1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass reassociates commutative expressions in an order that is designed 11 // to promote better constant propagation, GCSE, LICM, PRE, etc. 12 // 13 // For example: 4 + (x + 5) -> x + (4 + 5) 14 // 15 // In the implementation of this algorithm, constants are assigned rank = 0, 16 // function arguments are rank = 1, and other values are assigned ranks 17 // corresponding to the reverse post order traversal of current function 18 // (starting at 2), which effectively gives values in deep loops higher rank 19 // than values not in loops. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/Transforms/Scalar.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/PostOrderIterator.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/ValueHandle.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Transforms/Utils/Local.h" 41 #include <algorithm> 42 using namespace llvm; 43 44 #define DEBUG_TYPE "reassociate" 45 46 STATISTIC(NumChanged, "Number of insts reassociated"); 47 STATISTIC(NumAnnihil, "Number of expr tree annihilated"); 48 STATISTIC(NumFactor , "Number of multiplies factored"); 49 50 namespace { 51 struct ValueEntry { 52 unsigned Rank; 53 Value *Op; 54 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {} 55 }; 56 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) { 57 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start. 58 } 59 } 60 61 #ifndef NDEBUG 62 /// PrintOps - Print out the expression identified in the Ops list. 63 /// 64 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) { 65 Module *M = I->getParent()->getParent()->getParent(); 66 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " " 67 << *Ops[0].Op->getType() << '\t'; 68 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 69 dbgs() << "[ "; 70 Ops[i].Op->printAsOperand(dbgs(), false, M); 71 dbgs() << ", #" << Ops[i].Rank << "] "; 72 } 73 } 74 #endif 75 76 namespace { 77 /// \brief Utility class representing a base and exponent pair which form one 78 /// factor of some product. 79 struct Factor { 80 Value *Base; 81 unsigned Power; 82 83 Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {} 84 85 /// \brief Sort factors by their Base. 86 struct BaseSorter { 87 bool operator()(const Factor &LHS, const Factor &RHS) { 88 return LHS.Base < RHS.Base; 89 } 90 }; 91 92 /// \brief Compare factors for equal bases. 93 struct BaseEqual { 94 bool operator()(const Factor &LHS, const Factor &RHS) { 95 return LHS.Base == RHS.Base; 96 } 97 }; 98 99 /// \brief Sort factors in descending order by their power. 100 struct PowerDescendingSorter { 101 bool operator()(const Factor &LHS, const Factor &RHS) { 102 return LHS.Power > RHS.Power; 103 } 104 }; 105 106 /// \brief Compare factors for equal powers. 107 struct PowerEqual { 108 bool operator()(const Factor &LHS, const Factor &RHS) { 109 return LHS.Power == RHS.Power; 110 } 111 }; 112 }; 113 114 /// Utility class representing a non-constant Xor-operand. We classify 115 /// non-constant Xor-Operands into two categories: 116 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0 117 /// C2) 118 /// C2.1) The operand is in the form of "X | C", where C is a non-zero 119 /// constant. 120 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this 121 /// operand as "E | 0" 122 class XorOpnd { 123 public: 124 XorOpnd(Value *V); 125 126 bool isInvalid() const { return SymbolicPart == nullptr; } 127 bool isOrExpr() const { return isOr; } 128 Value *getValue() const { return OrigVal; } 129 Value *getSymbolicPart() const { return SymbolicPart; } 130 unsigned getSymbolicRank() const { return SymbolicRank; } 131 const APInt &getConstPart() const { return ConstPart; } 132 133 void Invalidate() { SymbolicPart = OrigVal = nullptr; } 134 void setSymbolicRank(unsigned R) { SymbolicRank = R; } 135 136 // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank. 137 // The purpose is twofold: 138 // 1) Cluster together the operands sharing the same symbolic-value. 139 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which 140 // could potentially shorten crital path, and expose more loop-invariants. 141 // Note that values' rank are basically defined in RPO order (FIXME). 142 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier 143 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2", 144 // "z" in the order of X-Y-Z is better than any other orders. 145 struct PtrSortFunctor { 146 bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) { 147 return LHS->getSymbolicRank() < RHS->getSymbolicRank(); 148 } 149 }; 150 private: 151 Value *OrigVal; 152 Value *SymbolicPart; 153 APInt ConstPart; 154 unsigned SymbolicRank; 155 bool isOr; 156 }; 157 } 158 159 namespace { 160 class Reassociate : public FunctionPass { 161 DenseMap<BasicBlock*, unsigned> RankMap; 162 DenseMap<AssertingVH<Value>, unsigned> ValueRankMap; 163 SetVector<AssertingVH<Instruction> > RedoInsts; 164 bool MadeChange; 165 public: 166 static char ID; // Pass identification, replacement for typeid 167 Reassociate() : FunctionPass(ID) { 168 initializeReassociatePass(*PassRegistry::getPassRegistry()); 169 } 170 171 bool runOnFunction(Function &F) override; 172 173 void getAnalysisUsage(AnalysisUsage &AU) const override { 174 AU.setPreservesCFG(); 175 } 176 private: 177 void BuildRankMap(Function &F); 178 unsigned getRank(Value *V); 179 void ReassociateExpression(BinaryOperator *I); 180 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops); 181 Value *OptimizeExpression(BinaryOperator *I, 182 SmallVectorImpl<ValueEntry> &Ops); 183 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops); 184 Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops); 185 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd, 186 Value *&Res); 187 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2, 188 APInt &ConstOpnd, Value *&Res); 189 bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, 190 SmallVectorImpl<Factor> &Factors); 191 Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder, 192 SmallVectorImpl<Factor> &Factors); 193 Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops); 194 Value *RemoveFactorFromExpression(Value *V, Value *Factor); 195 void EraseInst(Instruction *I); 196 void optimizeFAddNegExpr(ConstantFP *ConstOperand, Instruction *I, 197 int OperandNr); 198 void OptimizeInst(Instruction *I); 199 }; 200 } 201 202 XorOpnd::XorOpnd(Value *V) { 203 assert(!isa<ConstantInt>(V) && "No ConstantInt"); 204 OrigVal = V; 205 Instruction *I = dyn_cast<Instruction>(V); 206 SymbolicRank = 0; 207 208 if (I && (I->getOpcode() == Instruction::Or || 209 I->getOpcode() == Instruction::And)) { 210 Value *V0 = I->getOperand(0); 211 Value *V1 = I->getOperand(1); 212 if (isa<ConstantInt>(V0)) 213 std::swap(V0, V1); 214 215 if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) { 216 ConstPart = C->getValue(); 217 SymbolicPart = V0; 218 isOr = (I->getOpcode() == Instruction::Or); 219 return; 220 } 221 } 222 223 // view the operand as "V | 0" 224 SymbolicPart = V; 225 ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth()); 226 isOr = true; 227 } 228 229 char Reassociate::ID = 0; 230 INITIALIZE_PASS(Reassociate, "reassociate", 231 "Reassociate expressions", false, false) 232 233 // Public interface to the Reassociate pass 234 FunctionPass *llvm::createReassociatePass() { return new Reassociate(); } 235 236 /// isReassociableOp - Return true if V is an instruction of the specified 237 /// opcode and if it only has one use. 238 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) { 239 if (V->hasOneUse() && isa<Instruction>(V) && 240 cast<Instruction>(V)->getOpcode() == Opcode) 241 return cast<BinaryOperator>(V); 242 return nullptr; 243 } 244 245 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1, 246 unsigned Opcode2) { 247 if (V->hasOneUse() && isa<Instruction>(V) && 248 (cast<Instruction>(V)->getOpcode() == Opcode1 || 249 cast<Instruction>(V)->getOpcode() == Opcode2)) 250 return cast<BinaryOperator>(V); 251 return nullptr; 252 } 253 254 static bool isUnmovableInstruction(Instruction *I) { 255 switch (I->getOpcode()) { 256 case Instruction::PHI: 257 case Instruction::LandingPad: 258 case Instruction::Alloca: 259 case Instruction::Load: 260 case Instruction::Invoke: 261 case Instruction::UDiv: 262 case Instruction::SDiv: 263 case Instruction::FDiv: 264 case Instruction::URem: 265 case Instruction::SRem: 266 case Instruction::FRem: 267 return true; 268 case Instruction::Call: 269 return !isa<DbgInfoIntrinsic>(I); 270 default: 271 return false; 272 } 273 } 274 275 void Reassociate::BuildRankMap(Function &F) { 276 unsigned i = 2; 277 278 // Assign distinct ranks to function arguments 279 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) 280 ValueRankMap[&*I] = ++i; 281 282 ReversePostOrderTraversal<Function*> RPOT(&F); 283 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(), 284 E = RPOT.end(); I != E; ++I) { 285 BasicBlock *BB = *I; 286 unsigned BBRank = RankMap[BB] = ++i << 16; 287 288 // Walk the basic block, adding precomputed ranks for any instructions that 289 // we cannot move. This ensures that the ranks for these instructions are 290 // all different in the block. 291 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 292 if (isUnmovableInstruction(I)) 293 ValueRankMap[&*I] = ++BBRank; 294 } 295 } 296 297 unsigned Reassociate::getRank(Value *V) { 298 Instruction *I = dyn_cast<Instruction>(V); 299 if (!I) { 300 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument. 301 return 0; // Otherwise it's a global or constant, rank 0. 302 } 303 304 if (unsigned Rank = ValueRankMap[I]) 305 return Rank; // Rank already known? 306 307 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that 308 // we can reassociate expressions for code motion! Since we do not recurse 309 // for PHI nodes, we cannot have infinite recursion here, because there 310 // cannot be loops in the value graph that do not go through PHI nodes. 311 unsigned Rank = 0, MaxRank = RankMap[I->getParent()]; 312 for (unsigned i = 0, e = I->getNumOperands(); 313 i != e && Rank != MaxRank; ++i) 314 Rank = std::max(Rank, getRank(I->getOperand(i))); 315 316 // If this is a not or neg instruction, do not count it for rank. This 317 // assures us that X and ~X will have the same rank. 318 Type *Ty = V->getType(); 319 if ((!Ty->isIntegerTy() && !Ty->isFloatingPointTy()) || 320 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) && 321 !BinaryOperator::isFNeg(I))) 322 ++Rank; 323 324 //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " 325 // << Rank << "\n"); 326 327 return ValueRankMap[I] = Rank; 328 } 329 330 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name, 331 Instruction *InsertBefore, Value *FlagsOp) { 332 if (S1->getType()->isIntegerTy()) 333 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore); 334 else { 335 BinaryOperator *Res = 336 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore); 337 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 338 return Res; 339 } 340 } 341 342 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name, 343 Instruction *InsertBefore, Value *FlagsOp) { 344 if (S1->getType()->isIntegerTy()) 345 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore); 346 else { 347 BinaryOperator *Res = 348 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore); 349 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 350 return Res; 351 } 352 } 353 354 static BinaryOperator *CreateNeg(Value *S1, const Twine &Name, 355 Instruction *InsertBefore, Value *FlagsOp) { 356 if (S1->getType()->isIntegerTy()) 357 return BinaryOperator::CreateNeg(S1, Name, InsertBefore); 358 else { 359 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore); 360 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 361 return Res; 362 } 363 } 364 365 /// LowerNegateToMultiply - Replace 0-X with X*-1. 366 /// 367 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) { 368 Type *Ty = Neg->getType(); 369 Constant *NegOne = Ty->isIntegerTy() ? ConstantInt::getAllOnesValue(Ty) 370 : ConstantFP::get(Ty, -1.0); 371 372 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg); 373 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op. 374 Res->takeName(Neg); 375 Neg->replaceAllUsesWith(Res); 376 Res->setDebugLoc(Neg->getDebugLoc()); 377 return Res; 378 } 379 380 /// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda 381 /// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for 382 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic. 383 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every 384 /// even x in Bitwidth-bit arithmetic. 385 static unsigned CarmichaelShift(unsigned Bitwidth) { 386 if (Bitwidth < 3) 387 return Bitwidth - 1; 388 return Bitwidth - 2; 389 } 390 391 /// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS', 392 /// reducing the combined weight using any special properties of the operation. 393 /// The existing weight LHS represents the computation X op X op ... op X where 394 /// X occurs LHS times. The combined weight represents X op X op ... op X with 395 /// X occurring LHS + RHS times. If op is "Xor" for example then the combined 396 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even; 397 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second. 398 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) { 399 // If we were working with infinite precision arithmetic then the combined 400 // weight would be LHS + RHS. But we are using finite precision arithmetic, 401 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct 402 // for nilpotent operations and addition, but not for idempotent operations 403 // and multiplication), so it is important to correctly reduce the combined 404 // weight back into range if wrapping would be wrong. 405 406 // If RHS is zero then the weight didn't change. 407 if (RHS.isMinValue()) 408 return; 409 // If LHS is zero then the combined weight is RHS. 410 if (LHS.isMinValue()) { 411 LHS = RHS; 412 return; 413 } 414 // From this point on we know that neither LHS nor RHS is zero. 415 416 if (Instruction::isIdempotent(Opcode)) { 417 // Idempotent means X op X === X, so any non-zero weight is equivalent to a 418 // weight of 1. Keeping weights at zero or one also means that wrapping is 419 // not a problem. 420 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 421 return; // Return a weight of 1. 422 } 423 if (Instruction::isNilpotent(Opcode)) { 424 // Nilpotent means X op X === 0, so reduce weights modulo 2. 425 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 426 LHS = 0; // 1 + 1 === 0 modulo 2. 427 return; 428 } 429 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) { 430 // TODO: Reduce the weight by exploiting nsw/nuw? 431 LHS += RHS; 432 return; 433 } 434 435 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) && 436 "Unknown associative operation!"); 437 unsigned Bitwidth = LHS.getBitWidth(); 438 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth 439 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth 440 // bit number x, since either x is odd in which case x^CM = 1, or x is even in 441 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples 442 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth) 443 // which by a happy accident means that they can always be represented using 444 // Bitwidth bits. 445 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than 446 // the Carmichael number). 447 if (Bitwidth > 3) { 448 /// CM - The value of Carmichael's lambda function. 449 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth)); 450 // Any weight W >= Threshold can be replaced with W - CM. 451 APInt Threshold = CM + Bitwidth; 452 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!"); 453 // For Bitwidth 4 or more the following sum does not overflow. 454 LHS += RHS; 455 while (LHS.uge(Threshold)) 456 LHS -= CM; 457 } else { 458 // To avoid problems with overflow do everything the same as above but using 459 // a larger type. 460 unsigned CM = 1U << CarmichaelShift(Bitwidth); 461 unsigned Threshold = CM + Bitwidth; 462 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold && 463 "Weights not reduced!"); 464 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue(); 465 while (Total >= Threshold) 466 Total -= CM; 467 LHS = Total; 468 } 469 } 470 471 typedef std::pair<Value*, APInt> RepeatedValue; 472 473 /// LinearizeExprTree - Given an associative binary expression, return the leaf 474 /// nodes in Ops along with their weights (how many times the leaf occurs). The 475 /// original expression is the same as 476 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times 477 /// op 478 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times 479 /// op 480 /// ... 481 /// op 482 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times 483 /// 484 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct. 485 /// 486 /// This routine may modify the function, in which case it returns 'true'. The 487 /// changes it makes may well be destructive, changing the value computed by 'I' 488 /// to something completely different. Thus if the routine returns 'true' then 489 /// you MUST either replace I with a new expression computed from the Ops array, 490 /// or use RewriteExprTree to put the values back in. 491 /// 492 /// A leaf node is either not a binary operation of the same kind as the root 493 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different 494 /// opcode), or is the same kind of binary operator but has a use which either 495 /// does not belong to the expression, or does belong to the expression but is 496 /// a leaf node. Every leaf node has at least one use that is a non-leaf node 497 /// of the expression, while for non-leaf nodes (except for the root 'I') every 498 /// use is a non-leaf node of the expression. 499 /// 500 /// For example: 501 /// expression graph node names 502 /// 503 /// + | I 504 /// / \ | 505 /// + + | A, B 506 /// / \ / \ | 507 /// * + * | C, D, E 508 /// / \ / \ / \ | 509 /// + * | F, G 510 /// 511 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in 512 /// that order) (C, 1), (E, 1), (F, 2), (G, 2). 513 /// 514 /// The expression is maximal: if some instruction is a binary operator of the 515 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression, 516 /// then the instruction also belongs to the expression, is not a leaf node of 517 /// it, and its operands also belong to the expression (but may be leaf nodes). 518 /// 519 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in 520 /// order to ensure that every non-root node in the expression has *exactly one* 521 /// use by a non-leaf node of the expression. This destruction means that the 522 /// caller MUST either replace 'I' with a new expression or use something like 523 /// RewriteExprTree to put the values back in if the routine indicates that it 524 /// made a change by returning 'true'. 525 /// 526 /// In the above example either the right operand of A or the left operand of B 527 /// will be replaced by undef. If it is B's operand then this gives: 528 /// 529 /// + | I 530 /// / \ | 531 /// + + | A, B - operand of B replaced with undef 532 /// / \ \ | 533 /// * + * | C, D, E 534 /// / \ / \ / \ | 535 /// + * | F, G 536 /// 537 /// Note that such undef operands can only be reached by passing through 'I'. 538 /// For example, if you visit operands recursively starting from a leaf node 539 /// then you will never see such an undef operand unless you get back to 'I', 540 /// which requires passing through a phi node. 541 /// 542 /// Note that this routine may also mutate binary operators of the wrong type 543 /// that have all uses inside the expression (i.e. only used by non-leaf nodes 544 /// of the expression) if it can turn them into binary operators of the right 545 /// type and thus make the expression bigger. 546 547 static bool LinearizeExprTree(BinaryOperator *I, 548 SmallVectorImpl<RepeatedValue> &Ops) { 549 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n'); 550 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits(); 551 unsigned Opcode = I->getOpcode(); 552 assert(I->isAssociative() && I->isCommutative() && 553 "Expected an associative and commutative operation!"); 554 555 // Visit all operands of the expression, keeping track of their weight (the 556 // number of paths from the expression root to the operand, or if you like 557 // the number of times that operand occurs in the linearized expression). 558 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1 559 // while A has weight two. 560 561 // Worklist of non-leaf nodes (their operands are in the expression too) along 562 // with their weights, representing a certain number of paths to the operator. 563 // If an operator occurs in the worklist multiple times then we found multiple 564 // ways to get to it. 565 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight) 566 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1))); 567 bool MadeChange = false; 568 569 // Leaves of the expression are values that either aren't the right kind of 570 // operation (eg: a constant, or a multiply in an add tree), or are, but have 571 // some uses that are not inside the expression. For example, in I = X + X, 572 // X = A + B, the value X has two uses (by I) that are in the expression. If 573 // X has any other uses, for example in a return instruction, then we consider 574 // X to be a leaf, and won't analyze it further. When we first visit a value, 575 // if it has more than one use then at first we conservatively consider it to 576 // be a leaf. Later, as the expression is explored, we may discover some more 577 // uses of the value from inside the expression. If all uses turn out to be 578 // from within the expression (and the value is a binary operator of the right 579 // kind) then the value is no longer considered to be a leaf, and its operands 580 // are explored. 581 582 // Leaves - Keeps track of the set of putative leaves as well as the number of 583 // paths to each leaf seen so far. 584 typedef DenseMap<Value*, APInt> LeafMap; 585 LeafMap Leaves; // Leaf -> Total weight so far. 586 SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order. 587 588 #ifndef NDEBUG 589 SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme. 590 #endif 591 while (!Worklist.empty()) { 592 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val(); 593 I = P.first; // We examine the operands of this binary operator. 594 595 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands. 596 Value *Op = I->getOperand(OpIdx); 597 APInt Weight = P.second; // Number of paths to this operand. 598 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n"); 599 assert(!Op->use_empty() && "No uses, so how did we get to it?!"); 600 601 // If this is a binary operation of the right kind with only one use then 602 // add its operands to the expression. 603 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 604 assert(Visited.insert(Op) && "Not first visit!"); 605 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n"); 606 Worklist.push_back(std::make_pair(BO, Weight)); 607 continue; 608 } 609 610 // Appears to be a leaf. Is the operand already in the set of leaves? 611 LeafMap::iterator It = Leaves.find(Op); 612 if (It == Leaves.end()) { 613 // Not in the leaf map. Must be the first time we saw this operand. 614 assert(Visited.insert(Op) && "Not first visit!"); 615 if (!Op->hasOneUse()) { 616 // This value has uses not accounted for by the expression, so it is 617 // not safe to modify. Mark it as being a leaf. 618 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n"); 619 LeafOrder.push_back(Op); 620 Leaves[Op] = Weight; 621 continue; 622 } 623 // No uses outside the expression, try morphing it. 624 } else if (It != Leaves.end()) { 625 // Already in the leaf map. 626 assert(Visited.count(Op) && "In leaf map but not visited!"); 627 628 // Update the number of paths to the leaf. 629 IncorporateWeight(It->second, Weight, Opcode); 630 631 #if 0 // TODO: Re-enable once PR13021 is fixed. 632 // The leaf already has one use from inside the expression. As we want 633 // exactly one such use, drop this new use of the leaf. 634 assert(!Op->hasOneUse() && "Only one use, but we got here twice!"); 635 I->setOperand(OpIdx, UndefValue::get(I->getType())); 636 MadeChange = true; 637 638 // If the leaf is a binary operation of the right kind and we now see 639 // that its multiple original uses were in fact all by nodes belonging 640 // to the expression, then no longer consider it to be a leaf and add 641 // its operands to the expression. 642 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 643 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n"); 644 Worklist.push_back(std::make_pair(BO, It->second)); 645 Leaves.erase(It); 646 continue; 647 } 648 #endif 649 650 // If we still have uses that are not accounted for by the expression 651 // then it is not safe to modify the value. 652 if (!Op->hasOneUse()) 653 continue; 654 655 // No uses outside the expression, try morphing it. 656 Weight = It->second; 657 Leaves.erase(It); // Since the value may be morphed below. 658 } 659 660 // At this point we have a value which, first of all, is not a binary 661 // expression of the right kind, and secondly, is only used inside the 662 // expression. This means that it can safely be modified. See if we 663 // can usefully morph it into an expression of the right kind. 664 assert((!isa<Instruction>(Op) || 665 cast<Instruction>(Op)->getOpcode() != Opcode) && 666 "Should have been handled above!"); 667 assert(Op->hasOneUse() && "Has uses outside the expression tree!"); 668 669 // If this is a multiply expression, turn any internal negations into 670 // multiplies by -1 so they can be reassociated. 671 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) 672 if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) || 673 (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) { 674 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO "); 675 BO = LowerNegateToMultiply(BO); 676 DEBUG(dbgs() << *BO << '\n'); 677 Worklist.push_back(std::make_pair(BO, Weight)); 678 MadeChange = true; 679 continue; 680 } 681 682 // Failed to morph into an expression of the right type. This really is 683 // a leaf. 684 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n"); 685 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?"); 686 LeafOrder.push_back(Op); 687 Leaves[Op] = Weight; 688 } 689 } 690 691 // The leaves, repeated according to their weights, represent the linearized 692 // form of the expression. 693 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) { 694 Value *V = LeafOrder[i]; 695 LeafMap::iterator It = Leaves.find(V); 696 if (It == Leaves.end()) 697 // Node initially thought to be a leaf wasn't. 698 continue; 699 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!"); 700 APInt Weight = It->second; 701 if (Weight.isMinValue()) 702 // Leaf already output or weight reduction eliminated it. 703 continue; 704 // Ensure the leaf is only output once. 705 It->second = 0; 706 Ops.push_back(std::make_pair(V, Weight)); 707 } 708 709 // For nilpotent operations or addition there may be no operands, for example 710 // because the expression was "X xor X" or consisted of 2^Bitwidth additions: 711 // in both cases the weight reduces to 0 causing the value to be skipped. 712 if (Ops.empty()) { 713 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType()); 714 assert(Identity && "Associative operation without identity!"); 715 Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1))); 716 } 717 718 return MadeChange; 719 } 720 721 // RewriteExprTree - Now that the operands for this expression tree are 722 // linearized and optimized, emit them in-order. 723 void Reassociate::RewriteExprTree(BinaryOperator *I, 724 SmallVectorImpl<ValueEntry> &Ops) { 725 assert(Ops.size() > 1 && "Single values should be used directly!"); 726 727 // Since our optimizations should never increase the number of operations, the 728 // new expression can usually be written reusing the existing binary operators 729 // from the original expression tree, without creating any new instructions, 730 // though the rewritten expression may have a completely different topology. 731 // We take care to not change anything if the new expression will be the same 732 // as the original. If more than trivial changes (like commuting operands) 733 // were made then we are obliged to clear out any optional subclass data like 734 // nsw flags. 735 736 /// NodesToRewrite - Nodes from the original expression available for writing 737 /// the new expression into. 738 SmallVector<BinaryOperator*, 8> NodesToRewrite; 739 unsigned Opcode = I->getOpcode(); 740 BinaryOperator *Op = I; 741 742 /// NotRewritable - The operands being written will be the leaves of the new 743 /// expression and must not be used as inner nodes (via NodesToRewrite) by 744 /// mistake. Inner nodes are always reassociable, and usually leaves are not 745 /// (if they were they would have been incorporated into the expression and so 746 /// would not be leaves), so most of the time there is no danger of this. But 747 /// in rare cases a leaf may become reassociable if an optimization kills uses 748 /// of it, or it may momentarily become reassociable during rewriting (below) 749 /// due it being removed as an operand of one of its uses. Ensure that misuse 750 /// of leaf nodes as inner nodes cannot occur by remembering all of the future 751 /// leaves and refusing to reuse any of them as inner nodes. 752 SmallPtrSet<Value*, 8> NotRewritable; 753 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 754 NotRewritable.insert(Ops[i].Op); 755 756 // ExpressionChanged - Non-null if the rewritten expression differs from the 757 // original in some non-trivial way, requiring the clearing of optional flags. 758 // Flags are cleared from the operator in ExpressionChanged up to I inclusive. 759 BinaryOperator *ExpressionChanged = nullptr; 760 for (unsigned i = 0; ; ++i) { 761 // The last operation (which comes earliest in the IR) is special as both 762 // operands will come from Ops, rather than just one with the other being 763 // a subexpression. 764 if (i+2 == Ops.size()) { 765 Value *NewLHS = Ops[i].Op; 766 Value *NewRHS = Ops[i+1].Op; 767 Value *OldLHS = Op->getOperand(0); 768 Value *OldRHS = Op->getOperand(1); 769 770 if (NewLHS == OldLHS && NewRHS == OldRHS) 771 // Nothing changed, leave it alone. 772 break; 773 774 if (NewLHS == OldRHS && NewRHS == OldLHS) { 775 // The order of the operands was reversed. Swap them. 776 DEBUG(dbgs() << "RA: " << *Op << '\n'); 777 Op->swapOperands(); 778 DEBUG(dbgs() << "TO: " << *Op << '\n'); 779 MadeChange = true; 780 ++NumChanged; 781 break; 782 } 783 784 // The new operation differs non-trivially from the original. Overwrite 785 // the old operands with the new ones. 786 DEBUG(dbgs() << "RA: " << *Op << '\n'); 787 if (NewLHS != OldLHS) { 788 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode); 789 if (BO && !NotRewritable.count(BO)) 790 NodesToRewrite.push_back(BO); 791 Op->setOperand(0, NewLHS); 792 } 793 if (NewRHS != OldRHS) { 794 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode); 795 if (BO && !NotRewritable.count(BO)) 796 NodesToRewrite.push_back(BO); 797 Op->setOperand(1, NewRHS); 798 } 799 DEBUG(dbgs() << "TO: " << *Op << '\n'); 800 801 ExpressionChanged = Op; 802 MadeChange = true; 803 ++NumChanged; 804 805 break; 806 } 807 808 // Not the last operation. The left-hand side will be a sub-expression 809 // while the right-hand side will be the current element of Ops. 810 Value *NewRHS = Ops[i].Op; 811 if (NewRHS != Op->getOperand(1)) { 812 DEBUG(dbgs() << "RA: " << *Op << '\n'); 813 if (NewRHS == Op->getOperand(0)) { 814 // The new right-hand side was already present as the left operand. If 815 // we are lucky then swapping the operands will sort out both of them. 816 Op->swapOperands(); 817 } else { 818 // Overwrite with the new right-hand side. 819 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode); 820 if (BO && !NotRewritable.count(BO)) 821 NodesToRewrite.push_back(BO); 822 Op->setOperand(1, NewRHS); 823 ExpressionChanged = Op; 824 } 825 DEBUG(dbgs() << "TO: " << *Op << '\n'); 826 MadeChange = true; 827 ++NumChanged; 828 } 829 830 // Now deal with the left-hand side. If this is already an operation node 831 // from the original expression then just rewrite the rest of the expression 832 // into it. 833 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode); 834 if (BO && !NotRewritable.count(BO)) { 835 Op = BO; 836 continue; 837 } 838 839 // Otherwise, grab a spare node from the original expression and use that as 840 // the left-hand side. If there are no nodes left then the optimizers made 841 // an expression with more nodes than the original! This usually means that 842 // they did something stupid but it might mean that the problem was just too 843 // hard (finding the mimimal number of multiplications needed to realize a 844 // multiplication expression is NP-complete). Whatever the reason, smart or 845 // stupid, create a new node if there are none left. 846 BinaryOperator *NewOp; 847 if (NodesToRewrite.empty()) { 848 Constant *Undef = UndefValue::get(I->getType()); 849 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode), 850 Undef, Undef, "", I); 851 if (NewOp->getType()->isFloatingPointTy()) 852 NewOp->setFastMathFlags(I->getFastMathFlags()); 853 } else { 854 NewOp = NodesToRewrite.pop_back_val(); 855 } 856 857 DEBUG(dbgs() << "RA: " << *Op << '\n'); 858 Op->setOperand(0, NewOp); 859 DEBUG(dbgs() << "TO: " << *Op << '\n'); 860 ExpressionChanged = Op; 861 MadeChange = true; 862 ++NumChanged; 863 Op = NewOp; 864 } 865 866 // If the expression changed non-trivially then clear out all subclass data 867 // starting from the operator specified in ExpressionChanged, and compactify 868 // the operators to just before the expression root to guarantee that the 869 // expression tree is dominated by all of Ops. 870 if (ExpressionChanged) 871 do { 872 // Preserve FastMathFlags. 873 if (isa<FPMathOperator>(I)) { 874 FastMathFlags Flags = I->getFastMathFlags(); 875 ExpressionChanged->clearSubclassOptionalData(); 876 ExpressionChanged->setFastMathFlags(Flags); 877 } else 878 ExpressionChanged->clearSubclassOptionalData(); 879 880 if (ExpressionChanged == I) 881 break; 882 ExpressionChanged->moveBefore(I); 883 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin()); 884 } while (1); 885 886 // Throw away any left over nodes from the original expression. 887 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i) 888 RedoInsts.insert(NodesToRewrite[i]); 889 } 890 891 /// NegateValue - Insert instructions before the instruction pointed to by BI, 892 /// that computes the negative version of the value specified. The negative 893 /// version of the value is returned, and BI is left pointing at the instruction 894 /// that should be processed next by the reassociation pass. 895 static Value *NegateValue(Value *V, Instruction *BI) { 896 if (ConstantFP *C = dyn_cast<ConstantFP>(V)) 897 return ConstantExpr::getFNeg(C); 898 if (Constant *C = dyn_cast<Constant>(V)) 899 return ConstantExpr::getNeg(C); 900 901 // We are trying to expose opportunity for reassociation. One of the things 902 // that we want to do to achieve this is to push a negation as deep into an 903 // expression chain as possible, to expose the add instructions. In practice, 904 // this means that we turn this: 905 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D 906 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate 907 // the constants. We assume that instcombine will clean up the mess later if 908 // we introduce tons of unnecessary negation instructions. 909 // 910 if (BinaryOperator *I = 911 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) { 912 // Push the negates through the add. 913 I->setOperand(0, NegateValue(I->getOperand(0), BI)); 914 I->setOperand(1, NegateValue(I->getOperand(1), BI)); 915 916 // We must move the add instruction here, because the neg instructions do 917 // not dominate the old add instruction in general. By moving it, we are 918 // assured that the neg instructions we just inserted dominate the 919 // instruction we are about to insert after them. 920 // 921 I->moveBefore(BI); 922 I->setName(I->getName()+".neg"); 923 return I; 924 } 925 926 // Okay, we need to materialize a negated version of V with an instruction. 927 // Scan the use lists of V to see if we have one already. 928 for (User *U : V->users()) { 929 if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U)) 930 continue; 931 932 // We found one! Now we have to make sure that the definition dominates 933 // this use. We do this by moving it to the entry block (if it is a 934 // non-instruction value) or right after the definition. These negates will 935 // be zapped by reassociate later, so we don't need much finesse here. 936 BinaryOperator *TheNeg = cast<BinaryOperator>(U); 937 938 // Verify that the negate is in this function, V might be a constant expr. 939 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent()) 940 continue; 941 942 BasicBlock::iterator InsertPt; 943 if (Instruction *InstInput = dyn_cast<Instruction>(V)) { 944 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) { 945 InsertPt = II->getNormalDest()->begin(); 946 } else { 947 InsertPt = InstInput; 948 ++InsertPt; 949 } 950 while (isa<PHINode>(InsertPt)) ++InsertPt; 951 } else { 952 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin(); 953 } 954 TheNeg->moveBefore(InsertPt); 955 return TheNeg; 956 } 957 958 // Insert a 'neg' instruction that subtracts the value from zero to get the 959 // negation. 960 return CreateNeg(V, V->getName() + ".neg", BI, BI); 961 } 962 963 /// ShouldBreakUpSubtract - Return true if we should break up this subtract of 964 /// X-Y into (X + -Y). 965 static bool ShouldBreakUpSubtract(Instruction *Sub) { 966 // If this is a negation, we can't split it up! 967 if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub)) 968 return false; 969 970 // Don't breakup X - undef. 971 if (isa<UndefValue>(Sub->getOperand(1))) 972 return false; 973 974 // Don't bother to break this up unless either the LHS is an associable add or 975 // subtract or if this is only used by one. 976 Value *V0 = Sub->getOperand(0); 977 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) || 978 isReassociableOp(V0, Instruction::Sub, Instruction::FSub)) 979 return true; 980 Value *V1 = Sub->getOperand(1); 981 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) || 982 isReassociableOp(V1, Instruction::Sub, Instruction::FSub)) 983 return true; 984 Value *VB = Sub->user_back(); 985 if (Sub->hasOneUse() && 986 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) || 987 isReassociableOp(VB, Instruction::Sub, Instruction::FSub))) 988 return true; 989 990 return false; 991 } 992 993 /// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is 994 /// only used by an add, transform this into (X+(0-Y)) to promote better 995 /// reassociation. 996 static BinaryOperator *BreakUpSubtract(Instruction *Sub) { 997 // Convert a subtract into an add and a neg instruction. This allows sub 998 // instructions to be commuted with other add instructions. 999 // 1000 // Calculate the negative value of Operand 1 of the sub instruction, 1001 // and set it as the RHS of the add instruction we just made. 1002 // 1003 Value *NegVal = NegateValue(Sub->getOperand(1), Sub); 1004 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub); 1005 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op. 1006 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op. 1007 New->takeName(Sub); 1008 1009 // Everyone now refers to the add instruction. 1010 Sub->replaceAllUsesWith(New); 1011 New->setDebugLoc(Sub->getDebugLoc()); 1012 1013 DEBUG(dbgs() << "Negated: " << *New << '\n'); 1014 return New; 1015 } 1016 1017 /// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used 1018 /// by one, change this into a multiply by a constant to assist with further 1019 /// reassociation. 1020 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) { 1021 Constant *MulCst = ConstantInt::get(Shl->getType(), 1); 1022 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1))); 1023 1024 BinaryOperator *Mul = 1025 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl); 1026 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op. 1027 Mul->takeName(Shl); 1028 Shl->replaceAllUsesWith(Mul); 1029 Mul->setDebugLoc(Shl->getDebugLoc()); 1030 return Mul; 1031 } 1032 1033 /// FindInOperandList - Scan backwards and forwards among values with the same 1034 /// rank as element i to see if X exists. If X does not exist, return i. This 1035 /// is useful when scanning for 'x' when we see '-x' because they both get the 1036 /// same rank. 1037 static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i, 1038 Value *X) { 1039 unsigned XRank = Ops[i].Rank; 1040 unsigned e = Ops.size(); 1041 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) { 1042 if (Ops[j].Op == X) 1043 return j; 1044 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 1045 if (Instruction *I2 = dyn_cast<Instruction>(X)) 1046 if (I1->isIdenticalTo(I2)) 1047 return j; 1048 } 1049 // Scan backwards. 1050 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) { 1051 if (Ops[j].Op == X) 1052 return j; 1053 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 1054 if (Instruction *I2 = dyn_cast<Instruction>(X)) 1055 if (I1->isIdenticalTo(I2)) 1056 return j; 1057 } 1058 return i; 1059 } 1060 1061 /// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together 1062 /// and returning the result. Insert the tree before I. 1063 static Value *EmitAddTreeOfValues(Instruction *I, 1064 SmallVectorImpl<WeakVH> &Ops){ 1065 if (Ops.size() == 1) return Ops.back(); 1066 1067 Value *V1 = Ops.back(); 1068 Ops.pop_back(); 1069 Value *V2 = EmitAddTreeOfValues(I, Ops); 1070 return CreateAdd(V2, V1, "tmp", I, I); 1071 } 1072 1073 /// RemoveFactorFromExpression - If V is an expression tree that is a 1074 /// multiplication sequence, and if this sequence contains a multiply by Factor, 1075 /// remove Factor from the tree and return the new tree. 1076 Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) { 1077 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1078 if (!BO) 1079 return nullptr; 1080 1081 SmallVector<RepeatedValue, 8> Tree; 1082 MadeChange |= LinearizeExprTree(BO, Tree); 1083 SmallVector<ValueEntry, 8> Factors; 1084 Factors.reserve(Tree.size()); 1085 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 1086 RepeatedValue E = Tree[i]; 1087 Factors.append(E.second.getZExtValue(), 1088 ValueEntry(getRank(E.first), E.first)); 1089 } 1090 1091 bool FoundFactor = false; 1092 bool NeedsNegate = false; 1093 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1094 if (Factors[i].Op == Factor) { 1095 FoundFactor = true; 1096 Factors.erase(Factors.begin()+i); 1097 break; 1098 } 1099 1100 // If this is a negative version of this factor, remove it. 1101 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) { 1102 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op)) 1103 if (FC1->getValue() == -FC2->getValue()) { 1104 FoundFactor = NeedsNegate = true; 1105 Factors.erase(Factors.begin()+i); 1106 break; 1107 } 1108 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) { 1109 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) { 1110 APFloat F1(FC1->getValueAPF()); 1111 APFloat F2(FC2->getValueAPF()); 1112 F2.changeSign(); 1113 if (F1.compare(F2) == APFloat::cmpEqual) { 1114 FoundFactor = NeedsNegate = true; 1115 Factors.erase(Factors.begin() + i); 1116 break; 1117 } 1118 } 1119 } 1120 } 1121 1122 if (!FoundFactor) { 1123 // Make sure to restore the operands to the expression tree. 1124 RewriteExprTree(BO, Factors); 1125 return nullptr; 1126 } 1127 1128 BasicBlock::iterator InsertPt = BO; ++InsertPt; 1129 1130 // If this was just a single multiply, remove the multiply and return the only 1131 // remaining operand. 1132 if (Factors.size() == 1) { 1133 RedoInsts.insert(BO); 1134 V = Factors[0].Op; 1135 } else { 1136 RewriteExprTree(BO, Factors); 1137 V = BO; 1138 } 1139 1140 if (NeedsNegate) 1141 V = CreateNeg(V, "neg", InsertPt, BO); 1142 1143 return V; 1144 } 1145 1146 /// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively 1147 /// add its operands as factors, otherwise add V to the list of factors. 1148 /// 1149 /// Ops is the top-level list of add operands we're trying to factor. 1150 static void FindSingleUseMultiplyFactors(Value *V, 1151 SmallVectorImpl<Value*> &Factors, 1152 const SmallVectorImpl<ValueEntry> &Ops) { 1153 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1154 if (!BO) { 1155 Factors.push_back(V); 1156 return; 1157 } 1158 1159 // Otherwise, add the LHS and RHS to the list of factors. 1160 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops); 1161 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops); 1162 } 1163 1164 /// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor' 1165 /// instruction. This optimizes based on identities. If it can be reduced to 1166 /// a single Value, it is returned, otherwise the Ops list is mutated as 1167 /// necessary. 1168 static Value *OptimizeAndOrXor(unsigned Opcode, 1169 SmallVectorImpl<ValueEntry> &Ops) { 1170 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs. 1171 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1. 1172 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1173 // First, check for X and ~X in the operand list. 1174 assert(i < Ops.size()); 1175 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^. 1176 Value *X = BinaryOperator::getNotArgument(Ops[i].Op); 1177 unsigned FoundX = FindInOperandList(Ops, i, X); 1178 if (FoundX != i) { 1179 if (Opcode == Instruction::And) // ...&X&~X = 0 1180 return Constant::getNullValue(X->getType()); 1181 1182 if (Opcode == Instruction::Or) // ...|X|~X = -1 1183 return Constant::getAllOnesValue(X->getType()); 1184 } 1185 } 1186 1187 // Next, check for duplicate pairs of values, which we assume are next to 1188 // each other, due to our sorting criteria. 1189 assert(i < Ops.size()); 1190 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) { 1191 if (Opcode == Instruction::And || Opcode == Instruction::Or) { 1192 // Drop duplicate values for And and Or. 1193 Ops.erase(Ops.begin()+i); 1194 --i; --e; 1195 ++NumAnnihil; 1196 continue; 1197 } 1198 1199 // Drop pairs of values for Xor. 1200 assert(Opcode == Instruction::Xor); 1201 if (e == 2) 1202 return Constant::getNullValue(Ops[0].Op->getType()); 1203 1204 // Y ^ X^X -> Y 1205 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1206 i -= 1; e -= 2; 1207 ++NumAnnihil; 1208 } 1209 } 1210 return nullptr; 1211 } 1212 1213 /// Helper funciton of CombineXorOpnd(). It creates a bitwise-and 1214 /// instruction with the given two operands, and return the resulting 1215 /// instruction. There are two special cases: 1) if the constant operand is 0, 1216 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will 1217 /// be returned. 1218 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd, 1219 const APInt &ConstOpnd) { 1220 if (ConstOpnd != 0) { 1221 if (!ConstOpnd.isAllOnesValue()) { 1222 LLVMContext &Ctx = Opnd->getType()->getContext(); 1223 Instruction *I; 1224 I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd), 1225 "and.ra", InsertBefore); 1226 I->setDebugLoc(InsertBefore->getDebugLoc()); 1227 return I; 1228 } 1229 return Opnd; 1230 } 1231 return nullptr; 1232 } 1233 1234 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd" 1235 // into "R ^ C", where C would be 0, and R is a symbolic value. 1236 // 1237 // If it was successful, true is returned, and the "R" and "C" is returned 1238 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned, 1239 // and both "Res" and "ConstOpnd" remain unchanged. 1240 // 1241 bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1242 APInt &ConstOpnd, Value *&Res) { 1243 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2 1244 // = ((x | c1) ^ c1) ^ (c1 ^ c2) 1245 // = (x & ~c1) ^ (c1 ^ c2) 1246 // It is useful only when c1 == c2. 1247 if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) { 1248 if (!Opnd1->getValue()->hasOneUse()) 1249 return false; 1250 1251 const APInt &C1 = Opnd1->getConstPart(); 1252 if (C1 != ConstOpnd) 1253 return false; 1254 1255 Value *X = Opnd1->getSymbolicPart(); 1256 Res = createAndInstr(I, X, ~C1); 1257 // ConstOpnd was C2, now C1 ^ C2. 1258 ConstOpnd ^= C1; 1259 1260 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1261 RedoInsts.insert(T); 1262 return true; 1263 } 1264 return false; 1265 } 1266 1267 1268 // Helper function of OptimizeXor(). It tries to simplify 1269 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a 1270 // symbolic value. 1271 // 1272 // If it was successful, true is returned, and the "R" and "C" is returned 1273 // via "Res" and "ConstOpnd", respectively (If the entire expression is 1274 // evaluated to a constant, the Res is set to NULL); otherwise, false is 1275 // returned, and both "Res" and "ConstOpnd" remain unchanged. 1276 bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2, 1277 APInt &ConstOpnd, Value *&Res) { 1278 Value *X = Opnd1->getSymbolicPart(); 1279 if (X != Opnd2->getSymbolicPart()) 1280 return false; 1281 1282 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.) 1283 int DeadInstNum = 1; 1284 if (Opnd1->getValue()->hasOneUse()) 1285 DeadInstNum++; 1286 if (Opnd2->getValue()->hasOneUse()) 1287 DeadInstNum++; 1288 1289 // Xor-Rule 2: 1290 // (x | c1) ^ (x & c2) 1291 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1 1292 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1 1293 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3 1294 // 1295 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) { 1296 if (Opnd2->isOrExpr()) 1297 std::swap(Opnd1, Opnd2); 1298 1299 const APInt &C1 = Opnd1->getConstPart(); 1300 const APInt &C2 = Opnd2->getConstPart(); 1301 APInt C3((~C1) ^ C2); 1302 1303 // Do not increase code size! 1304 if (C3 != 0 && !C3.isAllOnesValue()) { 1305 int NewInstNum = ConstOpnd != 0 ? 1 : 2; 1306 if (NewInstNum > DeadInstNum) 1307 return false; 1308 } 1309 1310 Res = createAndInstr(I, X, C3); 1311 ConstOpnd ^= C1; 1312 1313 } else if (Opnd1->isOrExpr()) { 1314 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2 1315 // 1316 const APInt &C1 = Opnd1->getConstPart(); 1317 const APInt &C2 = Opnd2->getConstPart(); 1318 APInt C3 = C1 ^ C2; 1319 1320 // Do not increase code size 1321 if (C3 != 0 && !C3.isAllOnesValue()) { 1322 int NewInstNum = ConstOpnd != 0 ? 1 : 2; 1323 if (NewInstNum > DeadInstNum) 1324 return false; 1325 } 1326 1327 Res = createAndInstr(I, X, C3); 1328 ConstOpnd ^= C3; 1329 } else { 1330 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2)) 1331 // 1332 const APInt &C1 = Opnd1->getConstPart(); 1333 const APInt &C2 = Opnd2->getConstPart(); 1334 APInt C3 = C1 ^ C2; 1335 Res = createAndInstr(I, X, C3); 1336 } 1337 1338 // Put the original operands in the Redo list; hope they will be deleted 1339 // as dead code. 1340 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1341 RedoInsts.insert(T); 1342 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue())) 1343 RedoInsts.insert(T); 1344 1345 return true; 1346 } 1347 1348 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced 1349 /// to a single Value, it is returned, otherwise the Ops list is mutated as 1350 /// necessary. 1351 Value *Reassociate::OptimizeXor(Instruction *I, 1352 SmallVectorImpl<ValueEntry> &Ops) { 1353 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops)) 1354 return V; 1355 1356 if (Ops.size() == 1) 1357 return nullptr; 1358 1359 SmallVector<XorOpnd, 8> Opnds; 1360 SmallVector<XorOpnd*, 8> OpndPtrs; 1361 Type *Ty = Ops[0].Op->getType(); 1362 APInt ConstOpnd(Ty->getIntegerBitWidth(), 0); 1363 1364 // Step 1: Convert ValueEntry to XorOpnd 1365 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1366 Value *V = Ops[i].Op; 1367 if (!isa<ConstantInt>(V)) { 1368 XorOpnd O(V); 1369 O.setSymbolicRank(getRank(O.getSymbolicPart())); 1370 Opnds.push_back(O); 1371 } else 1372 ConstOpnd ^= cast<ConstantInt>(V)->getValue(); 1373 } 1374 1375 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds". 1376 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate 1377 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop 1378 // with the previous loop --- the iterator of the "Opnds" may be invalidated 1379 // when new elements are added to the vector. 1380 for (unsigned i = 0, e = Opnds.size(); i != e; ++i) 1381 OpndPtrs.push_back(&Opnds[i]); 1382 1383 // Step 2: Sort the Xor-Operands in a way such that the operands containing 1384 // the same symbolic value cluster together. For instance, the input operand 1385 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into: 1386 // ("x | 123", "x & 789", "y & 456"). 1387 std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor()); 1388 1389 // Step 3: Combine adjacent operands 1390 XorOpnd *PrevOpnd = nullptr; 1391 bool Changed = false; 1392 for (unsigned i = 0, e = Opnds.size(); i < e; i++) { 1393 XorOpnd *CurrOpnd = OpndPtrs[i]; 1394 // The combined value 1395 Value *CV; 1396 1397 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd" 1398 if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) { 1399 Changed = true; 1400 if (CV) 1401 *CurrOpnd = XorOpnd(CV); 1402 else { 1403 CurrOpnd->Invalidate(); 1404 continue; 1405 } 1406 } 1407 1408 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) { 1409 PrevOpnd = CurrOpnd; 1410 continue; 1411 } 1412 1413 // step 3.2: When previous and current operands share the same symbolic 1414 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd" 1415 // 1416 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) { 1417 // Remove previous operand 1418 PrevOpnd->Invalidate(); 1419 if (CV) { 1420 *CurrOpnd = XorOpnd(CV); 1421 PrevOpnd = CurrOpnd; 1422 } else { 1423 CurrOpnd->Invalidate(); 1424 PrevOpnd = nullptr; 1425 } 1426 Changed = true; 1427 } 1428 } 1429 1430 // Step 4: Reassemble the Ops 1431 if (Changed) { 1432 Ops.clear(); 1433 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) { 1434 XorOpnd &O = Opnds[i]; 1435 if (O.isInvalid()) 1436 continue; 1437 ValueEntry VE(getRank(O.getValue()), O.getValue()); 1438 Ops.push_back(VE); 1439 } 1440 if (ConstOpnd != 0) { 1441 Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd); 1442 ValueEntry VE(getRank(C), C); 1443 Ops.push_back(VE); 1444 } 1445 int Sz = Ops.size(); 1446 if (Sz == 1) 1447 return Ops.back().Op; 1448 else if (Sz == 0) { 1449 assert(ConstOpnd == 0); 1450 return ConstantInt::get(Ty->getContext(), ConstOpnd); 1451 } 1452 } 1453 1454 return nullptr; 1455 } 1456 1457 /// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This 1458 /// optimizes based on identities. If it can be reduced to a single Value, it 1459 /// is returned, otherwise the Ops list is mutated as necessary. 1460 Value *Reassociate::OptimizeAdd(Instruction *I, 1461 SmallVectorImpl<ValueEntry> &Ops) { 1462 // Scan the operand lists looking for X and -X pairs. If we find any, we 1463 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it, 1464 // scan for any 1465 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z. 1466 1467 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1468 Value *TheOp = Ops[i].Op; 1469 // Check to see if we've seen this operand before. If so, we factor all 1470 // instances of the operand together. Due to our sorting criteria, we know 1471 // that these need to be next to each other in the vector. 1472 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) { 1473 // Rescan the list, remove all instances of this operand from the expr. 1474 unsigned NumFound = 0; 1475 do { 1476 Ops.erase(Ops.begin()+i); 1477 ++NumFound; 1478 } while (i != Ops.size() && Ops[i].Op == TheOp); 1479 1480 DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n'); 1481 ++NumFactor; 1482 1483 // Insert a new multiply. 1484 Type *Ty = TheOp->getType(); 1485 Constant *C = Ty->isIntegerTy() ? ConstantInt::get(Ty, NumFound) 1486 : ConstantFP::get(Ty, NumFound); 1487 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I); 1488 1489 // Now that we have inserted a multiply, optimize it. This allows us to 1490 // handle cases that require multiple factoring steps, such as this: 1491 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6 1492 RedoInsts.insert(Mul); 1493 1494 // If every add operand was a duplicate, return the multiply. 1495 if (Ops.empty()) 1496 return Mul; 1497 1498 // Otherwise, we had some input that didn't have the dupe, such as 1499 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of 1500 // things being added by this operation. 1501 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul)); 1502 1503 --i; 1504 e = Ops.size(); 1505 continue; 1506 } 1507 1508 // Check for X and -X or X and ~X in the operand list. 1509 if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) && 1510 !BinaryOperator::isNot(TheOp)) 1511 continue; 1512 1513 Value *X = nullptr; 1514 if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)) 1515 X = BinaryOperator::getNegArgument(TheOp); 1516 else if (BinaryOperator::isNot(TheOp)) 1517 X = BinaryOperator::getNotArgument(TheOp); 1518 1519 unsigned FoundX = FindInOperandList(Ops, i, X); 1520 if (FoundX == i) 1521 continue; 1522 1523 // Remove X and -X from the operand list. 1524 if (Ops.size() == 2 && 1525 (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))) 1526 return Constant::getNullValue(X->getType()); 1527 1528 // Remove X and ~X from the operand list. 1529 if (Ops.size() == 2 && BinaryOperator::isNot(TheOp)) 1530 return Constant::getAllOnesValue(X->getType()); 1531 1532 Ops.erase(Ops.begin()+i); 1533 if (i < FoundX) 1534 --FoundX; 1535 else 1536 --i; // Need to back up an extra one. 1537 Ops.erase(Ops.begin()+FoundX); 1538 ++NumAnnihil; 1539 --i; // Revisit element. 1540 e -= 2; // Removed two elements. 1541 1542 // if X and ~X we append -1 to the operand list. 1543 if (BinaryOperator::isNot(TheOp)) { 1544 Value *V = Constant::getAllOnesValue(X->getType()); 1545 Ops.insert(Ops.end(), ValueEntry(getRank(V), V)); 1546 e += 1; 1547 } 1548 } 1549 1550 // Scan the operand list, checking to see if there are any common factors 1551 // between operands. Consider something like A*A+A*B*C+D. We would like to 1552 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies. 1553 // To efficiently find this, we count the number of times a factor occurs 1554 // for any ADD operands that are MULs. 1555 DenseMap<Value*, unsigned> FactorOccurrences; 1556 1557 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4) 1558 // where they are actually the same multiply. 1559 unsigned MaxOcc = 0; 1560 Value *MaxOccVal = nullptr; 1561 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1562 BinaryOperator *BOp = 1563 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1564 if (!BOp) 1565 continue; 1566 1567 // Compute all of the factors of this added value. 1568 SmallVector<Value*, 8> Factors; 1569 FindSingleUseMultiplyFactors(BOp, Factors, Ops); 1570 assert(Factors.size() > 1 && "Bad linearize!"); 1571 1572 // Add one to FactorOccurrences for each unique factor in this op. 1573 SmallPtrSet<Value*, 8> Duplicates; 1574 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1575 Value *Factor = Factors[i]; 1576 if (!Duplicates.insert(Factor)) 1577 continue; 1578 1579 unsigned Occ = ++FactorOccurrences[Factor]; 1580 if (Occ > MaxOcc) { 1581 MaxOcc = Occ; 1582 MaxOccVal = Factor; 1583 } 1584 1585 // If Factor is a negative constant, add the negated value as a factor 1586 // because we can percolate the negate out. Watch for minint, which 1587 // cannot be positivified. 1588 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) { 1589 if (CI->isNegative() && !CI->isMinValue(true)) { 1590 Factor = ConstantInt::get(CI->getContext(), -CI->getValue()); 1591 assert(!Duplicates.count(Factor) && 1592 "Shouldn't have two constant factors, missed a canonicalize"); 1593 unsigned Occ = ++FactorOccurrences[Factor]; 1594 if (Occ > MaxOcc) { 1595 MaxOcc = Occ; 1596 MaxOccVal = Factor; 1597 } 1598 } 1599 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) { 1600 if (CF->isNegative()) { 1601 APFloat F(CF->getValueAPF()); 1602 F.changeSign(); 1603 Factor = ConstantFP::get(CF->getContext(), F); 1604 assert(!Duplicates.count(Factor) && 1605 "Shouldn't have two constant factors, missed a canonicalize"); 1606 unsigned Occ = ++FactorOccurrences[Factor]; 1607 if (Occ > MaxOcc) { 1608 MaxOcc = Occ; 1609 MaxOccVal = Factor; 1610 } 1611 } 1612 } 1613 } 1614 } 1615 1616 // If any factor occurred more than one time, we can pull it out. 1617 if (MaxOcc > 1) { 1618 DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n'); 1619 ++NumFactor; 1620 1621 // Create a new instruction that uses the MaxOccVal twice. If we don't do 1622 // this, we could otherwise run into situations where removing a factor 1623 // from an expression will drop a use of maxocc, and this can cause 1624 // RemoveFactorFromExpression on successive values to behave differently. 1625 Instruction *DummyInst = 1626 I->getType()->isIntegerTy() 1627 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal) 1628 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal); 1629 1630 SmallVector<WeakVH, 4> NewMulOps; 1631 for (unsigned i = 0; i != Ops.size(); ++i) { 1632 // Only try to remove factors from expressions we're allowed to. 1633 BinaryOperator *BOp = 1634 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1635 if (!BOp) 1636 continue; 1637 1638 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) { 1639 // The factorized operand may occur several times. Convert them all in 1640 // one fell swoop. 1641 for (unsigned j = Ops.size(); j != i;) { 1642 --j; 1643 if (Ops[j].Op == Ops[i].Op) { 1644 NewMulOps.push_back(V); 1645 Ops.erase(Ops.begin()+j); 1646 } 1647 } 1648 --i; 1649 } 1650 } 1651 1652 // No need for extra uses anymore. 1653 delete DummyInst; 1654 1655 unsigned NumAddedValues = NewMulOps.size(); 1656 Value *V = EmitAddTreeOfValues(I, NewMulOps); 1657 1658 // Now that we have inserted the add tree, optimize it. This allows us to 1659 // handle cases that require multiple factoring steps, such as this: 1660 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C)) 1661 assert(NumAddedValues > 1 && "Each occurrence should contribute a value"); 1662 (void)NumAddedValues; 1663 if (Instruction *VI = dyn_cast<Instruction>(V)) 1664 RedoInsts.insert(VI); 1665 1666 // Create the multiply. 1667 Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I); 1668 1669 // Rerun associate on the multiply in case the inner expression turned into 1670 // a multiply. We want to make sure that we keep things in canonical form. 1671 RedoInsts.insert(V2); 1672 1673 // If every add operand included the factor (e.g. "A*B + A*C"), then the 1674 // entire result expression is just the multiply "A*(B+C)". 1675 if (Ops.empty()) 1676 return V2; 1677 1678 // Otherwise, we had some input that didn't have the factor, such as 1679 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of 1680 // things being added by this operation. 1681 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2)); 1682 } 1683 1684 return nullptr; 1685 } 1686 1687 /// \brief Build up a vector of value/power pairs factoring a product. 1688 /// 1689 /// Given a series of multiplication operands, build a vector of factors and 1690 /// the powers each is raised to when forming the final product. Sort them in 1691 /// the order of descending power. 1692 /// 1693 /// (x*x) -> [(x, 2)] 1694 /// ((x*x)*x) -> [(x, 3)] 1695 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)] 1696 /// 1697 /// \returns Whether any factors have a power greater than one. 1698 bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, 1699 SmallVectorImpl<Factor> &Factors) { 1700 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this. 1701 // Compute the sum of powers of simplifiable factors. 1702 unsigned FactorPowerSum = 0; 1703 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) { 1704 Value *Op = Ops[Idx-1].Op; 1705 1706 // Count the number of occurrences of this value. 1707 unsigned Count = 1; 1708 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx) 1709 ++Count; 1710 // Track for simplification all factors which occur 2 or more times. 1711 if (Count > 1) 1712 FactorPowerSum += Count; 1713 } 1714 1715 // We can only simplify factors if the sum of the powers of our simplifiable 1716 // factors is 4 or higher. When that is the case, we will *always* have 1717 // a simplification. This is an important invariant to prevent cyclicly 1718 // trying to simplify already minimal formations. 1719 if (FactorPowerSum < 4) 1720 return false; 1721 1722 // Now gather the simplifiable factors, removing them from Ops. 1723 FactorPowerSum = 0; 1724 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) { 1725 Value *Op = Ops[Idx-1].Op; 1726 1727 // Count the number of occurrences of this value. 1728 unsigned Count = 1; 1729 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx) 1730 ++Count; 1731 if (Count == 1) 1732 continue; 1733 // Move an even number of occurrences to Factors. 1734 Count &= ~1U; 1735 Idx -= Count; 1736 FactorPowerSum += Count; 1737 Factors.push_back(Factor(Op, Count)); 1738 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count); 1739 } 1740 1741 // None of the adjustments above should have reduced the sum of factor powers 1742 // below our mininum of '4'. 1743 assert(FactorPowerSum >= 4); 1744 1745 std::stable_sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter()); 1746 return true; 1747 } 1748 1749 /// \brief Build a tree of multiplies, computing the product of Ops. 1750 static Value *buildMultiplyTree(IRBuilder<> &Builder, 1751 SmallVectorImpl<Value*> &Ops) { 1752 if (Ops.size() == 1) 1753 return Ops.back(); 1754 1755 Value *LHS = Ops.pop_back_val(); 1756 do { 1757 if (LHS->getType()->isIntegerTy()) 1758 LHS = Builder.CreateMul(LHS, Ops.pop_back_val()); 1759 else 1760 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val()); 1761 } while (!Ops.empty()); 1762 1763 return LHS; 1764 } 1765 1766 /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*... 1767 /// 1768 /// Given a vector of values raised to various powers, where no two values are 1769 /// equal and the powers are sorted in decreasing order, compute the minimal 1770 /// DAG of multiplies to compute the final product, and return that product 1771 /// value. 1772 Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder, 1773 SmallVectorImpl<Factor> &Factors) { 1774 assert(Factors[0].Power); 1775 SmallVector<Value *, 4> OuterProduct; 1776 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size(); 1777 Idx < Size && Factors[Idx].Power > 0; ++Idx) { 1778 if (Factors[Idx].Power != Factors[LastIdx].Power) { 1779 LastIdx = Idx; 1780 continue; 1781 } 1782 1783 // We want to multiply across all the factors with the same power so that 1784 // we can raise them to that power as a single entity. Build a mini tree 1785 // for that. 1786 SmallVector<Value *, 4> InnerProduct; 1787 InnerProduct.push_back(Factors[LastIdx].Base); 1788 do { 1789 InnerProduct.push_back(Factors[Idx].Base); 1790 ++Idx; 1791 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power); 1792 1793 // Reset the base value of the first factor to the new expression tree. 1794 // We'll remove all the factors with the same power in a second pass. 1795 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct); 1796 if (Instruction *MI = dyn_cast<Instruction>(M)) 1797 RedoInsts.insert(MI); 1798 1799 LastIdx = Idx; 1800 } 1801 // Unique factors with equal powers -- we've folded them into the first one's 1802 // base. 1803 Factors.erase(std::unique(Factors.begin(), Factors.end(), 1804 Factor::PowerEqual()), 1805 Factors.end()); 1806 1807 // Iteratively collect the base of each factor with an add power into the 1808 // outer product, and halve each power in preparation for squaring the 1809 // expression. 1810 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) { 1811 if (Factors[Idx].Power & 1) 1812 OuterProduct.push_back(Factors[Idx].Base); 1813 Factors[Idx].Power >>= 1; 1814 } 1815 if (Factors[0].Power) { 1816 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors); 1817 OuterProduct.push_back(SquareRoot); 1818 OuterProduct.push_back(SquareRoot); 1819 } 1820 if (OuterProduct.size() == 1) 1821 return OuterProduct.front(); 1822 1823 Value *V = buildMultiplyTree(Builder, OuterProduct); 1824 return V; 1825 } 1826 1827 Value *Reassociate::OptimizeMul(BinaryOperator *I, 1828 SmallVectorImpl<ValueEntry> &Ops) { 1829 // We can only optimize the multiplies when there is a chain of more than 1830 // three, such that a balanced tree might require fewer total multiplies. 1831 if (Ops.size() < 4) 1832 return nullptr; 1833 1834 // Try to turn linear trees of multiplies without other uses of the 1835 // intermediate stages into minimal multiply DAGs with perfect sub-expression 1836 // re-use. 1837 SmallVector<Factor, 4> Factors; 1838 if (!collectMultiplyFactors(Ops, Factors)) 1839 return nullptr; // All distinct factors, so nothing left for us to do. 1840 1841 IRBuilder<> Builder(I); 1842 Value *V = buildMinimalMultiplyDAG(Builder, Factors); 1843 if (Ops.empty()) 1844 return V; 1845 1846 ValueEntry NewEntry = ValueEntry(getRank(V), V); 1847 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry); 1848 return nullptr; 1849 } 1850 1851 Value *Reassociate::OptimizeExpression(BinaryOperator *I, 1852 SmallVectorImpl<ValueEntry> &Ops) { 1853 // Now that we have the linearized expression tree, try to optimize it. 1854 // Start by folding any constants that we found. 1855 Constant *Cst = nullptr; 1856 unsigned Opcode = I->getOpcode(); 1857 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) { 1858 Constant *C = cast<Constant>(Ops.pop_back_val().Op); 1859 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C; 1860 } 1861 // If there was nothing but constants then we are done. 1862 if (Ops.empty()) 1863 return Cst; 1864 1865 // Put the combined constant back at the end of the operand list, except if 1866 // there is no point. For example, an add of 0 gets dropped here, while a 1867 // multiplication by zero turns the whole expression into zero. 1868 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) { 1869 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType())) 1870 return Cst; 1871 Ops.push_back(ValueEntry(0, Cst)); 1872 } 1873 1874 if (Ops.size() == 1) return Ops[0].Op; 1875 1876 // Handle destructive annihilation due to identities between elements in the 1877 // argument list here. 1878 unsigned NumOps = Ops.size(); 1879 switch (Opcode) { 1880 default: break; 1881 case Instruction::And: 1882 case Instruction::Or: 1883 if (Value *Result = OptimizeAndOrXor(Opcode, Ops)) 1884 return Result; 1885 break; 1886 1887 case Instruction::Xor: 1888 if (Value *Result = OptimizeXor(I, Ops)) 1889 return Result; 1890 break; 1891 1892 case Instruction::Add: 1893 case Instruction::FAdd: 1894 if (Value *Result = OptimizeAdd(I, Ops)) 1895 return Result; 1896 break; 1897 1898 case Instruction::Mul: 1899 case Instruction::FMul: 1900 if (Value *Result = OptimizeMul(I, Ops)) 1901 return Result; 1902 break; 1903 } 1904 1905 if (Ops.size() != NumOps) 1906 return OptimizeExpression(I, Ops); 1907 return nullptr; 1908 } 1909 1910 /// EraseInst - Zap the given instruction, adding interesting operands to the 1911 /// work list. 1912 void Reassociate::EraseInst(Instruction *I) { 1913 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1914 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 1915 // Erase the dead instruction. 1916 ValueRankMap.erase(I); 1917 RedoInsts.remove(I); 1918 I->eraseFromParent(); 1919 // Optimize its operands. 1920 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes. 1921 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1922 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) { 1923 // If this is a node in an expression tree, climb to the expression root 1924 // and add that since that's where optimization actually happens. 1925 unsigned Opcode = Op->getOpcode(); 1926 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode && 1927 Visited.insert(Op)) 1928 Op = Op->user_back(); 1929 RedoInsts.insert(Op); 1930 } 1931 } 1932 1933 void Reassociate::optimizeFAddNegExpr(ConstantFP *ConstOperand, Instruction *I, 1934 int OperandNr) { 1935 // Change the sign of the constant. 1936 APFloat Val = ConstOperand->getValueAPF(); 1937 Val.changeSign(); 1938 I->setOperand(0, ConstantFP::get(ConstOperand->getContext(), Val)); 1939 1940 assert(I->hasOneUse() && "Only a single use can be replaced."); 1941 Instruction *Parent = I->user_back(); 1942 1943 Value *OtherOperand = Parent->getOperand(1 - OperandNr); 1944 1945 unsigned Opcode = Parent->getOpcode(); 1946 assert(Opcode == Instruction::FAdd || 1947 (Opcode == Instruction::FSub && Parent->getOperand(1) == I)); 1948 1949 BinaryOperator *NI = Opcode == Instruction::FAdd 1950 ? BinaryOperator::CreateFSub(OtherOperand, I) 1951 : BinaryOperator::CreateFAdd(OtherOperand, I); 1952 NI->setFastMathFlags(cast<FPMathOperator>(Parent)->getFastMathFlags()); 1953 NI->insertBefore(Parent); 1954 NI->setName(Parent->getName() + ".repl"); 1955 Parent->replaceAllUsesWith(NI); 1956 NI->setDebugLoc(I->getDebugLoc()); 1957 MadeChange = true; 1958 } 1959 1960 /// OptimizeInst - Inspect and optimize the given instruction. Note that erasing 1961 /// instructions is not allowed. 1962 void Reassociate::OptimizeInst(Instruction *I) { 1963 // Only consider operations that we understand. 1964 if (!isa<BinaryOperator>(I)) 1965 return; 1966 1967 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1))) 1968 // If an operand of this shift is a reassociable multiply, or if the shift 1969 // is used by a reassociable multiply or add, turn into a multiply. 1970 if (isReassociableOp(I->getOperand(0), Instruction::Mul) || 1971 (I->hasOneUse() && 1972 (isReassociableOp(I->user_back(), Instruction::Mul) || 1973 isReassociableOp(I->user_back(), Instruction::Add)))) { 1974 Instruction *NI = ConvertShiftToMul(I); 1975 RedoInsts.insert(I); 1976 MadeChange = true; 1977 I = NI; 1978 } 1979 1980 // Commute floating point binary operators, to canonicalize the order of their 1981 // operands. This can potentially expose more CSE opportunities, and makes 1982 // writing other transformations simpler. 1983 if (I->getType()->isFloatingPointTy() || I->getType()->isVectorTy()) { 1984 1985 // FAdd and FMul can be commuted. 1986 unsigned Opcode = I->getOpcode(); 1987 if (Opcode == Instruction::FMul || Opcode == Instruction::FAdd) { 1988 Value *LHS = I->getOperand(0); 1989 Value *RHS = I->getOperand(1); 1990 unsigned LHSRank = getRank(LHS); 1991 unsigned RHSRank = getRank(RHS); 1992 1993 // Sort the operands by rank. 1994 if (RHSRank < LHSRank) { 1995 I->setOperand(0, RHS); 1996 I->setOperand(1, LHS); 1997 } 1998 } 1999 2000 // Reassociate: x + -ConstantFP * y -> x - ConstantFP * y 2001 // The FMul can also be an FDiv, and FAdd can be a FSub. 2002 if (Opcode == Instruction::FMul || Opcode == Instruction::FDiv) { 2003 if (ConstantFP *LHSConst = dyn_cast<ConstantFP>(I->getOperand(0))) { 2004 if (LHSConst->isNegative() && I->hasOneUse()) { 2005 Instruction *Parent = I->user_back(); 2006 if (Parent->getOpcode() == Instruction::FAdd) { 2007 if (Parent->getOperand(0) == I) 2008 optimizeFAddNegExpr(LHSConst, I, 0); 2009 else if (Parent->getOperand(1) == I) 2010 optimizeFAddNegExpr(LHSConst, I, 1); 2011 } else if (Parent->getOpcode() == Instruction::FSub) 2012 if (Parent->getOperand(1) == I) 2013 optimizeFAddNegExpr(LHSConst, I, 1); 2014 } 2015 } 2016 } 2017 2018 // FIXME: We should commute vector instructions as well. However, this 2019 // requires further analysis to determine the effect on later passes. 2020 2021 // Don't try to optimize vector instructions or anything that doesn't have 2022 // unsafe algebra. 2023 if (I->getType()->isVectorTy() || !I->hasUnsafeAlgebra()) 2024 return; 2025 } 2026 2027 // Do not reassociate boolean (i1) expressions. We want to preserve the 2028 // original order of evaluation for short-circuited comparisons that 2029 // SimplifyCFG has folded to AND/OR expressions. If the expression 2030 // is not further optimized, it is likely to be transformed back to a 2031 // short-circuited form for code gen, and the source order may have been 2032 // optimized for the most likely conditions. 2033 if (I->getType()->isIntegerTy(1)) 2034 return; 2035 2036 // If this is a subtract instruction which is not already in negate form, 2037 // see if we can convert it to X+-Y. 2038 if (I->getOpcode() == Instruction::Sub) { 2039 if (ShouldBreakUpSubtract(I)) { 2040 Instruction *NI = BreakUpSubtract(I); 2041 RedoInsts.insert(I); 2042 MadeChange = true; 2043 I = NI; 2044 } else if (BinaryOperator::isNeg(I)) { 2045 // Otherwise, this is a negation. See if the operand is a multiply tree 2046 // and if this is not an inner node of a multiply tree. 2047 if (isReassociableOp(I->getOperand(1), Instruction::Mul) && 2048 (!I->hasOneUse() || 2049 !isReassociableOp(I->user_back(), Instruction::Mul))) { 2050 Instruction *NI = LowerNegateToMultiply(I); 2051 RedoInsts.insert(I); 2052 MadeChange = true; 2053 I = NI; 2054 } 2055 } 2056 } else if (I->getOpcode() == Instruction::FSub) { 2057 if (ShouldBreakUpSubtract(I)) { 2058 Instruction *NI = BreakUpSubtract(I); 2059 RedoInsts.insert(I); 2060 MadeChange = true; 2061 I = NI; 2062 } else if (BinaryOperator::isFNeg(I)) { 2063 // Otherwise, this is a negation. See if the operand is a multiply tree 2064 // and if this is not an inner node of a multiply tree. 2065 if (isReassociableOp(I->getOperand(1), Instruction::FMul) && 2066 (!I->hasOneUse() || 2067 !isReassociableOp(I->user_back(), Instruction::FMul))) { 2068 Instruction *NI = LowerNegateToMultiply(I); 2069 RedoInsts.insert(I); 2070 MadeChange = true; 2071 I = NI; 2072 } 2073 } 2074 } 2075 2076 // If this instruction is an associative binary operator, process it. 2077 if (!I->isAssociative()) return; 2078 BinaryOperator *BO = cast<BinaryOperator>(I); 2079 2080 // If this is an interior node of a reassociable tree, ignore it until we 2081 // get to the root of the tree, to avoid N^2 analysis. 2082 unsigned Opcode = BO->getOpcode(); 2083 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) 2084 return; 2085 2086 // If this is an add tree that is used by a sub instruction, ignore it 2087 // until we process the subtract. 2088 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add && 2089 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub) 2090 return; 2091 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd && 2092 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub) 2093 return; 2094 2095 ReassociateExpression(BO); 2096 } 2097 2098 void Reassociate::ReassociateExpression(BinaryOperator *I) { 2099 assert(!I->getType()->isVectorTy() && 2100 "Reassociation of vector instructions is not supported."); 2101 2102 // First, walk the expression tree, linearizing the tree, collecting the 2103 // operand information. 2104 SmallVector<RepeatedValue, 8> Tree; 2105 MadeChange |= LinearizeExprTree(I, Tree); 2106 SmallVector<ValueEntry, 8> Ops; 2107 Ops.reserve(Tree.size()); 2108 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 2109 RepeatedValue E = Tree[i]; 2110 Ops.append(E.second.getZExtValue(), 2111 ValueEntry(getRank(E.first), E.first)); 2112 } 2113 2114 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2115 2116 // Now that we have linearized the tree to a list and have gathered all of 2117 // the operands and their ranks, sort the operands by their rank. Use a 2118 // stable_sort so that values with equal ranks will have their relative 2119 // positions maintained (and so the compiler is deterministic). Note that 2120 // this sorts so that the highest ranking values end up at the beginning of 2121 // the vector. 2122 std::stable_sort(Ops.begin(), Ops.end()); 2123 2124 // OptimizeExpression - Now that we have the expression tree in a convenient 2125 // sorted form, optimize it globally if possible. 2126 if (Value *V = OptimizeExpression(I, Ops)) { 2127 if (V == I) 2128 // Self-referential expression in unreachable code. 2129 return; 2130 // This expression tree simplified to something that isn't a tree, 2131 // eliminate it. 2132 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n'); 2133 I->replaceAllUsesWith(V); 2134 if (Instruction *VI = dyn_cast<Instruction>(V)) 2135 VI->setDebugLoc(I->getDebugLoc()); 2136 RedoInsts.insert(I); 2137 ++NumAnnihil; 2138 return; 2139 } 2140 2141 // We want to sink immediates as deeply as possible except in the case where 2142 // this is a multiply tree used only by an add, and the immediate is a -1. 2143 // In this case we reassociate to put the negation on the outside so that we 2144 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y 2145 if (I->hasOneUse()) { 2146 if (I->getOpcode() == Instruction::Mul && 2147 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add && 2148 isa<ConstantInt>(Ops.back().Op) && 2149 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) { 2150 ValueEntry Tmp = Ops.pop_back_val(); 2151 Ops.insert(Ops.begin(), Tmp); 2152 } else if (I->getOpcode() == Instruction::FMul && 2153 cast<Instruction>(I->user_back())->getOpcode() == 2154 Instruction::FAdd && 2155 isa<ConstantFP>(Ops.back().Op) && 2156 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) { 2157 ValueEntry Tmp = Ops.pop_back_val(); 2158 Ops.insert(Ops.begin(), Tmp); 2159 } 2160 } 2161 2162 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2163 2164 if (Ops.size() == 1) { 2165 if (Ops[0].Op == I) 2166 // Self-referential expression in unreachable code. 2167 return; 2168 2169 // This expression tree simplified to something that isn't a tree, 2170 // eliminate it. 2171 I->replaceAllUsesWith(Ops[0].Op); 2172 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op)) 2173 OI->setDebugLoc(I->getDebugLoc()); 2174 RedoInsts.insert(I); 2175 return; 2176 } 2177 2178 // Now that we ordered and optimized the expressions, splat them back into 2179 // the expression tree, removing any unneeded nodes. 2180 RewriteExprTree(I, Ops); 2181 } 2182 2183 bool Reassociate::runOnFunction(Function &F) { 2184 if (skipOptnoneFunction(F)) 2185 return false; 2186 2187 // Calculate the rank map for F 2188 BuildRankMap(F); 2189 2190 MadeChange = false; 2191 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) { 2192 // Optimize every instruction in the basic block. 2193 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; ) 2194 if (isInstructionTriviallyDead(II)) { 2195 EraseInst(II++); 2196 } else { 2197 OptimizeInst(II); 2198 assert(II->getParent() == BI && "Moved to a different block!"); 2199 ++II; 2200 } 2201 2202 // If this produced extra instructions to optimize, handle them now. 2203 while (!RedoInsts.empty()) { 2204 Instruction *I = RedoInsts.pop_back_val(); 2205 if (isInstructionTriviallyDead(I)) 2206 EraseInst(I); 2207 else 2208 OptimizeInst(I); 2209 } 2210 } 2211 2212 // We are done with the rank map. 2213 RankMap.clear(); 2214 ValueRankMap.clear(); 2215 2216 return MadeChange; 2217 } 2218