1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass reassociates commutative expressions in an order that is designed 11 // to promote better constant propagation, GCSE, LICM, PRE, etc. 12 // 13 // For example: 4 + (x + 5) -> x + (4 + 5) 14 // 15 // In the implementation of this algorithm, constants are assigned rank = 0, 16 // function arguments are rank = 1, and other values are assigned ranks 17 // corresponding to the reverse post order traversal of current function 18 // (starting at 2), which effectively gives values in deep loops higher rank 19 // than values not in loops. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/Transforms/Scalar.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/PostOrderIterator.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/ValueHandle.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Transforms/Utils/Local.h" 41 #include <algorithm> 42 using namespace llvm; 43 44 #define DEBUG_TYPE "reassociate" 45 46 STATISTIC(NumChanged, "Number of insts reassociated"); 47 STATISTIC(NumAnnihil, "Number of expr tree annihilated"); 48 STATISTIC(NumFactor , "Number of multiplies factored"); 49 50 namespace { 51 struct ValueEntry { 52 unsigned Rank; 53 Value *Op; 54 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {} 55 }; 56 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) { 57 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start. 58 } 59 } 60 61 #ifndef NDEBUG 62 /// PrintOps - Print out the expression identified in the Ops list. 63 /// 64 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) { 65 Module *M = I->getParent()->getParent()->getParent(); 66 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " " 67 << *Ops[0].Op->getType() << '\t'; 68 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 69 dbgs() << "[ "; 70 Ops[i].Op->printAsOperand(dbgs(), false, M); 71 dbgs() << ", #" << Ops[i].Rank << "] "; 72 } 73 } 74 #endif 75 76 namespace { 77 /// \brief Utility class representing a base and exponent pair which form one 78 /// factor of some product. 79 struct Factor { 80 Value *Base; 81 unsigned Power; 82 83 Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {} 84 85 /// \brief Sort factors by their Base. 86 struct BaseSorter { 87 bool operator()(const Factor &LHS, const Factor &RHS) { 88 return LHS.Base < RHS.Base; 89 } 90 }; 91 92 /// \brief Compare factors for equal bases. 93 struct BaseEqual { 94 bool operator()(const Factor &LHS, const Factor &RHS) { 95 return LHS.Base == RHS.Base; 96 } 97 }; 98 99 /// \brief Sort factors in descending order by their power. 100 struct PowerDescendingSorter { 101 bool operator()(const Factor &LHS, const Factor &RHS) { 102 return LHS.Power > RHS.Power; 103 } 104 }; 105 106 /// \brief Compare factors for equal powers. 107 struct PowerEqual { 108 bool operator()(const Factor &LHS, const Factor &RHS) { 109 return LHS.Power == RHS.Power; 110 } 111 }; 112 }; 113 114 /// Utility class representing a non-constant Xor-operand. We classify 115 /// non-constant Xor-Operands into two categories: 116 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0 117 /// C2) 118 /// C2.1) The operand is in the form of "X | C", where C is a non-zero 119 /// constant. 120 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this 121 /// operand as "E | 0" 122 class XorOpnd { 123 public: 124 XorOpnd(Value *V); 125 126 bool isInvalid() const { return SymbolicPart == nullptr; } 127 bool isOrExpr() const { return isOr; } 128 Value *getValue() const { return OrigVal; } 129 Value *getSymbolicPart() const { return SymbolicPart; } 130 unsigned getSymbolicRank() const { return SymbolicRank; } 131 const APInt &getConstPart() const { return ConstPart; } 132 133 void Invalidate() { SymbolicPart = OrigVal = nullptr; } 134 void setSymbolicRank(unsigned R) { SymbolicRank = R; } 135 136 // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank. 137 // The purpose is twofold: 138 // 1) Cluster together the operands sharing the same symbolic-value. 139 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which 140 // could potentially shorten crital path, and expose more loop-invariants. 141 // Note that values' rank are basically defined in RPO order (FIXME). 142 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier 143 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2", 144 // "z" in the order of X-Y-Z is better than any other orders. 145 struct PtrSortFunctor { 146 bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) { 147 return LHS->getSymbolicRank() < RHS->getSymbolicRank(); 148 } 149 }; 150 private: 151 Value *OrigVal; 152 Value *SymbolicPart; 153 APInt ConstPart; 154 unsigned SymbolicRank; 155 bool isOr; 156 }; 157 } 158 159 namespace { 160 class Reassociate : public FunctionPass { 161 DenseMap<BasicBlock*, unsigned> RankMap; 162 DenseMap<AssertingVH<Value>, unsigned> ValueRankMap; 163 SetVector<AssertingVH<Instruction> > RedoInsts; 164 bool MadeChange; 165 public: 166 static char ID; // Pass identification, replacement for typeid 167 Reassociate() : FunctionPass(ID) { 168 initializeReassociatePass(*PassRegistry::getPassRegistry()); 169 } 170 171 bool runOnFunction(Function &F) override; 172 173 void getAnalysisUsage(AnalysisUsage &AU) const override { 174 AU.setPreservesCFG(); 175 } 176 private: 177 void BuildRankMap(Function &F); 178 unsigned getRank(Value *V); 179 void canonicalizeOperands(Instruction *I); 180 void ReassociateExpression(BinaryOperator *I); 181 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops); 182 Value *OptimizeExpression(BinaryOperator *I, 183 SmallVectorImpl<ValueEntry> &Ops); 184 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops); 185 Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops); 186 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd, 187 Value *&Res); 188 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2, 189 APInt &ConstOpnd, Value *&Res); 190 bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, 191 SmallVectorImpl<Factor> &Factors); 192 Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder, 193 SmallVectorImpl<Factor> &Factors); 194 Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops); 195 Value *RemoveFactorFromExpression(Value *V, Value *Factor); 196 void EraseInst(Instruction *I); 197 void OptimizeInst(Instruction *I); 198 Instruction *canonicalizeNegConstExpr(Instruction *I); 199 }; 200 } 201 202 XorOpnd::XorOpnd(Value *V) { 203 assert(!isa<ConstantInt>(V) && "No ConstantInt"); 204 OrigVal = V; 205 Instruction *I = dyn_cast<Instruction>(V); 206 SymbolicRank = 0; 207 208 if (I && (I->getOpcode() == Instruction::Or || 209 I->getOpcode() == Instruction::And)) { 210 Value *V0 = I->getOperand(0); 211 Value *V1 = I->getOperand(1); 212 if (isa<ConstantInt>(V0)) 213 std::swap(V0, V1); 214 215 if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) { 216 ConstPart = C->getValue(); 217 SymbolicPart = V0; 218 isOr = (I->getOpcode() == Instruction::Or); 219 return; 220 } 221 } 222 223 // view the operand as "V | 0" 224 SymbolicPart = V; 225 ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth()); 226 isOr = true; 227 } 228 229 char Reassociate::ID = 0; 230 INITIALIZE_PASS(Reassociate, "reassociate", 231 "Reassociate expressions", false, false) 232 233 // Public interface to the Reassociate pass 234 FunctionPass *llvm::createReassociatePass() { return new Reassociate(); } 235 236 /// isReassociableOp - Return true if V is an instruction of the specified 237 /// opcode and if it only has one use. 238 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) { 239 if (V->hasOneUse() && isa<Instruction>(V) && 240 cast<Instruction>(V)->getOpcode() == Opcode && 241 (!isa<FPMathOperator>(V) || 242 cast<Instruction>(V)->hasUnsafeAlgebra())) 243 return cast<BinaryOperator>(V); 244 return nullptr; 245 } 246 247 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1, 248 unsigned Opcode2) { 249 if (V->hasOneUse() && isa<Instruction>(V) && 250 (cast<Instruction>(V)->getOpcode() == Opcode1 || 251 cast<Instruction>(V)->getOpcode() == Opcode2) && 252 (!isa<FPMathOperator>(V) || 253 cast<Instruction>(V)->hasUnsafeAlgebra())) 254 return cast<BinaryOperator>(V); 255 return nullptr; 256 } 257 258 static bool isUnmovableInstruction(Instruction *I) { 259 switch (I->getOpcode()) { 260 case Instruction::PHI: 261 case Instruction::LandingPad: 262 case Instruction::Alloca: 263 case Instruction::Load: 264 case Instruction::Invoke: 265 case Instruction::UDiv: 266 case Instruction::SDiv: 267 case Instruction::FDiv: 268 case Instruction::URem: 269 case Instruction::SRem: 270 case Instruction::FRem: 271 return true; 272 case Instruction::Call: 273 return !isa<DbgInfoIntrinsic>(I); 274 default: 275 return false; 276 } 277 } 278 279 void Reassociate::BuildRankMap(Function &F) { 280 unsigned i = 2; 281 282 // Assign distinct ranks to function arguments. 283 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { 284 ValueRankMap[&*I] = ++i; 285 DEBUG(dbgs() << "Calculated Rank[" << I->getName() << "] = " << i << "\n"); 286 } 287 288 ReversePostOrderTraversal<Function*> RPOT(&F); 289 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(), 290 E = RPOT.end(); I != E; ++I) { 291 BasicBlock *BB = *I; 292 unsigned BBRank = RankMap[BB] = ++i << 16; 293 294 // Walk the basic block, adding precomputed ranks for any instructions that 295 // we cannot move. This ensures that the ranks for these instructions are 296 // all different in the block. 297 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 298 if (isUnmovableInstruction(I)) 299 ValueRankMap[&*I] = ++BBRank; 300 } 301 } 302 303 unsigned Reassociate::getRank(Value *V) { 304 Instruction *I = dyn_cast<Instruction>(V); 305 if (!I) { 306 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument. 307 return 0; // Otherwise it's a global or constant, rank 0. 308 } 309 310 if (unsigned Rank = ValueRankMap[I]) 311 return Rank; // Rank already known? 312 313 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that 314 // we can reassociate expressions for code motion! Since we do not recurse 315 // for PHI nodes, we cannot have infinite recursion here, because there 316 // cannot be loops in the value graph that do not go through PHI nodes. 317 unsigned Rank = 0, MaxRank = RankMap[I->getParent()]; 318 for (unsigned i = 0, e = I->getNumOperands(); 319 i != e && Rank != MaxRank; ++i) 320 Rank = std::max(Rank, getRank(I->getOperand(i))); 321 322 // If this is a not or neg instruction, do not count it for rank. This 323 // assures us that X and ~X will have the same rank. 324 Type *Ty = V->getType(); 325 if ((!Ty->isIntegerTy() && !Ty->isFloatingPointTy()) || 326 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) && 327 !BinaryOperator::isFNeg(I))) 328 ++Rank; 329 330 DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n"); 331 332 return ValueRankMap[I] = Rank; 333 } 334 335 // Canonicalize constants to RHS. Otherwise, sort the operands by rank. 336 void Reassociate::canonicalizeOperands(Instruction *I) { 337 assert(isa<BinaryOperator>(I) && "Expected binary operator."); 338 assert(I->isCommutative() && "Expected commutative operator."); 339 340 Value *LHS = I->getOperand(0); 341 Value *RHS = I->getOperand(1); 342 unsigned LHSRank = getRank(LHS); 343 unsigned RHSRank = getRank(RHS); 344 345 if (isa<Constant>(RHS)) 346 return; 347 348 if (isa<Constant>(LHS) || RHSRank < LHSRank) 349 cast<BinaryOperator>(I)->swapOperands(); 350 } 351 352 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name, 353 Instruction *InsertBefore, Value *FlagsOp) { 354 if (S1->getType()->isIntegerTy()) 355 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore); 356 else { 357 BinaryOperator *Res = 358 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore); 359 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 360 return Res; 361 } 362 } 363 364 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name, 365 Instruction *InsertBefore, Value *FlagsOp) { 366 if (S1->getType()->isIntegerTy()) 367 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore); 368 else { 369 BinaryOperator *Res = 370 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore); 371 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 372 return Res; 373 } 374 } 375 376 static BinaryOperator *CreateNeg(Value *S1, const Twine &Name, 377 Instruction *InsertBefore, Value *FlagsOp) { 378 if (S1->getType()->isIntegerTy()) 379 return BinaryOperator::CreateNeg(S1, Name, InsertBefore); 380 else { 381 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore); 382 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 383 return Res; 384 } 385 } 386 387 /// LowerNegateToMultiply - Replace 0-X with X*-1. 388 /// 389 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) { 390 Type *Ty = Neg->getType(); 391 Constant *NegOne = Ty->isIntegerTy() ? ConstantInt::getAllOnesValue(Ty) 392 : ConstantFP::get(Ty, -1.0); 393 394 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg); 395 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op. 396 Res->takeName(Neg); 397 Neg->replaceAllUsesWith(Res); 398 Res->setDebugLoc(Neg->getDebugLoc()); 399 return Res; 400 } 401 402 /// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda 403 /// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for 404 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic. 405 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every 406 /// even x in Bitwidth-bit arithmetic. 407 static unsigned CarmichaelShift(unsigned Bitwidth) { 408 if (Bitwidth < 3) 409 return Bitwidth - 1; 410 return Bitwidth - 2; 411 } 412 413 /// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS', 414 /// reducing the combined weight using any special properties of the operation. 415 /// The existing weight LHS represents the computation X op X op ... op X where 416 /// X occurs LHS times. The combined weight represents X op X op ... op X with 417 /// X occurring LHS + RHS times. If op is "Xor" for example then the combined 418 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even; 419 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second. 420 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) { 421 // If we were working with infinite precision arithmetic then the combined 422 // weight would be LHS + RHS. But we are using finite precision arithmetic, 423 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct 424 // for nilpotent operations and addition, but not for idempotent operations 425 // and multiplication), so it is important to correctly reduce the combined 426 // weight back into range if wrapping would be wrong. 427 428 // If RHS is zero then the weight didn't change. 429 if (RHS.isMinValue()) 430 return; 431 // If LHS is zero then the combined weight is RHS. 432 if (LHS.isMinValue()) { 433 LHS = RHS; 434 return; 435 } 436 // From this point on we know that neither LHS nor RHS is zero. 437 438 if (Instruction::isIdempotent(Opcode)) { 439 // Idempotent means X op X === X, so any non-zero weight is equivalent to a 440 // weight of 1. Keeping weights at zero or one also means that wrapping is 441 // not a problem. 442 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 443 return; // Return a weight of 1. 444 } 445 if (Instruction::isNilpotent(Opcode)) { 446 // Nilpotent means X op X === 0, so reduce weights modulo 2. 447 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 448 LHS = 0; // 1 + 1 === 0 modulo 2. 449 return; 450 } 451 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) { 452 // TODO: Reduce the weight by exploiting nsw/nuw? 453 LHS += RHS; 454 return; 455 } 456 457 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) && 458 "Unknown associative operation!"); 459 unsigned Bitwidth = LHS.getBitWidth(); 460 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth 461 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth 462 // bit number x, since either x is odd in which case x^CM = 1, or x is even in 463 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples 464 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth) 465 // which by a happy accident means that they can always be represented using 466 // Bitwidth bits. 467 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than 468 // the Carmichael number). 469 if (Bitwidth > 3) { 470 /// CM - The value of Carmichael's lambda function. 471 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth)); 472 // Any weight W >= Threshold can be replaced with W - CM. 473 APInt Threshold = CM + Bitwidth; 474 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!"); 475 // For Bitwidth 4 or more the following sum does not overflow. 476 LHS += RHS; 477 while (LHS.uge(Threshold)) 478 LHS -= CM; 479 } else { 480 // To avoid problems with overflow do everything the same as above but using 481 // a larger type. 482 unsigned CM = 1U << CarmichaelShift(Bitwidth); 483 unsigned Threshold = CM + Bitwidth; 484 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold && 485 "Weights not reduced!"); 486 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue(); 487 while (Total >= Threshold) 488 Total -= CM; 489 LHS = Total; 490 } 491 } 492 493 typedef std::pair<Value*, APInt> RepeatedValue; 494 495 /// LinearizeExprTree - Given an associative binary expression, return the leaf 496 /// nodes in Ops along with their weights (how many times the leaf occurs). The 497 /// original expression is the same as 498 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times 499 /// op 500 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times 501 /// op 502 /// ... 503 /// op 504 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times 505 /// 506 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct. 507 /// 508 /// This routine may modify the function, in which case it returns 'true'. The 509 /// changes it makes may well be destructive, changing the value computed by 'I' 510 /// to something completely different. Thus if the routine returns 'true' then 511 /// you MUST either replace I with a new expression computed from the Ops array, 512 /// or use RewriteExprTree to put the values back in. 513 /// 514 /// A leaf node is either not a binary operation of the same kind as the root 515 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different 516 /// opcode), or is the same kind of binary operator but has a use which either 517 /// does not belong to the expression, or does belong to the expression but is 518 /// a leaf node. Every leaf node has at least one use that is a non-leaf node 519 /// of the expression, while for non-leaf nodes (except for the root 'I') every 520 /// use is a non-leaf node of the expression. 521 /// 522 /// For example: 523 /// expression graph node names 524 /// 525 /// + | I 526 /// / \ | 527 /// + + | A, B 528 /// / \ / \ | 529 /// * + * | C, D, E 530 /// / \ / \ / \ | 531 /// + * | F, G 532 /// 533 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in 534 /// that order) (C, 1), (E, 1), (F, 2), (G, 2). 535 /// 536 /// The expression is maximal: if some instruction is a binary operator of the 537 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression, 538 /// then the instruction also belongs to the expression, is not a leaf node of 539 /// it, and its operands also belong to the expression (but may be leaf nodes). 540 /// 541 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in 542 /// order to ensure that every non-root node in the expression has *exactly one* 543 /// use by a non-leaf node of the expression. This destruction means that the 544 /// caller MUST either replace 'I' with a new expression or use something like 545 /// RewriteExprTree to put the values back in if the routine indicates that it 546 /// made a change by returning 'true'. 547 /// 548 /// In the above example either the right operand of A or the left operand of B 549 /// will be replaced by undef. If it is B's operand then this gives: 550 /// 551 /// + | I 552 /// / \ | 553 /// + + | A, B - operand of B replaced with undef 554 /// / \ \ | 555 /// * + * | C, D, E 556 /// / \ / \ / \ | 557 /// + * | F, G 558 /// 559 /// Note that such undef operands can only be reached by passing through 'I'. 560 /// For example, if you visit operands recursively starting from a leaf node 561 /// then you will never see such an undef operand unless you get back to 'I', 562 /// which requires passing through a phi node. 563 /// 564 /// Note that this routine may also mutate binary operators of the wrong type 565 /// that have all uses inside the expression (i.e. only used by non-leaf nodes 566 /// of the expression) if it can turn them into binary operators of the right 567 /// type and thus make the expression bigger. 568 569 static bool LinearizeExprTree(BinaryOperator *I, 570 SmallVectorImpl<RepeatedValue> &Ops) { 571 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n'); 572 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits(); 573 unsigned Opcode = I->getOpcode(); 574 assert(I->isAssociative() && I->isCommutative() && 575 "Expected an associative and commutative operation!"); 576 577 // Visit all operands of the expression, keeping track of their weight (the 578 // number of paths from the expression root to the operand, or if you like 579 // the number of times that operand occurs in the linearized expression). 580 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1 581 // while A has weight two. 582 583 // Worklist of non-leaf nodes (their operands are in the expression too) along 584 // with their weights, representing a certain number of paths to the operator. 585 // If an operator occurs in the worklist multiple times then we found multiple 586 // ways to get to it. 587 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight) 588 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1))); 589 bool Changed = false; 590 591 // Leaves of the expression are values that either aren't the right kind of 592 // operation (eg: a constant, or a multiply in an add tree), or are, but have 593 // some uses that are not inside the expression. For example, in I = X + X, 594 // X = A + B, the value X has two uses (by I) that are in the expression. If 595 // X has any other uses, for example in a return instruction, then we consider 596 // X to be a leaf, and won't analyze it further. When we first visit a value, 597 // if it has more than one use then at first we conservatively consider it to 598 // be a leaf. Later, as the expression is explored, we may discover some more 599 // uses of the value from inside the expression. If all uses turn out to be 600 // from within the expression (and the value is a binary operator of the right 601 // kind) then the value is no longer considered to be a leaf, and its operands 602 // are explored. 603 604 // Leaves - Keeps track of the set of putative leaves as well as the number of 605 // paths to each leaf seen so far. 606 typedef DenseMap<Value*, APInt> LeafMap; 607 LeafMap Leaves; // Leaf -> Total weight so far. 608 SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order. 609 610 #ifndef NDEBUG 611 SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme. 612 #endif 613 while (!Worklist.empty()) { 614 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val(); 615 I = P.first; // We examine the operands of this binary operator. 616 617 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands. 618 Value *Op = I->getOperand(OpIdx); 619 APInt Weight = P.second; // Number of paths to this operand. 620 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n"); 621 assert(!Op->use_empty() && "No uses, so how did we get to it?!"); 622 623 // If this is a binary operation of the right kind with only one use then 624 // add its operands to the expression. 625 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 626 assert(Visited.insert(Op).second && "Not first visit!"); 627 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n"); 628 Worklist.push_back(std::make_pair(BO, Weight)); 629 continue; 630 } 631 632 // Appears to be a leaf. Is the operand already in the set of leaves? 633 LeafMap::iterator It = Leaves.find(Op); 634 if (It == Leaves.end()) { 635 // Not in the leaf map. Must be the first time we saw this operand. 636 assert(Visited.insert(Op).second && "Not first visit!"); 637 if (!Op->hasOneUse()) { 638 // This value has uses not accounted for by the expression, so it is 639 // not safe to modify. Mark it as being a leaf. 640 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n"); 641 LeafOrder.push_back(Op); 642 Leaves[Op] = Weight; 643 continue; 644 } 645 // No uses outside the expression, try morphing it. 646 } else if (It != Leaves.end()) { 647 // Already in the leaf map. 648 assert(Visited.count(Op) && "In leaf map but not visited!"); 649 650 // Update the number of paths to the leaf. 651 IncorporateWeight(It->second, Weight, Opcode); 652 653 #if 0 // TODO: Re-enable once PR13021 is fixed. 654 // The leaf already has one use from inside the expression. As we want 655 // exactly one such use, drop this new use of the leaf. 656 assert(!Op->hasOneUse() && "Only one use, but we got here twice!"); 657 I->setOperand(OpIdx, UndefValue::get(I->getType())); 658 Changed = true; 659 660 // If the leaf is a binary operation of the right kind and we now see 661 // that its multiple original uses were in fact all by nodes belonging 662 // to the expression, then no longer consider it to be a leaf and add 663 // its operands to the expression. 664 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 665 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n"); 666 Worklist.push_back(std::make_pair(BO, It->second)); 667 Leaves.erase(It); 668 continue; 669 } 670 #endif 671 672 // If we still have uses that are not accounted for by the expression 673 // then it is not safe to modify the value. 674 if (!Op->hasOneUse()) 675 continue; 676 677 // No uses outside the expression, try morphing it. 678 Weight = It->second; 679 Leaves.erase(It); // Since the value may be morphed below. 680 } 681 682 // At this point we have a value which, first of all, is not a binary 683 // expression of the right kind, and secondly, is only used inside the 684 // expression. This means that it can safely be modified. See if we 685 // can usefully morph it into an expression of the right kind. 686 assert((!isa<Instruction>(Op) || 687 cast<Instruction>(Op)->getOpcode() != Opcode 688 || (isa<FPMathOperator>(Op) && 689 !cast<Instruction>(Op)->hasUnsafeAlgebra())) && 690 "Should have been handled above!"); 691 assert(Op->hasOneUse() && "Has uses outside the expression tree!"); 692 693 // If this is a multiply expression, turn any internal negations into 694 // multiplies by -1 so they can be reassociated. 695 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) 696 if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) || 697 (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) { 698 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO "); 699 BO = LowerNegateToMultiply(BO); 700 DEBUG(dbgs() << *BO << '\n'); 701 Worklist.push_back(std::make_pair(BO, Weight)); 702 Changed = true; 703 continue; 704 } 705 706 // Failed to morph into an expression of the right type. This really is 707 // a leaf. 708 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n"); 709 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?"); 710 LeafOrder.push_back(Op); 711 Leaves[Op] = Weight; 712 } 713 } 714 715 // The leaves, repeated according to their weights, represent the linearized 716 // form of the expression. 717 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) { 718 Value *V = LeafOrder[i]; 719 LeafMap::iterator It = Leaves.find(V); 720 if (It == Leaves.end()) 721 // Node initially thought to be a leaf wasn't. 722 continue; 723 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!"); 724 APInt Weight = It->second; 725 if (Weight.isMinValue()) 726 // Leaf already output or weight reduction eliminated it. 727 continue; 728 // Ensure the leaf is only output once. 729 It->second = 0; 730 Ops.push_back(std::make_pair(V, Weight)); 731 } 732 733 // For nilpotent operations or addition there may be no operands, for example 734 // because the expression was "X xor X" or consisted of 2^Bitwidth additions: 735 // in both cases the weight reduces to 0 causing the value to be skipped. 736 if (Ops.empty()) { 737 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType()); 738 assert(Identity && "Associative operation without identity!"); 739 Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1))); 740 } 741 742 return Changed; 743 } 744 745 // RewriteExprTree - Now that the operands for this expression tree are 746 // linearized and optimized, emit them in-order. 747 void Reassociate::RewriteExprTree(BinaryOperator *I, 748 SmallVectorImpl<ValueEntry> &Ops) { 749 assert(Ops.size() > 1 && "Single values should be used directly!"); 750 751 // Since our optimizations should never increase the number of operations, the 752 // new expression can usually be written reusing the existing binary operators 753 // from the original expression tree, without creating any new instructions, 754 // though the rewritten expression may have a completely different topology. 755 // We take care to not change anything if the new expression will be the same 756 // as the original. If more than trivial changes (like commuting operands) 757 // were made then we are obliged to clear out any optional subclass data like 758 // nsw flags. 759 760 /// NodesToRewrite - Nodes from the original expression available for writing 761 /// the new expression into. 762 SmallVector<BinaryOperator*, 8> NodesToRewrite; 763 unsigned Opcode = I->getOpcode(); 764 BinaryOperator *Op = I; 765 766 /// NotRewritable - The operands being written will be the leaves of the new 767 /// expression and must not be used as inner nodes (via NodesToRewrite) by 768 /// mistake. Inner nodes are always reassociable, and usually leaves are not 769 /// (if they were they would have been incorporated into the expression and so 770 /// would not be leaves), so most of the time there is no danger of this. But 771 /// in rare cases a leaf may become reassociable if an optimization kills uses 772 /// of it, or it may momentarily become reassociable during rewriting (below) 773 /// due it being removed as an operand of one of its uses. Ensure that misuse 774 /// of leaf nodes as inner nodes cannot occur by remembering all of the future 775 /// leaves and refusing to reuse any of them as inner nodes. 776 SmallPtrSet<Value*, 8> NotRewritable; 777 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 778 NotRewritable.insert(Ops[i].Op); 779 780 // ExpressionChanged - Non-null if the rewritten expression differs from the 781 // original in some non-trivial way, requiring the clearing of optional flags. 782 // Flags are cleared from the operator in ExpressionChanged up to I inclusive. 783 BinaryOperator *ExpressionChanged = nullptr; 784 for (unsigned i = 0; ; ++i) { 785 // The last operation (which comes earliest in the IR) is special as both 786 // operands will come from Ops, rather than just one with the other being 787 // a subexpression. 788 if (i+2 == Ops.size()) { 789 Value *NewLHS = Ops[i].Op; 790 Value *NewRHS = Ops[i+1].Op; 791 Value *OldLHS = Op->getOperand(0); 792 Value *OldRHS = Op->getOperand(1); 793 794 if (NewLHS == OldLHS && NewRHS == OldRHS) 795 // Nothing changed, leave it alone. 796 break; 797 798 if (NewLHS == OldRHS && NewRHS == OldLHS) { 799 // The order of the operands was reversed. Swap them. 800 DEBUG(dbgs() << "RA: " << *Op << '\n'); 801 Op->swapOperands(); 802 DEBUG(dbgs() << "TO: " << *Op << '\n'); 803 MadeChange = true; 804 ++NumChanged; 805 break; 806 } 807 808 // The new operation differs non-trivially from the original. Overwrite 809 // the old operands with the new ones. 810 DEBUG(dbgs() << "RA: " << *Op << '\n'); 811 if (NewLHS != OldLHS) { 812 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode); 813 if (BO && !NotRewritable.count(BO)) 814 NodesToRewrite.push_back(BO); 815 Op->setOperand(0, NewLHS); 816 } 817 if (NewRHS != OldRHS) { 818 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode); 819 if (BO && !NotRewritable.count(BO)) 820 NodesToRewrite.push_back(BO); 821 Op->setOperand(1, NewRHS); 822 } 823 DEBUG(dbgs() << "TO: " << *Op << '\n'); 824 825 ExpressionChanged = Op; 826 MadeChange = true; 827 ++NumChanged; 828 829 break; 830 } 831 832 // Not the last operation. The left-hand side will be a sub-expression 833 // while the right-hand side will be the current element of Ops. 834 Value *NewRHS = Ops[i].Op; 835 if (NewRHS != Op->getOperand(1)) { 836 DEBUG(dbgs() << "RA: " << *Op << '\n'); 837 if (NewRHS == Op->getOperand(0)) { 838 // The new right-hand side was already present as the left operand. If 839 // we are lucky then swapping the operands will sort out both of them. 840 Op->swapOperands(); 841 } else { 842 // Overwrite with the new right-hand side. 843 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode); 844 if (BO && !NotRewritable.count(BO)) 845 NodesToRewrite.push_back(BO); 846 Op->setOperand(1, NewRHS); 847 ExpressionChanged = Op; 848 } 849 DEBUG(dbgs() << "TO: " << *Op << '\n'); 850 MadeChange = true; 851 ++NumChanged; 852 } 853 854 // Now deal with the left-hand side. If this is already an operation node 855 // from the original expression then just rewrite the rest of the expression 856 // into it. 857 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode); 858 if (BO && !NotRewritable.count(BO)) { 859 Op = BO; 860 continue; 861 } 862 863 // Otherwise, grab a spare node from the original expression and use that as 864 // the left-hand side. If there are no nodes left then the optimizers made 865 // an expression with more nodes than the original! This usually means that 866 // they did something stupid but it might mean that the problem was just too 867 // hard (finding the mimimal number of multiplications needed to realize a 868 // multiplication expression is NP-complete). Whatever the reason, smart or 869 // stupid, create a new node if there are none left. 870 BinaryOperator *NewOp; 871 if (NodesToRewrite.empty()) { 872 Constant *Undef = UndefValue::get(I->getType()); 873 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode), 874 Undef, Undef, "", I); 875 if (NewOp->getType()->isFloatingPointTy()) 876 NewOp->setFastMathFlags(I->getFastMathFlags()); 877 } else { 878 NewOp = NodesToRewrite.pop_back_val(); 879 } 880 881 DEBUG(dbgs() << "RA: " << *Op << '\n'); 882 Op->setOperand(0, NewOp); 883 DEBUG(dbgs() << "TO: " << *Op << '\n'); 884 ExpressionChanged = Op; 885 MadeChange = true; 886 ++NumChanged; 887 Op = NewOp; 888 } 889 890 // If the expression changed non-trivially then clear out all subclass data 891 // starting from the operator specified in ExpressionChanged, and compactify 892 // the operators to just before the expression root to guarantee that the 893 // expression tree is dominated by all of Ops. 894 if (ExpressionChanged) 895 do { 896 // Preserve FastMathFlags. 897 if (isa<FPMathOperator>(I)) { 898 FastMathFlags Flags = I->getFastMathFlags(); 899 ExpressionChanged->clearSubclassOptionalData(); 900 ExpressionChanged->setFastMathFlags(Flags); 901 } else 902 ExpressionChanged->clearSubclassOptionalData(); 903 904 if (ExpressionChanged == I) 905 break; 906 ExpressionChanged->moveBefore(I); 907 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin()); 908 } while (1); 909 910 // Throw away any left over nodes from the original expression. 911 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i) 912 RedoInsts.insert(NodesToRewrite[i]); 913 } 914 915 /// NegateValue - Insert instructions before the instruction pointed to by BI, 916 /// that computes the negative version of the value specified. The negative 917 /// version of the value is returned, and BI is left pointing at the instruction 918 /// that should be processed next by the reassociation pass. 919 static Value *NegateValue(Value *V, Instruction *BI) { 920 if (Constant *C = dyn_cast<Constant>(V)) { 921 if (C->getType()->isFPOrFPVectorTy()) { 922 return ConstantExpr::getFNeg(C); 923 } 924 return ConstantExpr::getNeg(C); 925 } 926 927 928 // We are trying to expose opportunity for reassociation. One of the things 929 // that we want to do to achieve this is to push a negation as deep into an 930 // expression chain as possible, to expose the add instructions. In practice, 931 // this means that we turn this: 932 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D 933 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate 934 // the constants. We assume that instcombine will clean up the mess later if 935 // we introduce tons of unnecessary negation instructions. 936 // 937 if (BinaryOperator *I = 938 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) { 939 // Push the negates through the add. 940 I->setOperand(0, NegateValue(I->getOperand(0), BI)); 941 I->setOperand(1, NegateValue(I->getOperand(1), BI)); 942 943 // We must move the add instruction here, because the neg instructions do 944 // not dominate the old add instruction in general. By moving it, we are 945 // assured that the neg instructions we just inserted dominate the 946 // instruction we are about to insert after them. 947 // 948 I->moveBefore(BI); 949 I->setName(I->getName()+".neg"); 950 return I; 951 } 952 953 // Okay, we need to materialize a negated version of V with an instruction. 954 // Scan the use lists of V to see if we have one already. 955 for (User *U : V->users()) { 956 if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U)) 957 continue; 958 959 // We found one! Now we have to make sure that the definition dominates 960 // this use. We do this by moving it to the entry block (if it is a 961 // non-instruction value) or right after the definition. These negates will 962 // be zapped by reassociate later, so we don't need much finesse here. 963 BinaryOperator *TheNeg = cast<BinaryOperator>(U); 964 965 // Verify that the negate is in this function, V might be a constant expr. 966 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent()) 967 continue; 968 969 BasicBlock::iterator InsertPt; 970 if (Instruction *InstInput = dyn_cast<Instruction>(V)) { 971 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) { 972 InsertPt = II->getNormalDest()->begin(); 973 } else { 974 InsertPt = InstInput; 975 ++InsertPt; 976 } 977 while (isa<PHINode>(InsertPt)) ++InsertPt; 978 } else { 979 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin(); 980 } 981 TheNeg->moveBefore(InsertPt); 982 return TheNeg; 983 } 984 985 // Insert a 'neg' instruction that subtracts the value from zero to get the 986 // negation. 987 return CreateNeg(V, V->getName() + ".neg", BI, BI); 988 } 989 990 /// ShouldBreakUpSubtract - Return true if we should break up this subtract of 991 /// X-Y into (X + -Y). 992 static bool ShouldBreakUpSubtract(Instruction *Sub) { 993 // If this is a negation, we can't split it up! 994 if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub)) 995 return false; 996 997 // Don't breakup X - undef. 998 if (isa<UndefValue>(Sub->getOperand(1))) 999 return false; 1000 1001 // Don't bother to break this up unless either the LHS is an associable add or 1002 // subtract or if this is only used by one. 1003 Value *V0 = Sub->getOperand(0); 1004 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) || 1005 isReassociableOp(V0, Instruction::Sub, Instruction::FSub)) 1006 return true; 1007 Value *V1 = Sub->getOperand(1); 1008 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) || 1009 isReassociableOp(V1, Instruction::Sub, Instruction::FSub)) 1010 return true; 1011 Value *VB = Sub->user_back(); 1012 if (Sub->hasOneUse() && 1013 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) || 1014 isReassociableOp(VB, Instruction::Sub, Instruction::FSub))) 1015 return true; 1016 1017 return false; 1018 } 1019 1020 /// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is 1021 /// only used by an add, transform this into (X+(0-Y)) to promote better 1022 /// reassociation. 1023 static BinaryOperator *BreakUpSubtract(Instruction *Sub) { 1024 // Convert a subtract into an add and a neg instruction. This allows sub 1025 // instructions to be commuted with other add instructions. 1026 // 1027 // Calculate the negative value of Operand 1 of the sub instruction, 1028 // and set it as the RHS of the add instruction we just made. 1029 // 1030 Value *NegVal = NegateValue(Sub->getOperand(1), Sub); 1031 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub); 1032 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op. 1033 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op. 1034 New->takeName(Sub); 1035 1036 // Everyone now refers to the add instruction. 1037 Sub->replaceAllUsesWith(New); 1038 New->setDebugLoc(Sub->getDebugLoc()); 1039 1040 DEBUG(dbgs() << "Negated: " << *New << '\n'); 1041 return New; 1042 } 1043 1044 /// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used 1045 /// by one, change this into a multiply by a constant to assist with further 1046 /// reassociation. 1047 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) { 1048 Constant *MulCst = ConstantInt::get(Shl->getType(), 1); 1049 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1))); 1050 1051 BinaryOperator *Mul = 1052 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl); 1053 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op. 1054 Mul->takeName(Shl); 1055 1056 // Everyone now refers to the mul instruction. 1057 Shl->replaceAllUsesWith(Mul); 1058 Mul->setDebugLoc(Shl->getDebugLoc()); 1059 1060 // We can safely preserve the nuw flag in all cases. It's also safe to turn a 1061 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special 1062 // handling. 1063 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap(); 1064 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap(); 1065 if (NSW && NUW) 1066 Mul->setHasNoSignedWrap(true); 1067 Mul->setHasNoUnsignedWrap(NUW); 1068 return Mul; 1069 } 1070 1071 /// FindInOperandList - Scan backwards and forwards among values with the same 1072 /// rank as element i to see if X exists. If X does not exist, return i. This 1073 /// is useful when scanning for 'x' when we see '-x' because they both get the 1074 /// same rank. 1075 static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i, 1076 Value *X) { 1077 unsigned XRank = Ops[i].Rank; 1078 unsigned e = Ops.size(); 1079 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) { 1080 if (Ops[j].Op == X) 1081 return j; 1082 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 1083 if (Instruction *I2 = dyn_cast<Instruction>(X)) 1084 if (I1->isIdenticalTo(I2)) 1085 return j; 1086 } 1087 // Scan backwards. 1088 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) { 1089 if (Ops[j].Op == X) 1090 return j; 1091 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 1092 if (Instruction *I2 = dyn_cast<Instruction>(X)) 1093 if (I1->isIdenticalTo(I2)) 1094 return j; 1095 } 1096 return i; 1097 } 1098 1099 /// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together 1100 /// and returning the result. Insert the tree before I. 1101 static Value *EmitAddTreeOfValues(Instruction *I, 1102 SmallVectorImpl<WeakVH> &Ops){ 1103 if (Ops.size() == 1) return Ops.back(); 1104 1105 Value *V1 = Ops.back(); 1106 Ops.pop_back(); 1107 Value *V2 = EmitAddTreeOfValues(I, Ops); 1108 return CreateAdd(V2, V1, "tmp", I, I); 1109 } 1110 1111 /// RemoveFactorFromExpression - If V is an expression tree that is a 1112 /// multiplication sequence, and if this sequence contains a multiply by Factor, 1113 /// remove Factor from the tree and return the new tree. 1114 Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) { 1115 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1116 if (!BO) 1117 return nullptr; 1118 1119 SmallVector<RepeatedValue, 8> Tree; 1120 MadeChange |= LinearizeExprTree(BO, Tree); 1121 SmallVector<ValueEntry, 8> Factors; 1122 Factors.reserve(Tree.size()); 1123 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 1124 RepeatedValue E = Tree[i]; 1125 Factors.append(E.second.getZExtValue(), 1126 ValueEntry(getRank(E.first), E.first)); 1127 } 1128 1129 bool FoundFactor = false; 1130 bool NeedsNegate = false; 1131 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1132 if (Factors[i].Op == Factor) { 1133 FoundFactor = true; 1134 Factors.erase(Factors.begin()+i); 1135 break; 1136 } 1137 1138 // If this is a negative version of this factor, remove it. 1139 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) { 1140 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op)) 1141 if (FC1->getValue() == -FC2->getValue()) { 1142 FoundFactor = NeedsNegate = true; 1143 Factors.erase(Factors.begin()+i); 1144 break; 1145 } 1146 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) { 1147 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) { 1148 APFloat F1(FC1->getValueAPF()); 1149 APFloat F2(FC2->getValueAPF()); 1150 F2.changeSign(); 1151 if (F1.compare(F2) == APFloat::cmpEqual) { 1152 FoundFactor = NeedsNegate = true; 1153 Factors.erase(Factors.begin() + i); 1154 break; 1155 } 1156 } 1157 } 1158 } 1159 1160 if (!FoundFactor) { 1161 // Make sure to restore the operands to the expression tree. 1162 RewriteExprTree(BO, Factors); 1163 return nullptr; 1164 } 1165 1166 BasicBlock::iterator InsertPt = BO; ++InsertPt; 1167 1168 // If this was just a single multiply, remove the multiply and return the only 1169 // remaining operand. 1170 if (Factors.size() == 1) { 1171 RedoInsts.insert(BO); 1172 V = Factors[0].Op; 1173 } else { 1174 RewriteExprTree(BO, Factors); 1175 V = BO; 1176 } 1177 1178 if (NeedsNegate) 1179 V = CreateNeg(V, "neg", InsertPt, BO); 1180 1181 return V; 1182 } 1183 1184 /// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively 1185 /// add its operands as factors, otherwise add V to the list of factors. 1186 /// 1187 /// Ops is the top-level list of add operands we're trying to factor. 1188 static void FindSingleUseMultiplyFactors(Value *V, 1189 SmallVectorImpl<Value*> &Factors, 1190 const SmallVectorImpl<ValueEntry> &Ops) { 1191 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1192 if (!BO) { 1193 Factors.push_back(V); 1194 return; 1195 } 1196 1197 // Otherwise, add the LHS and RHS to the list of factors. 1198 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops); 1199 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops); 1200 } 1201 1202 /// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor' 1203 /// instruction. This optimizes based on identities. If it can be reduced to 1204 /// a single Value, it is returned, otherwise the Ops list is mutated as 1205 /// necessary. 1206 static Value *OptimizeAndOrXor(unsigned Opcode, 1207 SmallVectorImpl<ValueEntry> &Ops) { 1208 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs. 1209 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1. 1210 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1211 // First, check for X and ~X in the operand list. 1212 assert(i < Ops.size()); 1213 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^. 1214 Value *X = BinaryOperator::getNotArgument(Ops[i].Op); 1215 unsigned FoundX = FindInOperandList(Ops, i, X); 1216 if (FoundX != i) { 1217 if (Opcode == Instruction::And) // ...&X&~X = 0 1218 return Constant::getNullValue(X->getType()); 1219 1220 if (Opcode == Instruction::Or) // ...|X|~X = -1 1221 return Constant::getAllOnesValue(X->getType()); 1222 } 1223 } 1224 1225 // Next, check for duplicate pairs of values, which we assume are next to 1226 // each other, due to our sorting criteria. 1227 assert(i < Ops.size()); 1228 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) { 1229 if (Opcode == Instruction::And || Opcode == Instruction::Or) { 1230 // Drop duplicate values for And and Or. 1231 Ops.erase(Ops.begin()+i); 1232 --i; --e; 1233 ++NumAnnihil; 1234 continue; 1235 } 1236 1237 // Drop pairs of values for Xor. 1238 assert(Opcode == Instruction::Xor); 1239 if (e == 2) 1240 return Constant::getNullValue(Ops[0].Op->getType()); 1241 1242 // Y ^ X^X -> Y 1243 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1244 i -= 1; e -= 2; 1245 ++NumAnnihil; 1246 } 1247 } 1248 return nullptr; 1249 } 1250 1251 /// Helper funciton of CombineXorOpnd(). It creates a bitwise-and 1252 /// instruction with the given two operands, and return the resulting 1253 /// instruction. There are two special cases: 1) if the constant operand is 0, 1254 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will 1255 /// be returned. 1256 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd, 1257 const APInt &ConstOpnd) { 1258 if (ConstOpnd != 0) { 1259 if (!ConstOpnd.isAllOnesValue()) { 1260 LLVMContext &Ctx = Opnd->getType()->getContext(); 1261 Instruction *I; 1262 I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd), 1263 "and.ra", InsertBefore); 1264 I->setDebugLoc(InsertBefore->getDebugLoc()); 1265 return I; 1266 } 1267 return Opnd; 1268 } 1269 return nullptr; 1270 } 1271 1272 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd" 1273 // into "R ^ C", where C would be 0, and R is a symbolic value. 1274 // 1275 // If it was successful, true is returned, and the "R" and "C" is returned 1276 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned, 1277 // and both "Res" and "ConstOpnd" remain unchanged. 1278 // 1279 bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1280 APInt &ConstOpnd, Value *&Res) { 1281 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2 1282 // = ((x | c1) ^ c1) ^ (c1 ^ c2) 1283 // = (x & ~c1) ^ (c1 ^ c2) 1284 // It is useful only when c1 == c2. 1285 if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) { 1286 if (!Opnd1->getValue()->hasOneUse()) 1287 return false; 1288 1289 const APInt &C1 = Opnd1->getConstPart(); 1290 if (C1 != ConstOpnd) 1291 return false; 1292 1293 Value *X = Opnd1->getSymbolicPart(); 1294 Res = createAndInstr(I, X, ~C1); 1295 // ConstOpnd was C2, now C1 ^ C2. 1296 ConstOpnd ^= C1; 1297 1298 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1299 RedoInsts.insert(T); 1300 return true; 1301 } 1302 return false; 1303 } 1304 1305 1306 // Helper function of OptimizeXor(). It tries to simplify 1307 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a 1308 // symbolic value. 1309 // 1310 // If it was successful, true is returned, and the "R" and "C" is returned 1311 // via "Res" and "ConstOpnd", respectively (If the entire expression is 1312 // evaluated to a constant, the Res is set to NULL); otherwise, false is 1313 // returned, and both "Res" and "ConstOpnd" remain unchanged. 1314 bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2, 1315 APInt &ConstOpnd, Value *&Res) { 1316 Value *X = Opnd1->getSymbolicPart(); 1317 if (X != Opnd2->getSymbolicPart()) 1318 return false; 1319 1320 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.) 1321 int DeadInstNum = 1; 1322 if (Opnd1->getValue()->hasOneUse()) 1323 DeadInstNum++; 1324 if (Opnd2->getValue()->hasOneUse()) 1325 DeadInstNum++; 1326 1327 // Xor-Rule 2: 1328 // (x | c1) ^ (x & c2) 1329 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1 1330 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1 1331 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3 1332 // 1333 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) { 1334 if (Opnd2->isOrExpr()) 1335 std::swap(Opnd1, Opnd2); 1336 1337 const APInt &C1 = Opnd1->getConstPart(); 1338 const APInt &C2 = Opnd2->getConstPart(); 1339 APInt C3((~C1) ^ C2); 1340 1341 // Do not increase code size! 1342 if (C3 != 0 && !C3.isAllOnesValue()) { 1343 int NewInstNum = ConstOpnd != 0 ? 1 : 2; 1344 if (NewInstNum > DeadInstNum) 1345 return false; 1346 } 1347 1348 Res = createAndInstr(I, X, C3); 1349 ConstOpnd ^= C1; 1350 1351 } else if (Opnd1->isOrExpr()) { 1352 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2 1353 // 1354 const APInt &C1 = Opnd1->getConstPart(); 1355 const APInt &C2 = Opnd2->getConstPart(); 1356 APInt C3 = C1 ^ C2; 1357 1358 // Do not increase code size 1359 if (C3 != 0 && !C3.isAllOnesValue()) { 1360 int NewInstNum = ConstOpnd != 0 ? 1 : 2; 1361 if (NewInstNum > DeadInstNum) 1362 return false; 1363 } 1364 1365 Res = createAndInstr(I, X, C3); 1366 ConstOpnd ^= C3; 1367 } else { 1368 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2)) 1369 // 1370 const APInt &C1 = Opnd1->getConstPart(); 1371 const APInt &C2 = Opnd2->getConstPart(); 1372 APInt C3 = C1 ^ C2; 1373 Res = createAndInstr(I, X, C3); 1374 } 1375 1376 // Put the original operands in the Redo list; hope they will be deleted 1377 // as dead code. 1378 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1379 RedoInsts.insert(T); 1380 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue())) 1381 RedoInsts.insert(T); 1382 1383 return true; 1384 } 1385 1386 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced 1387 /// to a single Value, it is returned, otherwise the Ops list is mutated as 1388 /// necessary. 1389 Value *Reassociate::OptimizeXor(Instruction *I, 1390 SmallVectorImpl<ValueEntry> &Ops) { 1391 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops)) 1392 return V; 1393 1394 if (Ops.size() == 1) 1395 return nullptr; 1396 1397 SmallVector<XorOpnd, 8> Opnds; 1398 SmallVector<XorOpnd*, 8> OpndPtrs; 1399 Type *Ty = Ops[0].Op->getType(); 1400 APInt ConstOpnd(Ty->getIntegerBitWidth(), 0); 1401 1402 // Step 1: Convert ValueEntry to XorOpnd 1403 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1404 Value *V = Ops[i].Op; 1405 if (!isa<ConstantInt>(V)) { 1406 XorOpnd O(V); 1407 O.setSymbolicRank(getRank(O.getSymbolicPart())); 1408 Opnds.push_back(O); 1409 } else 1410 ConstOpnd ^= cast<ConstantInt>(V)->getValue(); 1411 } 1412 1413 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds". 1414 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate 1415 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop 1416 // with the previous loop --- the iterator of the "Opnds" may be invalidated 1417 // when new elements are added to the vector. 1418 for (unsigned i = 0, e = Opnds.size(); i != e; ++i) 1419 OpndPtrs.push_back(&Opnds[i]); 1420 1421 // Step 2: Sort the Xor-Operands in a way such that the operands containing 1422 // the same symbolic value cluster together. For instance, the input operand 1423 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into: 1424 // ("x | 123", "x & 789", "y & 456"). 1425 std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor()); 1426 1427 // Step 3: Combine adjacent operands 1428 XorOpnd *PrevOpnd = nullptr; 1429 bool Changed = false; 1430 for (unsigned i = 0, e = Opnds.size(); i < e; i++) { 1431 XorOpnd *CurrOpnd = OpndPtrs[i]; 1432 // The combined value 1433 Value *CV; 1434 1435 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd" 1436 if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) { 1437 Changed = true; 1438 if (CV) 1439 *CurrOpnd = XorOpnd(CV); 1440 else { 1441 CurrOpnd->Invalidate(); 1442 continue; 1443 } 1444 } 1445 1446 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) { 1447 PrevOpnd = CurrOpnd; 1448 continue; 1449 } 1450 1451 // step 3.2: When previous and current operands share the same symbolic 1452 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd" 1453 // 1454 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) { 1455 // Remove previous operand 1456 PrevOpnd->Invalidate(); 1457 if (CV) { 1458 *CurrOpnd = XorOpnd(CV); 1459 PrevOpnd = CurrOpnd; 1460 } else { 1461 CurrOpnd->Invalidate(); 1462 PrevOpnd = nullptr; 1463 } 1464 Changed = true; 1465 } 1466 } 1467 1468 // Step 4: Reassemble the Ops 1469 if (Changed) { 1470 Ops.clear(); 1471 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) { 1472 XorOpnd &O = Opnds[i]; 1473 if (O.isInvalid()) 1474 continue; 1475 ValueEntry VE(getRank(O.getValue()), O.getValue()); 1476 Ops.push_back(VE); 1477 } 1478 if (ConstOpnd != 0) { 1479 Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd); 1480 ValueEntry VE(getRank(C), C); 1481 Ops.push_back(VE); 1482 } 1483 int Sz = Ops.size(); 1484 if (Sz == 1) 1485 return Ops.back().Op; 1486 else if (Sz == 0) { 1487 assert(ConstOpnd == 0); 1488 return ConstantInt::get(Ty->getContext(), ConstOpnd); 1489 } 1490 } 1491 1492 return nullptr; 1493 } 1494 1495 /// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This 1496 /// optimizes based on identities. If it can be reduced to a single Value, it 1497 /// is returned, otherwise the Ops list is mutated as necessary. 1498 Value *Reassociate::OptimizeAdd(Instruction *I, 1499 SmallVectorImpl<ValueEntry> &Ops) { 1500 // Scan the operand lists looking for X and -X pairs. If we find any, we 1501 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it, 1502 // scan for any 1503 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z. 1504 1505 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1506 Value *TheOp = Ops[i].Op; 1507 // Check to see if we've seen this operand before. If so, we factor all 1508 // instances of the operand together. Due to our sorting criteria, we know 1509 // that these need to be next to each other in the vector. 1510 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) { 1511 // Rescan the list, remove all instances of this operand from the expr. 1512 unsigned NumFound = 0; 1513 do { 1514 Ops.erase(Ops.begin()+i); 1515 ++NumFound; 1516 } while (i != Ops.size() && Ops[i].Op == TheOp); 1517 1518 DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n'); 1519 ++NumFactor; 1520 1521 // Insert a new multiply. 1522 Type *Ty = TheOp->getType(); 1523 Constant *C = Ty->isIntegerTy() ? ConstantInt::get(Ty, NumFound) 1524 : ConstantFP::get(Ty, NumFound); 1525 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I); 1526 1527 // Now that we have inserted a multiply, optimize it. This allows us to 1528 // handle cases that require multiple factoring steps, such as this: 1529 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6 1530 RedoInsts.insert(Mul); 1531 1532 // If every add operand was a duplicate, return the multiply. 1533 if (Ops.empty()) 1534 return Mul; 1535 1536 // Otherwise, we had some input that didn't have the dupe, such as 1537 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of 1538 // things being added by this operation. 1539 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul)); 1540 1541 --i; 1542 e = Ops.size(); 1543 continue; 1544 } 1545 1546 // Check for X and -X or X and ~X in the operand list. 1547 if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) && 1548 !BinaryOperator::isNot(TheOp)) 1549 continue; 1550 1551 Value *X = nullptr; 1552 if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)) 1553 X = BinaryOperator::getNegArgument(TheOp); 1554 else if (BinaryOperator::isNot(TheOp)) 1555 X = BinaryOperator::getNotArgument(TheOp); 1556 1557 unsigned FoundX = FindInOperandList(Ops, i, X); 1558 if (FoundX == i) 1559 continue; 1560 1561 // Remove X and -X from the operand list. 1562 if (Ops.size() == 2 && 1563 (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))) 1564 return Constant::getNullValue(X->getType()); 1565 1566 // Remove X and ~X from the operand list. 1567 if (Ops.size() == 2 && BinaryOperator::isNot(TheOp)) 1568 return Constant::getAllOnesValue(X->getType()); 1569 1570 Ops.erase(Ops.begin()+i); 1571 if (i < FoundX) 1572 --FoundX; 1573 else 1574 --i; // Need to back up an extra one. 1575 Ops.erase(Ops.begin()+FoundX); 1576 ++NumAnnihil; 1577 --i; // Revisit element. 1578 e -= 2; // Removed two elements. 1579 1580 // if X and ~X we append -1 to the operand list. 1581 if (BinaryOperator::isNot(TheOp)) { 1582 Value *V = Constant::getAllOnesValue(X->getType()); 1583 Ops.insert(Ops.end(), ValueEntry(getRank(V), V)); 1584 e += 1; 1585 } 1586 } 1587 1588 // Scan the operand list, checking to see if there are any common factors 1589 // between operands. Consider something like A*A+A*B*C+D. We would like to 1590 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies. 1591 // To efficiently find this, we count the number of times a factor occurs 1592 // for any ADD operands that are MULs. 1593 DenseMap<Value*, unsigned> FactorOccurrences; 1594 1595 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4) 1596 // where they are actually the same multiply. 1597 unsigned MaxOcc = 0; 1598 Value *MaxOccVal = nullptr; 1599 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1600 BinaryOperator *BOp = 1601 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1602 if (!BOp) 1603 continue; 1604 1605 // Compute all of the factors of this added value. 1606 SmallVector<Value*, 8> Factors; 1607 FindSingleUseMultiplyFactors(BOp, Factors, Ops); 1608 assert(Factors.size() > 1 && "Bad linearize!"); 1609 1610 // Add one to FactorOccurrences for each unique factor in this op. 1611 SmallPtrSet<Value*, 8> Duplicates; 1612 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1613 Value *Factor = Factors[i]; 1614 if (!Duplicates.insert(Factor).second) 1615 continue; 1616 1617 unsigned Occ = ++FactorOccurrences[Factor]; 1618 if (Occ > MaxOcc) { 1619 MaxOcc = Occ; 1620 MaxOccVal = Factor; 1621 } 1622 1623 // If Factor is a negative constant, add the negated value as a factor 1624 // because we can percolate the negate out. Watch for minint, which 1625 // cannot be positivified. 1626 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) { 1627 if (CI->isNegative() && !CI->isMinValue(true)) { 1628 Factor = ConstantInt::get(CI->getContext(), -CI->getValue()); 1629 assert(!Duplicates.count(Factor) && 1630 "Shouldn't have two constant factors, missed a canonicalize"); 1631 unsigned Occ = ++FactorOccurrences[Factor]; 1632 if (Occ > MaxOcc) { 1633 MaxOcc = Occ; 1634 MaxOccVal = Factor; 1635 } 1636 } 1637 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) { 1638 if (CF->isNegative()) { 1639 APFloat F(CF->getValueAPF()); 1640 F.changeSign(); 1641 Factor = ConstantFP::get(CF->getContext(), F); 1642 assert(!Duplicates.count(Factor) && 1643 "Shouldn't have two constant factors, missed a canonicalize"); 1644 unsigned Occ = ++FactorOccurrences[Factor]; 1645 if (Occ > MaxOcc) { 1646 MaxOcc = Occ; 1647 MaxOccVal = Factor; 1648 } 1649 } 1650 } 1651 } 1652 } 1653 1654 // If any factor occurred more than one time, we can pull it out. 1655 if (MaxOcc > 1) { 1656 DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n'); 1657 ++NumFactor; 1658 1659 // Create a new instruction that uses the MaxOccVal twice. If we don't do 1660 // this, we could otherwise run into situations where removing a factor 1661 // from an expression will drop a use of maxocc, and this can cause 1662 // RemoveFactorFromExpression on successive values to behave differently. 1663 Instruction *DummyInst = 1664 I->getType()->isIntegerTy() 1665 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal) 1666 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal); 1667 1668 SmallVector<WeakVH, 4> NewMulOps; 1669 for (unsigned i = 0; i != Ops.size(); ++i) { 1670 // Only try to remove factors from expressions we're allowed to. 1671 BinaryOperator *BOp = 1672 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1673 if (!BOp) 1674 continue; 1675 1676 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) { 1677 // The factorized operand may occur several times. Convert them all in 1678 // one fell swoop. 1679 for (unsigned j = Ops.size(); j != i;) { 1680 --j; 1681 if (Ops[j].Op == Ops[i].Op) { 1682 NewMulOps.push_back(V); 1683 Ops.erase(Ops.begin()+j); 1684 } 1685 } 1686 --i; 1687 } 1688 } 1689 1690 // No need for extra uses anymore. 1691 delete DummyInst; 1692 1693 unsigned NumAddedValues = NewMulOps.size(); 1694 Value *V = EmitAddTreeOfValues(I, NewMulOps); 1695 1696 // Now that we have inserted the add tree, optimize it. This allows us to 1697 // handle cases that require multiple factoring steps, such as this: 1698 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C)) 1699 assert(NumAddedValues > 1 && "Each occurrence should contribute a value"); 1700 (void)NumAddedValues; 1701 if (Instruction *VI = dyn_cast<Instruction>(V)) 1702 RedoInsts.insert(VI); 1703 1704 // Create the multiply. 1705 Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I); 1706 1707 // Rerun associate on the multiply in case the inner expression turned into 1708 // a multiply. We want to make sure that we keep things in canonical form. 1709 RedoInsts.insert(V2); 1710 1711 // If every add operand included the factor (e.g. "A*B + A*C"), then the 1712 // entire result expression is just the multiply "A*(B+C)". 1713 if (Ops.empty()) 1714 return V2; 1715 1716 // Otherwise, we had some input that didn't have the factor, such as 1717 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of 1718 // things being added by this operation. 1719 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2)); 1720 } 1721 1722 return nullptr; 1723 } 1724 1725 /// \brief Build up a vector of value/power pairs factoring a product. 1726 /// 1727 /// Given a series of multiplication operands, build a vector of factors and 1728 /// the powers each is raised to when forming the final product. Sort them in 1729 /// the order of descending power. 1730 /// 1731 /// (x*x) -> [(x, 2)] 1732 /// ((x*x)*x) -> [(x, 3)] 1733 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)] 1734 /// 1735 /// \returns Whether any factors have a power greater than one. 1736 bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, 1737 SmallVectorImpl<Factor> &Factors) { 1738 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this. 1739 // Compute the sum of powers of simplifiable factors. 1740 unsigned FactorPowerSum = 0; 1741 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) { 1742 Value *Op = Ops[Idx-1].Op; 1743 1744 // Count the number of occurrences of this value. 1745 unsigned Count = 1; 1746 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx) 1747 ++Count; 1748 // Track for simplification all factors which occur 2 or more times. 1749 if (Count > 1) 1750 FactorPowerSum += Count; 1751 } 1752 1753 // We can only simplify factors if the sum of the powers of our simplifiable 1754 // factors is 4 or higher. When that is the case, we will *always* have 1755 // a simplification. This is an important invariant to prevent cyclicly 1756 // trying to simplify already minimal formations. 1757 if (FactorPowerSum < 4) 1758 return false; 1759 1760 // Now gather the simplifiable factors, removing them from Ops. 1761 FactorPowerSum = 0; 1762 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) { 1763 Value *Op = Ops[Idx-1].Op; 1764 1765 // Count the number of occurrences of this value. 1766 unsigned Count = 1; 1767 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx) 1768 ++Count; 1769 if (Count == 1) 1770 continue; 1771 // Move an even number of occurrences to Factors. 1772 Count &= ~1U; 1773 Idx -= Count; 1774 FactorPowerSum += Count; 1775 Factors.push_back(Factor(Op, Count)); 1776 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count); 1777 } 1778 1779 // None of the adjustments above should have reduced the sum of factor powers 1780 // below our mininum of '4'. 1781 assert(FactorPowerSum >= 4); 1782 1783 std::stable_sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter()); 1784 return true; 1785 } 1786 1787 /// \brief Build a tree of multiplies, computing the product of Ops. 1788 static Value *buildMultiplyTree(IRBuilder<> &Builder, 1789 SmallVectorImpl<Value*> &Ops) { 1790 if (Ops.size() == 1) 1791 return Ops.back(); 1792 1793 Value *LHS = Ops.pop_back_val(); 1794 do { 1795 if (LHS->getType()->isIntegerTy()) 1796 LHS = Builder.CreateMul(LHS, Ops.pop_back_val()); 1797 else 1798 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val()); 1799 } while (!Ops.empty()); 1800 1801 return LHS; 1802 } 1803 1804 /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*... 1805 /// 1806 /// Given a vector of values raised to various powers, where no two values are 1807 /// equal and the powers are sorted in decreasing order, compute the minimal 1808 /// DAG of multiplies to compute the final product, and return that product 1809 /// value. 1810 Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder, 1811 SmallVectorImpl<Factor> &Factors) { 1812 assert(Factors[0].Power); 1813 SmallVector<Value *, 4> OuterProduct; 1814 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size(); 1815 Idx < Size && Factors[Idx].Power > 0; ++Idx) { 1816 if (Factors[Idx].Power != Factors[LastIdx].Power) { 1817 LastIdx = Idx; 1818 continue; 1819 } 1820 1821 // We want to multiply across all the factors with the same power so that 1822 // we can raise them to that power as a single entity. Build a mini tree 1823 // for that. 1824 SmallVector<Value *, 4> InnerProduct; 1825 InnerProduct.push_back(Factors[LastIdx].Base); 1826 do { 1827 InnerProduct.push_back(Factors[Idx].Base); 1828 ++Idx; 1829 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power); 1830 1831 // Reset the base value of the first factor to the new expression tree. 1832 // We'll remove all the factors with the same power in a second pass. 1833 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct); 1834 if (Instruction *MI = dyn_cast<Instruction>(M)) 1835 RedoInsts.insert(MI); 1836 1837 LastIdx = Idx; 1838 } 1839 // Unique factors with equal powers -- we've folded them into the first one's 1840 // base. 1841 Factors.erase(std::unique(Factors.begin(), Factors.end(), 1842 Factor::PowerEqual()), 1843 Factors.end()); 1844 1845 // Iteratively collect the base of each factor with an add power into the 1846 // outer product, and halve each power in preparation for squaring the 1847 // expression. 1848 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) { 1849 if (Factors[Idx].Power & 1) 1850 OuterProduct.push_back(Factors[Idx].Base); 1851 Factors[Idx].Power >>= 1; 1852 } 1853 if (Factors[0].Power) { 1854 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors); 1855 OuterProduct.push_back(SquareRoot); 1856 OuterProduct.push_back(SquareRoot); 1857 } 1858 if (OuterProduct.size() == 1) 1859 return OuterProduct.front(); 1860 1861 Value *V = buildMultiplyTree(Builder, OuterProduct); 1862 return V; 1863 } 1864 1865 Value *Reassociate::OptimizeMul(BinaryOperator *I, 1866 SmallVectorImpl<ValueEntry> &Ops) { 1867 // We can only optimize the multiplies when there is a chain of more than 1868 // three, such that a balanced tree might require fewer total multiplies. 1869 if (Ops.size() < 4) 1870 return nullptr; 1871 1872 // Try to turn linear trees of multiplies without other uses of the 1873 // intermediate stages into minimal multiply DAGs with perfect sub-expression 1874 // re-use. 1875 SmallVector<Factor, 4> Factors; 1876 if (!collectMultiplyFactors(Ops, Factors)) 1877 return nullptr; // All distinct factors, so nothing left for us to do. 1878 1879 IRBuilder<> Builder(I); 1880 Value *V = buildMinimalMultiplyDAG(Builder, Factors); 1881 if (Ops.empty()) 1882 return V; 1883 1884 ValueEntry NewEntry = ValueEntry(getRank(V), V); 1885 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry); 1886 return nullptr; 1887 } 1888 1889 Value *Reassociate::OptimizeExpression(BinaryOperator *I, 1890 SmallVectorImpl<ValueEntry> &Ops) { 1891 // Now that we have the linearized expression tree, try to optimize it. 1892 // Start by folding any constants that we found. 1893 Constant *Cst = nullptr; 1894 unsigned Opcode = I->getOpcode(); 1895 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) { 1896 Constant *C = cast<Constant>(Ops.pop_back_val().Op); 1897 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C; 1898 } 1899 // If there was nothing but constants then we are done. 1900 if (Ops.empty()) 1901 return Cst; 1902 1903 // Put the combined constant back at the end of the operand list, except if 1904 // there is no point. For example, an add of 0 gets dropped here, while a 1905 // multiplication by zero turns the whole expression into zero. 1906 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) { 1907 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType())) 1908 return Cst; 1909 Ops.push_back(ValueEntry(0, Cst)); 1910 } 1911 1912 if (Ops.size() == 1) return Ops[0].Op; 1913 1914 // Handle destructive annihilation due to identities between elements in the 1915 // argument list here. 1916 unsigned NumOps = Ops.size(); 1917 switch (Opcode) { 1918 default: break; 1919 case Instruction::And: 1920 case Instruction::Or: 1921 if (Value *Result = OptimizeAndOrXor(Opcode, Ops)) 1922 return Result; 1923 break; 1924 1925 case Instruction::Xor: 1926 if (Value *Result = OptimizeXor(I, Ops)) 1927 return Result; 1928 break; 1929 1930 case Instruction::Add: 1931 case Instruction::FAdd: 1932 if (Value *Result = OptimizeAdd(I, Ops)) 1933 return Result; 1934 break; 1935 1936 case Instruction::Mul: 1937 case Instruction::FMul: 1938 if (Value *Result = OptimizeMul(I, Ops)) 1939 return Result; 1940 break; 1941 } 1942 1943 if (Ops.size() != NumOps) 1944 return OptimizeExpression(I, Ops); 1945 return nullptr; 1946 } 1947 1948 /// EraseInst - Zap the given instruction, adding interesting operands to the 1949 /// work list. 1950 void Reassociate::EraseInst(Instruction *I) { 1951 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1952 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 1953 // Erase the dead instruction. 1954 ValueRankMap.erase(I); 1955 RedoInsts.remove(I); 1956 I->eraseFromParent(); 1957 // Optimize its operands. 1958 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes. 1959 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1960 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) { 1961 // If this is a node in an expression tree, climb to the expression root 1962 // and add that since that's where optimization actually happens. 1963 unsigned Opcode = Op->getOpcode(); 1964 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode && 1965 Visited.insert(Op).second) 1966 Op = Op->user_back(); 1967 RedoInsts.insert(Op); 1968 } 1969 } 1970 1971 // Canonicalize expressions of the following form: 1972 // x + (-Constant * y) -> x - (Constant * y) 1973 // x - (-Constant * y) -> x + (Constant * y) 1974 Instruction *Reassociate::canonicalizeNegConstExpr(Instruction *I) { 1975 if (!I->hasOneUse() || I->getType()->isVectorTy()) 1976 return nullptr; 1977 1978 // Must be a mul, fmul, or fdiv instruction. 1979 unsigned Opcode = I->getOpcode(); 1980 if (Opcode != Instruction::Mul && Opcode != Instruction::FMul && 1981 Opcode != Instruction::FDiv) 1982 return nullptr; 1983 1984 // Must have at least one constant operand. 1985 Constant *C0 = dyn_cast<Constant>(I->getOperand(0)); 1986 Constant *C1 = dyn_cast<Constant>(I->getOperand(1)); 1987 if (!C0 && !C1) 1988 return nullptr; 1989 1990 // Must be a negative ConstantInt or ConstantFP. 1991 Constant *C = C0 ? C0 : C1; 1992 unsigned ConstIdx = C0 ? 0 : 1; 1993 if (auto *CI = dyn_cast<ConstantInt>(C)) { 1994 if (!CI->isNegative() || CI->isMinValue(true)) 1995 return nullptr; 1996 } else if (auto *CF = dyn_cast<ConstantFP>(C)) { 1997 if (!CF->isNegative()) 1998 return nullptr; 1999 } else 2000 return nullptr; 2001 2002 // User must be a binary operator with one or more uses. 2003 Instruction *User = I->user_back(); 2004 if (!isa<BinaryOperator>(User) || !User->getNumUses()) 2005 return nullptr; 2006 2007 unsigned UserOpcode = User->getOpcode(); 2008 if (UserOpcode != Instruction::Add && UserOpcode != Instruction::FAdd && 2009 UserOpcode != Instruction::Sub && UserOpcode != Instruction::FSub) 2010 return nullptr; 2011 2012 // Subtraction is not commutative. Explicitly, the following transform is 2013 // not valid: (-Constant * y) - x -> x + (Constant * y) 2014 if (!User->isCommutative() && User->getOperand(1) != I) 2015 return nullptr; 2016 2017 // Change the sign of the constant. 2018 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 2019 I->setOperand(ConstIdx, ConstantInt::get(CI->getContext(), -CI->getValue())); 2020 else { 2021 ConstantFP *CF = cast<ConstantFP>(C); 2022 APFloat Val = CF->getValueAPF(); 2023 Val.changeSign(); 2024 I->setOperand(ConstIdx, ConstantFP::get(CF->getContext(), Val)); 2025 } 2026 2027 // Canonicalize I to RHS to simplify the next bit of logic. E.g., 2028 // ((-Const*y) + x) -> (x + (-Const*y)). 2029 if (User->getOperand(0) == I && User->isCommutative()) 2030 cast<BinaryOperator>(User)->swapOperands(); 2031 2032 Value *Op0 = User->getOperand(0); 2033 Value *Op1 = User->getOperand(1); 2034 BinaryOperator *NI; 2035 switch(UserOpcode) { 2036 default: 2037 llvm_unreachable("Unexpected Opcode!"); 2038 case Instruction::Add: 2039 NI = BinaryOperator::CreateSub(Op0, Op1); 2040 break; 2041 case Instruction::Sub: 2042 NI = BinaryOperator::CreateAdd(Op0, Op1); 2043 break; 2044 case Instruction::FAdd: 2045 NI = BinaryOperator::CreateFSub(Op0, Op1); 2046 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags()); 2047 break; 2048 case Instruction::FSub: 2049 NI = BinaryOperator::CreateFAdd(Op0, Op1); 2050 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags()); 2051 break; 2052 } 2053 2054 NI->insertBefore(User); 2055 NI->setName(User->getName()); 2056 User->replaceAllUsesWith(NI); 2057 NI->setDebugLoc(I->getDebugLoc()); 2058 RedoInsts.insert(I); 2059 MadeChange = true; 2060 return NI; 2061 } 2062 2063 /// OptimizeInst - Inspect and optimize the given instruction. Note that erasing 2064 /// instructions is not allowed. 2065 void Reassociate::OptimizeInst(Instruction *I) { 2066 // Only consider operations that we understand. 2067 if (!isa<BinaryOperator>(I)) 2068 return; 2069 2070 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1))) 2071 // If an operand of this shift is a reassociable multiply, or if the shift 2072 // is used by a reassociable multiply or add, turn into a multiply. 2073 if (isReassociableOp(I->getOperand(0), Instruction::Mul) || 2074 (I->hasOneUse() && 2075 (isReassociableOp(I->user_back(), Instruction::Mul) || 2076 isReassociableOp(I->user_back(), Instruction::Add)))) { 2077 Instruction *NI = ConvertShiftToMul(I); 2078 RedoInsts.insert(I); 2079 MadeChange = true; 2080 I = NI; 2081 } 2082 2083 // Canonicalize negative constants out of expressions. 2084 if (Instruction *Res = canonicalizeNegConstExpr(I)) 2085 I = Res; 2086 2087 // Commute binary operators, to canonicalize the order of their operands. 2088 // This can potentially expose more CSE opportunities, and makes writing other 2089 // transformations simpler. 2090 if (I->isCommutative()) 2091 canonicalizeOperands(I); 2092 2093 // Don't optimize vector instructions. 2094 if (I->getType()->isVectorTy()) 2095 return; 2096 2097 // Don't optimize floating point instructions that don't have unsafe algebra. 2098 if (I->getType()->isFloatingPointTy() && !I->hasUnsafeAlgebra()) 2099 return; 2100 2101 // Do not reassociate boolean (i1) expressions. We want to preserve the 2102 // original order of evaluation for short-circuited comparisons that 2103 // SimplifyCFG has folded to AND/OR expressions. If the expression 2104 // is not further optimized, it is likely to be transformed back to a 2105 // short-circuited form for code gen, and the source order may have been 2106 // optimized for the most likely conditions. 2107 if (I->getType()->isIntegerTy(1)) 2108 return; 2109 2110 // If this is a subtract instruction which is not already in negate form, 2111 // see if we can convert it to X+-Y. 2112 if (I->getOpcode() == Instruction::Sub) { 2113 if (ShouldBreakUpSubtract(I)) { 2114 Instruction *NI = BreakUpSubtract(I); 2115 RedoInsts.insert(I); 2116 MadeChange = true; 2117 I = NI; 2118 } else if (BinaryOperator::isNeg(I)) { 2119 // Otherwise, this is a negation. See if the operand is a multiply tree 2120 // and if this is not an inner node of a multiply tree. 2121 if (isReassociableOp(I->getOperand(1), Instruction::Mul) && 2122 (!I->hasOneUse() || 2123 !isReassociableOp(I->user_back(), Instruction::Mul))) { 2124 Instruction *NI = LowerNegateToMultiply(I); 2125 RedoInsts.insert(I); 2126 MadeChange = true; 2127 I = NI; 2128 } 2129 } 2130 } else if (I->getOpcode() == Instruction::FSub) { 2131 if (ShouldBreakUpSubtract(I)) { 2132 Instruction *NI = BreakUpSubtract(I); 2133 RedoInsts.insert(I); 2134 MadeChange = true; 2135 I = NI; 2136 } else if (BinaryOperator::isFNeg(I)) { 2137 // Otherwise, this is a negation. See if the operand is a multiply tree 2138 // and if this is not an inner node of a multiply tree. 2139 if (isReassociableOp(I->getOperand(1), Instruction::FMul) && 2140 (!I->hasOneUse() || 2141 !isReassociableOp(I->user_back(), Instruction::FMul))) { 2142 Instruction *NI = LowerNegateToMultiply(I); 2143 RedoInsts.insert(I); 2144 MadeChange = true; 2145 I = NI; 2146 } 2147 } 2148 } 2149 2150 // If this instruction is an associative binary operator, process it. 2151 if (!I->isAssociative()) return; 2152 BinaryOperator *BO = cast<BinaryOperator>(I); 2153 2154 // If this is an interior node of a reassociable tree, ignore it until we 2155 // get to the root of the tree, to avoid N^2 analysis. 2156 unsigned Opcode = BO->getOpcode(); 2157 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) 2158 return; 2159 2160 // If this is an add tree that is used by a sub instruction, ignore it 2161 // until we process the subtract. 2162 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add && 2163 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub) 2164 return; 2165 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd && 2166 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub) 2167 return; 2168 2169 ReassociateExpression(BO); 2170 } 2171 2172 void Reassociate::ReassociateExpression(BinaryOperator *I) { 2173 assert(!I->getType()->isVectorTy() && 2174 "Reassociation of vector instructions is not supported."); 2175 2176 // First, walk the expression tree, linearizing the tree, collecting the 2177 // operand information. 2178 SmallVector<RepeatedValue, 8> Tree; 2179 MadeChange |= LinearizeExprTree(I, Tree); 2180 SmallVector<ValueEntry, 8> Ops; 2181 Ops.reserve(Tree.size()); 2182 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 2183 RepeatedValue E = Tree[i]; 2184 Ops.append(E.second.getZExtValue(), 2185 ValueEntry(getRank(E.first), E.first)); 2186 } 2187 2188 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2189 2190 // Now that we have linearized the tree to a list and have gathered all of 2191 // the operands and their ranks, sort the operands by their rank. Use a 2192 // stable_sort so that values with equal ranks will have their relative 2193 // positions maintained (and so the compiler is deterministic). Note that 2194 // this sorts so that the highest ranking values end up at the beginning of 2195 // the vector. 2196 std::stable_sort(Ops.begin(), Ops.end()); 2197 2198 // OptimizeExpression - Now that we have the expression tree in a convenient 2199 // sorted form, optimize it globally if possible. 2200 if (Value *V = OptimizeExpression(I, Ops)) { 2201 if (V == I) 2202 // Self-referential expression in unreachable code. 2203 return; 2204 // This expression tree simplified to something that isn't a tree, 2205 // eliminate it. 2206 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n'); 2207 I->replaceAllUsesWith(V); 2208 if (Instruction *VI = dyn_cast<Instruction>(V)) 2209 VI->setDebugLoc(I->getDebugLoc()); 2210 RedoInsts.insert(I); 2211 ++NumAnnihil; 2212 return; 2213 } 2214 2215 // We want to sink immediates as deeply as possible except in the case where 2216 // this is a multiply tree used only by an add, and the immediate is a -1. 2217 // In this case we reassociate to put the negation on the outside so that we 2218 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y 2219 if (I->hasOneUse()) { 2220 if (I->getOpcode() == Instruction::Mul && 2221 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add && 2222 isa<ConstantInt>(Ops.back().Op) && 2223 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) { 2224 ValueEntry Tmp = Ops.pop_back_val(); 2225 Ops.insert(Ops.begin(), Tmp); 2226 } else if (I->getOpcode() == Instruction::FMul && 2227 cast<Instruction>(I->user_back())->getOpcode() == 2228 Instruction::FAdd && 2229 isa<ConstantFP>(Ops.back().Op) && 2230 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) { 2231 ValueEntry Tmp = Ops.pop_back_val(); 2232 Ops.insert(Ops.begin(), Tmp); 2233 } 2234 } 2235 2236 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2237 2238 if (Ops.size() == 1) { 2239 if (Ops[0].Op == I) 2240 // Self-referential expression in unreachable code. 2241 return; 2242 2243 // This expression tree simplified to something that isn't a tree, 2244 // eliminate it. 2245 I->replaceAllUsesWith(Ops[0].Op); 2246 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op)) 2247 OI->setDebugLoc(I->getDebugLoc()); 2248 RedoInsts.insert(I); 2249 return; 2250 } 2251 2252 // Now that we ordered and optimized the expressions, splat them back into 2253 // the expression tree, removing any unneeded nodes. 2254 RewriteExprTree(I, Ops); 2255 } 2256 2257 bool Reassociate::runOnFunction(Function &F) { 2258 if (skipOptnoneFunction(F)) 2259 return false; 2260 2261 // Calculate the rank map for F 2262 BuildRankMap(F); 2263 2264 MadeChange = false; 2265 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) { 2266 // Optimize every instruction in the basic block. 2267 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; ) 2268 if (isInstructionTriviallyDead(II)) { 2269 EraseInst(II++); 2270 } else { 2271 OptimizeInst(II); 2272 assert(II->getParent() == BI && "Moved to a different block!"); 2273 ++II; 2274 } 2275 2276 // If this produced extra instructions to optimize, handle them now. 2277 while (!RedoInsts.empty()) { 2278 Instruction *I = RedoInsts.pop_back_val(); 2279 if (isInstructionTriviallyDead(I)) 2280 EraseInst(I); 2281 else 2282 OptimizeInst(I); 2283 } 2284 } 2285 2286 // We are done with the rank map. 2287 RankMap.clear(); 2288 ValueRankMap.clear(); 2289 2290 return MadeChange; 2291 } 2292