1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass reassociates commutative expressions in an order that is designed
11 // to promote better constant propagation, GCSE, LICM, PRE, etc.
12 //
13 // For example: 4 + (x + 5) -> x + (4 + 5)
14 //
15 // In the implementation of this algorithm, constants are assigned rank = 0,
16 // function arguments are rank = 1, and other values are assigned ranks
17 // corresponding to the reverse post order traversal of current function
18 // (starting at 2), which effectively gives values in deep loops higher rank
19 // than values not in loops.
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #define DEBUG_TYPE "reassociate"
24 #include "llvm/Transforms/Scalar.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/PostOrderIterator.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SetVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Assembly/Writer.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/CFG.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ValueHandle.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/Utils/Local.h"
43 #include <algorithm>
44 using namespace llvm;
45 
46 STATISTIC(NumChanged, "Number of insts reassociated");
47 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
48 STATISTIC(NumFactor , "Number of multiplies factored");
49 
50 namespace {
51   struct ValueEntry {
52     unsigned Rank;
53     Value *Op;
54     ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
55   };
56   inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
57     return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
58   }
59 }
60 
61 #ifndef NDEBUG
62 /// PrintOps - Print out the expression identified in the Ops list.
63 ///
64 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
65   Module *M = I->getParent()->getParent()->getParent();
66   dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
67        << *Ops[0].Op->getType() << '\t';
68   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
69     dbgs() << "[ ";
70     WriteAsOperand(dbgs(), Ops[i].Op, false, M);
71     dbgs() << ", #" << Ops[i].Rank << "] ";
72   }
73 }
74 #endif
75 
76 namespace {
77   /// \brief Utility class representing a base and exponent pair which form one
78   /// factor of some product.
79   struct Factor {
80     Value *Base;
81     unsigned Power;
82 
83     Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
84 
85     /// \brief Sort factors by their Base.
86     struct BaseSorter {
87       bool operator()(const Factor &LHS, const Factor &RHS) {
88         return LHS.Base < RHS.Base;
89       }
90     };
91 
92     /// \brief Compare factors for equal bases.
93     struct BaseEqual {
94       bool operator()(const Factor &LHS, const Factor &RHS) {
95         return LHS.Base == RHS.Base;
96       }
97     };
98 
99     /// \brief Sort factors in descending order by their power.
100     struct PowerDescendingSorter {
101       bool operator()(const Factor &LHS, const Factor &RHS) {
102         return LHS.Power > RHS.Power;
103       }
104     };
105 
106     /// \brief Compare factors for equal powers.
107     struct PowerEqual {
108       bool operator()(const Factor &LHS, const Factor &RHS) {
109         return LHS.Power == RHS.Power;
110       }
111     };
112   };
113 
114   /// Utility class representing a non-constant Xor-operand. We classify
115   /// non-constant Xor-Operands into two categories:
116   ///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
117   ///  C2)
118   ///    C2.1) The operand is in the form of "X | C", where C is a non-zero
119   ///          constant.
120   ///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
121   ///          operand as "E | 0"
122   class XorOpnd {
123   public:
124     XorOpnd(Value *V);
125 
126     bool isInvalid() const { return SymbolicPart == 0; }
127     bool isOrExpr() const { return isOr; }
128     Value *getValue() const { return OrigVal; }
129     Value *getSymbolicPart() const { return SymbolicPart; }
130     unsigned getSymbolicRank() const { return SymbolicRank; }
131     const APInt &getConstPart() const { return ConstPart; }
132 
133     void Invalidate() { SymbolicPart = OrigVal = 0; }
134     void setSymbolicRank(unsigned R) { SymbolicRank = R; }
135 
136     // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank.
137     // The purpose is twofold:
138     // 1) Cluster together the operands sharing the same symbolic-value.
139     // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
140     //   could potentially shorten crital path, and expose more loop-invariants.
141     //   Note that values' rank are basically defined in RPO order (FIXME).
142     //   So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
143     //   than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
144     //   "z" in the order of X-Y-Z is better than any other orders.
145     struct PtrSortFunctor {
146       bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) {
147         return LHS->getSymbolicRank() < RHS->getSymbolicRank();
148       }
149     };
150   private:
151     Value *OrigVal;
152     Value *SymbolicPart;
153     APInt ConstPart;
154     unsigned SymbolicRank;
155     bool isOr;
156   };
157 }
158 
159 namespace {
160   class Reassociate : public FunctionPass {
161     DenseMap<BasicBlock*, unsigned> RankMap;
162     DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
163     SetVector<AssertingVH<Instruction> > RedoInsts;
164     bool MadeChange;
165   public:
166     static char ID; // Pass identification, replacement for typeid
167     Reassociate() : FunctionPass(ID) {
168       initializeReassociatePass(*PassRegistry::getPassRegistry());
169     }
170 
171     bool runOnFunction(Function &F);
172 
173     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
174       AU.setPreservesCFG();
175     }
176   private:
177     void BuildRankMap(Function &F);
178     unsigned getRank(Value *V);
179     void ReassociateExpression(BinaryOperator *I);
180     void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
181     Value *OptimizeExpression(BinaryOperator *I,
182                               SmallVectorImpl<ValueEntry> &Ops);
183     Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
184     Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
185     bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd,
186                         Value *&Res);
187     bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
188                         APInt &ConstOpnd, Value *&Res);
189     bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
190                                 SmallVectorImpl<Factor> &Factors);
191     Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
192                                    SmallVectorImpl<Factor> &Factors);
193     Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
194     Value *RemoveFactorFromExpression(Value *V, Value *Factor);
195     void EraseInst(Instruction *I);
196     void OptimizeInst(Instruction *I);
197   };
198 }
199 
200 XorOpnd::XorOpnd(Value *V) {
201   assert(!isa<ConstantInt>(V) && "No ConstantInt");
202   OrigVal = V;
203   Instruction *I = dyn_cast<Instruction>(V);
204   SymbolicRank = 0;
205 
206   if (I && (I->getOpcode() == Instruction::Or ||
207             I->getOpcode() == Instruction::And)) {
208     Value *V0 = I->getOperand(0);
209     Value *V1 = I->getOperand(1);
210     if (isa<ConstantInt>(V0))
211       std::swap(V0, V1);
212 
213     if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
214       ConstPart = C->getValue();
215       SymbolicPart = V0;
216       isOr = (I->getOpcode() == Instruction::Or);
217       return;
218     }
219   }
220 
221   // view the operand as "V | 0"
222   SymbolicPart = V;
223   ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
224   isOr = true;
225 }
226 
227 char Reassociate::ID = 0;
228 INITIALIZE_PASS(Reassociate, "reassociate",
229                 "Reassociate expressions", false, false)
230 
231 // Public interface to the Reassociate pass
232 FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
233 
234 /// isReassociableOp - Return true if V is an instruction of the specified
235 /// opcode and if it only has one use.
236 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
237   if (V->hasOneUse() && isa<Instruction>(V) &&
238       cast<Instruction>(V)->getOpcode() == Opcode)
239     return cast<BinaryOperator>(V);
240   return 0;
241 }
242 
243 static bool isUnmovableInstruction(Instruction *I) {
244   if (I->getOpcode() == Instruction::PHI ||
245       I->getOpcode() == Instruction::LandingPad ||
246       I->getOpcode() == Instruction::Alloca ||
247       I->getOpcode() == Instruction::Load ||
248       I->getOpcode() == Instruction::Invoke ||
249       (I->getOpcode() == Instruction::Call &&
250        !isa<DbgInfoIntrinsic>(I)) ||
251       I->getOpcode() == Instruction::UDiv ||
252       I->getOpcode() == Instruction::SDiv ||
253       I->getOpcode() == Instruction::FDiv ||
254       I->getOpcode() == Instruction::URem ||
255       I->getOpcode() == Instruction::SRem ||
256       I->getOpcode() == Instruction::FRem)
257     return true;
258   return false;
259 }
260 
261 void Reassociate::BuildRankMap(Function &F) {
262   unsigned i = 2;
263 
264   // Assign distinct ranks to function arguments
265   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
266     ValueRankMap[&*I] = ++i;
267 
268   ReversePostOrderTraversal<Function*> RPOT(&F);
269   for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
270          E = RPOT.end(); I != E; ++I) {
271     BasicBlock *BB = *I;
272     unsigned BBRank = RankMap[BB] = ++i << 16;
273 
274     // Walk the basic block, adding precomputed ranks for any instructions that
275     // we cannot move.  This ensures that the ranks for these instructions are
276     // all different in the block.
277     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
278       if (isUnmovableInstruction(I))
279         ValueRankMap[&*I] = ++BBRank;
280   }
281 }
282 
283 unsigned Reassociate::getRank(Value *V) {
284   Instruction *I = dyn_cast<Instruction>(V);
285   if (I == 0) {
286     if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
287     return 0;  // Otherwise it's a global or constant, rank 0.
288   }
289 
290   if (unsigned Rank = ValueRankMap[I])
291     return Rank;    // Rank already known?
292 
293   // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
294   // we can reassociate expressions for code motion!  Since we do not recurse
295   // for PHI nodes, we cannot have infinite recursion here, because there
296   // cannot be loops in the value graph that do not go through PHI nodes.
297   unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
298   for (unsigned i = 0, e = I->getNumOperands();
299        i != e && Rank != MaxRank; ++i)
300     Rank = std::max(Rank, getRank(I->getOperand(i)));
301 
302   // If this is a not or neg instruction, do not count it for rank.  This
303   // assures us that X and ~X will have the same rank.
304   if (!I->getType()->isIntegerTy() ||
305       (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
306     ++Rank;
307 
308   //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
309   //     << Rank << "\n");
310 
311   return ValueRankMap[I] = Rank;
312 }
313 
314 /// LowerNegateToMultiply - Replace 0-X with X*-1.
315 ///
316 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
317   Constant *Cst = Constant::getAllOnesValue(Neg->getType());
318 
319   BinaryOperator *Res =
320     BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
321   Neg->setOperand(1, Constant::getNullValue(Neg->getType())); // Drop use of op.
322   Res->takeName(Neg);
323   Neg->replaceAllUsesWith(Res);
324   Res->setDebugLoc(Neg->getDebugLoc());
325   return Res;
326 }
327 
328 /// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda
329 /// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for
330 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
331 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
332 /// even x in Bitwidth-bit arithmetic.
333 static unsigned CarmichaelShift(unsigned Bitwidth) {
334   if (Bitwidth < 3)
335     return Bitwidth - 1;
336   return Bitwidth - 2;
337 }
338 
339 /// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS',
340 /// reducing the combined weight using any special properties of the operation.
341 /// The existing weight LHS represents the computation X op X op ... op X where
342 /// X occurs LHS times.  The combined weight represents  X op X op ... op X with
343 /// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
344 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
345 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
346 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
347   // If we were working with infinite precision arithmetic then the combined
348   // weight would be LHS + RHS.  But we are using finite precision arithmetic,
349   // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
350   // for nilpotent operations and addition, but not for idempotent operations
351   // and multiplication), so it is important to correctly reduce the combined
352   // weight back into range if wrapping would be wrong.
353 
354   // If RHS is zero then the weight didn't change.
355   if (RHS.isMinValue())
356     return;
357   // If LHS is zero then the combined weight is RHS.
358   if (LHS.isMinValue()) {
359     LHS = RHS;
360     return;
361   }
362   // From this point on we know that neither LHS nor RHS is zero.
363 
364   if (Instruction::isIdempotent(Opcode)) {
365     // Idempotent means X op X === X, so any non-zero weight is equivalent to a
366     // weight of 1.  Keeping weights at zero or one also means that wrapping is
367     // not a problem.
368     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
369     return; // Return a weight of 1.
370   }
371   if (Instruction::isNilpotent(Opcode)) {
372     // Nilpotent means X op X === 0, so reduce weights modulo 2.
373     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
374     LHS = 0; // 1 + 1 === 0 modulo 2.
375     return;
376   }
377   if (Opcode == Instruction::Add) {
378     // TODO: Reduce the weight by exploiting nsw/nuw?
379     LHS += RHS;
380     return;
381   }
382 
383   assert(Opcode == Instruction::Mul && "Unknown associative operation!");
384   unsigned Bitwidth = LHS.getBitWidth();
385   // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
386   // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
387   // bit number x, since either x is odd in which case x^CM = 1, or x is even in
388   // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
389   // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
390   // which by a happy accident means that they can always be represented using
391   // Bitwidth bits.
392   // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
393   // the Carmichael number).
394   if (Bitwidth > 3) {
395     /// CM - The value of Carmichael's lambda function.
396     APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
397     // Any weight W >= Threshold can be replaced with W - CM.
398     APInt Threshold = CM + Bitwidth;
399     assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
400     // For Bitwidth 4 or more the following sum does not overflow.
401     LHS += RHS;
402     while (LHS.uge(Threshold))
403       LHS -= CM;
404   } else {
405     // To avoid problems with overflow do everything the same as above but using
406     // a larger type.
407     unsigned CM = 1U << CarmichaelShift(Bitwidth);
408     unsigned Threshold = CM + Bitwidth;
409     assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
410            "Weights not reduced!");
411     unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
412     while (Total >= Threshold)
413       Total -= CM;
414     LHS = Total;
415   }
416 }
417 
418 typedef std::pair<Value*, APInt> RepeatedValue;
419 
420 /// LinearizeExprTree - Given an associative binary expression, return the leaf
421 /// nodes in Ops along with their weights (how many times the leaf occurs).  The
422 /// original expression is the same as
423 ///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
424 /// op
425 ///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
426 /// op
427 ///   ...
428 /// op
429 ///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
430 ///
431 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
432 ///
433 /// This routine may modify the function, in which case it returns 'true'.  The
434 /// changes it makes may well be destructive, changing the value computed by 'I'
435 /// to something completely different.  Thus if the routine returns 'true' then
436 /// you MUST either replace I with a new expression computed from the Ops array,
437 /// or use RewriteExprTree to put the values back in.
438 ///
439 /// A leaf node is either not a binary operation of the same kind as the root
440 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
441 /// opcode), or is the same kind of binary operator but has a use which either
442 /// does not belong to the expression, or does belong to the expression but is
443 /// a leaf node.  Every leaf node has at least one use that is a non-leaf node
444 /// of the expression, while for non-leaf nodes (except for the root 'I') every
445 /// use is a non-leaf node of the expression.
446 ///
447 /// For example:
448 ///           expression graph        node names
449 ///
450 ///                     +        |        I
451 ///                    / \       |
452 ///                   +   +      |      A,  B
453 ///                  / \ / \     |
454 ///                 *   +   *    |    C,  D,  E
455 ///                / \ / \ / \   |
456 ///                   +   *      |      F,  G
457 ///
458 /// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
459 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
460 ///
461 /// The expression is maximal: if some instruction is a binary operator of the
462 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
463 /// then the instruction also belongs to the expression, is not a leaf node of
464 /// it, and its operands also belong to the expression (but may be leaf nodes).
465 ///
466 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
467 /// order to ensure that every non-root node in the expression has *exactly one*
468 /// use by a non-leaf node of the expression.  This destruction means that the
469 /// caller MUST either replace 'I' with a new expression or use something like
470 /// RewriteExprTree to put the values back in if the routine indicates that it
471 /// made a change by returning 'true'.
472 ///
473 /// In the above example either the right operand of A or the left operand of B
474 /// will be replaced by undef.  If it is B's operand then this gives:
475 ///
476 ///                     +        |        I
477 ///                    / \       |
478 ///                   +   +      |      A,  B - operand of B replaced with undef
479 ///                  / \   \     |
480 ///                 *   +   *    |    C,  D,  E
481 ///                / \ / \ / \   |
482 ///                   +   *      |      F,  G
483 ///
484 /// Note that such undef operands can only be reached by passing through 'I'.
485 /// For example, if you visit operands recursively starting from a leaf node
486 /// then you will never see such an undef operand unless you get back to 'I',
487 /// which requires passing through a phi node.
488 ///
489 /// Note that this routine may also mutate binary operators of the wrong type
490 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
491 /// of the expression) if it can turn them into binary operators of the right
492 /// type and thus make the expression bigger.
493 
494 static bool LinearizeExprTree(BinaryOperator *I,
495                               SmallVectorImpl<RepeatedValue> &Ops) {
496   DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
497   unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
498   unsigned Opcode = I->getOpcode();
499   assert(Instruction::isAssociative(Opcode) &&
500          Instruction::isCommutative(Opcode) &&
501          "Expected an associative and commutative operation!");
502 
503   // Visit all operands of the expression, keeping track of their weight (the
504   // number of paths from the expression root to the operand, or if you like
505   // the number of times that operand occurs in the linearized expression).
506   // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
507   // while A has weight two.
508 
509   // Worklist of non-leaf nodes (their operands are in the expression too) along
510   // with their weights, representing a certain number of paths to the operator.
511   // If an operator occurs in the worklist multiple times then we found multiple
512   // ways to get to it.
513   SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
514   Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
515   bool MadeChange = false;
516 
517   // Leaves of the expression are values that either aren't the right kind of
518   // operation (eg: a constant, or a multiply in an add tree), or are, but have
519   // some uses that are not inside the expression.  For example, in I = X + X,
520   // X = A + B, the value X has two uses (by I) that are in the expression.  If
521   // X has any other uses, for example in a return instruction, then we consider
522   // X to be a leaf, and won't analyze it further.  When we first visit a value,
523   // if it has more than one use then at first we conservatively consider it to
524   // be a leaf.  Later, as the expression is explored, we may discover some more
525   // uses of the value from inside the expression.  If all uses turn out to be
526   // from within the expression (and the value is a binary operator of the right
527   // kind) then the value is no longer considered to be a leaf, and its operands
528   // are explored.
529 
530   // Leaves - Keeps track of the set of putative leaves as well as the number of
531   // paths to each leaf seen so far.
532   typedef DenseMap<Value*, APInt> LeafMap;
533   LeafMap Leaves; // Leaf -> Total weight so far.
534   SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
535 
536 #ifndef NDEBUG
537   SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
538 #endif
539   while (!Worklist.empty()) {
540     std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
541     I = P.first; // We examine the operands of this binary operator.
542 
543     for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
544       Value *Op = I->getOperand(OpIdx);
545       APInt Weight = P.second; // Number of paths to this operand.
546       DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
547       assert(!Op->use_empty() && "No uses, so how did we get to it?!");
548 
549       // If this is a binary operation of the right kind with only one use then
550       // add its operands to the expression.
551       if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
552         assert(Visited.insert(Op) && "Not first visit!");
553         DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
554         Worklist.push_back(std::make_pair(BO, Weight));
555         continue;
556       }
557 
558       // Appears to be a leaf.  Is the operand already in the set of leaves?
559       LeafMap::iterator It = Leaves.find(Op);
560       if (It == Leaves.end()) {
561         // Not in the leaf map.  Must be the first time we saw this operand.
562         assert(Visited.insert(Op) && "Not first visit!");
563         if (!Op->hasOneUse()) {
564           // This value has uses not accounted for by the expression, so it is
565           // not safe to modify.  Mark it as being a leaf.
566           DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
567           LeafOrder.push_back(Op);
568           Leaves[Op] = Weight;
569           continue;
570         }
571         // No uses outside the expression, try morphing it.
572       } else if (It != Leaves.end()) {
573         // Already in the leaf map.
574         assert(Visited.count(Op) && "In leaf map but not visited!");
575 
576         // Update the number of paths to the leaf.
577         IncorporateWeight(It->second, Weight, Opcode);
578 
579 #if 0   // TODO: Re-enable once PR13021 is fixed.
580         // The leaf already has one use from inside the expression.  As we want
581         // exactly one such use, drop this new use of the leaf.
582         assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
583         I->setOperand(OpIdx, UndefValue::get(I->getType()));
584         MadeChange = true;
585 
586         // If the leaf is a binary operation of the right kind and we now see
587         // that its multiple original uses were in fact all by nodes belonging
588         // to the expression, then no longer consider it to be a leaf and add
589         // its operands to the expression.
590         if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
591           DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
592           Worklist.push_back(std::make_pair(BO, It->second));
593           Leaves.erase(It);
594           continue;
595         }
596 #endif
597 
598         // If we still have uses that are not accounted for by the expression
599         // then it is not safe to modify the value.
600         if (!Op->hasOneUse())
601           continue;
602 
603         // No uses outside the expression, try morphing it.
604         Weight = It->second;
605         Leaves.erase(It); // Since the value may be morphed below.
606       }
607 
608       // At this point we have a value which, first of all, is not a binary
609       // expression of the right kind, and secondly, is only used inside the
610       // expression.  This means that it can safely be modified.  See if we
611       // can usefully morph it into an expression of the right kind.
612       assert((!isa<Instruction>(Op) ||
613               cast<Instruction>(Op)->getOpcode() != Opcode) &&
614              "Should have been handled above!");
615       assert(Op->hasOneUse() && "Has uses outside the expression tree!");
616 
617       // If this is a multiply expression, turn any internal negations into
618       // multiplies by -1 so they can be reassociated.
619       BinaryOperator *BO = dyn_cast<BinaryOperator>(Op);
620       if (Opcode == Instruction::Mul && BO && BinaryOperator::isNeg(BO)) {
621         DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
622         BO = LowerNegateToMultiply(BO);
623         DEBUG(dbgs() << *BO << 'n');
624         Worklist.push_back(std::make_pair(BO, Weight));
625         MadeChange = true;
626         continue;
627       }
628 
629       // Failed to morph into an expression of the right type.  This really is
630       // a leaf.
631       DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
632       assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
633       LeafOrder.push_back(Op);
634       Leaves[Op] = Weight;
635     }
636   }
637 
638   // The leaves, repeated according to their weights, represent the linearized
639   // form of the expression.
640   for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
641     Value *V = LeafOrder[i];
642     LeafMap::iterator It = Leaves.find(V);
643     if (It == Leaves.end())
644       // Node initially thought to be a leaf wasn't.
645       continue;
646     assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
647     APInt Weight = It->second;
648     if (Weight.isMinValue())
649       // Leaf already output or weight reduction eliminated it.
650       continue;
651     // Ensure the leaf is only output once.
652     It->second = 0;
653     Ops.push_back(std::make_pair(V, Weight));
654   }
655 
656   // For nilpotent operations or addition there may be no operands, for example
657   // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
658   // in both cases the weight reduces to 0 causing the value to be skipped.
659   if (Ops.empty()) {
660     Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
661     assert(Identity && "Associative operation without identity!");
662     Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1)));
663   }
664 
665   return MadeChange;
666 }
667 
668 // RewriteExprTree - Now that the operands for this expression tree are
669 // linearized and optimized, emit them in-order.
670 void Reassociate::RewriteExprTree(BinaryOperator *I,
671                                   SmallVectorImpl<ValueEntry> &Ops) {
672   assert(Ops.size() > 1 && "Single values should be used directly!");
673 
674   // Since our optimizations should never increase the number of operations, the
675   // new expression can usually be written reusing the existing binary operators
676   // from the original expression tree, without creating any new instructions,
677   // though the rewritten expression may have a completely different topology.
678   // We take care to not change anything if the new expression will be the same
679   // as the original.  If more than trivial changes (like commuting operands)
680   // were made then we are obliged to clear out any optional subclass data like
681   // nsw flags.
682 
683   /// NodesToRewrite - Nodes from the original expression available for writing
684   /// the new expression into.
685   SmallVector<BinaryOperator*, 8> NodesToRewrite;
686   unsigned Opcode = I->getOpcode();
687   BinaryOperator *Op = I;
688 
689   /// NotRewritable - The operands being written will be the leaves of the new
690   /// expression and must not be used as inner nodes (via NodesToRewrite) by
691   /// mistake.  Inner nodes are always reassociable, and usually leaves are not
692   /// (if they were they would have been incorporated into the expression and so
693   /// would not be leaves), so most of the time there is no danger of this.  But
694   /// in rare cases a leaf may become reassociable if an optimization kills uses
695   /// of it, or it may momentarily become reassociable during rewriting (below)
696   /// due it being removed as an operand of one of its uses.  Ensure that misuse
697   /// of leaf nodes as inner nodes cannot occur by remembering all of the future
698   /// leaves and refusing to reuse any of them as inner nodes.
699   SmallPtrSet<Value*, 8> NotRewritable;
700   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
701     NotRewritable.insert(Ops[i].Op);
702 
703   // ExpressionChanged - Non-null if the rewritten expression differs from the
704   // original in some non-trivial way, requiring the clearing of optional flags.
705   // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
706   BinaryOperator *ExpressionChanged = 0;
707   for (unsigned i = 0; ; ++i) {
708     // The last operation (which comes earliest in the IR) is special as both
709     // operands will come from Ops, rather than just one with the other being
710     // a subexpression.
711     if (i+2 == Ops.size()) {
712       Value *NewLHS = Ops[i].Op;
713       Value *NewRHS = Ops[i+1].Op;
714       Value *OldLHS = Op->getOperand(0);
715       Value *OldRHS = Op->getOperand(1);
716 
717       if (NewLHS == OldLHS && NewRHS == OldRHS)
718         // Nothing changed, leave it alone.
719         break;
720 
721       if (NewLHS == OldRHS && NewRHS == OldLHS) {
722         // The order of the operands was reversed.  Swap them.
723         DEBUG(dbgs() << "RA: " << *Op << '\n');
724         Op->swapOperands();
725         DEBUG(dbgs() << "TO: " << *Op << '\n');
726         MadeChange = true;
727         ++NumChanged;
728         break;
729       }
730 
731       // The new operation differs non-trivially from the original. Overwrite
732       // the old operands with the new ones.
733       DEBUG(dbgs() << "RA: " << *Op << '\n');
734       if (NewLHS != OldLHS) {
735         BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
736         if (BO && !NotRewritable.count(BO))
737           NodesToRewrite.push_back(BO);
738         Op->setOperand(0, NewLHS);
739       }
740       if (NewRHS != OldRHS) {
741         BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
742         if (BO && !NotRewritable.count(BO))
743           NodesToRewrite.push_back(BO);
744         Op->setOperand(1, NewRHS);
745       }
746       DEBUG(dbgs() << "TO: " << *Op << '\n');
747 
748       ExpressionChanged = Op;
749       MadeChange = true;
750       ++NumChanged;
751 
752       break;
753     }
754 
755     // Not the last operation.  The left-hand side will be a sub-expression
756     // while the right-hand side will be the current element of Ops.
757     Value *NewRHS = Ops[i].Op;
758     if (NewRHS != Op->getOperand(1)) {
759       DEBUG(dbgs() << "RA: " << *Op << '\n');
760       if (NewRHS == Op->getOperand(0)) {
761         // The new right-hand side was already present as the left operand.  If
762         // we are lucky then swapping the operands will sort out both of them.
763         Op->swapOperands();
764       } else {
765         // Overwrite with the new right-hand side.
766         BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
767         if (BO && !NotRewritable.count(BO))
768           NodesToRewrite.push_back(BO);
769         Op->setOperand(1, NewRHS);
770         ExpressionChanged = Op;
771       }
772       DEBUG(dbgs() << "TO: " << *Op << '\n');
773       MadeChange = true;
774       ++NumChanged;
775     }
776 
777     // Now deal with the left-hand side.  If this is already an operation node
778     // from the original expression then just rewrite the rest of the expression
779     // into it.
780     BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
781     if (BO && !NotRewritable.count(BO)) {
782       Op = BO;
783       continue;
784     }
785 
786     // Otherwise, grab a spare node from the original expression and use that as
787     // the left-hand side.  If there are no nodes left then the optimizers made
788     // an expression with more nodes than the original!  This usually means that
789     // they did something stupid but it might mean that the problem was just too
790     // hard (finding the mimimal number of multiplications needed to realize a
791     // multiplication expression is NP-complete).  Whatever the reason, smart or
792     // stupid, create a new node if there are none left.
793     BinaryOperator *NewOp;
794     if (NodesToRewrite.empty()) {
795       Constant *Undef = UndefValue::get(I->getType());
796       NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
797                                      Undef, Undef, "", I);
798     } else {
799       NewOp = NodesToRewrite.pop_back_val();
800     }
801 
802     DEBUG(dbgs() << "RA: " << *Op << '\n');
803     Op->setOperand(0, NewOp);
804     DEBUG(dbgs() << "TO: " << *Op << '\n');
805     ExpressionChanged = Op;
806     MadeChange = true;
807     ++NumChanged;
808     Op = NewOp;
809   }
810 
811   // If the expression changed non-trivially then clear out all subclass data
812   // starting from the operator specified in ExpressionChanged, and compactify
813   // the operators to just before the expression root to guarantee that the
814   // expression tree is dominated by all of Ops.
815   if (ExpressionChanged)
816     do {
817       ExpressionChanged->clearSubclassOptionalData();
818       if (ExpressionChanged == I)
819         break;
820       ExpressionChanged->moveBefore(I);
821       ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->use_begin());
822     } while (1);
823 
824   // Throw away any left over nodes from the original expression.
825   for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
826     RedoInsts.insert(NodesToRewrite[i]);
827 }
828 
829 /// NegateValue - Insert instructions before the instruction pointed to by BI,
830 /// that computes the negative version of the value specified.  The negative
831 /// version of the value is returned, and BI is left pointing at the instruction
832 /// that should be processed next by the reassociation pass.
833 static Value *NegateValue(Value *V, Instruction *BI) {
834   if (Constant *C = dyn_cast<Constant>(V))
835     return ConstantExpr::getNeg(C);
836 
837   // We are trying to expose opportunity for reassociation.  One of the things
838   // that we want to do to achieve this is to push a negation as deep into an
839   // expression chain as possible, to expose the add instructions.  In practice,
840   // this means that we turn this:
841   //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
842   // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
843   // the constants.  We assume that instcombine will clean up the mess later if
844   // we introduce tons of unnecessary negation instructions.
845   //
846   if (BinaryOperator *I = isReassociableOp(V, Instruction::Add)) {
847     // Push the negates through the add.
848     I->setOperand(0, NegateValue(I->getOperand(0), BI));
849     I->setOperand(1, NegateValue(I->getOperand(1), BI));
850 
851     // We must move the add instruction here, because the neg instructions do
852     // not dominate the old add instruction in general.  By moving it, we are
853     // assured that the neg instructions we just inserted dominate the
854     // instruction we are about to insert after them.
855     //
856     I->moveBefore(BI);
857     I->setName(I->getName()+".neg");
858     return I;
859   }
860 
861   // Okay, we need to materialize a negated version of V with an instruction.
862   // Scan the use lists of V to see if we have one already.
863   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
864     User *U = *UI;
865     if (!BinaryOperator::isNeg(U)) continue;
866 
867     // We found one!  Now we have to make sure that the definition dominates
868     // this use.  We do this by moving it to the entry block (if it is a
869     // non-instruction value) or right after the definition.  These negates will
870     // be zapped by reassociate later, so we don't need much finesse here.
871     BinaryOperator *TheNeg = cast<BinaryOperator>(U);
872 
873     // Verify that the negate is in this function, V might be a constant expr.
874     if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
875       continue;
876 
877     BasicBlock::iterator InsertPt;
878     if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
879       if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
880         InsertPt = II->getNormalDest()->begin();
881       } else {
882         InsertPt = InstInput;
883         ++InsertPt;
884       }
885       while (isa<PHINode>(InsertPt)) ++InsertPt;
886     } else {
887       InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
888     }
889     TheNeg->moveBefore(InsertPt);
890     return TheNeg;
891   }
892 
893   // Insert a 'neg' instruction that subtracts the value from zero to get the
894   // negation.
895   return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
896 }
897 
898 /// ShouldBreakUpSubtract - Return true if we should break up this subtract of
899 /// X-Y into (X + -Y).
900 static bool ShouldBreakUpSubtract(Instruction *Sub) {
901   // If this is a negation, we can't split it up!
902   if (BinaryOperator::isNeg(Sub))
903     return false;
904 
905   // Don't bother to break this up unless either the LHS is an associable add or
906   // subtract or if this is only used by one.
907   if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
908       isReassociableOp(Sub->getOperand(0), Instruction::Sub))
909     return true;
910   if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
911       isReassociableOp(Sub->getOperand(1), Instruction::Sub))
912     return true;
913   if (Sub->hasOneUse() &&
914       (isReassociableOp(Sub->use_back(), Instruction::Add) ||
915        isReassociableOp(Sub->use_back(), Instruction::Sub)))
916     return true;
917 
918   return false;
919 }
920 
921 /// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
922 /// only used by an add, transform this into (X+(0-Y)) to promote better
923 /// reassociation.
924 static BinaryOperator *BreakUpSubtract(Instruction *Sub) {
925   // Convert a subtract into an add and a neg instruction. This allows sub
926   // instructions to be commuted with other add instructions.
927   //
928   // Calculate the negative value of Operand 1 of the sub instruction,
929   // and set it as the RHS of the add instruction we just made.
930   //
931   Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
932   BinaryOperator *New =
933     BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
934   Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
935   Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
936   New->takeName(Sub);
937 
938   // Everyone now refers to the add instruction.
939   Sub->replaceAllUsesWith(New);
940   New->setDebugLoc(Sub->getDebugLoc());
941 
942   DEBUG(dbgs() << "Negated: " << *New << '\n');
943   return New;
944 }
945 
946 /// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
947 /// by one, change this into a multiply by a constant to assist with further
948 /// reassociation.
949 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
950   Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
951   MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
952 
953   BinaryOperator *Mul =
954     BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
955   Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
956   Mul->takeName(Shl);
957   Shl->replaceAllUsesWith(Mul);
958   Mul->setDebugLoc(Shl->getDebugLoc());
959   return Mul;
960 }
961 
962 /// FindInOperandList - Scan backwards and forwards among values with the same
963 /// rank as element i to see if X exists.  If X does not exist, return i.  This
964 /// is useful when scanning for 'x' when we see '-x' because they both get the
965 /// same rank.
966 static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
967                                   Value *X) {
968   unsigned XRank = Ops[i].Rank;
969   unsigned e = Ops.size();
970   for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
971     if (Ops[j].Op == X)
972       return j;
973   // Scan backwards.
974   for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
975     if (Ops[j].Op == X)
976       return j;
977   return i;
978 }
979 
980 /// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
981 /// and returning the result.  Insert the tree before I.
982 static Value *EmitAddTreeOfValues(Instruction *I,
983                                   SmallVectorImpl<WeakVH> &Ops){
984   if (Ops.size() == 1) return Ops.back();
985 
986   Value *V1 = Ops.back();
987   Ops.pop_back();
988   Value *V2 = EmitAddTreeOfValues(I, Ops);
989   return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
990 }
991 
992 /// RemoveFactorFromExpression - If V is an expression tree that is a
993 /// multiplication sequence, and if this sequence contains a multiply by Factor,
994 /// remove Factor from the tree and return the new tree.
995 Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
996   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
997   if (!BO) return 0;
998 
999   SmallVector<RepeatedValue, 8> Tree;
1000   MadeChange |= LinearizeExprTree(BO, Tree);
1001   SmallVector<ValueEntry, 8> Factors;
1002   Factors.reserve(Tree.size());
1003   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1004     RepeatedValue E = Tree[i];
1005     Factors.append(E.second.getZExtValue(),
1006                    ValueEntry(getRank(E.first), E.first));
1007   }
1008 
1009   bool FoundFactor = false;
1010   bool NeedsNegate = false;
1011   for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1012     if (Factors[i].Op == Factor) {
1013       FoundFactor = true;
1014       Factors.erase(Factors.begin()+i);
1015       break;
1016     }
1017 
1018     // If this is a negative version of this factor, remove it.
1019     if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
1020       if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1021         if (FC1->getValue() == -FC2->getValue()) {
1022           FoundFactor = NeedsNegate = true;
1023           Factors.erase(Factors.begin()+i);
1024           break;
1025         }
1026   }
1027 
1028   if (!FoundFactor) {
1029     // Make sure to restore the operands to the expression tree.
1030     RewriteExprTree(BO, Factors);
1031     return 0;
1032   }
1033 
1034   BasicBlock::iterator InsertPt = BO; ++InsertPt;
1035 
1036   // If this was just a single multiply, remove the multiply and return the only
1037   // remaining operand.
1038   if (Factors.size() == 1) {
1039     RedoInsts.insert(BO);
1040     V = Factors[0].Op;
1041   } else {
1042     RewriteExprTree(BO, Factors);
1043     V = BO;
1044   }
1045 
1046   if (NeedsNegate)
1047     V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
1048 
1049   return V;
1050 }
1051 
1052 /// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
1053 /// add its operands as factors, otherwise add V to the list of factors.
1054 ///
1055 /// Ops is the top-level list of add operands we're trying to factor.
1056 static void FindSingleUseMultiplyFactors(Value *V,
1057                                          SmallVectorImpl<Value*> &Factors,
1058                                        const SmallVectorImpl<ValueEntry> &Ops) {
1059   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
1060   if (!BO) {
1061     Factors.push_back(V);
1062     return;
1063   }
1064 
1065   // Otherwise, add the LHS and RHS to the list of factors.
1066   FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
1067   FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
1068 }
1069 
1070 /// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
1071 /// instruction.  This optimizes based on identities.  If it can be reduced to
1072 /// a single Value, it is returned, otherwise the Ops list is mutated as
1073 /// necessary.
1074 static Value *OptimizeAndOrXor(unsigned Opcode,
1075                                SmallVectorImpl<ValueEntry> &Ops) {
1076   // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1077   // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1078   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1079     // First, check for X and ~X in the operand list.
1080     assert(i < Ops.size());
1081     if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
1082       Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1083       unsigned FoundX = FindInOperandList(Ops, i, X);
1084       if (FoundX != i) {
1085         if (Opcode == Instruction::And)   // ...&X&~X = 0
1086           return Constant::getNullValue(X->getType());
1087 
1088         if (Opcode == Instruction::Or)    // ...|X|~X = -1
1089           return Constant::getAllOnesValue(X->getType());
1090       }
1091     }
1092 
1093     // Next, check for duplicate pairs of values, which we assume are next to
1094     // each other, due to our sorting criteria.
1095     assert(i < Ops.size());
1096     if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1097       if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1098         // Drop duplicate values for And and Or.
1099         Ops.erase(Ops.begin()+i);
1100         --i; --e;
1101         ++NumAnnihil;
1102         continue;
1103       }
1104 
1105       // Drop pairs of values for Xor.
1106       assert(Opcode == Instruction::Xor);
1107       if (e == 2)
1108         return Constant::getNullValue(Ops[0].Op->getType());
1109 
1110       // Y ^ X^X -> Y
1111       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1112       i -= 1; e -= 2;
1113       ++NumAnnihil;
1114     }
1115   }
1116   return 0;
1117 }
1118 
1119 /// Helper funciton of CombineXorOpnd(). It creates a bitwise-and
1120 /// instruction with the given two operands, and return the resulting
1121 /// instruction. There are two special cases: 1) if the constant operand is 0,
1122 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1123 /// be returned.
1124 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1125                              const APInt &ConstOpnd) {
1126   if (ConstOpnd != 0) {
1127     if (!ConstOpnd.isAllOnesValue()) {
1128       LLVMContext &Ctx = Opnd->getType()->getContext();
1129       Instruction *I;
1130       I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
1131                                     "and.ra", InsertBefore);
1132       I->setDebugLoc(InsertBefore->getDebugLoc());
1133       return I;
1134     }
1135     return Opnd;
1136   }
1137   return 0;
1138 }
1139 
1140 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1141 // into "R ^ C", where C would be 0, and R is a symbolic value.
1142 //
1143 // If it was successful, true is returned, and the "R" and "C" is returned
1144 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1145 // and both "Res" and "ConstOpnd" remain unchanged.
1146 //
1147 bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1148                                  APInt &ConstOpnd, Value *&Res) {
1149   // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1150   //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
1151   //                       = (x & ~c1) ^ (c1 ^ c2)
1152   // It is useful only when c1 == c2.
1153   if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
1154     if (!Opnd1->getValue()->hasOneUse())
1155       return false;
1156 
1157     const APInt &C1 = Opnd1->getConstPart();
1158     if (C1 != ConstOpnd)
1159       return false;
1160 
1161     Value *X = Opnd1->getSymbolicPart();
1162     Res = createAndInstr(I, X, ~C1);
1163     // ConstOpnd was C2, now C1 ^ C2.
1164     ConstOpnd ^= C1;
1165 
1166     if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1167       RedoInsts.insert(T);
1168     return true;
1169   }
1170   return false;
1171 }
1172 
1173 
1174 // Helper function of OptimizeXor(). It tries to simplify
1175 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1176 // symbolic value.
1177 //
1178 // If it was successful, true is returned, and the "R" and "C" is returned
1179 // via "Res" and "ConstOpnd", respectively (If the entire expression is
1180 // evaluated to a constant, the Res is set to NULL); otherwise, false is
1181 // returned, and both "Res" and "ConstOpnd" remain unchanged.
1182 bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
1183                                  APInt &ConstOpnd, Value *&Res) {
1184   Value *X = Opnd1->getSymbolicPart();
1185   if (X != Opnd2->getSymbolicPart())
1186     return false;
1187 
1188   // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1189   int DeadInstNum = 1;
1190   if (Opnd1->getValue()->hasOneUse())
1191     DeadInstNum++;
1192   if (Opnd2->getValue()->hasOneUse())
1193     DeadInstNum++;
1194 
1195   // Xor-Rule 2:
1196   //  (x | c1) ^ (x & c2)
1197   //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1198   //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
1199   //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
1200   //
1201   if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1202     if (Opnd2->isOrExpr())
1203       std::swap(Opnd1, Opnd2);
1204 
1205     const APInt &C1 = Opnd1->getConstPart();
1206     const APInt &C2 = Opnd2->getConstPart();
1207     APInt C3((~C1) ^ C2);
1208 
1209     // Do not increase code size!
1210     if (C3 != 0 && !C3.isAllOnesValue()) {
1211       int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1212       if (NewInstNum > DeadInstNum)
1213         return false;
1214     }
1215 
1216     Res = createAndInstr(I, X, C3);
1217     ConstOpnd ^= C1;
1218 
1219   } else if (Opnd1->isOrExpr()) {
1220     // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1221     //
1222     const APInt &C1 = Opnd1->getConstPart();
1223     const APInt &C2 = Opnd2->getConstPart();
1224     APInt C3 = C1 ^ C2;
1225 
1226     // Do not increase code size
1227     if (C3 != 0 && !C3.isAllOnesValue()) {
1228       int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1229       if (NewInstNum > DeadInstNum)
1230         return false;
1231     }
1232 
1233     Res = createAndInstr(I, X, C3);
1234     ConstOpnd ^= C3;
1235   } else {
1236     // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1237     //
1238     const APInt &C1 = Opnd1->getConstPart();
1239     const APInt &C2 = Opnd2->getConstPart();
1240     APInt C3 = C1 ^ C2;
1241     Res = createAndInstr(I, X, C3);
1242   }
1243 
1244   // Put the original operands in the Redo list; hope they will be deleted
1245   // as dead code.
1246   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1247     RedoInsts.insert(T);
1248   if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1249     RedoInsts.insert(T);
1250 
1251   return true;
1252 }
1253 
1254 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1255 /// to a single Value, it is returned, otherwise the Ops list is mutated as
1256 /// necessary.
1257 Value *Reassociate::OptimizeXor(Instruction *I,
1258                                 SmallVectorImpl<ValueEntry> &Ops) {
1259   if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1260     return V;
1261 
1262   if (Ops.size() == 1)
1263     return 0;
1264 
1265   SmallVector<XorOpnd, 8> Opnds;
1266   SmallVector<XorOpnd*, 8> OpndPtrs;
1267   Type *Ty = Ops[0].Op->getType();
1268   APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
1269 
1270   // Step 1: Convert ValueEntry to XorOpnd
1271   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1272     Value *V = Ops[i].Op;
1273     if (!isa<ConstantInt>(V)) {
1274       XorOpnd O(V);
1275       O.setSymbolicRank(getRank(O.getSymbolicPart()));
1276       Opnds.push_back(O);
1277     } else
1278       ConstOpnd ^= cast<ConstantInt>(V)->getValue();
1279   }
1280 
1281   // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1282   //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1283   //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1284   //  with the previous loop --- the iterator of the "Opnds" may be invalidated
1285   //  when new elements are added to the vector.
1286   for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1287     OpndPtrs.push_back(&Opnds[i]);
1288 
1289   // Step 2: Sort the Xor-Operands in a way such that the operands containing
1290   //  the same symbolic value cluster together. For instance, the input operand
1291   //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1292   //  ("x | 123", "x & 789", "y & 456").
1293   std::sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor());
1294 
1295   // Step 3: Combine adjacent operands
1296   XorOpnd *PrevOpnd = 0;
1297   bool Changed = false;
1298   for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
1299     XorOpnd *CurrOpnd = OpndPtrs[i];
1300     // The combined value
1301     Value *CV;
1302 
1303     // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1304     if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1305       Changed = true;
1306       if (CV)
1307         *CurrOpnd = XorOpnd(CV);
1308       else {
1309         CurrOpnd->Invalidate();
1310         continue;
1311       }
1312     }
1313 
1314     if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1315       PrevOpnd = CurrOpnd;
1316       continue;
1317     }
1318 
1319     // step 3.2: When previous and current operands share the same symbolic
1320     //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1321     //
1322     if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1323       // Remove previous operand
1324       PrevOpnd->Invalidate();
1325       if (CV) {
1326         *CurrOpnd = XorOpnd(CV);
1327         PrevOpnd = CurrOpnd;
1328       } else {
1329         CurrOpnd->Invalidate();
1330         PrevOpnd = 0;
1331       }
1332       Changed = true;
1333     }
1334   }
1335 
1336   // Step 4: Reassemble the Ops
1337   if (Changed) {
1338     Ops.clear();
1339     for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1340       XorOpnd &O = Opnds[i];
1341       if (O.isInvalid())
1342         continue;
1343       ValueEntry VE(getRank(O.getValue()), O.getValue());
1344       Ops.push_back(VE);
1345     }
1346     if (ConstOpnd != 0) {
1347       Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
1348       ValueEntry VE(getRank(C), C);
1349       Ops.push_back(VE);
1350     }
1351     int Sz = Ops.size();
1352     if (Sz == 1)
1353       return Ops.back().Op;
1354     else if (Sz == 0) {
1355       assert(ConstOpnd == 0);
1356       return ConstantInt::get(Ty->getContext(), ConstOpnd);
1357     }
1358   }
1359 
1360   return 0;
1361 }
1362 
1363 /// OptimizeAdd - Optimize a series of operands to an 'add' instruction.  This
1364 /// optimizes based on identities.  If it can be reduced to a single Value, it
1365 /// is returned, otherwise the Ops list is mutated as necessary.
1366 Value *Reassociate::OptimizeAdd(Instruction *I,
1367                                 SmallVectorImpl<ValueEntry> &Ops) {
1368   // Scan the operand lists looking for X and -X pairs.  If we find any, we
1369   // can simplify the expression. X+-X == 0.  While we're at it, scan for any
1370   // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1371   //
1372   // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
1373   //
1374   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1375     Value *TheOp = Ops[i].Op;
1376     // Check to see if we've seen this operand before.  If so, we factor all
1377     // instances of the operand together.  Due to our sorting criteria, we know
1378     // that these need to be next to each other in the vector.
1379     if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1380       // Rescan the list, remove all instances of this operand from the expr.
1381       unsigned NumFound = 0;
1382       do {
1383         Ops.erase(Ops.begin()+i);
1384         ++NumFound;
1385       } while (i != Ops.size() && Ops[i].Op == TheOp);
1386 
1387       DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
1388       ++NumFactor;
1389 
1390       // Insert a new multiply.
1391       Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
1392       Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
1393 
1394       // Now that we have inserted a multiply, optimize it. This allows us to
1395       // handle cases that require multiple factoring steps, such as this:
1396       // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1397       RedoInsts.insert(cast<Instruction>(Mul));
1398 
1399       // If every add operand was a duplicate, return the multiply.
1400       if (Ops.empty())
1401         return Mul;
1402 
1403       // Otherwise, we had some input that didn't have the dupe, such as
1404       // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
1405       // things being added by this operation.
1406       Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1407 
1408       --i;
1409       e = Ops.size();
1410       continue;
1411     }
1412 
1413     // Check for X and -X in the operand list.
1414     if (!BinaryOperator::isNeg(TheOp))
1415       continue;
1416 
1417     Value *X = BinaryOperator::getNegArgument(TheOp);
1418     unsigned FoundX = FindInOperandList(Ops, i, X);
1419     if (FoundX == i)
1420       continue;
1421 
1422     // Remove X and -X from the operand list.
1423     if (Ops.size() == 2)
1424       return Constant::getNullValue(X->getType());
1425 
1426     Ops.erase(Ops.begin()+i);
1427     if (i < FoundX)
1428       --FoundX;
1429     else
1430       --i;   // Need to back up an extra one.
1431     Ops.erase(Ops.begin()+FoundX);
1432     ++NumAnnihil;
1433     --i;     // Revisit element.
1434     e -= 2;  // Removed two elements.
1435   }
1436 
1437   // Scan the operand list, checking to see if there are any common factors
1438   // between operands.  Consider something like A*A+A*B*C+D.  We would like to
1439   // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1440   // To efficiently find this, we count the number of times a factor occurs
1441   // for any ADD operands that are MULs.
1442   DenseMap<Value*, unsigned> FactorOccurrences;
1443 
1444   // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1445   // where they are actually the same multiply.
1446   unsigned MaxOcc = 0;
1447   Value *MaxOccVal = 0;
1448   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1449     BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1450     if (!BOp)
1451       continue;
1452 
1453     // Compute all of the factors of this added value.
1454     SmallVector<Value*, 8> Factors;
1455     FindSingleUseMultiplyFactors(BOp, Factors, Ops);
1456     assert(Factors.size() > 1 && "Bad linearize!");
1457 
1458     // Add one to FactorOccurrences for each unique factor in this op.
1459     SmallPtrSet<Value*, 8> Duplicates;
1460     for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1461       Value *Factor = Factors[i];
1462       if (!Duplicates.insert(Factor)) continue;
1463 
1464       unsigned Occ = ++FactorOccurrences[Factor];
1465       if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
1466 
1467       // If Factor is a negative constant, add the negated value as a factor
1468       // because we can percolate the negate out.  Watch for minint, which
1469       // cannot be positivified.
1470       if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
1471         if (CI->isNegative() && !CI->isMinValue(true)) {
1472           Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1473           assert(!Duplicates.count(Factor) &&
1474                  "Shouldn't have two constant factors, missed a canonicalize");
1475 
1476           unsigned Occ = ++FactorOccurrences[Factor];
1477           if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
1478         }
1479     }
1480   }
1481 
1482   // If any factor occurred more than one time, we can pull it out.
1483   if (MaxOcc > 1) {
1484     DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
1485     ++NumFactor;
1486 
1487     // Create a new instruction that uses the MaxOccVal twice.  If we don't do
1488     // this, we could otherwise run into situations where removing a factor
1489     // from an expression will drop a use of maxocc, and this can cause
1490     // RemoveFactorFromExpression on successive values to behave differently.
1491     Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
1492     SmallVector<WeakVH, 4> NewMulOps;
1493     for (unsigned i = 0; i != Ops.size(); ++i) {
1494       // Only try to remove factors from expressions we're allowed to.
1495       BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1496       if (!BOp)
1497         continue;
1498 
1499       if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1500         // The factorized operand may occur several times.  Convert them all in
1501         // one fell swoop.
1502         for (unsigned j = Ops.size(); j != i;) {
1503           --j;
1504           if (Ops[j].Op == Ops[i].Op) {
1505             NewMulOps.push_back(V);
1506             Ops.erase(Ops.begin()+j);
1507           }
1508         }
1509         --i;
1510       }
1511     }
1512 
1513     // No need for extra uses anymore.
1514     delete DummyInst;
1515 
1516     unsigned NumAddedValues = NewMulOps.size();
1517     Value *V = EmitAddTreeOfValues(I, NewMulOps);
1518 
1519     // Now that we have inserted the add tree, optimize it. This allows us to
1520     // handle cases that require multiple factoring steps, such as this:
1521     // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
1522     assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1523     (void)NumAddedValues;
1524     if (Instruction *VI = dyn_cast<Instruction>(V))
1525       RedoInsts.insert(VI);
1526 
1527     // Create the multiply.
1528     Instruction *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
1529 
1530     // Rerun associate on the multiply in case the inner expression turned into
1531     // a multiply.  We want to make sure that we keep things in canonical form.
1532     RedoInsts.insert(V2);
1533 
1534     // If every add operand included the factor (e.g. "A*B + A*C"), then the
1535     // entire result expression is just the multiply "A*(B+C)".
1536     if (Ops.empty())
1537       return V2;
1538 
1539     // Otherwise, we had some input that didn't have the factor, such as
1540     // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
1541     // things being added by this operation.
1542     Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1543   }
1544 
1545   return 0;
1546 }
1547 
1548 namespace {
1549   /// \brief Predicate tests whether a ValueEntry's op is in a map.
1550   struct IsValueInMap {
1551     const DenseMap<Value *, unsigned> &Map;
1552 
1553     IsValueInMap(const DenseMap<Value *, unsigned> &Map) : Map(Map) {}
1554 
1555     bool operator()(const ValueEntry &Entry) {
1556       return Map.find(Entry.Op) != Map.end();
1557     }
1558   };
1559 }
1560 
1561 /// \brief Build up a vector of value/power pairs factoring a product.
1562 ///
1563 /// Given a series of multiplication operands, build a vector of factors and
1564 /// the powers each is raised to when forming the final product. Sort them in
1565 /// the order of descending power.
1566 ///
1567 ///      (x*x)          -> [(x, 2)]
1568 ///     ((x*x)*x)       -> [(x, 3)]
1569 ///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1570 ///
1571 /// \returns Whether any factors have a power greater than one.
1572 bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1573                                          SmallVectorImpl<Factor> &Factors) {
1574   // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1575   // Compute the sum of powers of simplifiable factors.
1576   unsigned FactorPowerSum = 0;
1577   for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1578     Value *Op = Ops[Idx-1].Op;
1579 
1580     // Count the number of occurrences of this value.
1581     unsigned Count = 1;
1582     for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1583       ++Count;
1584     // Track for simplification all factors which occur 2 or more times.
1585     if (Count > 1)
1586       FactorPowerSum += Count;
1587   }
1588 
1589   // We can only simplify factors if the sum of the powers of our simplifiable
1590   // factors is 4 or higher. When that is the case, we will *always* have
1591   // a simplification. This is an important invariant to prevent cyclicly
1592   // trying to simplify already minimal formations.
1593   if (FactorPowerSum < 4)
1594     return false;
1595 
1596   // Now gather the simplifiable factors, removing them from Ops.
1597   FactorPowerSum = 0;
1598   for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1599     Value *Op = Ops[Idx-1].Op;
1600 
1601     // Count the number of occurrences of this value.
1602     unsigned Count = 1;
1603     for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1604       ++Count;
1605     if (Count == 1)
1606       continue;
1607     // Move an even number of occurrences to Factors.
1608     Count &= ~1U;
1609     Idx -= Count;
1610     FactorPowerSum += Count;
1611     Factors.push_back(Factor(Op, Count));
1612     Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1613   }
1614 
1615   // None of the adjustments above should have reduced the sum of factor powers
1616   // below our mininum of '4'.
1617   assert(FactorPowerSum >= 4);
1618 
1619   std::sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
1620   return true;
1621 }
1622 
1623 /// \brief Build a tree of multiplies, computing the product of Ops.
1624 static Value *buildMultiplyTree(IRBuilder<> &Builder,
1625                                 SmallVectorImpl<Value*> &Ops) {
1626   if (Ops.size() == 1)
1627     return Ops.back();
1628 
1629   Value *LHS = Ops.pop_back_val();
1630   do {
1631     LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1632   } while (!Ops.empty());
1633 
1634   return LHS;
1635 }
1636 
1637 /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1638 ///
1639 /// Given a vector of values raised to various powers, where no two values are
1640 /// equal and the powers are sorted in decreasing order, compute the minimal
1641 /// DAG of multiplies to compute the final product, and return that product
1642 /// value.
1643 Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1644                                             SmallVectorImpl<Factor> &Factors) {
1645   assert(Factors[0].Power);
1646   SmallVector<Value *, 4> OuterProduct;
1647   for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1648        Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1649     if (Factors[Idx].Power != Factors[LastIdx].Power) {
1650       LastIdx = Idx;
1651       continue;
1652     }
1653 
1654     // We want to multiply across all the factors with the same power so that
1655     // we can raise them to that power as a single entity. Build a mini tree
1656     // for that.
1657     SmallVector<Value *, 4> InnerProduct;
1658     InnerProduct.push_back(Factors[LastIdx].Base);
1659     do {
1660       InnerProduct.push_back(Factors[Idx].Base);
1661       ++Idx;
1662     } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1663 
1664     // Reset the base value of the first factor to the new expression tree.
1665     // We'll remove all the factors with the same power in a second pass.
1666     Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1667     if (Instruction *MI = dyn_cast<Instruction>(M))
1668       RedoInsts.insert(MI);
1669 
1670     LastIdx = Idx;
1671   }
1672   // Unique factors with equal powers -- we've folded them into the first one's
1673   // base.
1674   Factors.erase(std::unique(Factors.begin(), Factors.end(),
1675                             Factor::PowerEqual()),
1676                 Factors.end());
1677 
1678   // Iteratively collect the base of each factor with an add power into the
1679   // outer product, and halve each power in preparation for squaring the
1680   // expression.
1681   for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1682     if (Factors[Idx].Power & 1)
1683       OuterProduct.push_back(Factors[Idx].Base);
1684     Factors[Idx].Power >>= 1;
1685   }
1686   if (Factors[0].Power) {
1687     Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1688     OuterProduct.push_back(SquareRoot);
1689     OuterProduct.push_back(SquareRoot);
1690   }
1691   if (OuterProduct.size() == 1)
1692     return OuterProduct.front();
1693 
1694   Value *V = buildMultiplyTree(Builder, OuterProduct);
1695   return V;
1696 }
1697 
1698 Value *Reassociate::OptimizeMul(BinaryOperator *I,
1699                                 SmallVectorImpl<ValueEntry> &Ops) {
1700   // We can only optimize the multiplies when there is a chain of more than
1701   // three, such that a balanced tree might require fewer total multiplies.
1702   if (Ops.size() < 4)
1703     return 0;
1704 
1705   // Try to turn linear trees of multiplies without other uses of the
1706   // intermediate stages into minimal multiply DAGs with perfect sub-expression
1707   // re-use.
1708   SmallVector<Factor, 4> Factors;
1709   if (!collectMultiplyFactors(Ops, Factors))
1710     return 0; // All distinct factors, so nothing left for us to do.
1711 
1712   IRBuilder<> Builder(I);
1713   Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1714   if (Ops.empty())
1715     return V;
1716 
1717   ValueEntry NewEntry = ValueEntry(getRank(V), V);
1718   Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
1719   return 0;
1720 }
1721 
1722 Value *Reassociate::OptimizeExpression(BinaryOperator *I,
1723                                        SmallVectorImpl<ValueEntry> &Ops) {
1724   // Now that we have the linearized expression tree, try to optimize it.
1725   // Start by folding any constants that we found.
1726   Constant *Cst = 0;
1727   unsigned Opcode = I->getOpcode();
1728   while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1729     Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1730     Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1731   }
1732   // If there was nothing but constants then we are done.
1733   if (Ops.empty())
1734     return Cst;
1735 
1736   // Put the combined constant back at the end of the operand list, except if
1737   // there is no point.  For example, an add of 0 gets dropped here, while a
1738   // multiplication by zero turns the whole expression into zero.
1739   if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1740     if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1741       return Cst;
1742     Ops.push_back(ValueEntry(0, Cst));
1743   }
1744 
1745   if (Ops.size() == 1) return Ops[0].Op;
1746 
1747   // Handle destructive annihilation due to identities between elements in the
1748   // argument list here.
1749   unsigned NumOps = Ops.size();
1750   switch (Opcode) {
1751   default: break;
1752   case Instruction::And:
1753   case Instruction::Or:
1754     if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1755       return Result;
1756     break;
1757 
1758   case Instruction::Xor:
1759     if (Value *Result = OptimizeXor(I, Ops))
1760       return Result;
1761     break;
1762 
1763   case Instruction::Add:
1764     if (Value *Result = OptimizeAdd(I, Ops))
1765       return Result;
1766     break;
1767 
1768   case Instruction::Mul:
1769     if (Value *Result = OptimizeMul(I, Ops))
1770       return Result;
1771     break;
1772   }
1773 
1774   if (Ops.size() != NumOps)
1775     return OptimizeExpression(I, Ops);
1776   return 0;
1777 }
1778 
1779 /// EraseInst - Zap the given instruction, adding interesting operands to the
1780 /// work list.
1781 void Reassociate::EraseInst(Instruction *I) {
1782   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1783   SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1784   // Erase the dead instruction.
1785   ValueRankMap.erase(I);
1786   RedoInsts.remove(I);
1787   I->eraseFromParent();
1788   // Optimize its operands.
1789   SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
1790   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1791     if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1792       // If this is a node in an expression tree, climb to the expression root
1793       // and add that since that's where optimization actually happens.
1794       unsigned Opcode = Op->getOpcode();
1795       while (Op->hasOneUse() && Op->use_back()->getOpcode() == Opcode &&
1796              Visited.insert(Op))
1797         Op = Op->use_back();
1798       RedoInsts.insert(Op);
1799     }
1800 }
1801 
1802 /// OptimizeInst - Inspect and optimize the given instruction. Note that erasing
1803 /// instructions is not allowed.
1804 void Reassociate::OptimizeInst(Instruction *I) {
1805   // Only consider operations that we understand.
1806   if (!isa<BinaryOperator>(I))
1807     return;
1808 
1809   if (I->getOpcode() == Instruction::Shl &&
1810       isa<ConstantInt>(I->getOperand(1)))
1811     // If an operand of this shift is a reassociable multiply, or if the shift
1812     // is used by a reassociable multiply or add, turn into a multiply.
1813     if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
1814         (I->hasOneUse() &&
1815          (isReassociableOp(I->use_back(), Instruction::Mul) ||
1816           isReassociableOp(I->use_back(), Instruction::Add)))) {
1817       Instruction *NI = ConvertShiftToMul(I);
1818       RedoInsts.insert(I);
1819       MadeChange = true;
1820       I = NI;
1821     }
1822 
1823   // Floating point binary operators are not associative, but we can still
1824   // commute (some) of them, to canonicalize the order of their operands.
1825   // This can potentially expose more CSE opportunities, and makes writing
1826   // other transformations simpler.
1827   if ((I->getType()->isFloatingPointTy() || I->getType()->isVectorTy())) {
1828     // FAdd and FMul can be commuted.
1829     if (I->getOpcode() != Instruction::FMul &&
1830         I->getOpcode() != Instruction::FAdd)
1831       return;
1832 
1833     Value *LHS = I->getOperand(0);
1834     Value *RHS = I->getOperand(1);
1835     unsigned LHSRank = getRank(LHS);
1836     unsigned RHSRank = getRank(RHS);
1837 
1838     // Sort the operands by rank.
1839     if (RHSRank < LHSRank) {
1840       I->setOperand(0, RHS);
1841       I->setOperand(1, LHS);
1842     }
1843 
1844     return;
1845   }
1846 
1847   // Do not reassociate boolean (i1) expressions.  We want to preserve the
1848   // original order of evaluation for short-circuited comparisons that
1849   // SimplifyCFG has folded to AND/OR expressions.  If the expression
1850   // is not further optimized, it is likely to be transformed back to a
1851   // short-circuited form for code gen, and the source order may have been
1852   // optimized for the most likely conditions.
1853   if (I->getType()->isIntegerTy(1))
1854     return;
1855 
1856   // If this is a subtract instruction which is not already in negate form,
1857   // see if we can convert it to X+-Y.
1858   if (I->getOpcode() == Instruction::Sub) {
1859     if (ShouldBreakUpSubtract(I)) {
1860       Instruction *NI = BreakUpSubtract(I);
1861       RedoInsts.insert(I);
1862       MadeChange = true;
1863       I = NI;
1864     } else if (BinaryOperator::isNeg(I)) {
1865       // Otherwise, this is a negation.  See if the operand is a multiply tree
1866       // and if this is not an inner node of a multiply tree.
1867       if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
1868           (!I->hasOneUse() ||
1869            !isReassociableOp(I->use_back(), Instruction::Mul))) {
1870         Instruction *NI = LowerNegateToMultiply(I);
1871         RedoInsts.insert(I);
1872         MadeChange = true;
1873         I = NI;
1874       }
1875     }
1876   }
1877 
1878   // If this instruction is an associative binary operator, process it.
1879   if (!I->isAssociative()) return;
1880   BinaryOperator *BO = cast<BinaryOperator>(I);
1881 
1882   // If this is an interior node of a reassociable tree, ignore it until we
1883   // get to the root of the tree, to avoid N^2 analysis.
1884   unsigned Opcode = BO->getOpcode();
1885   if (BO->hasOneUse() && BO->use_back()->getOpcode() == Opcode)
1886     return;
1887 
1888   // If this is an add tree that is used by a sub instruction, ignore it
1889   // until we process the subtract.
1890   if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
1891       cast<Instruction>(BO->use_back())->getOpcode() == Instruction::Sub)
1892     return;
1893 
1894   ReassociateExpression(BO);
1895 }
1896 
1897 void Reassociate::ReassociateExpression(BinaryOperator *I) {
1898 
1899   // First, walk the expression tree, linearizing the tree, collecting the
1900   // operand information.
1901   SmallVector<RepeatedValue, 8> Tree;
1902   MadeChange |= LinearizeExprTree(I, Tree);
1903   SmallVector<ValueEntry, 8> Ops;
1904   Ops.reserve(Tree.size());
1905   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1906     RepeatedValue E = Tree[i];
1907     Ops.append(E.second.getZExtValue(),
1908                ValueEntry(getRank(E.first), E.first));
1909   }
1910 
1911   DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
1912 
1913   // Now that we have linearized the tree to a list and have gathered all of
1914   // the operands and their ranks, sort the operands by their rank.  Use a
1915   // stable_sort so that values with equal ranks will have their relative
1916   // positions maintained (and so the compiler is deterministic).  Note that
1917   // this sorts so that the highest ranking values end up at the beginning of
1918   // the vector.
1919   std::stable_sort(Ops.begin(), Ops.end());
1920 
1921   // OptimizeExpression - Now that we have the expression tree in a convenient
1922   // sorted form, optimize it globally if possible.
1923   if (Value *V = OptimizeExpression(I, Ops)) {
1924     if (V == I)
1925       // Self-referential expression in unreachable code.
1926       return;
1927     // This expression tree simplified to something that isn't a tree,
1928     // eliminate it.
1929     DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
1930     I->replaceAllUsesWith(V);
1931     if (Instruction *VI = dyn_cast<Instruction>(V))
1932       VI->setDebugLoc(I->getDebugLoc());
1933     RedoInsts.insert(I);
1934     ++NumAnnihil;
1935     return;
1936   }
1937 
1938   // We want to sink immediates as deeply as possible except in the case where
1939   // this is a multiply tree used only by an add, and the immediate is a -1.
1940   // In this case we reassociate to put the negation on the outside so that we
1941   // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1942   if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
1943       cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
1944       isa<ConstantInt>(Ops.back().Op) &&
1945       cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
1946     ValueEntry Tmp = Ops.pop_back_val();
1947     Ops.insert(Ops.begin(), Tmp);
1948   }
1949 
1950   DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
1951 
1952   if (Ops.size() == 1) {
1953     if (Ops[0].Op == I)
1954       // Self-referential expression in unreachable code.
1955       return;
1956 
1957     // This expression tree simplified to something that isn't a tree,
1958     // eliminate it.
1959     I->replaceAllUsesWith(Ops[0].Op);
1960     if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
1961       OI->setDebugLoc(I->getDebugLoc());
1962     RedoInsts.insert(I);
1963     return;
1964   }
1965 
1966   // Now that we ordered and optimized the expressions, splat them back into
1967   // the expression tree, removing any unneeded nodes.
1968   RewriteExprTree(I, Ops);
1969 }
1970 
1971 bool Reassociate::runOnFunction(Function &F) {
1972   // Calculate the rank map for F
1973   BuildRankMap(F);
1974 
1975   MadeChange = false;
1976   for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
1977     // Optimize every instruction in the basic block.
1978     for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
1979       if (isInstructionTriviallyDead(II)) {
1980         EraseInst(II++);
1981       } else {
1982         OptimizeInst(II);
1983         assert(II->getParent() == BI && "Moved to a different block!");
1984         ++II;
1985       }
1986 
1987     // If this produced extra instructions to optimize, handle them now.
1988     while (!RedoInsts.empty()) {
1989       Instruction *I = RedoInsts.pop_back_val();
1990       if (isInstructionTriviallyDead(I))
1991         EraseInst(I);
1992       else
1993         OptimizeInst(I);
1994     }
1995   }
1996 
1997   // We are done with the rank map.
1998   RankMap.clear();
1999   ValueRankMap.clear();
2000 
2001   return MadeChange;
2002 }
2003