1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass reassociates commutative expressions in an order that is designed 11 // to promote better constant propagation, GCSE, LICM, PRE, etc. 12 // 13 // For example: 4 + (x + 5) -> x + (4 + 5) 14 // 15 // In the implementation of this algorithm, constants are assigned rank = 0, 16 // function arguments are rank = 1, and other values are assigned ranks 17 // corresponding to the reverse post order traversal of current function 18 // (starting at 2), which effectively gives values in deep loops higher rank 19 // than values not in loops. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/Transforms/Scalar/Reassociate.h" 24 #include "llvm/ADT/APFloat.h" 25 #include "llvm/ADT/APInt.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/ADT/SetVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/Analysis/GlobalsModRef.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Argument.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/IRBuilder.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Operator.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/IR/PatternMatch.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/User.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/IR/ValueHandle.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Transforms/Scalar.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <utility> 63 64 using namespace llvm; 65 using namespace reassociate; 66 67 #define DEBUG_TYPE "reassociate" 68 69 STATISTIC(NumChanged, "Number of insts reassociated"); 70 STATISTIC(NumAnnihil, "Number of expr tree annihilated"); 71 STATISTIC(NumFactor , "Number of multiplies factored"); 72 73 #ifndef NDEBUG 74 /// Print out the expression identified in the Ops list. 75 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) { 76 Module *M = I->getModule(); 77 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " " 78 << *Ops[0].Op->getType() << '\t'; 79 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 80 dbgs() << "[ "; 81 Ops[i].Op->printAsOperand(dbgs(), false, M); 82 dbgs() << ", #" << Ops[i].Rank << "] "; 83 } 84 } 85 #endif 86 87 /// Utility class representing a non-constant Xor-operand. We classify 88 /// non-constant Xor-Operands into two categories: 89 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0 90 /// C2) 91 /// C2.1) The operand is in the form of "X | C", where C is a non-zero 92 /// constant. 93 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this 94 /// operand as "E | 0" 95 class llvm::reassociate::XorOpnd { 96 public: 97 XorOpnd(Value *V); 98 99 bool isInvalid() const { return SymbolicPart == nullptr; } 100 bool isOrExpr() const { return isOr; } 101 Value *getValue() const { return OrigVal; } 102 Value *getSymbolicPart() const { return SymbolicPart; } 103 unsigned getSymbolicRank() const { return SymbolicRank; } 104 const APInt &getConstPart() const { return ConstPart; } 105 106 void Invalidate() { SymbolicPart = OrigVal = nullptr; } 107 void setSymbolicRank(unsigned R) { SymbolicRank = R; } 108 109 private: 110 Value *OrigVal; 111 Value *SymbolicPart; 112 APInt ConstPart; 113 unsigned SymbolicRank; 114 bool isOr; 115 }; 116 117 XorOpnd::XorOpnd(Value *V) { 118 assert(!isa<ConstantInt>(V) && "No ConstantInt"); 119 OrigVal = V; 120 Instruction *I = dyn_cast<Instruction>(V); 121 SymbolicRank = 0; 122 123 if (I && (I->getOpcode() == Instruction::Or || 124 I->getOpcode() == Instruction::And)) { 125 Value *V0 = I->getOperand(0); 126 Value *V1 = I->getOperand(1); 127 const APInt *C; 128 if (match(V0, PatternMatch::m_APInt(C))) 129 std::swap(V0, V1); 130 131 if (match(V1, PatternMatch::m_APInt(C))) { 132 ConstPart = *C; 133 SymbolicPart = V0; 134 isOr = (I->getOpcode() == Instruction::Or); 135 return; 136 } 137 } 138 139 // view the operand as "V | 0" 140 SymbolicPart = V; 141 ConstPart = APInt::getNullValue(V->getType()->getScalarSizeInBits()); 142 isOr = true; 143 } 144 145 /// Return true if V is an instruction of the specified opcode and if it 146 /// only has one use. 147 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) { 148 auto *I = dyn_cast<Instruction>(V); 149 if (I && I->hasOneUse() && I->getOpcode() == Opcode) 150 if (!isa<FPMathOperator>(I) || I->isFast()) 151 return cast<BinaryOperator>(I); 152 return nullptr; 153 } 154 155 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1, 156 unsigned Opcode2) { 157 auto *I = dyn_cast<Instruction>(V); 158 if (I && I->hasOneUse() && 159 (I->getOpcode() == Opcode1 || I->getOpcode() == Opcode2)) 160 if (!isa<FPMathOperator>(I) || I->isFast()) 161 return cast<BinaryOperator>(I); 162 return nullptr; 163 } 164 165 void ReassociatePass::BuildRankMap(Function &F, 166 ReversePostOrderTraversal<Function*> &RPOT) { 167 unsigned Rank = 2; 168 169 // Assign distinct ranks to function arguments. 170 for (auto &Arg : F.args()) { 171 ValueRankMap[&Arg] = ++Rank; 172 LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank 173 << "\n"); 174 } 175 176 // Traverse basic blocks in ReversePostOrder 177 for (BasicBlock *BB : RPOT) { 178 unsigned BBRank = RankMap[BB] = ++Rank << 16; 179 180 // Walk the basic block, adding precomputed ranks for any instructions that 181 // we cannot move. This ensures that the ranks for these instructions are 182 // all different in the block. 183 for (Instruction &I : *BB) 184 if (mayBeMemoryDependent(I)) 185 ValueRankMap[&I] = ++BBRank; 186 } 187 } 188 189 unsigned ReassociatePass::getRank(Value *V) { 190 Instruction *I = dyn_cast<Instruction>(V); 191 if (!I) { 192 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument. 193 return 0; // Otherwise it's a global or constant, rank 0. 194 } 195 196 if (unsigned Rank = ValueRankMap[I]) 197 return Rank; // Rank already known? 198 199 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that 200 // we can reassociate expressions for code motion! Since we do not recurse 201 // for PHI nodes, we cannot have infinite recursion here, because there 202 // cannot be loops in the value graph that do not go through PHI nodes. 203 unsigned Rank = 0, MaxRank = RankMap[I->getParent()]; 204 for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i) 205 Rank = std::max(Rank, getRank(I->getOperand(i))); 206 207 // If this is a not or neg instruction, do not count it for rank. This 208 // assures us that X and ~X will have the same rank. 209 if (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) && 210 !BinaryOperator::isFNeg(I)) 211 ++Rank; 212 213 LLVM_DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank 214 << "\n"); 215 216 return ValueRankMap[I] = Rank; 217 } 218 219 // Canonicalize constants to RHS. Otherwise, sort the operands by rank. 220 void ReassociatePass::canonicalizeOperands(Instruction *I) { 221 assert(isa<BinaryOperator>(I) && "Expected binary operator."); 222 assert(I->isCommutative() && "Expected commutative operator."); 223 224 Value *LHS = I->getOperand(0); 225 Value *RHS = I->getOperand(1); 226 if (LHS == RHS || isa<Constant>(RHS)) 227 return; 228 if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS)) 229 cast<BinaryOperator>(I)->swapOperands(); 230 } 231 232 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name, 233 Instruction *InsertBefore, Value *FlagsOp) { 234 if (S1->getType()->isIntOrIntVectorTy()) 235 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore); 236 else { 237 BinaryOperator *Res = 238 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore); 239 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 240 return Res; 241 } 242 } 243 244 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name, 245 Instruction *InsertBefore, Value *FlagsOp) { 246 if (S1->getType()->isIntOrIntVectorTy()) 247 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore); 248 else { 249 BinaryOperator *Res = 250 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore); 251 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 252 return Res; 253 } 254 } 255 256 static BinaryOperator *CreateNeg(Value *S1, const Twine &Name, 257 Instruction *InsertBefore, Value *FlagsOp) { 258 if (S1->getType()->isIntOrIntVectorTy()) 259 return BinaryOperator::CreateNeg(S1, Name, InsertBefore); 260 else { 261 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore); 262 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 263 return Res; 264 } 265 } 266 267 /// Replace 0-X with X*-1. 268 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) { 269 Type *Ty = Neg->getType(); 270 Constant *NegOne = Ty->isIntOrIntVectorTy() ? 271 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0); 272 273 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg); 274 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op. 275 Res->takeName(Neg); 276 Neg->replaceAllUsesWith(Res); 277 Res->setDebugLoc(Neg->getDebugLoc()); 278 return Res; 279 } 280 281 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael 282 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for 283 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic. 284 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every 285 /// even x in Bitwidth-bit arithmetic. 286 static unsigned CarmichaelShift(unsigned Bitwidth) { 287 if (Bitwidth < 3) 288 return Bitwidth - 1; 289 return Bitwidth - 2; 290 } 291 292 /// Add the extra weight 'RHS' to the existing weight 'LHS', 293 /// reducing the combined weight using any special properties of the operation. 294 /// The existing weight LHS represents the computation X op X op ... op X where 295 /// X occurs LHS times. The combined weight represents X op X op ... op X with 296 /// X occurring LHS + RHS times. If op is "Xor" for example then the combined 297 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even; 298 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second. 299 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) { 300 // If we were working with infinite precision arithmetic then the combined 301 // weight would be LHS + RHS. But we are using finite precision arithmetic, 302 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct 303 // for nilpotent operations and addition, but not for idempotent operations 304 // and multiplication), so it is important to correctly reduce the combined 305 // weight back into range if wrapping would be wrong. 306 307 // If RHS is zero then the weight didn't change. 308 if (RHS.isMinValue()) 309 return; 310 // If LHS is zero then the combined weight is RHS. 311 if (LHS.isMinValue()) { 312 LHS = RHS; 313 return; 314 } 315 // From this point on we know that neither LHS nor RHS is zero. 316 317 if (Instruction::isIdempotent(Opcode)) { 318 // Idempotent means X op X === X, so any non-zero weight is equivalent to a 319 // weight of 1. Keeping weights at zero or one also means that wrapping is 320 // not a problem. 321 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 322 return; // Return a weight of 1. 323 } 324 if (Instruction::isNilpotent(Opcode)) { 325 // Nilpotent means X op X === 0, so reduce weights modulo 2. 326 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 327 LHS = 0; // 1 + 1 === 0 modulo 2. 328 return; 329 } 330 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) { 331 // TODO: Reduce the weight by exploiting nsw/nuw? 332 LHS += RHS; 333 return; 334 } 335 336 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) && 337 "Unknown associative operation!"); 338 unsigned Bitwidth = LHS.getBitWidth(); 339 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth 340 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth 341 // bit number x, since either x is odd in which case x^CM = 1, or x is even in 342 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples 343 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth) 344 // which by a happy accident means that they can always be represented using 345 // Bitwidth bits. 346 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than 347 // the Carmichael number). 348 if (Bitwidth > 3) { 349 /// CM - The value of Carmichael's lambda function. 350 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth)); 351 // Any weight W >= Threshold can be replaced with W - CM. 352 APInt Threshold = CM + Bitwidth; 353 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!"); 354 // For Bitwidth 4 or more the following sum does not overflow. 355 LHS += RHS; 356 while (LHS.uge(Threshold)) 357 LHS -= CM; 358 } else { 359 // To avoid problems with overflow do everything the same as above but using 360 // a larger type. 361 unsigned CM = 1U << CarmichaelShift(Bitwidth); 362 unsigned Threshold = CM + Bitwidth; 363 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold && 364 "Weights not reduced!"); 365 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue(); 366 while (Total >= Threshold) 367 Total -= CM; 368 LHS = Total; 369 } 370 } 371 372 using RepeatedValue = std::pair<Value*, APInt>; 373 374 /// Given an associative binary expression, return the leaf 375 /// nodes in Ops along with their weights (how many times the leaf occurs). The 376 /// original expression is the same as 377 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times 378 /// op 379 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times 380 /// op 381 /// ... 382 /// op 383 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times 384 /// 385 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct. 386 /// 387 /// This routine may modify the function, in which case it returns 'true'. The 388 /// changes it makes may well be destructive, changing the value computed by 'I' 389 /// to something completely different. Thus if the routine returns 'true' then 390 /// you MUST either replace I with a new expression computed from the Ops array, 391 /// or use RewriteExprTree to put the values back in. 392 /// 393 /// A leaf node is either not a binary operation of the same kind as the root 394 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different 395 /// opcode), or is the same kind of binary operator but has a use which either 396 /// does not belong to the expression, or does belong to the expression but is 397 /// a leaf node. Every leaf node has at least one use that is a non-leaf node 398 /// of the expression, while for non-leaf nodes (except for the root 'I') every 399 /// use is a non-leaf node of the expression. 400 /// 401 /// For example: 402 /// expression graph node names 403 /// 404 /// + | I 405 /// / \ | 406 /// + + | A, B 407 /// / \ / \ | 408 /// * + * | C, D, E 409 /// / \ / \ / \ | 410 /// + * | F, G 411 /// 412 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in 413 /// that order) (C, 1), (E, 1), (F, 2), (G, 2). 414 /// 415 /// The expression is maximal: if some instruction is a binary operator of the 416 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression, 417 /// then the instruction also belongs to the expression, is not a leaf node of 418 /// it, and its operands also belong to the expression (but may be leaf nodes). 419 /// 420 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in 421 /// order to ensure that every non-root node in the expression has *exactly one* 422 /// use by a non-leaf node of the expression. This destruction means that the 423 /// caller MUST either replace 'I' with a new expression or use something like 424 /// RewriteExprTree to put the values back in if the routine indicates that it 425 /// made a change by returning 'true'. 426 /// 427 /// In the above example either the right operand of A or the left operand of B 428 /// will be replaced by undef. If it is B's operand then this gives: 429 /// 430 /// + | I 431 /// / \ | 432 /// + + | A, B - operand of B replaced with undef 433 /// / \ \ | 434 /// * + * | C, D, E 435 /// / \ / \ / \ | 436 /// + * | F, G 437 /// 438 /// Note that such undef operands can only be reached by passing through 'I'. 439 /// For example, if you visit operands recursively starting from a leaf node 440 /// then you will never see such an undef operand unless you get back to 'I', 441 /// which requires passing through a phi node. 442 /// 443 /// Note that this routine may also mutate binary operators of the wrong type 444 /// that have all uses inside the expression (i.e. only used by non-leaf nodes 445 /// of the expression) if it can turn them into binary operators of the right 446 /// type and thus make the expression bigger. 447 static bool LinearizeExprTree(BinaryOperator *I, 448 SmallVectorImpl<RepeatedValue> &Ops) { 449 LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I << '\n'); 450 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits(); 451 unsigned Opcode = I->getOpcode(); 452 assert(I->isAssociative() && I->isCommutative() && 453 "Expected an associative and commutative operation!"); 454 455 // Visit all operands of the expression, keeping track of their weight (the 456 // number of paths from the expression root to the operand, or if you like 457 // the number of times that operand occurs in the linearized expression). 458 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1 459 // while A has weight two. 460 461 // Worklist of non-leaf nodes (their operands are in the expression too) along 462 // with their weights, representing a certain number of paths to the operator. 463 // If an operator occurs in the worklist multiple times then we found multiple 464 // ways to get to it. 465 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight) 466 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1))); 467 bool Changed = false; 468 469 // Leaves of the expression are values that either aren't the right kind of 470 // operation (eg: a constant, or a multiply in an add tree), or are, but have 471 // some uses that are not inside the expression. For example, in I = X + X, 472 // X = A + B, the value X has two uses (by I) that are in the expression. If 473 // X has any other uses, for example in a return instruction, then we consider 474 // X to be a leaf, and won't analyze it further. When we first visit a value, 475 // if it has more than one use then at first we conservatively consider it to 476 // be a leaf. Later, as the expression is explored, we may discover some more 477 // uses of the value from inside the expression. If all uses turn out to be 478 // from within the expression (and the value is a binary operator of the right 479 // kind) then the value is no longer considered to be a leaf, and its operands 480 // are explored. 481 482 // Leaves - Keeps track of the set of putative leaves as well as the number of 483 // paths to each leaf seen so far. 484 using LeafMap = DenseMap<Value *, APInt>; 485 LeafMap Leaves; // Leaf -> Total weight so far. 486 SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order. 487 488 #ifndef NDEBUG 489 SmallPtrSet<Value *, 8> Visited; // For sanity checking the iteration scheme. 490 #endif 491 while (!Worklist.empty()) { 492 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val(); 493 I = P.first; // We examine the operands of this binary operator. 494 495 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands. 496 Value *Op = I->getOperand(OpIdx); 497 APInt Weight = P.second; // Number of paths to this operand. 498 LLVM_DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n"); 499 assert(!Op->use_empty() && "No uses, so how did we get to it?!"); 500 501 // If this is a binary operation of the right kind with only one use then 502 // add its operands to the expression. 503 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 504 assert(Visited.insert(Op).second && "Not first visit!"); 505 LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n"); 506 Worklist.push_back(std::make_pair(BO, Weight)); 507 continue; 508 } 509 510 // Appears to be a leaf. Is the operand already in the set of leaves? 511 LeafMap::iterator It = Leaves.find(Op); 512 if (It == Leaves.end()) { 513 // Not in the leaf map. Must be the first time we saw this operand. 514 assert(Visited.insert(Op).second && "Not first visit!"); 515 if (!Op->hasOneUse()) { 516 // This value has uses not accounted for by the expression, so it is 517 // not safe to modify. Mark it as being a leaf. 518 LLVM_DEBUG(dbgs() 519 << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n"); 520 LeafOrder.push_back(Op); 521 Leaves[Op] = Weight; 522 continue; 523 } 524 // No uses outside the expression, try morphing it. 525 } else { 526 // Already in the leaf map. 527 assert(It != Leaves.end() && Visited.count(Op) && 528 "In leaf map but not visited!"); 529 530 // Update the number of paths to the leaf. 531 IncorporateWeight(It->second, Weight, Opcode); 532 533 #if 0 // TODO: Re-enable once PR13021 is fixed. 534 // The leaf already has one use from inside the expression. As we want 535 // exactly one such use, drop this new use of the leaf. 536 assert(!Op->hasOneUse() && "Only one use, but we got here twice!"); 537 I->setOperand(OpIdx, UndefValue::get(I->getType())); 538 Changed = true; 539 540 // If the leaf is a binary operation of the right kind and we now see 541 // that its multiple original uses were in fact all by nodes belonging 542 // to the expression, then no longer consider it to be a leaf and add 543 // its operands to the expression. 544 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 545 LLVM_DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n"); 546 Worklist.push_back(std::make_pair(BO, It->second)); 547 Leaves.erase(It); 548 continue; 549 } 550 #endif 551 552 // If we still have uses that are not accounted for by the expression 553 // then it is not safe to modify the value. 554 if (!Op->hasOneUse()) 555 continue; 556 557 // No uses outside the expression, try morphing it. 558 Weight = It->second; 559 Leaves.erase(It); // Since the value may be morphed below. 560 } 561 562 // At this point we have a value which, first of all, is not a binary 563 // expression of the right kind, and secondly, is only used inside the 564 // expression. This means that it can safely be modified. See if we 565 // can usefully morph it into an expression of the right kind. 566 assert((!isa<Instruction>(Op) || 567 cast<Instruction>(Op)->getOpcode() != Opcode 568 || (isa<FPMathOperator>(Op) && 569 !cast<Instruction>(Op)->isFast())) && 570 "Should have been handled above!"); 571 assert(Op->hasOneUse() && "Has uses outside the expression tree!"); 572 573 // If this is a multiply expression, turn any internal negations into 574 // multiplies by -1 so they can be reassociated. 575 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) 576 if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) || 577 (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) { 578 LLVM_DEBUG(dbgs() 579 << "MORPH LEAF: " << *Op << " (" << Weight << ") TO "); 580 BO = LowerNegateToMultiply(BO); 581 LLVM_DEBUG(dbgs() << *BO << '\n'); 582 Worklist.push_back(std::make_pair(BO, Weight)); 583 Changed = true; 584 continue; 585 } 586 587 // Failed to morph into an expression of the right type. This really is 588 // a leaf. 589 LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n"); 590 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?"); 591 LeafOrder.push_back(Op); 592 Leaves[Op] = Weight; 593 } 594 } 595 596 // The leaves, repeated according to their weights, represent the linearized 597 // form of the expression. 598 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) { 599 Value *V = LeafOrder[i]; 600 LeafMap::iterator It = Leaves.find(V); 601 if (It == Leaves.end()) 602 // Node initially thought to be a leaf wasn't. 603 continue; 604 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!"); 605 APInt Weight = It->second; 606 if (Weight.isMinValue()) 607 // Leaf already output or weight reduction eliminated it. 608 continue; 609 // Ensure the leaf is only output once. 610 It->second = 0; 611 Ops.push_back(std::make_pair(V, Weight)); 612 } 613 614 // For nilpotent operations or addition there may be no operands, for example 615 // because the expression was "X xor X" or consisted of 2^Bitwidth additions: 616 // in both cases the weight reduces to 0 causing the value to be skipped. 617 if (Ops.empty()) { 618 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType()); 619 assert(Identity && "Associative operation without identity!"); 620 Ops.emplace_back(Identity, APInt(Bitwidth, 1)); 621 } 622 623 return Changed; 624 } 625 626 /// Now that the operands for this expression tree are 627 /// linearized and optimized, emit them in-order. 628 void ReassociatePass::RewriteExprTree(BinaryOperator *I, 629 SmallVectorImpl<ValueEntry> &Ops) { 630 assert(Ops.size() > 1 && "Single values should be used directly!"); 631 632 // Since our optimizations should never increase the number of operations, the 633 // new expression can usually be written reusing the existing binary operators 634 // from the original expression tree, without creating any new instructions, 635 // though the rewritten expression may have a completely different topology. 636 // We take care to not change anything if the new expression will be the same 637 // as the original. If more than trivial changes (like commuting operands) 638 // were made then we are obliged to clear out any optional subclass data like 639 // nsw flags. 640 641 /// NodesToRewrite - Nodes from the original expression available for writing 642 /// the new expression into. 643 SmallVector<BinaryOperator*, 8> NodesToRewrite; 644 unsigned Opcode = I->getOpcode(); 645 BinaryOperator *Op = I; 646 647 /// NotRewritable - The operands being written will be the leaves of the new 648 /// expression and must not be used as inner nodes (via NodesToRewrite) by 649 /// mistake. Inner nodes are always reassociable, and usually leaves are not 650 /// (if they were they would have been incorporated into the expression and so 651 /// would not be leaves), so most of the time there is no danger of this. But 652 /// in rare cases a leaf may become reassociable if an optimization kills uses 653 /// of it, or it may momentarily become reassociable during rewriting (below) 654 /// due it being removed as an operand of one of its uses. Ensure that misuse 655 /// of leaf nodes as inner nodes cannot occur by remembering all of the future 656 /// leaves and refusing to reuse any of them as inner nodes. 657 SmallPtrSet<Value*, 8> NotRewritable; 658 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 659 NotRewritable.insert(Ops[i].Op); 660 661 // ExpressionChanged - Non-null if the rewritten expression differs from the 662 // original in some non-trivial way, requiring the clearing of optional flags. 663 // Flags are cleared from the operator in ExpressionChanged up to I inclusive. 664 BinaryOperator *ExpressionChanged = nullptr; 665 for (unsigned i = 0; ; ++i) { 666 // The last operation (which comes earliest in the IR) is special as both 667 // operands will come from Ops, rather than just one with the other being 668 // a subexpression. 669 if (i+2 == Ops.size()) { 670 Value *NewLHS = Ops[i].Op; 671 Value *NewRHS = Ops[i+1].Op; 672 Value *OldLHS = Op->getOperand(0); 673 Value *OldRHS = Op->getOperand(1); 674 675 if (NewLHS == OldLHS && NewRHS == OldRHS) 676 // Nothing changed, leave it alone. 677 break; 678 679 if (NewLHS == OldRHS && NewRHS == OldLHS) { 680 // The order of the operands was reversed. Swap them. 681 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 682 Op->swapOperands(); 683 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 684 MadeChange = true; 685 ++NumChanged; 686 break; 687 } 688 689 // The new operation differs non-trivially from the original. Overwrite 690 // the old operands with the new ones. 691 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 692 if (NewLHS != OldLHS) { 693 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode); 694 if (BO && !NotRewritable.count(BO)) 695 NodesToRewrite.push_back(BO); 696 Op->setOperand(0, NewLHS); 697 } 698 if (NewRHS != OldRHS) { 699 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode); 700 if (BO && !NotRewritable.count(BO)) 701 NodesToRewrite.push_back(BO); 702 Op->setOperand(1, NewRHS); 703 } 704 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 705 706 ExpressionChanged = Op; 707 MadeChange = true; 708 ++NumChanged; 709 710 break; 711 } 712 713 // Not the last operation. The left-hand side will be a sub-expression 714 // while the right-hand side will be the current element of Ops. 715 Value *NewRHS = Ops[i].Op; 716 if (NewRHS != Op->getOperand(1)) { 717 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 718 if (NewRHS == Op->getOperand(0)) { 719 // The new right-hand side was already present as the left operand. If 720 // we are lucky then swapping the operands will sort out both of them. 721 Op->swapOperands(); 722 } else { 723 // Overwrite with the new right-hand side. 724 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode); 725 if (BO && !NotRewritable.count(BO)) 726 NodesToRewrite.push_back(BO); 727 Op->setOperand(1, NewRHS); 728 ExpressionChanged = Op; 729 } 730 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 731 MadeChange = true; 732 ++NumChanged; 733 } 734 735 // Now deal with the left-hand side. If this is already an operation node 736 // from the original expression then just rewrite the rest of the expression 737 // into it. 738 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode); 739 if (BO && !NotRewritable.count(BO)) { 740 Op = BO; 741 continue; 742 } 743 744 // Otherwise, grab a spare node from the original expression and use that as 745 // the left-hand side. If there are no nodes left then the optimizers made 746 // an expression with more nodes than the original! This usually means that 747 // they did something stupid but it might mean that the problem was just too 748 // hard (finding the mimimal number of multiplications needed to realize a 749 // multiplication expression is NP-complete). Whatever the reason, smart or 750 // stupid, create a new node if there are none left. 751 BinaryOperator *NewOp; 752 if (NodesToRewrite.empty()) { 753 Constant *Undef = UndefValue::get(I->getType()); 754 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode), 755 Undef, Undef, "", I); 756 if (NewOp->getType()->isFPOrFPVectorTy()) 757 NewOp->setFastMathFlags(I->getFastMathFlags()); 758 } else { 759 NewOp = NodesToRewrite.pop_back_val(); 760 } 761 762 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 763 Op->setOperand(0, NewOp); 764 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 765 ExpressionChanged = Op; 766 MadeChange = true; 767 ++NumChanged; 768 Op = NewOp; 769 } 770 771 // If the expression changed non-trivially then clear out all subclass data 772 // starting from the operator specified in ExpressionChanged, and compactify 773 // the operators to just before the expression root to guarantee that the 774 // expression tree is dominated by all of Ops. 775 if (ExpressionChanged) 776 do { 777 // Preserve FastMathFlags. 778 if (isa<FPMathOperator>(I)) { 779 FastMathFlags Flags = I->getFastMathFlags(); 780 ExpressionChanged->clearSubclassOptionalData(); 781 ExpressionChanged->setFastMathFlags(Flags); 782 } else 783 ExpressionChanged->clearSubclassOptionalData(); 784 785 if (ExpressionChanged == I) 786 break; 787 788 // Discard any debug info related to the expressions that has changed (we 789 // can leave debug infor related to the root, since the result of the 790 // expression tree should be the same even after reassociation). 791 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 792 findDbgUsers(DbgUsers, ExpressionChanged); 793 for (auto *DII : DbgUsers) { 794 Value *Undef = UndefValue::get(ExpressionChanged->getType()); 795 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 796 ValueAsMetadata::get(Undef))); 797 } 798 799 ExpressionChanged->moveBefore(I); 800 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin()); 801 } while (true); 802 803 // Throw away any left over nodes from the original expression. 804 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i) 805 RedoInsts.insert(NodesToRewrite[i]); 806 } 807 808 /// Insert instructions before the instruction pointed to by BI, 809 /// that computes the negative version of the value specified. The negative 810 /// version of the value is returned, and BI is left pointing at the instruction 811 /// that should be processed next by the reassociation pass. 812 /// Also add intermediate instructions to the redo list that are modified while 813 /// pushing the negates through adds. These will be revisited to see if 814 /// additional opportunities have been exposed. 815 static Value *NegateValue(Value *V, Instruction *BI, 816 ReassociatePass::OrderedSet &ToRedo) { 817 if (auto *C = dyn_cast<Constant>(V)) 818 return C->getType()->isFPOrFPVectorTy() ? ConstantExpr::getFNeg(C) : 819 ConstantExpr::getNeg(C); 820 821 // We are trying to expose opportunity for reassociation. One of the things 822 // that we want to do to achieve this is to push a negation as deep into an 823 // expression chain as possible, to expose the add instructions. In practice, 824 // this means that we turn this: 825 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D 826 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate 827 // the constants. We assume that instcombine will clean up the mess later if 828 // we introduce tons of unnecessary negation instructions. 829 // 830 if (BinaryOperator *I = 831 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) { 832 // Push the negates through the add. 833 I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo)); 834 I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo)); 835 if (I->getOpcode() == Instruction::Add) { 836 I->setHasNoUnsignedWrap(false); 837 I->setHasNoSignedWrap(false); 838 } 839 840 // We must move the add instruction here, because the neg instructions do 841 // not dominate the old add instruction in general. By moving it, we are 842 // assured that the neg instructions we just inserted dominate the 843 // instruction we are about to insert after them. 844 // 845 I->moveBefore(BI); 846 I->setName(I->getName()+".neg"); 847 848 // Add the intermediate negates to the redo list as processing them later 849 // could expose more reassociating opportunities. 850 ToRedo.insert(I); 851 return I; 852 } 853 854 // Okay, we need to materialize a negated version of V with an instruction. 855 // Scan the use lists of V to see if we have one already. 856 for (User *U : V->users()) { 857 if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U)) 858 continue; 859 860 // We found one! Now we have to make sure that the definition dominates 861 // this use. We do this by moving it to the entry block (if it is a 862 // non-instruction value) or right after the definition. These negates will 863 // be zapped by reassociate later, so we don't need much finesse here. 864 BinaryOperator *TheNeg = cast<BinaryOperator>(U); 865 866 // Verify that the negate is in this function, V might be a constant expr. 867 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent()) 868 continue; 869 870 BasicBlock::iterator InsertPt; 871 if (Instruction *InstInput = dyn_cast<Instruction>(V)) { 872 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) { 873 InsertPt = II->getNormalDest()->begin(); 874 } else { 875 InsertPt = ++InstInput->getIterator(); 876 } 877 while (isa<PHINode>(InsertPt)) ++InsertPt; 878 } else { 879 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin(); 880 } 881 TheNeg->moveBefore(&*InsertPt); 882 if (TheNeg->getOpcode() == Instruction::Sub) { 883 TheNeg->setHasNoUnsignedWrap(false); 884 TheNeg->setHasNoSignedWrap(false); 885 } else { 886 TheNeg->andIRFlags(BI); 887 } 888 ToRedo.insert(TheNeg); 889 return TheNeg; 890 } 891 892 // Insert a 'neg' instruction that subtracts the value from zero to get the 893 // negation. 894 BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI); 895 ToRedo.insert(NewNeg); 896 return NewNeg; 897 } 898 899 /// Return true if we should break up this subtract of X-Y into (X + -Y). 900 static bool ShouldBreakUpSubtract(Instruction *Sub) { 901 // If this is a negation, we can't split it up! 902 if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub)) 903 return false; 904 905 // Don't breakup X - undef. 906 if (isa<UndefValue>(Sub->getOperand(1))) 907 return false; 908 909 // Don't bother to break this up unless either the LHS is an associable add or 910 // subtract or if this is only used by one. 911 Value *V0 = Sub->getOperand(0); 912 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) || 913 isReassociableOp(V0, Instruction::Sub, Instruction::FSub)) 914 return true; 915 Value *V1 = Sub->getOperand(1); 916 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) || 917 isReassociableOp(V1, Instruction::Sub, Instruction::FSub)) 918 return true; 919 Value *VB = Sub->user_back(); 920 if (Sub->hasOneUse() && 921 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) || 922 isReassociableOp(VB, Instruction::Sub, Instruction::FSub))) 923 return true; 924 925 return false; 926 } 927 928 /// If we have (X-Y), and if either X is an add, or if this is only used by an 929 /// add, transform this into (X+(0-Y)) to promote better reassociation. 930 static BinaryOperator *BreakUpSubtract(Instruction *Sub, 931 ReassociatePass::OrderedSet &ToRedo) { 932 // Convert a subtract into an add and a neg instruction. This allows sub 933 // instructions to be commuted with other add instructions. 934 // 935 // Calculate the negative value of Operand 1 of the sub instruction, 936 // and set it as the RHS of the add instruction we just made. 937 Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo); 938 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub); 939 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op. 940 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op. 941 New->takeName(Sub); 942 943 // Everyone now refers to the add instruction. 944 Sub->replaceAllUsesWith(New); 945 New->setDebugLoc(Sub->getDebugLoc()); 946 947 LLVM_DEBUG(dbgs() << "Negated: " << *New << '\n'); 948 return New; 949 } 950 951 /// If this is a shift of a reassociable multiply or is used by one, change 952 /// this into a multiply by a constant to assist with further reassociation. 953 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) { 954 Constant *MulCst = ConstantInt::get(Shl->getType(), 1); 955 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1))); 956 957 BinaryOperator *Mul = 958 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl); 959 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op. 960 Mul->takeName(Shl); 961 962 // Everyone now refers to the mul instruction. 963 Shl->replaceAllUsesWith(Mul); 964 Mul->setDebugLoc(Shl->getDebugLoc()); 965 966 // We can safely preserve the nuw flag in all cases. It's also safe to turn a 967 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special 968 // handling. 969 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap(); 970 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap(); 971 if (NSW && NUW) 972 Mul->setHasNoSignedWrap(true); 973 Mul->setHasNoUnsignedWrap(NUW); 974 return Mul; 975 } 976 977 /// Scan backwards and forwards among values with the same rank as element i 978 /// to see if X exists. If X does not exist, return i. This is useful when 979 /// scanning for 'x' when we see '-x' because they both get the same rank. 980 static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops, 981 unsigned i, Value *X) { 982 unsigned XRank = Ops[i].Rank; 983 unsigned e = Ops.size(); 984 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) { 985 if (Ops[j].Op == X) 986 return j; 987 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 988 if (Instruction *I2 = dyn_cast<Instruction>(X)) 989 if (I1->isIdenticalTo(I2)) 990 return j; 991 } 992 // Scan backwards. 993 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) { 994 if (Ops[j].Op == X) 995 return j; 996 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 997 if (Instruction *I2 = dyn_cast<Instruction>(X)) 998 if (I1->isIdenticalTo(I2)) 999 return j; 1000 } 1001 return i; 1002 } 1003 1004 /// Emit a tree of add instructions, summing Ops together 1005 /// and returning the result. Insert the tree before I. 1006 static Value *EmitAddTreeOfValues(Instruction *I, 1007 SmallVectorImpl<WeakTrackingVH> &Ops) { 1008 if (Ops.size() == 1) return Ops.back(); 1009 1010 Value *V1 = Ops.back(); 1011 Ops.pop_back(); 1012 Value *V2 = EmitAddTreeOfValues(I, Ops); 1013 return CreateAdd(V2, V1, "reass.add", I, I); 1014 } 1015 1016 /// If V is an expression tree that is a multiplication sequence, 1017 /// and if this sequence contains a multiply by Factor, 1018 /// remove Factor from the tree and return the new tree. 1019 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) { 1020 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1021 if (!BO) 1022 return nullptr; 1023 1024 SmallVector<RepeatedValue, 8> Tree; 1025 MadeChange |= LinearizeExprTree(BO, Tree); 1026 SmallVector<ValueEntry, 8> Factors; 1027 Factors.reserve(Tree.size()); 1028 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 1029 RepeatedValue E = Tree[i]; 1030 Factors.append(E.second.getZExtValue(), 1031 ValueEntry(getRank(E.first), E.first)); 1032 } 1033 1034 bool FoundFactor = false; 1035 bool NeedsNegate = false; 1036 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1037 if (Factors[i].Op == Factor) { 1038 FoundFactor = true; 1039 Factors.erase(Factors.begin()+i); 1040 break; 1041 } 1042 1043 // If this is a negative version of this factor, remove it. 1044 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) { 1045 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op)) 1046 if (FC1->getValue() == -FC2->getValue()) { 1047 FoundFactor = NeedsNegate = true; 1048 Factors.erase(Factors.begin()+i); 1049 break; 1050 } 1051 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) { 1052 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) { 1053 const APFloat &F1 = FC1->getValueAPF(); 1054 APFloat F2(FC2->getValueAPF()); 1055 F2.changeSign(); 1056 if (F1.compare(F2) == APFloat::cmpEqual) { 1057 FoundFactor = NeedsNegate = true; 1058 Factors.erase(Factors.begin() + i); 1059 break; 1060 } 1061 } 1062 } 1063 } 1064 1065 if (!FoundFactor) { 1066 // Make sure to restore the operands to the expression tree. 1067 RewriteExprTree(BO, Factors); 1068 return nullptr; 1069 } 1070 1071 BasicBlock::iterator InsertPt = ++BO->getIterator(); 1072 1073 // If this was just a single multiply, remove the multiply and return the only 1074 // remaining operand. 1075 if (Factors.size() == 1) { 1076 RedoInsts.insert(BO); 1077 V = Factors[0].Op; 1078 } else { 1079 RewriteExprTree(BO, Factors); 1080 V = BO; 1081 } 1082 1083 if (NeedsNegate) 1084 V = CreateNeg(V, "neg", &*InsertPt, BO); 1085 1086 return V; 1087 } 1088 1089 /// If V is a single-use multiply, recursively add its operands as factors, 1090 /// otherwise add V to the list of factors. 1091 /// 1092 /// Ops is the top-level list of add operands we're trying to factor. 1093 static void FindSingleUseMultiplyFactors(Value *V, 1094 SmallVectorImpl<Value*> &Factors) { 1095 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1096 if (!BO) { 1097 Factors.push_back(V); 1098 return; 1099 } 1100 1101 // Otherwise, add the LHS and RHS to the list of factors. 1102 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors); 1103 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors); 1104 } 1105 1106 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction. 1107 /// This optimizes based on identities. If it can be reduced to a single Value, 1108 /// it is returned, otherwise the Ops list is mutated as necessary. 1109 static Value *OptimizeAndOrXor(unsigned Opcode, 1110 SmallVectorImpl<ValueEntry> &Ops) { 1111 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs. 1112 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1. 1113 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1114 // First, check for X and ~X in the operand list. 1115 assert(i < Ops.size()); 1116 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^. 1117 Value *X = BinaryOperator::getNotArgument(Ops[i].Op); 1118 unsigned FoundX = FindInOperandList(Ops, i, X); 1119 if (FoundX != i) { 1120 if (Opcode == Instruction::And) // ...&X&~X = 0 1121 return Constant::getNullValue(X->getType()); 1122 1123 if (Opcode == Instruction::Or) // ...|X|~X = -1 1124 return Constant::getAllOnesValue(X->getType()); 1125 } 1126 } 1127 1128 // Next, check for duplicate pairs of values, which we assume are next to 1129 // each other, due to our sorting criteria. 1130 assert(i < Ops.size()); 1131 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) { 1132 if (Opcode == Instruction::And || Opcode == Instruction::Or) { 1133 // Drop duplicate values for And and Or. 1134 Ops.erase(Ops.begin()+i); 1135 --i; --e; 1136 ++NumAnnihil; 1137 continue; 1138 } 1139 1140 // Drop pairs of values for Xor. 1141 assert(Opcode == Instruction::Xor); 1142 if (e == 2) 1143 return Constant::getNullValue(Ops[0].Op->getType()); 1144 1145 // Y ^ X^X -> Y 1146 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1147 i -= 1; e -= 2; 1148 ++NumAnnihil; 1149 } 1150 } 1151 return nullptr; 1152 } 1153 1154 /// Helper function of CombineXorOpnd(). It creates a bitwise-and 1155 /// instruction with the given two operands, and return the resulting 1156 /// instruction. There are two special cases: 1) if the constant operand is 0, 1157 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will 1158 /// be returned. 1159 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd, 1160 const APInt &ConstOpnd) { 1161 if (ConstOpnd.isNullValue()) 1162 return nullptr; 1163 1164 if (ConstOpnd.isAllOnesValue()) 1165 return Opnd; 1166 1167 Instruction *I = BinaryOperator::CreateAnd( 1168 Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra", 1169 InsertBefore); 1170 I->setDebugLoc(InsertBefore->getDebugLoc()); 1171 return I; 1172 } 1173 1174 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd" 1175 // into "R ^ C", where C would be 0, and R is a symbolic value. 1176 // 1177 // If it was successful, true is returned, and the "R" and "C" is returned 1178 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned, 1179 // and both "Res" and "ConstOpnd" remain unchanged. 1180 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1181 APInt &ConstOpnd, Value *&Res) { 1182 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2 1183 // = ((x | c1) ^ c1) ^ (c1 ^ c2) 1184 // = (x & ~c1) ^ (c1 ^ c2) 1185 // It is useful only when c1 == c2. 1186 if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isNullValue()) 1187 return false; 1188 1189 if (!Opnd1->getValue()->hasOneUse()) 1190 return false; 1191 1192 const APInt &C1 = Opnd1->getConstPart(); 1193 if (C1 != ConstOpnd) 1194 return false; 1195 1196 Value *X = Opnd1->getSymbolicPart(); 1197 Res = createAndInstr(I, X, ~C1); 1198 // ConstOpnd was C2, now C1 ^ C2. 1199 ConstOpnd ^= C1; 1200 1201 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1202 RedoInsts.insert(T); 1203 return true; 1204 } 1205 1206 // Helper function of OptimizeXor(). It tries to simplify 1207 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a 1208 // symbolic value. 1209 // 1210 // If it was successful, true is returned, and the "R" and "C" is returned 1211 // via "Res" and "ConstOpnd", respectively (If the entire expression is 1212 // evaluated to a constant, the Res is set to NULL); otherwise, false is 1213 // returned, and both "Res" and "ConstOpnd" remain unchanged. 1214 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1215 XorOpnd *Opnd2, APInt &ConstOpnd, 1216 Value *&Res) { 1217 Value *X = Opnd1->getSymbolicPart(); 1218 if (X != Opnd2->getSymbolicPart()) 1219 return false; 1220 1221 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.) 1222 int DeadInstNum = 1; 1223 if (Opnd1->getValue()->hasOneUse()) 1224 DeadInstNum++; 1225 if (Opnd2->getValue()->hasOneUse()) 1226 DeadInstNum++; 1227 1228 // Xor-Rule 2: 1229 // (x | c1) ^ (x & c2) 1230 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1 1231 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1 1232 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3 1233 // 1234 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) { 1235 if (Opnd2->isOrExpr()) 1236 std::swap(Opnd1, Opnd2); 1237 1238 const APInt &C1 = Opnd1->getConstPart(); 1239 const APInt &C2 = Opnd2->getConstPart(); 1240 APInt C3((~C1) ^ C2); 1241 1242 // Do not increase code size! 1243 if (!C3.isNullValue() && !C3.isAllOnesValue()) { 1244 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2; 1245 if (NewInstNum > DeadInstNum) 1246 return false; 1247 } 1248 1249 Res = createAndInstr(I, X, C3); 1250 ConstOpnd ^= C1; 1251 } else if (Opnd1->isOrExpr()) { 1252 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2 1253 // 1254 const APInt &C1 = Opnd1->getConstPart(); 1255 const APInt &C2 = Opnd2->getConstPart(); 1256 APInt C3 = C1 ^ C2; 1257 1258 // Do not increase code size 1259 if (!C3.isNullValue() && !C3.isAllOnesValue()) { 1260 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2; 1261 if (NewInstNum > DeadInstNum) 1262 return false; 1263 } 1264 1265 Res = createAndInstr(I, X, C3); 1266 ConstOpnd ^= C3; 1267 } else { 1268 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2)) 1269 // 1270 const APInt &C1 = Opnd1->getConstPart(); 1271 const APInt &C2 = Opnd2->getConstPart(); 1272 APInt C3 = C1 ^ C2; 1273 Res = createAndInstr(I, X, C3); 1274 } 1275 1276 // Put the original operands in the Redo list; hope they will be deleted 1277 // as dead code. 1278 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1279 RedoInsts.insert(T); 1280 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue())) 1281 RedoInsts.insert(T); 1282 1283 return true; 1284 } 1285 1286 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced 1287 /// to a single Value, it is returned, otherwise the Ops list is mutated as 1288 /// necessary. 1289 Value *ReassociatePass::OptimizeXor(Instruction *I, 1290 SmallVectorImpl<ValueEntry> &Ops) { 1291 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops)) 1292 return V; 1293 1294 if (Ops.size() == 1) 1295 return nullptr; 1296 1297 SmallVector<XorOpnd, 8> Opnds; 1298 SmallVector<XorOpnd*, 8> OpndPtrs; 1299 Type *Ty = Ops[0].Op->getType(); 1300 APInt ConstOpnd(Ty->getScalarSizeInBits(), 0); 1301 1302 // Step 1: Convert ValueEntry to XorOpnd 1303 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1304 Value *V = Ops[i].Op; 1305 const APInt *C; 1306 // TODO: Support non-splat vectors. 1307 if (match(V, PatternMatch::m_APInt(C))) { 1308 ConstOpnd ^= *C; 1309 } else { 1310 XorOpnd O(V); 1311 O.setSymbolicRank(getRank(O.getSymbolicPart())); 1312 Opnds.push_back(O); 1313 } 1314 } 1315 1316 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds". 1317 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate 1318 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop 1319 // with the previous loop --- the iterator of the "Opnds" may be invalidated 1320 // when new elements are added to the vector. 1321 for (unsigned i = 0, e = Opnds.size(); i != e; ++i) 1322 OpndPtrs.push_back(&Opnds[i]); 1323 1324 // Step 2: Sort the Xor-Operands in a way such that the operands containing 1325 // the same symbolic value cluster together. For instance, the input operand 1326 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into: 1327 // ("x | 123", "x & 789", "y & 456"). 1328 // 1329 // The purpose is twofold: 1330 // 1) Cluster together the operands sharing the same symbolic-value. 1331 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which 1332 // could potentially shorten crital path, and expose more loop-invariants. 1333 // Note that values' rank are basically defined in RPO order (FIXME). 1334 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier 1335 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2", 1336 // "z" in the order of X-Y-Z is better than any other orders. 1337 std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), 1338 [](XorOpnd *LHS, XorOpnd *RHS) { 1339 return LHS->getSymbolicRank() < RHS->getSymbolicRank(); 1340 }); 1341 1342 // Step 3: Combine adjacent operands 1343 XorOpnd *PrevOpnd = nullptr; 1344 bool Changed = false; 1345 for (unsigned i = 0, e = Opnds.size(); i < e; i++) { 1346 XorOpnd *CurrOpnd = OpndPtrs[i]; 1347 // The combined value 1348 Value *CV; 1349 1350 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd" 1351 if (!ConstOpnd.isNullValue() && 1352 CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) { 1353 Changed = true; 1354 if (CV) 1355 *CurrOpnd = XorOpnd(CV); 1356 else { 1357 CurrOpnd->Invalidate(); 1358 continue; 1359 } 1360 } 1361 1362 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) { 1363 PrevOpnd = CurrOpnd; 1364 continue; 1365 } 1366 1367 // step 3.2: When previous and current operands share the same symbolic 1368 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd" 1369 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) { 1370 // Remove previous operand 1371 PrevOpnd->Invalidate(); 1372 if (CV) { 1373 *CurrOpnd = XorOpnd(CV); 1374 PrevOpnd = CurrOpnd; 1375 } else { 1376 CurrOpnd->Invalidate(); 1377 PrevOpnd = nullptr; 1378 } 1379 Changed = true; 1380 } 1381 } 1382 1383 // Step 4: Reassemble the Ops 1384 if (Changed) { 1385 Ops.clear(); 1386 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) { 1387 XorOpnd &O = Opnds[i]; 1388 if (O.isInvalid()) 1389 continue; 1390 ValueEntry VE(getRank(O.getValue()), O.getValue()); 1391 Ops.push_back(VE); 1392 } 1393 if (!ConstOpnd.isNullValue()) { 1394 Value *C = ConstantInt::get(Ty, ConstOpnd); 1395 ValueEntry VE(getRank(C), C); 1396 Ops.push_back(VE); 1397 } 1398 unsigned Sz = Ops.size(); 1399 if (Sz == 1) 1400 return Ops.back().Op; 1401 if (Sz == 0) { 1402 assert(ConstOpnd.isNullValue()); 1403 return ConstantInt::get(Ty, ConstOpnd); 1404 } 1405 } 1406 1407 return nullptr; 1408 } 1409 1410 /// Optimize a series of operands to an 'add' instruction. This 1411 /// optimizes based on identities. If it can be reduced to a single Value, it 1412 /// is returned, otherwise the Ops list is mutated as necessary. 1413 Value *ReassociatePass::OptimizeAdd(Instruction *I, 1414 SmallVectorImpl<ValueEntry> &Ops) { 1415 // Scan the operand lists looking for X and -X pairs. If we find any, we 1416 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it, 1417 // scan for any 1418 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z. 1419 1420 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1421 Value *TheOp = Ops[i].Op; 1422 // Check to see if we've seen this operand before. If so, we factor all 1423 // instances of the operand together. Due to our sorting criteria, we know 1424 // that these need to be next to each other in the vector. 1425 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) { 1426 // Rescan the list, remove all instances of this operand from the expr. 1427 unsigned NumFound = 0; 1428 do { 1429 Ops.erase(Ops.begin()+i); 1430 ++NumFound; 1431 } while (i != Ops.size() && Ops[i].Op == TheOp); 1432 1433 LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp 1434 << '\n'); 1435 ++NumFactor; 1436 1437 // Insert a new multiply. 1438 Type *Ty = TheOp->getType(); 1439 Constant *C = Ty->isIntOrIntVectorTy() ? 1440 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound); 1441 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I); 1442 1443 // Now that we have inserted a multiply, optimize it. This allows us to 1444 // handle cases that require multiple factoring steps, such as this: 1445 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6 1446 RedoInsts.insert(Mul); 1447 1448 // If every add operand was a duplicate, return the multiply. 1449 if (Ops.empty()) 1450 return Mul; 1451 1452 // Otherwise, we had some input that didn't have the dupe, such as 1453 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of 1454 // things being added by this operation. 1455 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul)); 1456 1457 --i; 1458 e = Ops.size(); 1459 continue; 1460 } 1461 1462 // Check for X and -X or X and ~X in the operand list. 1463 if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) && 1464 !BinaryOperator::isNot(TheOp)) 1465 continue; 1466 1467 Value *X = nullptr; 1468 if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)) 1469 X = BinaryOperator::getNegArgument(TheOp); 1470 else if (BinaryOperator::isNot(TheOp)) 1471 X = BinaryOperator::getNotArgument(TheOp); 1472 1473 unsigned FoundX = FindInOperandList(Ops, i, X); 1474 if (FoundX == i) 1475 continue; 1476 1477 // Remove X and -X from the operand list. 1478 if (Ops.size() == 2 && 1479 (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))) 1480 return Constant::getNullValue(X->getType()); 1481 1482 // Remove X and ~X from the operand list. 1483 if (Ops.size() == 2 && BinaryOperator::isNot(TheOp)) 1484 return Constant::getAllOnesValue(X->getType()); 1485 1486 Ops.erase(Ops.begin()+i); 1487 if (i < FoundX) 1488 --FoundX; 1489 else 1490 --i; // Need to back up an extra one. 1491 Ops.erase(Ops.begin()+FoundX); 1492 ++NumAnnihil; 1493 --i; // Revisit element. 1494 e -= 2; // Removed two elements. 1495 1496 // if X and ~X we append -1 to the operand list. 1497 if (BinaryOperator::isNot(TheOp)) { 1498 Value *V = Constant::getAllOnesValue(X->getType()); 1499 Ops.insert(Ops.end(), ValueEntry(getRank(V), V)); 1500 e += 1; 1501 } 1502 } 1503 1504 // Scan the operand list, checking to see if there are any common factors 1505 // between operands. Consider something like A*A+A*B*C+D. We would like to 1506 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies. 1507 // To efficiently find this, we count the number of times a factor occurs 1508 // for any ADD operands that are MULs. 1509 DenseMap<Value*, unsigned> FactorOccurrences; 1510 1511 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4) 1512 // where they are actually the same multiply. 1513 unsigned MaxOcc = 0; 1514 Value *MaxOccVal = nullptr; 1515 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1516 BinaryOperator *BOp = 1517 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1518 if (!BOp) 1519 continue; 1520 1521 // Compute all of the factors of this added value. 1522 SmallVector<Value*, 8> Factors; 1523 FindSingleUseMultiplyFactors(BOp, Factors); 1524 assert(Factors.size() > 1 && "Bad linearize!"); 1525 1526 // Add one to FactorOccurrences for each unique factor in this op. 1527 SmallPtrSet<Value*, 8> Duplicates; 1528 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1529 Value *Factor = Factors[i]; 1530 if (!Duplicates.insert(Factor).second) 1531 continue; 1532 1533 unsigned Occ = ++FactorOccurrences[Factor]; 1534 if (Occ > MaxOcc) { 1535 MaxOcc = Occ; 1536 MaxOccVal = Factor; 1537 } 1538 1539 // If Factor is a negative constant, add the negated value as a factor 1540 // because we can percolate the negate out. Watch for minint, which 1541 // cannot be positivified. 1542 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) { 1543 if (CI->isNegative() && !CI->isMinValue(true)) { 1544 Factor = ConstantInt::get(CI->getContext(), -CI->getValue()); 1545 if (!Duplicates.insert(Factor).second) 1546 continue; 1547 unsigned Occ = ++FactorOccurrences[Factor]; 1548 if (Occ > MaxOcc) { 1549 MaxOcc = Occ; 1550 MaxOccVal = Factor; 1551 } 1552 } 1553 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) { 1554 if (CF->isNegative()) { 1555 APFloat F(CF->getValueAPF()); 1556 F.changeSign(); 1557 Factor = ConstantFP::get(CF->getContext(), F); 1558 if (!Duplicates.insert(Factor).second) 1559 continue; 1560 unsigned Occ = ++FactorOccurrences[Factor]; 1561 if (Occ > MaxOcc) { 1562 MaxOcc = Occ; 1563 MaxOccVal = Factor; 1564 } 1565 } 1566 } 1567 } 1568 } 1569 1570 // If any factor occurred more than one time, we can pull it out. 1571 if (MaxOcc > 1) { 1572 LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal 1573 << '\n'); 1574 ++NumFactor; 1575 1576 // Create a new instruction that uses the MaxOccVal twice. If we don't do 1577 // this, we could otherwise run into situations where removing a factor 1578 // from an expression will drop a use of maxocc, and this can cause 1579 // RemoveFactorFromExpression on successive values to behave differently. 1580 Instruction *DummyInst = 1581 I->getType()->isIntOrIntVectorTy() 1582 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal) 1583 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal); 1584 1585 SmallVector<WeakTrackingVH, 4> NewMulOps; 1586 for (unsigned i = 0; i != Ops.size(); ++i) { 1587 // Only try to remove factors from expressions we're allowed to. 1588 BinaryOperator *BOp = 1589 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1590 if (!BOp) 1591 continue; 1592 1593 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) { 1594 // The factorized operand may occur several times. Convert them all in 1595 // one fell swoop. 1596 for (unsigned j = Ops.size(); j != i;) { 1597 --j; 1598 if (Ops[j].Op == Ops[i].Op) { 1599 NewMulOps.push_back(V); 1600 Ops.erase(Ops.begin()+j); 1601 } 1602 } 1603 --i; 1604 } 1605 } 1606 1607 // No need for extra uses anymore. 1608 DummyInst->deleteValue(); 1609 1610 unsigned NumAddedValues = NewMulOps.size(); 1611 Value *V = EmitAddTreeOfValues(I, NewMulOps); 1612 1613 // Now that we have inserted the add tree, optimize it. This allows us to 1614 // handle cases that require multiple factoring steps, such as this: 1615 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C)) 1616 assert(NumAddedValues > 1 && "Each occurrence should contribute a value"); 1617 (void)NumAddedValues; 1618 if (Instruction *VI = dyn_cast<Instruction>(V)) 1619 RedoInsts.insert(VI); 1620 1621 // Create the multiply. 1622 Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I); 1623 1624 // Rerun associate on the multiply in case the inner expression turned into 1625 // a multiply. We want to make sure that we keep things in canonical form. 1626 RedoInsts.insert(V2); 1627 1628 // If every add operand included the factor (e.g. "A*B + A*C"), then the 1629 // entire result expression is just the multiply "A*(B+C)". 1630 if (Ops.empty()) 1631 return V2; 1632 1633 // Otherwise, we had some input that didn't have the factor, such as 1634 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of 1635 // things being added by this operation. 1636 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2)); 1637 } 1638 1639 return nullptr; 1640 } 1641 1642 /// Build up a vector of value/power pairs factoring a product. 1643 /// 1644 /// Given a series of multiplication operands, build a vector of factors and 1645 /// the powers each is raised to when forming the final product. Sort them in 1646 /// the order of descending power. 1647 /// 1648 /// (x*x) -> [(x, 2)] 1649 /// ((x*x)*x) -> [(x, 3)] 1650 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)] 1651 /// 1652 /// \returns Whether any factors have a power greater than one. 1653 static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, 1654 SmallVectorImpl<Factor> &Factors) { 1655 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this. 1656 // Compute the sum of powers of simplifiable factors. 1657 unsigned FactorPowerSum = 0; 1658 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) { 1659 Value *Op = Ops[Idx-1].Op; 1660 1661 // Count the number of occurrences of this value. 1662 unsigned Count = 1; 1663 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx) 1664 ++Count; 1665 // Track for simplification all factors which occur 2 or more times. 1666 if (Count > 1) 1667 FactorPowerSum += Count; 1668 } 1669 1670 // We can only simplify factors if the sum of the powers of our simplifiable 1671 // factors is 4 or higher. When that is the case, we will *always* have 1672 // a simplification. This is an important invariant to prevent cyclicly 1673 // trying to simplify already minimal formations. 1674 if (FactorPowerSum < 4) 1675 return false; 1676 1677 // Now gather the simplifiable factors, removing them from Ops. 1678 FactorPowerSum = 0; 1679 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) { 1680 Value *Op = Ops[Idx-1].Op; 1681 1682 // Count the number of occurrences of this value. 1683 unsigned Count = 1; 1684 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx) 1685 ++Count; 1686 if (Count == 1) 1687 continue; 1688 // Move an even number of occurrences to Factors. 1689 Count &= ~1U; 1690 Idx -= Count; 1691 FactorPowerSum += Count; 1692 Factors.push_back(Factor(Op, Count)); 1693 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count); 1694 } 1695 1696 // None of the adjustments above should have reduced the sum of factor powers 1697 // below our mininum of '4'. 1698 assert(FactorPowerSum >= 4); 1699 1700 std::stable_sort(Factors.begin(), Factors.end(), 1701 [](const Factor &LHS, const Factor &RHS) { 1702 return LHS.Power > RHS.Power; 1703 }); 1704 return true; 1705 } 1706 1707 /// Build a tree of multiplies, computing the product of Ops. 1708 static Value *buildMultiplyTree(IRBuilder<> &Builder, 1709 SmallVectorImpl<Value*> &Ops) { 1710 if (Ops.size() == 1) 1711 return Ops.back(); 1712 1713 Value *LHS = Ops.pop_back_val(); 1714 do { 1715 if (LHS->getType()->isIntOrIntVectorTy()) 1716 LHS = Builder.CreateMul(LHS, Ops.pop_back_val()); 1717 else 1718 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val()); 1719 } while (!Ops.empty()); 1720 1721 return LHS; 1722 } 1723 1724 /// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*... 1725 /// 1726 /// Given a vector of values raised to various powers, where no two values are 1727 /// equal and the powers are sorted in decreasing order, compute the minimal 1728 /// DAG of multiplies to compute the final product, and return that product 1729 /// value. 1730 Value * 1731 ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder, 1732 SmallVectorImpl<Factor> &Factors) { 1733 assert(Factors[0].Power); 1734 SmallVector<Value *, 4> OuterProduct; 1735 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size(); 1736 Idx < Size && Factors[Idx].Power > 0; ++Idx) { 1737 if (Factors[Idx].Power != Factors[LastIdx].Power) { 1738 LastIdx = Idx; 1739 continue; 1740 } 1741 1742 // We want to multiply across all the factors with the same power so that 1743 // we can raise them to that power as a single entity. Build a mini tree 1744 // for that. 1745 SmallVector<Value *, 4> InnerProduct; 1746 InnerProduct.push_back(Factors[LastIdx].Base); 1747 do { 1748 InnerProduct.push_back(Factors[Idx].Base); 1749 ++Idx; 1750 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power); 1751 1752 // Reset the base value of the first factor to the new expression tree. 1753 // We'll remove all the factors with the same power in a second pass. 1754 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct); 1755 if (Instruction *MI = dyn_cast<Instruction>(M)) 1756 RedoInsts.insert(MI); 1757 1758 LastIdx = Idx; 1759 } 1760 // Unique factors with equal powers -- we've folded them into the first one's 1761 // base. 1762 Factors.erase(std::unique(Factors.begin(), Factors.end(), 1763 [](const Factor &LHS, const Factor &RHS) { 1764 return LHS.Power == RHS.Power; 1765 }), 1766 Factors.end()); 1767 1768 // Iteratively collect the base of each factor with an add power into the 1769 // outer product, and halve each power in preparation for squaring the 1770 // expression. 1771 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) { 1772 if (Factors[Idx].Power & 1) 1773 OuterProduct.push_back(Factors[Idx].Base); 1774 Factors[Idx].Power >>= 1; 1775 } 1776 if (Factors[0].Power) { 1777 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors); 1778 OuterProduct.push_back(SquareRoot); 1779 OuterProduct.push_back(SquareRoot); 1780 } 1781 if (OuterProduct.size() == 1) 1782 return OuterProduct.front(); 1783 1784 Value *V = buildMultiplyTree(Builder, OuterProduct); 1785 return V; 1786 } 1787 1788 Value *ReassociatePass::OptimizeMul(BinaryOperator *I, 1789 SmallVectorImpl<ValueEntry> &Ops) { 1790 // We can only optimize the multiplies when there is a chain of more than 1791 // three, such that a balanced tree might require fewer total multiplies. 1792 if (Ops.size() < 4) 1793 return nullptr; 1794 1795 // Try to turn linear trees of multiplies without other uses of the 1796 // intermediate stages into minimal multiply DAGs with perfect sub-expression 1797 // re-use. 1798 SmallVector<Factor, 4> Factors; 1799 if (!collectMultiplyFactors(Ops, Factors)) 1800 return nullptr; // All distinct factors, so nothing left for us to do. 1801 1802 IRBuilder<> Builder(I); 1803 // The reassociate transformation for FP operations is performed only 1804 // if unsafe algebra is permitted by FastMathFlags. Propagate those flags 1805 // to the newly generated operations. 1806 if (auto FPI = dyn_cast<FPMathOperator>(I)) 1807 Builder.setFastMathFlags(FPI->getFastMathFlags()); 1808 1809 Value *V = buildMinimalMultiplyDAG(Builder, Factors); 1810 if (Ops.empty()) 1811 return V; 1812 1813 ValueEntry NewEntry = ValueEntry(getRank(V), V); 1814 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry); 1815 return nullptr; 1816 } 1817 1818 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I, 1819 SmallVectorImpl<ValueEntry> &Ops) { 1820 // Now that we have the linearized expression tree, try to optimize it. 1821 // Start by folding any constants that we found. 1822 Constant *Cst = nullptr; 1823 unsigned Opcode = I->getOpcode(); 1824 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) { 1825 Constant *C = cast<Constant>(Ops.pop_back_val().Op); 1826 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C; 1827 } 1828 // If there was nothing but constants then we are done. 1829 if (Ops.empty()) 1830 return Cst; 1831 1832 // Put the combined constant back at the end of the operand list, except if 1833 // there is no point. For example, an add of 0 gets dropped here, while a 1834 // multiplication by zero turns the whole expression into zero. 1835 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) { 1836 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType())) 1837 return Cst; 1838 Ops.push_back(ValueEntry(0, Cst)); 1839 } 1840 1841 if (Ops.size() == 1) return Ops[0].Op; 1842 1843 // Handle destructive annihilation due to identities between elements in the 1844 // argument list here. 1845 unsigned NumOps = Ops.size(); 1846 switch (Opcode) { 1847 default: break; 1848 case Instruction::And: 1849 case Instruction::Or: 1850 if (Value *Result = OptimizeAndOrXor(Opcode, Ops)) 1851 return Result; 1852 break; 1853 1854 case Instruction::Xor: 1855 if (Value *Result = OptimizeXor(I, Ops)) 1856 return Result; 1857 break; 1858 1859 case Instruction::Add: 1860 case Instruction::FAdd: 1861 if (Value *Result = OptimizeAdd(I, Ops)) 1862 return Result; 1863 break; 1864 1865 case Instruction::Mul: 1866 case Instruction::FMul: 1867 if (Value *Result = OptimizeMul(I, Ops)) 1868 return Result; 1869 break; 1870 } 1871 1872 if (Ops.size() != NumOps) 1873 return OptimizeExpression(I, Ops); 1874 return nullptr; 1875 } 1876 1877 // Remove dead instructions and if any operands are trivially dead add them to 1878 // Insts so they will be removed as well. 1879 void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I, 1880 OrderedSet &Insts) { 1881 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1882 SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end()); 1883 ValueRankMap.erase(I); 1884 Insts.remove(I); 1885 RedoInsts.remove(I); 1886 I->eraseFromParent(); 1887 for (auto Op : Ops) 1888 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1889 if (OpInst->use_empty()) 1890 Insts.insert(OpInst); 1891 } 1892 1893 /// Zap the given instruction, adding interesting operands to the work list. 1894 void ReassociatePass::EraseInst(Instruction *I) { 1895 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1896 LLVM_DEBUG(dbgs() << "Erasing dead inst: "; I->dump()); 1897 1898 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 1899 // Erase the dead instruction. 1900 ValueRankMap.erase(I); 1901 RedoInsts.remove(I); 1902 I->eraseFromParent(); 1903 // Optimize its operands. 1904 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes. 1905 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1906 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) { 1907 // If this is a node in an expression tree, climb to the expression root 1908 // and add that since that's where optimization actually happens. 1909 unsigned Opcode = Op->getOpcode(); 1910 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode && 1911 Visited.insert(Op).second) 1912 Op = Op->user_back(); 1913 1914 // The instruction we're going to push may be coming from a 1915 // dead block, and Reassociate skips the processing of unreachable 1916 // blocks because it's a waste of time and also because it can 1917 // lead to infinite loop due to LLVM's non-standard definition 1918 // of dominance. 1919 if (ValueRankMap.find(Op) != ValueRankMap.end()) 1920 RedoInsts.insert(Op); 1921 } 1922 1923 MadeChange = true; 1924 } 1925 1926 // Canonicalize expressions of the following form: 1927 // x + (-Constant * y) -> x - (Constant * y) 1928 // x - (-Constant * y) -> x + (Constant * y) 1929 Instruction *ReassociatePass::canonicalizeNegConstExpr(Instruction *I) { 1930 if (!I->hasOneUse() || I->getType()->isVectorTy()) 1931 return nullptr; 1932 1933 // Must be a fmul or fdiv instruction. 1934 unsigned Opcode = I->getOpcode(); 1935 if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv) 1936 return nullptr; 1937 1938 auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0)); 1939 auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1)); 1940 1941 // Both operands are constant, let it get constant folded away. 1942 if (C0 && C1) 1943 return nullptr; 1944 1945 ConstantFP *CF = C0 ? C0 : C1; 1946 1947 // Must have one constant operand. 1948 if (!CF) 1949 return nullptr; 1950 1951 // Must be a negative ConstantFP. 1952 if (!CF->isNegative()) 1953 return nullptr; 1954 1955 // User must be a binary operator with one or more uses. 1956 Instruction *User = I->user_back(); 1957 if (!isa<BinaryOperator>(User) || User->use_empty()) 1958 return nullptr; 1959 1960 unsigned UserOpcode = User->getOpcode(); 1961 if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub) 1962 return nullptr; 1963 1964 // Subtraction is not commutative. Explicitly, the following transform is 1965 // not valid: (-Constant * y) - x -> x + (Constant * y) 1966 if (!User->isCommutative() && User->getOperand(1) != I) 1967 return nullptr; 1968 1969 // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the 1970 // resulting subtract will be broken up later. This can get us into an 1971 // infinite loop during reassociation. 1972 if (UserOpcode == Instruction::FAdd && ShouldBreakUpSubtract(User)) 1973 return nullptr; 1974 1975 // Change the sign of the constant. 1976 APFloat Val = CF->getValueAPF(); 1977 Val.changeSign(); 1978 I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val)); 1979 1980 // Canonicalize I to RHS to simplify the next bit of logic. E.g., 1981 // ((-Const*y) + x) -> (x + (-Const*y)). 1982 if (User->getOperand(0) == I && User->isCommutative()) 1983 cast<BinaryOperator>(User)->swapOperands(); 1984 1985 Value *Op0 = User->getOperand(0); 1986 Value *Op1 = User->getOperand(1); 1987 BinaryOperator *NI; 1988 switch (UserOpcode) { 1989 default: 1990 llvm_unreachable("Unexpected Opcode!"); 1991 case Instruction::FAdd: 1992 NI = BinaryOperator::CreateFSub(Op0, Op1); 1993 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags()); 1994 break; 1995 case Instruction::FSub: 1996 NI = BinaryOperator::CreateFAdd(Op0, Op1); 1997 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags()); 1998 break; 1999 } 2000 2001 NI->insertBefore(User); 2002 NI->setName(User->getName()); 2003 User->replaceAllUsesWith(NI); 2004 NI->setDebugLoc(I->getDebugLoc()); 2005 RedoInsts.insert(I); 2006 MadeChange = true; 2007 return NI; 2008 } 2009 2010 /// Inspect and optimize the given instruction. Note that erasing 2011 /// instructions is not allowed. 2012 void ReassociatePass::OptimizeInst(Instruction *I) { 2013 // Only consider operations that we understand. 2014 if (!isa<BinaryOperator>(I)) 2015 return; 2016 2017 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1))) 2018 // If an operand of this shift is a reassociable multiply, or if the shift 2019 // is used by a reassociable multiply or add, turn into a multiply. 2020 if (isReassociableOp(I->getOperand(0), Instruction::Mul) || 2021 (I->hasOneUse() && 2022 (isReassociableOp(I->user_back(), Instruction::Mul) || 2023 isReassociableOp(I->user_back(), Instruction::Add)))) { 2024 Instruction *NI = ConvertShiftToMul(I); 2025 RedoInsts.insert(I); 2026 MadeChange = true; 2027 I = NI; 2028 } 2029 2030 // Canonicalize negative constants out of expressions. 2031 if (Instruction *Res = canonicalizeNegConstExpr(I)) 2032 I = Res; 2033 2034 // Commute binary operators, to canonicalize the order of their operands. 2035 // This can potentially expose more CSE opportunities, and makes writing other 2036 // transformations simpler. 2037 if (I->isCommutative()) 2038 canonicalizeOperands(I); 2039 2040 // Don't optimize floating-point instructions unless they are 'fast'. 2041 if (I->getType()->isFPOrFPVectorTy() && !I->isFast()) 2042 return; 2043 2044 // Do not reassociate boolean (i1) expressions. We want to preserve the 2045 // original order of evaluation for short-circuited comparisons that 2046 // SimplifyCFG has folded to AND/OR expressions. If the expression 2047 // is not further optimized, it is likely to be transformed back to a 2048 // short-circuited form for code gen, and the source order may have been 2049 // optimized for the most likely conditions. 2050 if (I->getType()->isIntegerTy(1)) 2051 return; 2052 2053 // If this is a subtract instruction which is not already in negate form, 2054 // see if we can convert it to X+-Y. 2055 if (I->getOpcode() == Instruction::Sub) { 2056 if (ShouldBreakUpSubtract(I)) { 2057 Instruction *NI = BreakUpSubtract(I, RedoInsts); 2058 RedoInsts.insert(I); 2059 MadeChange = true; 2060 I = NI; 2061 } else if (BinaryOperator::isNeg(I)) { 2062 // Otherwise, this is a negation. See if the operand is a multiply tree 2063 // and if this is not an inner node of a multiply tree. 2064 if (isReassociableOp(I->getOperand(1), Instruction::Mul) && 2065 (!I->hasOneUse() || 2066 !isReassociableOp(I->user_back(), Instruction::Mul))) { 2067 Instruction *NI = LowerNegateToMultiply(I); 2068 // If the negate was simplified, revisit the users to see if we can 2069 // reassociate further. 2070 for (User *U : NI->users()) { 2071 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U)) 2072 RedoInsts.insert(Tmp); 2073 } 2074 RedoInsts.insert(I); 2075 MadeChange = true; 2076 I = NI; 2077 } 2078 } 2079 } else if (I->getOpcode() == Instruction::FSub) { 2080 if (ShouldBreakUpSubtract(I)) { 2081 Instruction *NI = BreakUpSubtract(I, RedoInsts); 2082 RedoInsts.insert(I); 2083 MadeChange = true; 2084 I = NI; 2085 } else if (BinaryOperator::isFNeg(I)) { 2086 // Otherwise, this is a negation. See if the operand is a multiply tree 2087 // and if this is not an inner node of a multiply tree. 2088 if (isReassociableOp(I->getOperand(1), Instruction::FMul) && 2089 (!I->hasOneUse() || 2090 !isReassociableOp(I->user_back(), Instruction::FMul))) { 2091 // If the negate was simplified, revisit the users to see if we can 2092 // reassociate further. 2093 Instruction *NI = LowerNegateToMultiply(I); 2094 for (User *U : NI->users()) { 2095 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U)) 2096 RedoInsts.insert(Tmp); 2097 } 2098 RedoInsts.insert(I); 2099 MadeChange = true; 2100 I = NI; 2101 } 2102 } 2103 } 2104 2105 // If this instruction is an associative binary operator, process it. 2106 if (!I->isAssociative()) return; 2107 BinaryOperator *BO = cast<BinaryOperator>(I); 2108 2109 // If this is an interior node of a reassociable tree, ignore it until we 2110 // get to the root of the tree, to avoid N^2 analysis. 2111 unsigned Opcode = BO->getOpcode(); 2112 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) { 2113 // During the initial run we will get to the root of the tree. 2114 // But if we get here while we are redoing instructions, there is no 2115 // guarantee that the root will be visited. So Redo later 2116 if (BO->user_back() != BO && 2117 BO->getParent() == BO->user_back()->getParent()) 2118 RedoInsts.insert(BO->user_back()); 2119 return; 2120 } 2121 2122 // If this is an add tree that is used by a sub instruction, ignore it 2123 // until we process the subtract. 2124 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add && 2125 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub) 2126 return; 2127 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd && 2128 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub) 2129 return; 2130 2131 ReassociateExpression(BO); 2132 } 2133 2134 void ReassociatePass::ReassociateExpression(BinaryOperator *I) { 2135 // First, walk the expression tree, linearizing the tree, collecting the 2136 // operand information. 2137 SmallVector<RepeatedValue, 8> Tree; 2138 MadeChange |= LinearizeExprTree(I, Tree); 2139 SmallVector<ValueEntry, 8> Ops; 2140 Ops.reserve(Tree.size()); 2141 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 2142 RepeatedValue E = Tree[i]; 2143 Ops.append(E.second.getZExtValue(), 2144 ValueEntry(getRank(E.first), E.first)); 2145 } 2146 2147 LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2148 2149 // Now that we have linearized the tree to a list and have gathered all of 2150 // the operands and their ranks, sort the operands by their rank. Use a 2151 // stable_sort so that values with equal ranks will have their relative 2152 // positions maintained (and so the compiler is deterministic). Note that 2153 // this sorts so that the highest ranking values end up at the beginning of 2154 // the vector. 2155 std::stable_sort(Ops.begin(), Ops.end()); 2156 2157 // Now that we have the expression tree in a convenient 2158 // sorted form, optimize it globally if possible. 2159 if (Value *V = OptimizeExpression(I, Ops)) { 2160 if (V == I) 2161 // Self-referential expression in unreachable code. 2162 return; 2163 // This expression tree simplified to something that isn't a tree, 2164 // eliminate it. 2165 LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n'); 2166 I->replaceAllUsesWith(V); 2167 if (Instruction *VI = dyn_cast<Instruction>(V)) 2168 if (I->getDebugLoc()) 2169 VI->setDebugLoc(I->getDebugLoc()); 2170 RedoInsts.insert(I); 2171 ++NumAnnihil; 2172 return; 2173 } 2174 2175 // We want to sink immediates as deeply as possible except in the case where 2176 // this is a multiply tree used only by an add, and the immediate is a -1. 2177 // In this case we reassociate to put the negation on the outside so that we 2178 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y 2179 if (I->hasOneUse()) { 2180 if (I->getOpcode() == Instruction::Mul && 2181 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add && 2182 isa<ConstantInt>(Ops.back().Op) && 2183 cast<ConstantInt>(Ops.back().Op)->isMinusOne()) { 2184 ValueEntry Tmp = Ops.pop_back_val(); 2185 Ops.insert(Ops.begin(), Tmp); 2186 } else if (I->getOpcode() == Instruction::FMul && 2187 cast<Instruction>(I->user_back())->getOpcode() == 2188 Instruction::FAdd && 2189 isa<ConstantFP>(Ops.back().Op) && 2190 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) { 2191 ValueEntry Tmp = Ops.pop_back_val(); 2192 Ops.insert(Ops.begin(), Tmp); 2193 } 2194 } 2195 2196 LLVM_DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2197 2198 if (Ops.size() == 1) { 2199 if (Ops[0].Op == I) 2200 // Self-referential expression in unreachable code. 2201 return; 2202 2203 // This expression tree simplified to something that isn't a tree, 2204 // eliminate it. 2205 I->replaceAllUsesWith(Ops[0].Op); 2206 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op)) 2207 OI->setDebugLoc(I->getDebugLoc()); 2208 RedoInsts.insert(I); 2209 return; 2210 } 2211 2212 if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) { 2213 // Find the pair with the highest count in the pairmap and move it to the 2214 // back of the list so that it can later be CSE'd. 2215 // example: 2216 // a*b*c*d*e 2217 // if c*e is the most "popular" pair, we can express this as 2218 // (((c*e)*d)*b)*a 2219 unsigned Max = 1; 2220 unsigned BestRank = 0; 2221 std::pair<unsigned, unsigned> BestPair; 2222 unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin; 2223 for (unsigned i = 0; i < Ops.size() - 1; ++i) 2224 for (unsigned j = i + 1; j < Ops.size(); ++j) { 2225 unsigned Score = 0; 2226 Value *Op0 = Ops[i].Op; 2227 Value *Op1 = Ops[j].Op; 2228 if (std::less<Value *>()(Op1, Op0)) 2229 std::swap(Op0, Op1); 2230 auto it = PairMap[Idx].find({Op0, Op1}); 2231 if (it != PairMap[Idx].end()) 2232 Score += it->second; 2233 2234 unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank); 2235 if (Score > Max || (Score == Max && MaxRank < BestRank)) { 2236 BestPair = {i, j}; 2237 Max = Score; 2238 BestRank = MaxRank; 2239 } 2240 } 2241 if (Max > 1) { 2242 auto Op0 = Ops[BestPair.first]; 2243 auto Op1 = Ops[BestPair.second]; 2244 Ops.erase(&Ops[BestPair.second]); 2245 Ops.erase(&Ops[BestPair.first]); 2246 Ops.push_back(Op0); 2247 Ops.push_back(Op1); 2248 } 2249 } 2250 // Now that we ordered and optimized the expressions, splat them back into 2251 // the expression tree, removing any unneeded nodes. 2252 RewriteExprTree(I, Ops); 2253 } 2254 2255 void 2256 ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) { 2257 // Make a "pairmap" of how often each operand pair occurs. 2258 for (BasicBlock *BI : RPOT) { 2259 for (Instruction &I : *BI) { 2260 if (!I.isAssociative()) 2261 continue; 2262 2263 // Ignore nodes that aren't at the root of trees. 2264 if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode()) 2265 continue; 2266 2267 // Collect all operands in a single reassociable expression. 2268 // Since Reassociate has already been run once, we can assume things 2269 // are already canonical according to Reassociation's regime. 2270 SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) }; 2271 SmallVector<Value *, 8> Ops; 2272 while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) { 2273 Value *Op = Worklist.pop_back_val(); 2274 Instruction *OpI = dyn_cast<Instruction>(Op); 2275 if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) { 2276 Ops.push_back(Op); 2277 continue; 2278 } 2279 // Be paranoid about self-referencing expressions in unreachable code. 2280 if (OpI->getOperand(0) != OpI) 2281 Worklist.push_back(OpI->getOperand(0)); 2282 if (OpI->getOperand(1) != OpI) 2283 Worklist.push_back(OpI->getOperand(1)); 2284 } 2285 // Skip extremely long expressions. 2286 if (Ops.size() > GlobalReassociateLimit) 2287 continue; 2288 2289 // Add all pairwise combinations of operands to the pair map. 2290 unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin; 2291 SmallSet<std::pair<Value *, Value*>, 32> Visited; 2292 for (unsigned i = 0; i < Ops.size() - 1; ++i) { 2293 for (unsigned j = i + 1; j < Ops.size(); ++j) { 2294 // Canonicalize operand orderings. 2295 Value *Op0 = Ops[i]; 2296 Value *Op1 = Ops[j]; 2297 if (std::less<Value *>()(Op1, Op0)) 2298 std::swap(Op0, Op1); 2299 if (!Visited.insert({Op0, Op1}).second) 2300 continue; 2301 auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, 1}); 2302 if (!res.second) 2303 ++res.first->second; 2304 } 2305 } 2306 } 2307 } 2308 } 2309 2310 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) { 2311 // Get the functions basic blocks in Reverse Post Order. This order is used by 2312 // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic 2313 // blocks (it has been seen that the analysis in this pass could hang when 2314 // analysing dead basic blocks). 2315 ReversePostOrderTraversal<Function *> RPOT(&F); 2316 2317 // Calculate the rank map for F. 2318 BuildRankMap(F, RPOT); 2319 2320 // Build the pair map before running reassociate. 2321 // Technically this would be more accurate if we did it after one round 2322 // of reassociation, but in practice it doesn't seem to help much on 2323 // real-world code, so don't waste the compile time running reassociate 2324 // twice. 2325 // If a user wants, they could expicitly run reassociate twice in their 2326 // pass pipeline for further potential gains. 2327 // It might also be possible to update the pair map during runtime, but the 2328 // overhead of that may be large if there's many reassociable chains. 2329 BuildPairMap(RPOT); 2330 2331 MadeChange = false; 2332 2333 // Traverse the same blocks that were analysed by BuildRankMap. 2334 for (BasicBlock *BI : RPOT) { 2335 assert(RankMap.count(&*BI) && "BB should be ranked."); 2336 // Optimize every instruction in the basic block. 2337 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;) 2338 if (isInstructionTriviallyDead(&*II)) { 2339 EraseInst(&*II++); 2340 } else { 2341 OptimizeInst(&*II); 2342 assert(II->getParent() == &*BI && "Moved to a different block!"); 2343 ++II; 2344 } 2345 2346 // Make a copy of all the instructions to be redone so we can remove dead 2347 // instructions. 2348 OrderedSet ToRedo(RedoInsts); 2349 // Iterate over all instructions to be reevaluated and remove trivially dead 2350 // instructions. If any operand of the trivially dead instruction becomes 2351 // dead mark it for deletion as well. Continue this process until all 2352 // trivially dead instructions have been removed. 2353 while (!ToRedo.empty()) { 2354 Instruction *I = ToRedo.pop_back_val(); 2355 if (isInstructionTriviallyDead(I)) { 2356 RecursivelyEraseDeadInsts(I, ToRedo); 2357 MadeChange = true; 2358 } 2359 } 2360 2361 // Now that we have removed dead instructions, we can reoptimize the 2362 // remaining instructions. 2363 while (!RedoInsts.empty()) { 2364 Instruction *I = RedoInsts.front(); 2365 RedoInsts.erase(RedoInsts.begin()); 2366 if (isInstructionTriviallyDead(I)) 2367 EraseInst(I); 2368 else 2369 OptimizeInst(I); 2370 } 2371 } 2372 2373 // We are done with the rank map and pair map. 2374 RankMap.clear(); 2375 ValueRankMap.clear(); 2376 for (auto &Entry : PairMap) 2377 Entry.clear(); 2378 2379 if (MadeChange) { 2380 PreservedAnalyses PA; 2381 PA.preserveSet<CFGAnalyses>(); 2382 PA.preserve<GlobalsAA>(); 2383 return PA; 2384 } 2385 2386 return PreservedAnalyses::all(); 2387 } 2388 2389 namespace { 2390 2391 class ReassociateLegacyPass : public FunctionPass { 2392 ReassociatePass Impl; 2393 2394 public: 2395 static char ID; // Pass identification, replacement for typeid 2396 2397 ReassociateLegacyPass() : FunctionPass(ID) { 2398 initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry()); 2399 } 2400 2401 bool runOnFunction(Function &F) override { 2402 if (skipFunction(F)) 2403 return false; 2404 2405 FunctionAnalysisManager DummyFAM; 2406 auto PA = Impl.run(F, DummyFAM); 2407 return !PA.areAllPreserved(); 2408 } 2409 2410 void getAnalysisUsage(AnalysisUsage &AU) const override { 2411 AU.setPreservesCFG(); 2412 AU.addPreserved<GlobalsAAWrapperPass>(); 2413 } 2414 }; 2415 2416 } // end anonymous namespace 2417 2418 char ReassociateLegacyPass::ID = 0; 2419 2420 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate", 2421 "Reassociate expressions", false, false) 2422 2423 // Public interface to the Reassociate pass 2424 FunctionPass *llvm::createReassociatePass() { 2425 return new ReassociateLegacyPass(); 2426 } 2427