raised to various powers, where no two values are 1753 /// equal and the powers are sorted in decreasing order, compute the minimal 1754 /// DAG of multiplies to compute the final product, and return that product 1755 /// value. 1756 Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder, 1757 SmallVectorImpl<Factor> &Factors) { 1758 assert(Factors[0].Power); 1759 SmallVector<Value *, 4> OuterProduct; 1760 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size(); 1761 Idx < Size && Factors[Idx].Power > 0; ++Idx) { 1762 if (Factors[Idx].Power != Factors[LastIdx].Power) { 1763 LastIdx = Idx; 1764 continue; 1765 } 1766 1767 // We want to multiply across all the factors with the same power so that 1768 // we can raise them to that power as a single entity. Build a mini tree 1769 // for that. 1770 SmallVector<Value *, 4> InnerProduct; 1771 InnerProduct.push_back(Factors[LastIdx].Base); 1772 do { 1773 InnerProduct.push_back(Factors[Idx].Base); 1774 ++Idx; 1775 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power); 1776 1777 // Reset the base value of the first factor to the new expression tree. 1778 // We'll remove all the factors with the same power in a second pass. 1779 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct); 1780 if (Instruction *MI = dyn_cast<Instruction>(M)) 1781 RedoInsts.insert(MI); 1782 1783 LastIdx = Idx; 1784 } 1785 // Unique factors with equal powers -- we've folded them into the first one's 1786 // base. 1787 Factors.erase(std::unique(Factors.begin(), Factors.end(), 1788 Factor::PowerEqual()), 1789 Factors.end()); 1790 1791 // Iteratively collect the base of each factor with an add power into the 1792 // outer product, and halve each power in preparation for squaring the 1793 // expression. 1794 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) { 1795 if (Factors[Idx].Power & 1) 1796 OuterProduct.push_back(Factors[Idx].Base); 1797 Factors[Idx].Power >>= 1; 1798 } 1799 if (Factors[0].Power) { 1800 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors); 1801 OuterProduct.push_back(SquareRoot); 1802 OuterProduct.push_back(SquareRoot); 1803 } 1804 if (OuterProduct.size() == 1) 1805 return OuterProduct.front(); 1806 1807 Value *V = buildMultiplyTree(Builder, OuterProduct); 1808 return V; 1809 } 1810 1811 Value *Reassociate::OptimizeMul(BinaryOperator *I, 1812 SmallVectorImpl<ValueEntry> &Ops) { 1813 // We can only optimize the multiplies when there is a chain of more than 1814 // three, such that a balanced tree might require fewer total multiplies. 1815 if (Ops.size() < 4) 1816 return nullptr; 1817 1818 // Try to turn linear trees of multiplies without other uses of the 1819 // intermediate stages into minimal multiply DAGs with perfect sub-expression 1820 // re-use. 1821 SmallVector<Factor, 4> Factors; 1822 if (!collectMultiplyFactors(Ops, Factors)) 1823 return nullptr; // All distinct factors, so nothing left for us to do. 1824 1825 IRBuilder<> Builder(I); 1826 Value *V = buildMinimalMultiplyDAG(Builder, Factors); 1827 if (Ops.empty()) 1828 return V; 1829 1830 ValueEntry NewEntry = ValueEntry(getRank(V), V); 1831 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry); 1832 return nullptr; 1833 } 1834 1835 Value *Reassociate::OptimizeExpression(BinaryOperator *I, 1836 SmallVectorImpl<ValueEntry> &Ops) { 1837 // Now that we have the linearized expression tree, try to optimize it. 1838 // Start by folding any constants that we found. 1839 Constant *Cst = nullptr; 1840 unsigned Opcode = I->getOpcode(); 1841 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) { 1842 Constant *C = cast<Constant>(Ops.pop_back_val().Op); 1843 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C; 1844 } 1845 // If there was nothing but constants then we are done. 1846 if (Ops.empty()) 1847 return Cst; 1848 1849 // Put the combined constant back at the end of the operand list, except if 1850 // there is no point. For example, an add of 0 gets dropped here, while a 1851 // multiplication by zero turns the whole expression into zero. 1852 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) { 1853 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType())) 1854 return Cst; 1855 Ops.push_back(ValueEntry(0, Cst)); 1856 } 1857 1858 if (Ops.size() == 1) return Ops[0].Op; 1859 1860 // Handle destructive annihilation due to identities between elements in the 1861 // argument list here. 1862 unsigned NumOps = Ops.size(); 1863 switch (Opcode) { 1864 default: break; 1865 case Instruction::And: 1866 case Instruction::Or: 1867 if (Value *Result = OptimizeAndOrXor(Opcode, Ops)) 1868 return Result; 1869 break; 1870 1871 case Instruction::Xor: 1872 if (Value *Result = OptimizeXor(I, Ops)) 1873 return Result; 1874 break; 1875 1876 case Instruction::Add: 1877 case Instruction::FAdd: 1878 if (Value *Result = OptimizeAdd(I, Ops)) 1879 return Result; 1880 break; 1881 1882 case Instruction::Mul: 1883 case Instruction::FMul: 1884 if (Value *Result = OptimizeMul(I, Ops)) 1885 return Result; 1886 break; 1887 } 1888 1889 if (Ops.size() != NumOps) 1890 return OptimizeExpression(I, Ops); 1891 return nullptr; 1892 } 1893 1894 /// EraseInst - Zap the given instruction, adding interesting operands to the 1895 /// work list. 1896 void Reassociate::EraseInst(Instruction *I) { 1897 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1898 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 1899 // Erase the dead instruction. 1900 ValueRankMap.erase(I); 1901 RedoInsts.remove(I); 1902 I->eraseFromParent(); 1903 // Optimize its operands. 1904 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes. 1905 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1906 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) { 1907 // If this is a node in an expression tree, climb to the expression root 1908 // and add that since that's where optimization actually happens. 1909 unsigned Opcode = Op->getOpcode(); 1910 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode && 1911 Visited.insert(Op)) 1912 Op = Op->user_back(); 1913 RedoInsts.insert(Op); 1914 } 1915 } 1916 1917 /// OptimizeInst - Inspect and optimize the given instruction. Note that erasing 1918 /// instructions is not allowed. 1919 void Reassociate::OptimizeInst(Instruction *I) { 1920 // Only consider operations that we understand. 1921 if (!isa<BinaryOperator>(I)) 1922 return; 1923 1924 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1))) 1925 // If an operand of this shift is a reassociable multiply, or if the shift 1926 // is used by a reassociable multiply or add, turn into a multiply. 1927 if (isReassociableOp(I->getOperand(0), Instruction::Mul) || 1928 (I->hasOneUse() && 1929 (isReassociableOp(I->user_back(), Instruction::Mul) || 1930 isReassociableOp(I->user_back(), Instruction::Add)))) { 1931 Instruction *NI = ConvertShiftToMul(I); 1932 RedoInsts.insert(I); 1933 MadeChange = true; 1934 I = NI; 1935 } 1936 1937 // Commute floating point binary operators, to canonicalize the order of their 1938 // operands. This can potentially expose more CSE opportunities, and makes 1939 // writing other transformations simpler. 1940 if (I->getType()->isFloatingPointTy() || I->getType()->isVectorTy()) { 1941 1942 // FAdd and FMul can be commuted. 1943 if (I->getOpcode() == Instruction::FMul || 1944 I->getOpcode() == Instruction::FAdd) { 1945 Value *LHS = I->getOperand(0); 1946 Value *RHS = I->getOperand(1); 1947 unsigned LHSRank = getRank(LHS); 1948 unsigned RHSRank = getRank(RHS); 1949 1950 // Sort the operands by rank. 1951 if (RHSRank < LHSRank) { 1952 I->setOperand(0, RHS); 1953 I->setOperand(1, LHS); 1954 } 1955 } 1956 1957 // FIXME: We should commute vector instructions as well. However, this 1958 // requires further analysis to determine the effect on later passes. 1959 1960 // Don't try to optimize vector instructions or anything that doesn't have 1961 // unsafe algebra. 1962 if (I->getType()->isVectorTy() || !I->hasUnsafeAlgebra()) 1963 return; 1964 } 1965 1966 // Do not reassociate boolean (i1) expressions. We want to preserve the 1967 // original order of evaluation for short-circuited comparisons that 1968 // SimplifyCFG has folded to AND/OR expressions. If the expression 1969 // is not further optimized, it is likely to be transformed back to a 1970 // short-circuited form for code gen, and the source order may have been 1971 // optimized for the most likely conditions. 1972 if (I->getType()->isIntegerTy(1)) 1973 return; 1974 1975 // If this is a subtract instruction which is not already in negate form, 1976 // see if we can convert it to X+-Y. 1977 if (I->getOpcode() == Instruction::Sub) { 1978 if (ShouldBreakUpSubtract(I)) { 1979 Instruction *NI = BreakUpSubtract(I); 1980 RedoInsts.insert(I); 1981 MadeChange = true; 1982 I = NI; 1983 } else if (BinaryOperator::isNeg(I)) { 1984 // Otherwise, this is a negation. See if the operand is a multiply tree 1985 // and if this is not an inner node of a multiply tree. 1986 if (isReassociableOp(I->getOperand(1), Instruction::Mul) && 1987 (!I->hasOneUse() || 1988 !isReassociableOp(I->user_back(), Instruction::Mul))) { 1989 Instruction *NI = LowerNegateToMultiply(I); 1990 RedoInsts.insert(I); 1991 MadeChange = true; 1992 I = NI; 1993 } 1994 } 1995 } else if (I->getOpcode() == Instruction::FSub) { 1996 if (ShouldBreakUpSubtract(I)) { 1997 Instruction *NI = BreakUpSubtract(I); 1998 RedoInsts.insert(I); 1999 MadeChange = true; 2000 I = NI; 2001 } else if (BinaryOperator::isFNeg(I)) { 2002 // Otherwise, this is a negation. See if the operand is a multiply tree 2003 // and if this is not an inner node of a multiply tree. 2004 if (isReassociableOp(I->getOperand(1), Instruction::FMul) && 2005 (!I->hasOneUse() || 2006 !isReassociableOp(I->user_back(), Instruction::FMul))) { 2007 Instruction *NI = LowerNegateToMultiply(I); 2008 RedoInsts.insert(I); 2009 MadeChange = true; 2010 I = NI; 2011 } 2012 } 2013 } 2014 2015 // If this instruction is an associative binary operator, process it. 2016 if (!I->isAssociative()) return; 2017 BinaryOperator *BO = cast<BinaryOperator>(I); 2018 2019 // If this is an interior node of a reassociable tree, ignore it until we 2020 // get to the root of the tree, to avoid N^2 analysis. 2021 unsigned Opcode = BO->getOpcode(); 2022 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) 2023 return; 2024 2025 // If this is an add tree that is used by a sub instruction, ignore it 2026 // until we process the subtract. 2027 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add && 2028 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub) 2029 return; 2030 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd && 2031 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub) 2032 return; 2033 2034 ReassociateExpression(BO); 2035 } 2036 2037 void Reassociate::ReassociateExpression(BinaryOperator *I) { 2038 assert(!I->getType()->isVectorTy() && 2039 "Reassociation of vector instructions is not supported."); 2040 2041 // First, walk the expression tree, linearizing the tree, collecting the 2042 // operand information. 2043 SmallVector<RepeatedValue, 8> Tree; 2044 MadeChange |= LinearizeExprTree(I, Tree); 2045 SmallVector<ValueEntry, 8> Ops; 2046 Ops.reserve(Tree.size()); 2047 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 2048 RepeatedValue E = Tree[i]; 2049 Ops.append(E.second.getZExtValue(), 2050 ValueEntry(getRank(E.first), E.first)); 2051 } 2052 2053 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2054 2055 // Now that we have linearized the tree to a list and have gathered all of 2056 // the operands and their ranks, sort the operands by their rank. Use a 2057 // stable_sort so that values with equal ranks will have their relative 2058 // positions maintained (and so the compiler is deterministic). Note that 2059 // this sorts so that the highest ranking values end up at the beginning of 2060 // the vector. 2061 std::stable_sort(Ops.begin(), Ops.end()); 2062 2063 // OptimizeExpression - Now that we have the expression tree in a convenient 2064 // sorted form, optimize it globally if possible. 2065 if (Value *V = OptimizeExpression(I, Ops)) { 2066 if (V == I) 2067 // Self-referential expression in unreachable code. 2068 return; 2069 // This expression tree simplified to something that isn't a tree, 2070 // eliminate it. 2071 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n'); 2072 I->replaceAllUsesWith(V); 2073 if (Instruction *VI = dyn_cast<Instruction>(V)) 2074 VI->setDebugLoc(I->getDebugLoc()); 2075 RedoInsts.insert(I); 2076 ++NumAnnihil; 2077 return; 2078 } 2079 2080 // We want to sink immediates as deeply as possible except in the case where 2081 // this is a multiply tree used only by an add, and the immediate is a -1. 2082 // In this case we reassociate to put the negation on the outside so that we 2083 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y 2084 if (I->hasOneUse()) { 2085 if (I->getOpcode() == Instruction::Mul && 2086 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add && 2087 isa<ConstantInt>(Ops.back().Op) && 2088 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) { 2089 ValueEntry Tmp = Ops.pop_back_val(); 2090 Ops.insert(Ops.begin(), Tmp); 2091 } else if (I->getOpcode() == Instruction::FMul && 2092 cast<Instruction>(I->user_back())->getOpcode() == 2093 Instruction::FAdd && 2094 isa<ConstantFP>(Ops.back().Op) && 2095 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) { 2096 ValueEntry Tmp = Ops.pop_back_val(); 2097 Ops.insert(Ops.begin(), Tmp); 2098 } 2099 } 2100 2101 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2102 2103 if (Ops.size() == 1) { 2104 if (Ops[0].Op == I) 2105 // Self-referential expression in unreachable code. 2106 return; 2107 2108 // This expression tree simplified to something that isn't a tree, 2109 // eliminate it. 2110 I->replaceAllUsesWith(Ops[0].Op); 2111 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op)) 2112 OI->setDebugLoc(I->getDebugLoc()); 2113 RedoInsts.insert(I); 2114 return; 2115 } 2116 2117 // Now that we ordered and optimized the expressions, splat them back into 2118 // the expression tree, removing any unneeded nodes. 2119 RewriteExprTree(I, Ops); 2120 } 2121 2122 bool Reassociate::runOnFunction(Function &F) { 2123 if (skipOptnoneFunction(F)) 2124 return false; 2125 2126 // Calculate the rank map for F 2127 BuildRankMap(F); 2128 2129 MadeChange = false; 2130 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) { 2131 // Optimize every instruction in the basic block. 2132 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; ) 2133 if (isInstructionTriviallyDead(II)) { 2134 EraseInst(II++); 2135 } else { 2136 OptimizeInst(II); 2137 assert(II->getParent() == BI && "Moved to a different block!"); 2138 ++II; 2139 } 2140 2141 // If this produced extra instructions to optimize, handle them now. 2142 while (!RedoInsts.empty()) { 2143 Instruction *I = RedoInsts.pop_back_val(); 2144 if (isInstructionTriviallyDead(I)) 2145 EraseInst(I); 2146 else 2147 OptimizeInst(I); 2148 } 2149 } 2150 2151 // We are done with the rank map. 2152 RankMap.clear(); 2153 ValueRankMap.clear(); 2154 2155 return MadeChange; 2156 } 2157