1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass reassociates commutative expressions in an order that is designed 11 // to promote better constant propagation, GCSE, LICM, PRE, etc. 12 // 13 // For example: 4 + (x + 5) -> x + (4 + 5) 14 // 15 // In the implementation of this algorithm, constants are assigned rank = 0, 16 // function arguments are rank = 1, and other values are assigned ranks 17 // corresponding to the reverse post order traversal of current function 18 // (starting at 2), which effectively gives values in deep loops higher rank 19 // than values not in loops. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #define DEBUG_TYPE "reassociate" 24 #include "llvm/Transforms/Scalar.h" 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SetVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/Assembly/Writer.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/IRBuilder.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/CFG.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ValueHandle.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Transforms/Utils/Local.h" 43 #include <algorithm> 44 using namespace llvm; 45 46 STATISTIC(NumChanged, "Number of insts reassociated"); 47 STATISTIC(NumAnnihil, "Number of expr tree annihilated"); 48 STATISTIC(NumFactor , "Number of multiplies factored"); 49 50 namespace { 51 struct ValueEntry { 52 unsigned Rank; 53 Value *Op; 54 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {} 55 }; 56 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) { 57 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start. 58 } 59 } 60 61 #ifndef NDEBUG 62 /// PrintOps - Print out the expression identified in the Ops list. 63 /// 64 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) { 65 Module *M = I->getParent()->getParent()->getParent(); 66 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " " 67 << *Ops[0].Op->getType() << '\t'; 68 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 69 dbgs() << "[ "; 70 WriteAsOperand(dbgs(), Ops[i].Op, false, M); 71 dbgs() << ", #" << Ops[i].Rank << "] "; 72 } 73 } 74 #endif 75 76 namespace { 77 /// \brief Utility class representing a base and exponent pair which form one 78 /// factor of some product. 79 struct Factor { 80 Value *Base; 81 unsigned Power; 82 83 Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {} 84 85 /// \brief Sort factors by their Base. 86 struct BaseSorter { 87 bool operator()(const Factor &LHS, const Factor &RHS) { 88 return LHS.Base < RHS.Base; 89 } 90 }; 91 92 /// \brief Compare factors for equal bases. 93 struct BaseEqual { 94 bool operator()(const Factor &LHS, const Factor &RHS) { 95 return LHS.Base == RHS.Base; 96 } 97 }; 98 99 /// \brief Sort factors in descending order by their power. 100 struct PowerDescendingSorter { 101 bool operator()(const Factor &LHS, const Factor &RHS) { 102 return LHS.Power > RHS.Power; 103 } 104 }; 105 106 /// \brief Compare factors for equal powers. 107 struct PowerEqual { 108 bool operator()(const Factor &LHS, const Factor &RHS) { 109 return LHS.Power == RHS.Power; 110 } 111 }; 112 }; 113 114 /// Utility class representing a non-constant Xor-operand. We classify 115 /// non-constant Xor-Operands into two categories: 116 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0 117 /// C2) 118 /// C2.1) The operand is in the form of "X | C", where C is a non-zero 119 /// constant. 120 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this 121 /// operand as "E | 0" 122 class XorOpnd { 123 public: 124 XorOpnd(Value *V); 125 126 bool isInvalid() const { return SymbolicPart == 0; } 127 bool isOrExpr() const { return isOr; } 128 Value *getValue() const { return OrigVal; } 129 Value *getSymbolicPart() const { return SymbolicPart; } 130 unsigned getSymbolicRank() const { return SymbolicRank; } 131 const APInt &getConstPart() const { return ConstPart; } 132 133 void Invalidate() { SymbolicPart = OrigVal = 0; } 134 void setSymbolicRank(unsigned R) { SymbolicRank = R; } 135 136 // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank. 137 // The purpose is twofold: 138 // 1) Cluster together the operands sharing the same symbolic-value. 139 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which 140 // could potentially shorten crital path, and expose more loop-invariants. 141 // Note that values' rank are basically defined in RPO order (FIXME). 142 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier 143 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2", 144 // "z" in the order of X-Y-Z is better than any other orders. 145 struct PtrSortFunctor { 146 bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) { 147 return LHS->getSymbolicRank() < RHS->getSymbolicRank(); 148 } 149 }; 150 private: 151 Value *OrigVal; 152 Value *SymbolicPart; 153 APInt ConstPart; 154 unsigned SymbolicRank; 155 bool isOr; 156 }; 157 } 158 159 namespace { 160 class Reassociate : public FunctionPass { 161 DenseMap<BasicBlock*, unsigned> RankMap; 162 DenseMap<AssertingVH<Value>, unsigned> ValueRankMap; 163 SetVector<AssertingVH<Instruction> > RedoInsts; 164 bool MadeChange; 165 public: 166 static char ID; // Pass identification, replacement for typeid 167 Reassociate() : FunctionPass(ID) { 168 initializeReassociatePass(*PassRegistry::getPassRegistry()); 169 } 170 171 bool runOnFunction(Function &F); 172 173 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 174 AU.setPreservesCFG(); 175 } 176 private: 177 void BuildRankMap(Function &F); 178 unsigned getRank(Value *V); 179 void ReassociateExpression(BinaryOperator *I); 180 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops); 181 Value *OptimizeExpression(BinaryOperator *I, 182 SmallVectorImpl<ValueEntry> &Ops); 183 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops); 184 Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops); 185 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd, 186 Value *&Res); 187 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2, 188 APInt &ConstOpnd, Value *&Res); 189 bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, 190 SmallVectorImpl<Factor> &Factors); 191 Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder, 192 SmallVectorImpl<Factor> &Factors); 193 Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops); 194 Value *RemoveFactorFromExpression(Value *V, Value *Factor); 195 void EraseInst(Instruction *I); 196 void OptimizeInst(Instruction *I); 197 }; 198 } 199 200 XorOpnd::XorOpnd(Value *V) { 201 assert(!isa<ConstantInt>(V) && "No ConstantInt"); 202 OrigVal = V; 203 Instruction *I = dyn_cast<Instruction>(V); 204 SymbolicRank = 0; 205 206 if (I && (I->getOpcode() == Instruction::Or || 207 I->getOpcode() == Instruction::And)) { 208 Value *V0 = I->getOperand(0); 209 Value *V1 = I->getOperand(1); 210 if (isa<ConstantInt>(V0)) 211 std::swap(V0, V1); 212 213 if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) { 214 ConstPart = C->getValue(); 215 SymbolicPart = V0; 216 isOr = (I->getOpcode() == Instruction::Or); 217 return; 218 } 219 } 220 221 // view the operand as "V | 0" 222 SymbolicPart = V; 223 ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth()); 224 isOr = true; 225 } 226 227 char Reassociate::ID = 0; 228 INITIALIZE_PASS(Reassociate, "reassociate", 229 "Reassociate expressions", false, false) 230 231 // Public interface to the Reassociate pass 232 FunctionPass *llvm::createReassociatePass() { return new Reassociate(); } 233 234 /// isReassociableOp - Return true if V is an instruction of the specified 235 /// opcode and if it only has one use. 236 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) { 237 if (V->hasOneUse() && isa<Instruction>(V) && 238 cast<Instruction>(V)->getOpcode() == Opcode) 239 return cast<BinaryOperator>(V); 240 return 0; 241 } 242 243 static bool isUnmovableInstruction(Instruction *I) { 244 if (I->getOpcode() == Instruction::PHI || 245 I->getOpcode() == Instruction::LandingPad || 246 I->getOpcode() == Instruction::Alloca || 247 I->getOpcode() == Instruction::Load || 248 I->getOpcode() == Instruction::Invoke || 249 (I->getOpcode() == Instruction::Call && 250 !isa<DbgInfoIntrinsic>(I)) || 251 I->getOpcode() == Instruction::UDiv || 252 I->getOpcode() == Instruction::SDiv || 253 I->getOpcode() == Instruction::FDiv || 254 I->getOpcode() == Instruction::URem || 255 I->getOpcode() == Instruction::SRem || 256 I->getOpcode() == Instruction::FRem) 257 return true; 258 return false; 259 } 260 261 void Reassociate::BuildRankMap(Function &F) { 262 unsigned i = 2; 263 264 // Assign distinct ranks to function arguments 265 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) 266 ValueRankMap[&*I] = ++i; 267 268 ReversePostOrderTraversal<Function*> RPOT(&F); 269 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(), 270 E = RPOT.end(); I != E; ++I) { 271 BasicBlock *BB = *I; 272 unsigned BBRank = RankMap[BB] = ++i << 16; 273 274 // Walk the basic block, adding precomputed ranks for any instructions that 275 // we cannot move. This ensures that the ranks for these instructions are 276 // all different in the block. 277 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 278 if (isUnmovableInstruction(I)) 279 ValueRankMap[&*I] = ++BBRank; 280 } 281 } 282 283 unsigned Reassociate::getRank(Value *V) { 284 Instruction *I = dyn_cast<Instruction>(V); 285 if (I == 0) { 286 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument. 287 return 0; // Otherwise it's a global or constant, rank 0. 288 } 289 290 if (unsigned Rank = ValueRankMap[I]) 291 return Rank; // Rank already known? 292 293 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that 294 // we can reassociate expressions for code motion! Since we do not recurse 295 // for PHI nodes, we cannot have infinite recursion here, because there 296 // cannot be loops in the value graph that do not go through PHI nodes. 297 unsigned Rank = 0, MaxRank = RankMap[I->getParent()]; 298 for (unsigned i = 0, e = I->getNumOperands(); 299 i != e && Rank != MaxRank; ++i) 300 Rank = std::max(Rank, getRank(I->getOperand(i))); 301 302 // If this is a not or neg instruction, do not count it for rank. This 303 // assures us that X and ~X will have the same rank. 304 if (!I->getType()->isIntegerTy() || 305 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I))) 306 ++Rank; 307 308 //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " 309 // << Rank << "\n"); 310 311 return ValueRankMap[I] = Rank; 312 } 313 314 /// LowerNegateToMultiply - Replace 0-X with X*-1. 315 /// 316 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) { 317 Constant *Cst = Constant::getAllOnesValue(Neg->getType()); 318 319 BinaryOperator *Res = 320 BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg); 321 Neg->setOperand(1, Constant::getNullValue(Neg->getType())); // Drop use of op. 322 Res->takeName(Neg); 323 Neg->replaceAllUsesWith(Res); 324 Res->setDebugLoc(Neg->getDebugLoc()); 325 return Res; 326 } 327 328 /// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda 329 /// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for 330 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic. 331 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every 332 /// even x in Bitwidth-bit arithmetic. 333 static unsigned CarmichaelShift(unsigned Bitwidth) { 334 if (Bitwidth < 3) 335 return Bitwidth - 1; 336 return Bitwidth - 2; 337 } 338 339 /// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS', 340 /// reducing the combined weight using any special properties of the operation. 341 /// The existing weight LHS represents the computation X op X op ... op X where 342 /// X occurs LHS times. The combined weight represents X op X op ... op X with 343 /// X occurring LHS + RHS times. If op is "Xor" for example then the combined 344 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even; 345 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second. 346 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) { 347 // If we were working with infinite precision arithmetic then the combined 348 // weight would be LHS + RHS. But we are using finite precision arithmetic, 349 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct 350 // for nilpotent operations and addition, but not for idempotent operations 351 // and multiplication), so it is important to correctly reduce the combined 352 // weight back into range if wrapping would be wrong. 353 354 // If RHS is zero then the weight didn't change. 355 if (RHS.isMinValue()) 356 return; 357 // If LHS is zero then the combined weight is RHS. 358 if (LHS.isMinValue()) { 359 LHS = RHS; 360 return; 361 } 362 // From this point on we know that neither LHS nor RHS is zero. 363 364 if (Instruction::isIdempotent(Opcode)) { 365 // Idempotent means X op X === X, so any non-zero weight is equivalent to a 366 // weight of 1. Keeping weights at zero or one also means that wrapping is 367 // not a problem. 368 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 369 return; // Return a weight of 1. 370 } 371 if (Instruction::isNilpotent(Opcode)) { 372 // Nilpotent means X op X === 0, so reduce weights modulo 2. 373 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 374 LHS = 0; // 1 + 1 === 0 modulo 2. 375 return; 376 } 377 if (Opcode == Instruction::Add) { 378 // TODO: Reduce the weight by exploiting nsw/nuw? 379 LHS += RHS; 380 return; 381 } 382 383 assert(Opcode == Instruction::Mul && "Unknown associative operation!"); 384 unsigned Bitwidth = LHS.getBitWidth(); 385 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth 386 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth 387 // bit number x, since either x is odd in which case x^CM = 1, or x is even in 388 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples 389 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth) 390 // which by a happy accident means that they can always be represented using 391 // Bitwidth bits. 392 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than 393 // the Carmichael number). 394 if (Bitwidth > 3) { 395 /// CM - The value of Carmichael's lambda function. 396 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth)); 397 // Any weight W >= Threshold can be replaced with W - CM. 398 APInt Threshold = CM + Bitwidth; 399 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!"); 400 // For Bitwidth 4 or more the following sum does not overflow. 401 LHS += RHS; 402 while (LHS.uge(Threshold)) 403 LHS -= CM; 404 } else { 405 // To avoid problems with overflow do everything the same as above but using 406 // a larger type. 407 unsigned CM = 1U << CarmichaelShift(Bitwidth); 408 unsigned Threshold = CM + Bitwidth; 409 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold && 410 "Weights not reduced!"); 411 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue(); 412 while (Total >= Threshold) 413 Total -= CM; 414 LHS = Total; 415 } 416 } 417 418 typedef std::pair<Value*, APInt> RepeatedValue; 419 420 /// LinearizeExprTree - Given an associative binary expression, return the leaf 421 /// nodes in Ops along with their weights (how many times the leaf occurs). The 422 /// original expression is the same as 423 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times 424 /// op 425 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times 426 /// op 427 /// ... 428 /// op 429 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times 430 /// 431 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct. 432 /// 433 /// This routine may modify the function, in which case it returns 'true'. The 434 /// changes it makes may well be destructive, changing the value computed by 'I' 435 /// to something completely different. Thus if the routine returns 'true' then 436 /// you MUST either replace I with a new expression computed from the Ops array, 437 /// or use RewriteExprTree to put the values back in. 438 /// 439 /// A leaf node is either not a binary operation of the same kind as the root 440 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different 441 /// opcode), or is the same kind of binary operator but has a use which either 442 /// does not belong to the expression, or does belong to the expression but is 443 /// a leaf node. Every leaf node has at least one use that is a non-leaf node 444 /// of the expression, while for non-leaf nodes (except for the root 'I') every 445 /// use is a non-leaf node of the expression. 446 /// 447 /// For example: 448 /// expression graph node names 449 /// 450 /// + | I 451 /// / \ | 452 /// + + | A, B 453 /// / \ / \ | 454 /// * + * | C, D, E 455 /// / \ / \ / \ | 456 /// + * | F, G 457 /// 458 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in 459 /// that order) (C, 1), (E, 1), (F, 2), (G, 2). 460 /// 461 /// The expression is maximal: if some instruction is a binary operator of the 462 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression, 463 /// then the instruction also belongs to the expression, is not a leaf node of 464 /// it, and its operands also belong to the expression (but may be leaf nodes). 465 /// 466 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in 467 /// order to ensure that every non-root node in the expression has *exactly one* 468 /// use by a non-leaf node of the expression. This destruction means that the 469 /// caller MUST either replace 'I' with a new expression or use something like 470 /// RewriteExprTree to put the values back in if the routine indicates that it 471 /// made a change by returning 'true'. 472 /// 473 /// In the above example either the right operand of A or the left operand of B 474 /// will be replaced by undef. If it is B's operand then this gives: 475 /// 476 /// + | I 477 /// / \ | 478 /// + + | A, B - operand of B replaced with undef 479 /// / \ \ | 480 /// * + * | C, D, E 481 /// / \ / \ / \ | 482 /// + * | F, G 483 /// 484 /// Note that such undef operands can only be reached by passing through 'I'. 485 /// For example, if you visit operands recursively starting from a leaf node 486 /// then you will never see such an undef operand unless you get back to 'I', 487 /// which requires passing through a phi node. 488 /// 489 /// Note that this routine may also mutate binary operators of the wrong type 490 /// that have all uses inside the expression (i.e. only used by non-leaf nodes 491 /// of the expression) if it can turn them into binary operators of the right 492 /// type and thus make the expression bigger. 493 494 static bool LinearizeExprTree(BinaryOperator *I, 495 SmallVectorImpl<RepeatedValue> &Ops) { 496 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n'); 497 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits(); 498 unsigned Opcode = I->getOpcode(); 499 assert(Instruction::isAssociative(Opcode) && 500 Instruction::isCommutative(Opcode) && 501 "Expected an associative and commutative operation!"); 502 503 // Visit all operands of the expression, keeping track of their weight (the 504 // number of paths from the expression root to the operand, or if you like 505 // the number of times that operand occurs in the linearized expression). 506 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1 507 // while A has weight two. 508 509 // Worklist of non-leaf nodes (their operands are in the expression too) along 510 // with their weights, representing a certain number of paths to the operator. 511 // If an operator occurs in the worklist multiple times then we found multiple 512 // ways to get to it. 513 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight) 514 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1))); 515 bool MadeChange = false; 516 517 // Leaves of the expression are values that either aren't the right kind of 518 // operation (eg: a constant, or a multiply in an add tree), or are, but have 519 // some uses that are not inside the expression. For example, in I = X + X, 520 // X = A + B, the value X has two uses (by I) that are in the expression. If 521 // X has any other uses, for example in a return instruction, then we consider 522 // X to be a leaf, and won't analyze it further. When we first visit a value, 523 // if it has more than one use then at first we conservatively consider it to 524 // be a leaf. Later, as the expression is explored, we may discover some more 525 // uses of the value from inside the expression. If all uses turn out to be 526 // from within the expression (and the value is a binary operator of the right 527 // kind) then the value is no longer considered to be a leaf, and its operands 528 // are explored. 529 530 // Leaves - Keeps track of the set of putative leaves as well as the number of 531 // paths to each leaf seen so far. 532 typedef DenseMap<Value*, APInt> LeafMap; 533 LeafMap Leaves; // Leaf -> Total weight so far. 534 SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order. 535 536 #ifndef NDEBUG 537 SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme. 538 #endif 539 while (!Worklist.empty()) { 540 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val(); 541 I = P.first; // We examine the operands of this binary operator. 542 543 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands. 544 Value *Op = I->getOperand(OpIdx); 545 APInt Weight = P.second; // Number of paths to this operand. 546 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n"); 547 assert(!Op->use_empty() && "No uses, so how did we get to it?!"); 548 549 // If this is a binary operation of the right kind with only one use then 550 // add its operands to the expression. 551 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 552 assert(Visited.insert(Op) && "Not first visit!"); 553 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n"); 554 Worklist.push_back(std::make_pair(BO, Weight)); 555 continue; 556 } 557 558 // Appears to be a leaf. Is the operand already in the set of leaves? 559 LeafMap::iterator It = Leaves.find(Op); 560 if (It == Leaves.end()) { 561 // Not in the leaf map. Must be the first time we saw this operand. 562 assert(Visited.insert(Op) && "Not first visit!"); 563 if (!Op->hasOneUse()) { 564 // This value has uses not accounted for by the expression, so it is 565 // not safe to modify. Mark it as being a leaf. 566 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n"); 567 LeafOrder.push_back(Op); 568 Leaves[Op] = Weight; 569 continue; 570 } 571 // No uses outside the expression, try morphing it. 572 } else if (It != Leaves.end()) { 573 // Already in the leaf map. 574 assert(Visited.count(Op) && "In leaf map but not visited!"); 575 576 // Update the number of paths to the leaf. 577 IncorporateWeight(It->second, Weight, Opcode); 578 579 #if 0 // TODO: Re-enable once PR13021 is fixed. 580 // The leaf already has one use from inside the expression. As we want 581 // exactly one such use, drop this new use of the leaf. 582 assert(!Op->hasOneUse() && "Only one use, but we got here twice!"); 583 I->setOperand(OpIdx, UndefValue::get(I->getType())); 584 MadeChange = true; 585 586 // If the leaf is a binary operation of the right kind and we now see 587 // that its multiple original uses were in fact all by nodes belonging 588 // to the expression, then no longer consider it to be a leaf and add 589 // its operands to the expression. 590 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 591 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n"); 592 Worklist.push_back(std::make_pair(BO, It->second)); 593 Leaves.erase(It); 594 continue; 595 } 596 #endif 597 598 // If we still have uses that are not accounted for by the expression 599 // then it is not safe to modify the value. 600 if (!Op->hasOneUse()) 601 continue; 602 603 // No uses outside the expression, try morphing it. 604 Weight = It->second; 605 Leaves.erase(It); // Since the value may be morphed below. 606 } 607 608 // At this point we have a value which, first of all, is not a binary 609 // expression of the right kind, and secondly, is only used inside the 610 // expression. This means that it can safely be modified. See if we 611 // can usefully morph it into an expression of the right kind. 612 assert((!isa<Instruction>(Op) || 613 cast<Instruction>(Op)->getOpcode() != Opcode) && 614 "Should have been handled above!"); 615 assert(Op->hasOneUse() && "Has uses outside the expression tree!"); 616 617 // If this is a multiply expression, turn any internal negations into 618 // multiplies by -1 so they can be reassociated. 619 BinaryOperator *BO = dyn_cast<BinaryOperator>(Op); 620 if (Opcode == Instruction::Mul && BO && BinaryOperator::isNeg(BO)) { 621 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO "); 622 BO = LowerNegateToMultiply(BO); 623 DEBUG(dbgs() << *BO << 'n'); 624 Worklist.push_back(std::make_pair(BO, Weight)); 625 MadeChange = true; 626 continue; 627 } 628 629 // Failed to morph into an expression of the right type. This really is 630 // a leaf. 631 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n"); 632 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?"); 633 LeafOrder.push_back(Op); 634 Leaves[Op] = Weight; 635 } 636 } 637 638 // The leaves, repeated according to their weights, represent the linearized 639 // form of the expression. 640 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) { 641 Value *V = LeafOrder[i]; 642 LeafMap::iterator It = Leaves.find(V); 643 if (It == Leaves.end()) 644 // Node initially thought to be a leaf wasn't. 645 continue; 646 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!"); 647 APInt Weight = It->second; 648 if (Weight.isMinValue()) 649 // Leaf already output or weight reduction eliminated it. 650 continue; 651 // Ensure the leaf is only output once. 652 It->second = 0; 653 Ops.push_back(std::make_pair(V, Weight)); 654 } 655 656 // For nilpotent operations or addition there may be no operands, for example 657 // because the expression was "X xor X" or consisted of 2^Bitwidth additions: 658 // in both cases the weight reduces to 0 causing the value to be skipped. 659 if (Ops.empty()) { 660 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType()); 661 assert(Identity && "Associative operation without identity!"); 662 Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1))); 663 } 664 665 return MadeChange; 666 } 667 668 // RewriteExprTree - Now that the operands for this expression tree are 669 // linearized and optimized, emit them in-order. 670 void Reassociate::RewriteExprTree(BinaryOperator *I, 671 SmallVectorImpl<ValueEntry> &Ops) { 672 assert(Ops.size() > 1 && "Single values should be used directly!"); 673 674 // Since our optimizations should never increase the number of operations, the 675 // new expression can usually be written reusing the existing binary operators 676 // from the original expression tree, without creating any new instructions, 677 // though the rewritten expression may have a completely different topology. 678 // We take care to not change anything if the new expression will be the same 679 // as the original. If more than trivial changes (like commuting operands) 680 // were made then we are obliged to clear out any optional subclass data like 681 // nsw flags. 682 683 /// NodesToRewrite - Nodes from the original expression available for writing 684 /// the new expression into. 685 SmallVector<BinaryOperator*, 8> NodesToRewrite; 686 unsigned Opcode = I->getOpcode(); 687 BinaryOperator *Op = I; 688 689 /// NotRewritable - The operands being written will be the leaves of the new 690 /// expression and must not be used as inner nodes (via NodesToRewrite) by 691 /// mistake. Inner nodes are always reassociable, and usually leaves are not 692 /// (if they were they would have been incorporated into the expression and so 693 /// would not be leaves), so most of the time there is no danger of this. But 694 /// in rare cases a leaf may become reassociable if an optimization kills uses 695 /// of it, or it may momentarily become reassociable during rewriting (below) 696 /// due it being removed as an operand of one of its uses. Ensure that misuse 697 /// of leaf nodes as inner nodes cannot occur by remembering all of the future 698 /// leaves and refusing to reuse any of them as inner nodes. 699 SmallPtrSet<Value*, 8> NotRewritable; 700 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 701 NotRewritable.insert(Ops[i].Op); 702 703 // ExpressionChanged - Non-null if the rewritten expression differs from the 704 // original in some non-trivial way, requiring the clearing of optional flags. 705 // Flags are cleared from the operator in ExpressionChanged up to I inclusive. 706 BinaryOperator *ExpressionChanged = 0; 707 for (unsigned i = 0; ; ++i) { 708 // The last operation (which comes earliest in the IR) is special as both 709 // operands will come from Ops, rather than just one with the other being 710 // a subexpression. 711 if (i+2 == Ops.size()) { 712 Value *NewLHS = Ops[i].Op; 713 Value *NewRHS = Ops[i+1].Op; 714 Value *OldLHS = Op->getOperand(0); 715 Value *OldRHS = Op->getOperand(1); 716 717 if (NewLHS == OldLHS && NewRHS == OldRHS) 718 // Nothing changed, leave it alone. 719 break; 720 721 if (NewLHS == OldRHS && NewRHS == OldLHS) { 722 // The order of the operands was reversed. Swap them. 723 DEBUG(dbgs() << "RA: " << *Op << '\n'); 724 Op->swapOperands(); 725 DEBUG(dbgs() << "TO: " << *Op << '\n'); 726 MadeChange = true; 727 ++NumChanged; 728 break; 729 } 730 731 // The new operation differs non-trivially from the original. Overwrite 732 // the old operands with the new ones. 733 DEBUG(dbgs() << "RA: " << *Op << '\n'); 734 if (NewLHS != OldLHS) { 735 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode); 736 if (BO && !NotRewritable.count(BO)) 737 NodesToRewrite.push_back(BO); 738 Op->setOperand(0, NewLHS); 739 } 740 if (NewRHS != OldRHS) { 741 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode); 742 if (BO && !NotRewritable.count(BO)) 743 NodesToRewrite.push_back(BO); 744 Op->setOperand(1, NewRHS); 745 } 746 DEBUG(dbgs() << "TO: " << *Op << '\n'); 747 748 ExpressionChanged = Op; 749 MadeChange = true; 750 ++NumChanged; 751 752 break; 753 } 754 755 // Not the last operation. The left-hand side will be a sub-expression 756 // while the right-hand side will be the current element of Ops. 757 Value *NewRHS = Ops[i].Op; 758 if (NewRHS != Op->getOperand(1)) { 759 DEBUG(dbgs() << "RA: " << *Op << '\n'); 760 if (NewRHS == Op->getOperand(0)) { 761 // The new right-hand side was already present as the left operand. If 762 // we are lucky then swapping the operands will sort out both of them. 763 Op->swapOperands(); 764 } else { 765 // Overwrite with the new right-hand side. 766 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode); 767 if (BO && !NotRewritable.count(BO)) 768 NodesToRewrite.push_back(BO); 769 Op->setOperand(1, NewRHS); 770 ExpressionChanged = Op; 771 } 772 DEBUG(dbgs() << "TO: " << *Op << '\n'); 773 MadeChange = true; 774 ++NumChanged; 775 } 776 777 // Now deal with the left-hand side. If this is already an operation node 778 // from the original expression then just rewrite the rest of the expression 779 // into it. 780 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode); 781 if (BO && !NotRewritable.count(BO)) { 782 Op = BO; 783 continue; 784 } 785 786 // Otherwise, grab a spare node from the original expression and use that as 787 // the left-hand side. If there are no nodes left then the optimizers made 788 // an expression with more nodes than the original! This usually means that 789 // they did something stupid but it might mean that the problem was just too 790 // hard (finding the mimimal number of multiplications needed to realize a 791 // multiplication expression is NP-complete). Whatever the reason, smart or 792 // stupid, create a new node if there are none left. 793 BinaryOperator *NewOp; 794 if (NodesToRewrite.empty()) { 795 Constant *Undef = UndefValue::get(I->getType()); 796 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode), 797 Undef, Undef, "", I); 798 } else { 799 NewOp = NodesToRewrite.pop_back_val(); 800 } 801 802 DEBUG(dbgs() << "RA: " << *Op << '\n'); 803 Op->setOperand(0, NewOp); 804 DEBUG(dbgs() << "TO: " << *Op << '\n'); 805 ExpressionChanged = Op; 806 MadeChange = true; 807 ++NumChanged; 808 Op = NewOp; 809 } 810 811 // If the expression changed non-trivially then clear out all subclass data 812 // starting from the operator specified in ExpressionChanged, and compactify 813 // the operators to just before the expression root to guarantee that the 814 // expression tree is dominated by all of Ops. 815 if (ExpressionChanged) 816 do { 817 ExpressionChanged->clearSubclassOptionalData(); 818 if (ExpressionChanged == I) 819 break; 820 ExpressionChanged->moveBefore(I); 821 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->use_begin()); 822 } while (1); 823 824 // Throw away any left over nodes from the original expression. 825 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i) 826 RedoInsts.insert(NodesToRewrite[i]); 827 } 828 829 /// NegateValue - Insert instructions before the instruction pointed to by BI, 830 /// that computes the negative version of the value specified. The negative 831 /// version of the value is returned, and BI is left pointing at the instruction 832 /// that should be processed next by the reassociation pass. 833 static Value *NegateValue(Value *V, Instruction *BI) { 834 if (Constant *C = dyn_cast<Constant>(V)) 835 return ConstantExpr::getNeg(C); 836 837 // We are trying to expose opportunity for reassociation. One of the things 838 // that we want to do to achieve this is to push a negation as deep into an 839 // expression chain as possible, to expose the add instructions. In practice, 840 // this means that we turn this: 841 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D 842 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate 843 // the constants. We assume that instcombine will clean up the mess later if 844 // we introduce tons of unnecessary negation instructions. 845 // 846 if (BinaryOperator *I = isReassociableOp(V, Instruction::Add)) { 847 // Push the negates through the add. 848 I->setOperand(0, NegateValue(I->getOperand(0), BI)); 849 I->setOperand(1, NegateValue(I->getOperand(1), BI)); 850 851 // We must move the add instruction here, because the neg instructions do 852 // not dominate the old add instruction in general. By moving it, we are 853 // assured that the neg instructions we just inserted dominate the 854 // instruction we are about to insert after them. 855 // 856 I->moveBefore(BI); 857 I->setName(I->getName()+".neg"); 858 return I; 859 } 860 861 // Okay, we need to materialize a negated version of V with an instruction. 862 // Scan the use lists of V to see if we have one already. 863 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){ 864 User *U = *UI; 865 if (!BinaryOperator::isNeg(U)) continue; 866 867 // We found one! Now we have to make sure that the definition dominates 868 // this use. We do this by moving it to the entry block (if it is a 869 // non-instruction value) or right after the definition. These negates will 870 // be zapped by reassociate later, so we don't need much finesse here. 871 BinaryOperator *TheNeg = cast<BinaryOperator>(U); 872 873 // Verify that the negate is in this function, V might be a constant expr. 874 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent()) 875 continue; 876 877 BasicBlock::iterator InsertPt; 878 if (Instruction *InstInput = dyn_cast<Instruction>(V)) { 879 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) { 880 InsertPt = II->getNormalDest()->begin(); 881 } else { 882 InsertPt = InstInput; 883 ++InsertPt; 884 } 885 while (isa<PHINode>(InsertPt)) ++InsertPt; 886 } else { 887 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin(); 888 } 889 TheNeg->moveBefore(InsertPt); 890 return TheNeg; 891 } 892 893 // Insert a 'neg' instruction that subtracts the value from zero to get the 894 // negation. 895 return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI); 896 } 897 898 /// ShouldBreakUpSubtract - Return true if we should break up this subtract of 899 /// X-Y into (X + -Y). 900 static bool ShouldBreakUpSubtract(Instruction *Sub) { 901 // If this is a negation, we can't split it up! 902 if (BinaryOperator::isNeg(Sub)) 903 return false; 904 905 // Don't bother to break this up unless either the LHS is an associable add or 906 // subtract or if this is only used by one. 907 if (isReassociableOp(Sub->getOperand(0), Instruction::Add) || 908 isReassociableOp(Sub->getOperand(0), Instruction::Sub)) 909 return true; 910 if (isReassociableOp(Sub->getOperand(1), Instruction::Add) || 911 isReassociableOp(Sub->getOperand(1), Instruction::Sub)) 912 return true; 913 if (Sub->hasOneUse() && 914 (isReassociableOp(Sub->use_back(), Instruction::Add) || 915 isReassociableOp(Sub->use_back(), Instruction::Sub))) 916 return true; 917 918 return false; 919 } 920 921 /// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is 922 /// only used by an add, transform this into (X+(0-Y)) to promote better 923 /// reassociation. 924 static BinaryOperator *BreakUpSubtract(Instruction *Sub) { 925 // Convert a subtract into an add and a neg instruction. This allows sub 926 // instructions to be commuted with other add instructions. 927 // 928 // Calculate the negative value of Operand 1 of the sub instruction, 929 // and set it as the RHS of the add instruction we just made. 930 // 931 Value *NegVal = NegateValue(Sub->getOperand(1), Sub); 932 BinaryOperator *New = 933 BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub); 934 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op. 935 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op. 936 New->takeName(Sub); 937 938 // Everyone now refers to the add instruction. 939 Sub->replaceAllUsesWith(New); 940 New->setDebugLoc(Sub->getDebugLoc()); 941 942 DEBUG(dbgs() << "Negated: " << *New << '\n'); 943 return New; 944 } 945 946 /// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used 947 /// by one, change this into a multiply by a constant to assist with further 948 /// reassociation. 949 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) { 950 Constant *MulCst = ConstantInt::get(Shl->getType(), 1); 951 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1))); 952 953 BinaryOperator *Mul = 954 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl); 955 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op. 956 Mul->takeName(Shl); 957 Shl->replaceAllUsesWith(Mul); 958 Mul->setDebugLoc(Shl->getDebugLoc()); 959 return Mul; 960 } 961 962 /// FindInOperandList - Scan backwards and forwards among values with the same 963 /// rank as element i to see if X exists. If X does not exist, return i. This 964 /// is useful when scanning for 'x' when we see '-x' because they both get the 965 /// same rank. 966 static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i, 967 Value *X) { 968 unsigned XRank = Ops[i].Rank; 969 unsigned e = Ops.size(); 970 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) 971 if (Ops[j].Op == X) 972 return j; 973 // Scan backwards. 974 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) 975 if (Ops[j].Op == X) 976 return j; 977 return i; 978 } 979 980 /// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together 981 /// and returning the result. Insert the tree before I. 982 static Value *EmitAddTreeOfValues(Instruction *I, 983 SmallVectorImpl<WeakVH> &Ops){ 984 if (Ops.size() == 1) return Ops.back(); 985 986 Value *V1 = Ops.back(); 987 Ops.pop_back(); 988 Value *V2 = EmitAddTreeOfValues(I, Ops); 989 return BinaryOperator::CreateAdd(V2, V1, "tmp", I); 990 } 991 992 /// RemoveFactorFromExpression - If V is an expression tree that is a 993 /// multiplication sequence, and if this sequence contains a multiply by Factor, 994 /// remove Factor from the tree and return the new tree. 995 Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) { 996 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul); 997 if (!BO) return 0; 998 999 SmallVector<RepeatedValue, 8> Tree; 1000 MadeChange |= LinearizeExprTree(BO, Tree); 1001 SmallVector<ValueEntry, 8> Factors; 1002 Factors.reserve(Tree.size()); 1003 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 1004 RepeatedValue E = Tree[i]; 1005 Factors.append(E.second.getZExtValue(), 1006 ValueEntry(getRank(E.first), E.first)); 1007 } 1008 1009 bool FoundFactor = false; 1010 bool NeedsNegate = false; 1011 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1012 if (Factors[i].Op == Factor) { 1013 FoundFactor = true; 1014 Factors.erase(Factors.begin()+i); 1015 break; 1016 } 1017 1018 // If this is a negative version of this factor, remove it. 1019 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) 1020 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op)) 1021 if (FC1->getValue() == -FC2->getValue()) { 1022 FoundFactor = NeedsNegate = true; 1023 Factors.erase(Factors.begin()+i); 1024 break; 1025 } 1026 } 1027 1028 if (!FoundFactor) { 1029 // Make sure to restore the operands to the expression tree. 1030 RewriteExprTree(BO, Factors); 1031 return 0; 1032 } 1033 1034 BasicBlock::iterator InsertPt = BO; ++InsertPt; 1035 1036 // If this was just a single multiply, remove the multiply and return the only 1037 // remaining operand. 1038 if (Factors.size() == 1) { 1039 RedoInsts.insert(BO); 1040 V = Factors[0].Op; 1041 } else { 1042 RewriteExprTree(BO, Factors); 1043 V = BO; 1044 } 1045 1046 if (NeedsNegate) 1047 V = BinaryOperator::CreateNeg(V, "neg", InsertPt); 1048 1049 return V; 1050 } 1051 1052 /// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively 1053 /// add its operands as factors, otherwise add V to the list of factors. 1054 /// 1055 /// Ops is the top-level list of add operands we're trying to factor. 1056 static void FindSingleUseMultiplyFactors(Value *V, 1057 SmallVectorImpl<Value*> &Factors, 1058 const SmallVectorImpl<ValueEntry> &Ops) { 1059 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul); 1060 if (!BO) { 1061 Factors.push_back(V); 1062 return; 1063 } 1064 1065 // Otherwise, add the LHS and RHS to the list of factors. 1066 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops); 1067 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops); 1068 } 1069 1070 /// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor' 1071 /// instruction. This optimizes based on identities. If it can be reduced to 1072 /// a single Value, it is returned, otherwise the Ops list is mutated as 1073 /// necessary. 1074 static Value *OptimizeAndOrXor(unsigned Opcode, 1075 SmallVectorImpl<ValueEntry> &Ops) { 1076 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs. 1077 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1. 1078 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1079 // First, check for X and ~X in the operand list. 1080 assert(i < Ops.size()); 1081 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^. 1082 Value *X = BinaryOperator::getNotArgument(Ops[i].Op); 1083 unsigned FoundX = FindInOperandList(Ops, i, X); 1084 if (FoundX != i) { 1085 if (Opcode == Instruction::And) // ...&X&~X = 0 1086 return Constant::getNullValue(X->getType()); 1087 1088 if (Opcode == Instruction::Or) // ...|X|~X = -1 1089 return Constant::getAllOnesValue(X->getType()); 1090 } 1091 } 1092 1093 // Next, check for duplicate pairs of values, which we assume are next to 1094 // each other, due to our sorting criteria. 1095 assert(i < Ops.size()); 1096 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) { 1097 if (Opcode == Instruction::And || Opcode == Instruction::Or) { 1098 // Drop duplicate values for And and Or. 1099 Ops.erase(Ops.begin()+i); 1100 --i; --e; 1101 ++NumAnnihil; 1102 continue; 1103 } 1104 1105 // Drop pairs of values for Xor. 1106 assert(Opcode == Instruction::Xor); 1107 if (e == 2) 1108 return Constant::getNullValue(Ops[0].Op->getType()); 1109 1110 // Y ^ X^X -> Y 1111 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1112 i -= 1; e -= 2; 1113 ++NumAnnihil; 1114 } 1115 } 1116 return 0; 1117 } 1118 1119 /// Helper funciton of CombineXorOpnd(). It creates a bitwise-and 1120 /// instruction with the given two operands, and return the resulting 1121 /// instruction. There are two special cases: 1) if the constant operand is 0, 1122 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will 1123 /// be returned. 1124 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd, 1125 const APInt &ConstOpnd) { 1126 if (ConstOpnd != 0) { 1127 if (!ConstOpnd.isAllOnesValue()) { 1128 LLVMContext &Ctx = Opnd->getType()->getContext(); 1129 Instruction *I; 1130 I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd), 1131 "and.ra", InsertBefore); 1132 I->setDebugLoc(InsertBefore->getDebugLoc()); 1133 return I; 1134 } 1135 return Opnd; 1136 } 1137 return 0; 1138 } 1139 1140 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd" 1141 // into "R ^ C", where C would be 0, and R is a symbolic value. 1142 // 1143 // If it was successful, true is returned, and the "R" and "C" is returned 1144 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned, 1145 // and both "Res" and "ConstOpnd" remain unchanged. 1146 // 1147 bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1148 APInt &ConstOpnd, Value *&Res) { 1149 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2 1150 // = ((x | c1) ^ c1) ^ (c1 ^ c2) 1151 // = (x & ~c1) ^ (c1 ^ c2) 1152 // It is useful only when c1 == c2. 1153 if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) { 1154 if (!Opnd1->getValue()->hasOneUse()) 1155 return false; 1156 1157 const APInt &C1 = Opnd1->getConstPart(); 1158 if (C1 != ConstOpnd) 1159 return false; 1160 1161 Value *X = Opnd1->getSymbolicPart(); 1162 Res = createAndInstr(I, X, ~C1); 1163 // ConstOpnd was C2, now C1 ^ C2. 1164 ConstOpnd ^= C1; 1165 1166 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1167 RedoInsts.insert(T); 1168 return true; 1169 } 1170 return false; 1171 } 1172 1173 1174 // Helper function of OptimizeXor(). It tries to simplify 1175 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a 1176 // symbolic value. 1177 // 1178 // If it was successful, true is returned, and the "R" and "C" is returned 1179 // via "Res" and "ConstOpnd", respectively (If the entire expression is 1180 // evaluated to a constant, the Res is set to NULL); otherwise, false is 1181 // returned, and both "Res" and "ConstOpnd" remain unchanged. 1182 bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2, 1183 APInt &ConstOpnd, Value *&Res) { 1184 Value *X = Opnd1->getSymbolicPart(); 1185 if (X != Opnd2->getSymbolicPart()) 1186 return false; 1187 1188 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.) 1189 int DeadInstNum = 1; 1190 if (Opnd1->getValue()->hasOneUse()) 1191 DeadInstNum++; 1192 if (Opnd2->getValue()->hasOneUse()) 1193 DeadInstNum++; 1194 1195 // Xor-Rule 2: 1196 // (x | c1) ^ (x & c2) 1197 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1 1198 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1 1199 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3 1200 // 1201 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) { 1202 if (Opnd2->isOrExpr()) 1203 std::swap(Opnd1, Opnd2); 1204 1205 const APInt &C1 = Opnd1->getConstPart(); 1206 const APInt &C2 = Opnd2->getConstPart(); 1207 APInt C3((~C1) ^ C2); 1208 1209 // Do not increase code size! 1210 if (C3 != 0 && !C3.isAllOnesValue()) { 1211 int NewInstNum = ConstOpnd != 0 ? 1 : 2; 1212 if (NewInstNum > DeadInstNum) 1213 return false; 1214 } 1215 1216 Res = createAndInstr(I, X, C3); 1217 ConstOpnd ^= C1; 1218 1219 } else if (Opnd1->isOrExpr()) { 1220 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2 1221 // 1222 const APInt &C1 = Opnd1->getConstPart(); 1223 const APInt &C2 = Opnd2->getConstPart(); 1224 APInt C3 = C1 ^ C2; 1225 1226 // Do not increase code size 1227 if (C3 != 0 && !C3.isAllOnesValue()) { 1228 int NewInstNum = ConstOpnd != 0 ? 1 : 2; 1229 if (NewInstNum > DeadInstNum) 1230 return false; 1231 } 1232 1233 Res = createAndInstr(I, X, C3); 1234 ConstOpnd ^= C3; 1235 } else { 1236 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2)) 1237 // 1238 const APInt &C1 = Opnd1->getConstPart(); 1239 const APInt &C2 = Opnd2->getConstPart(); 1240 APInt C3 = C1 ^ C2; 1241 Res = createAndInstr(I, X, C3); 1242 } 1243 1244 // Put the original operands in the Redo list; hope they will be deleted 1245 // as dead code. 1246 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1247 RedoInsts.insert(T); 1248 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue())) 1249 RedoInsts.insert(T); 1250 1251 return true; 1252 } 1253 1254 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced 1255 /// to a single Value, it is returned, otherwise the Ops list is mutated as 1256 /// necessary. 1257 Value *Reassociate::OptimizeXor(Instruction *I, 1258 SmallVectorImpl<ValueEntry> &Ops) { 1259 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops)) 1260 return V; 1261 1262 if (Ops.size() == 1) 1263 return 0; 1264 1265 SmallVector<XorOpnd, 8> Opnds; 1266 SmallVector<XorOpnd*, 8> OpndPtrs; 1267 Type *Ty = Ops[0].Op->getType(); 1268 APInt ConstOpnd(Ty->getIntegerBitWidth(), 0); 1269 1270 // Step 1: Convert ValueEntry to XorOpnd 1271 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1272 Value *V = Ops[i].Op; 1273 if (!isa<ConstantInt>(V)) { 1274 XorOpnd O(V); 1275 O.setSymbolicRank(getRank(O.getSymbolicPart())); 1276 Opnds.push_back(O); 1277 } else 1278 ConstOpnd ^= cast<ConstantInt>(V)->getValue(); 1279 } 1280 1281 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds". 1282 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate 1283 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop 1284 // with the previous loop --- the iterator of the "Opnds" may be invalidated 1285 // when new elements are added to the vector. 1286 for (unsigned i = 0, e = Opnds.size(); i != e; ++i) 1287 OpndPtrs.push_back(&Opnds[i]); 1288 1289 // Step 2: Sort the Xor-Operands in a way such that the operands containing 1290 // the same symbolic value cluster together. For instance, the input operand 1291 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into: 1292 // ("x | 123", "x & 789", "y & 456"). 1293 std::sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor()); 1294 1295 // Step 3: Combine adjacent operands 1296 XorOpnd *PrevOpnd = 0; 1297 bool Changed = false; 1298 for (unsigned i = 0, e = Opnds.size(); i < e; i++) { 1299 XorOpnd *CurrOpnd = OpndPtrs[i]; 1300 // The combined value 1301 Value *CV; 1302 1303 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd" 1304 if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) { 1305 Changed = true; 1306 if (CV) 1307 *CurrOpnd = XorOpnd(CV); 1308 else { 1309 CurrOpnd->Invalidate(); 1310 continue; 1311 } 1312 } 1313 1314 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) { 1315 PrevOpnd = CurrOpnd; 1316 continue; 1317 } 1318 1319 // step 3.2: When previous and current operands share the same symbolic 1320 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd" 1321 // 1322 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) { 1323 // Remove previous operand 1324 PrevOpnd->Invalidate(); 1325 if (CV) { 1326 *CurrOpnd = XorOpnd(CV); 1327 PrevOpnd = CurrOpnd; 1328 } else { 1329 CurrOpnd->Invalidate(); 1330 PrevOpnd = 0; 1331 } 1332 Changed = true; 1333 } 1334 } 1335 1336 // Step 4: Reassemble the Ops 1337 if (Changed) { 1338 Ops.clear(); 1339 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) { 1340 XorOpnd &O = Opnds[i]; 1341 if (O.isInvalid()) 1342 continue; 1343 ValueEntry VE(getRank(O.getValue()), O.getValue()); 1344 Ops.push_back(VE); 1345 } 1346 if (ConstOpnd != 0) { 1347 Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd); 1348 ValueEntry VE(getRank(C), C); 1349 Ops.push_back(VE); 1350 } 1351 int Sz = Ops.size(); 1352 if (Sz == 1) 1353 return Ops.back().Op; 1354 else if (Sz == 0) { 1355 assert(ConstOpnd == 0); 1356 return ConstantInt::get(Ty->getContext(), ConstOpnd); 1357 } 1358 } 1359 1360 return 0; 1361 } 1362 1363 /// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This 1364 /// optimizes based on identities. If it can be reduced to a single Value, it 1365 /// is returned, otherwise the Ops list is mutated as necessary. 1366 Value *Reassociate::OptimizeAdd(Instruction *I, 1367 SmallVectorImpl<ValueEntry> &Ops) { 1368 // Scan the operand lists looking for X and -X pairs. If we find any, we 1369 // can simplify the expression. X+-X == 0. While we're at it, scan for any 1370 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z. 1371 // 1372 // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1". 1373 // 1374 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1375 Value *TheOp = Ops[i].Op; 1376 // Check to see if we've seen this operand before. If so, we factor all 1377 // instances of the operand together. Due to our sorting criteria, we know 1378 // that these need to be next to each other in the vector. 1379 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) { 1380 // Rescan the list, remove all instances of this operand from the expr. 1381 unsigned NumFound = 0; 1382 do { 1383 Ops.erase(Ops.begin()+i); 1384 ++NumFound; 1385 } while (i != Ops.size() && Ops[i].Op == TheOp); 1386 1387 DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n'); 1388 ++NumFactor; 1389 1390 // Insert a new multiply. 1391 Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound); 1392 Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I); 1393 1394 // Now that we have inserted a multiply, optimize it. This allows us to 1395 // handle cases that require multiple factoring steps, such as this: 1396 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6 1397 RedoInsts.insert(cast<Instruction>(Mul)); 1398 1399 // If every add operand was a duplicate, return the multiply. 1400 if (Ops.empty()) 1401 return Mul; 1402 1403 // Otherwise, we had some input that didn't have the dupe, such as 1404 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of 1405 // things being added by this operation. 1406 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul)); 1407 1408 --i; 1409 e = Ops.size(); 1410 continue; 1411 } 1412 1413 // Check for X and -X in the operand list. 1414 if (!BinaryOperator::isNeg(TheOp)) 1415 continue; 1416 1417 Value *X = BinaryOperator::getNegArgument(TheOp); 1418 unsigned FoundX = FindInOperandList(Ops, i, X); 1419 if (FoundX == i) 1420 continue; 1421 1422 // Remove X and -X from the operand list. 1423 if (Ops.size() == 2) 1424 return Constant::getNullValue(X->getType()); 1425 1426 Ops.erase(Ops.begin()+i); 1427 if (i < FoundX) 1428 --FoundX; 1429 else 1430 --i; // Need to back up an extra one. 1431 Ops.erase(Ops.begin()+FoundX); 1432 ++NumAnnihil; 1433 --i; // Revisit element. 1434 e -= 2; // Removed two elements. 1435 } 1436 1437 // Scan the operand list, checking to see if there are any common factors 1438 // between operands. Consider something like A*A+A*B*C+D. We would like to 1439 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies. 1440 // To efficiently find this, we count the number of times a factor occurs 1441 // for any ADD operands that are MULs. 1442 DenseMap<Value*, unsigned> FactorOccurrences; 1443 1444 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4) 1445 // where they are actually the same multiply. 1446 unsigned MaxOcc = 0; 1447 Value *MaxOccVal = 0; 1448 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1449 BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul); 1450 if (!BOp) 1451 continue; 1452 1453 // Compute all of the factors of this added value. 1454 SmallVector<Value*, 8> Factors; 1455 FindSingleUseMultiplyFactors(BOp, Factors, Ops); 1456 assert(Factors.size() > 1 && "Bad linearize!"); 1457 1458 // Add one to FactorOccurrences for each unique factor in this op. 1459 SmallPtrSet<Value*, 8> Duplicates; 1460 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1461 Value *Factor = Factors[i]; 1462 if (!Duplicates.insert(Factor)) continue; 1463 1464 unsigned Occ = ++FactorOccurrences[Factor]; 1465 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; } 1466 1467 // If Factor is a negative constant, add the negated value as a factor 1468 // because we can percolate the negate out. Watch for minint, which 1469 // cannot be positivified. 1470 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) 1471 if (CI->isNegative() && !CI->isMinValue(true)) { 1472 Factor = ConstantInt::get(CI->getContext(), -CI->getValue()); 1473 assert(!Duplicates.count(Factor) && 1474 "Shouldn't have two constant factors, missed a canonicalize"); 1475 1476 unsigned Occ = ++FactorOccurrences[Factor]; 1477 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; } 1478 } 1479 } 1480 } 1481 1482 // If any factor occurred more than one time, we can pull it out. 1483 if (MaxOcc > 1) { 1484 DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n'); 1485 ++NumFactor; 1486 1487 // Create a new instruction that uses the MaxOccVal twice. If we don't do 1488 // this, we could otherwise run into situations where removing a factor 1489 // from an expression will drop a use of maxocc, and this can cause 1490 // RemoveFactorFromExpression on successive values to behave differently. 1491 Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal); 1492 SmallVector<WeakVH, 4> NewMulOps; 1493 for (unsigned i = 0; i != Ops.size(); ++i) { 1494 // Only try to remove factors from expressions we're allowed to. 1495 BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul); 1496 if (!BOp) 1497 continue; 1498 1499 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) { 1500 // The factorized operand may occur several times. Convert them all in 1501 // one fell swoop. 1502 for (unsigned j = Ops.size(); j != i;) { 1503 --j; 1504 if (Ops[j].Op == Ops[i].Op) { 1505 NewMulOps.push_back(V); 1506 Ops.erase(Ops.begin()+j); 1507 } 1508 } 1509 --i; 1510 } 1511 } 1512 1513 // No need for extra uses anymore. 1514 delete DummyInst; 1515 1516 unsigned NumAddedValues = NewMulOps.size(); 1517 Value *V = EmitAddTreeOfValues(I, NewMulOps); 1518 1519 // Now that we have inserted the add tree, optimize it. This allows us to 1520 // handle cases that require multiple factoring steps, such as this: 1521 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C)) 1522 assert(NumAddedValues > 1 && "Each occurrence should contribute a value"); 1523 (void)NumAddedValues; 1524 if (Instruction *VI = dyn_cast<Instruction>(V)) 1525 RedoInsts.insert(VI); 1526 1527 // Create the multiply. 1528 Instruction *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I); 1529 1530 // Rerun associate on the multiply in case the inner expression turned into 1531 // a multiply. We want to make sure that we keep things in canonical form. 1532 RedoInsts.insert(V2); 1533 1534 // If every add operand included the factor (e.g. "A*B + A*C"), then the 1535 // entire result expression is just the multiply "A*(B+C)". 1536 if (Ops.empty()) 1537 return V2; 1538 1539 // Otherwise, we had some input that didn't have the factor, such as 1540 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of 1541 // things being added by this operation. 1542 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2)); 1543 } 1544 1545 return 0; 1546 } 1547 1548 namespace { 1549 /// \brief Predicate tests whether a ValueEntry's op is in a map. 1550 struct IsValueInMap { 1551 const DenseMap<Value *, unsigned> ⤅ 1552 1553 IsValueInMap(const DenseMap<Value *, unsigned> &Map) : Map(Map) {} 1554 1555 bool operator()(const ValueEntry &Entry) { 1556 return Map.find(Entry.Op) != Map.end(); 1557 } 1558 }; 1559 } 1560 1561 /// \brief Build up a vector of value/power pairs factoring a product. 1562 /// 1563 /// Given a series of multiplication operands, build a vector of factors and 1564 /// the powers each is raised to when forming the final product. Sort them in 1565 /// the order of descending power. 1566 /// 1567 /// (x*x) -> [(x, 2)] 1568 /// ((x*x)*x) -> [(x, 3)] 1569 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)] 1570 /// 1571 /// \returns Whether any factors have a power greater than one. 1572 bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, 1573 SmallVectorImpl<Factor> &Factors) { 1574 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this. 1575 // Compute the sum of powers of simplifiable factors. 1576 unsigned FactorPowerSum = 0; 1577 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) { 1578 Value *Op = Ops[Idx-1].Op; 1579 1580 // Count the number of occurrences of this value. 1581 unsigned Count = 1; 1582 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx) 1583 ++Count; 1584 // Track for simplification all factors which occur 2 or more times. 1585 if (Count > 1) 1586 FactorPowerSum += Count; 1587 } 1588 1589 // We can only simplify factors if the sum of the powers of our simplifiable 1590 // factors is 4 or higher. When that is the case, we will *always* have 1591 // a simplification. This is an important invariant to prevent cyclicly 1592 // trying to simplify already minimal formations. 1593 if (FactorPowerSum < 4) 1594 return false; 1595 1596 // Now gather the simplifiable factors, removing them from Ops. 1597 FactorPowerSum = 0; 1598 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) { 1599 Value *Op = Ops[Idx-1].Op; 1600 1601 // Count the number of occurrences of this value. 1602 unsigned Count = 1; 1603 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx) 1604 ++Count; 1605 if (Count == 1) 1606 continue; 1607 // Move an even number of occurrences to Factors. 1608 Count &= ~1U; 1609 Idx -= Count; 1610 FactorPowerSum += Count; 1611 Factors.push_back(Factor(Op, Count)); 1612 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count); 1613 } 1614 1615 // None of the adjustments above should have reduced the sum of factor powers 1616 // below our mininum of '4'. 1617 assert(FactorPowerSum >= 4); 1618 1619 std::sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter()); 1620 return true; 1621 } 1622 1623 /// \brief Build a tree of multiplies, computing the product of Ops. 1624 static Value *buildMultiplyTree(IRBuilder<> &Builder, 1625 SmallVectorImpl<Value*> &Ops) { 1626 if (Ops.size() == 1) 1627 return Ops.back(); 1628 1629 Value *LHS = Ops.pop_back_val(); 1630 do { 1631 LHS = Builder.CreateMul(LHS, Ops.pop_back_val()); 1632 } while (!Ops.empty()); 1633 1634 return LHS; 1635 } 1636 1637 /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*... 1638 /// 1639 /// Given a vector of values raised to various powers, where no two values are 1640 /// equal and the powers are sorted in decreasing order, compute the minimal 1641 /// DAG of multiplies to compute the final product, and return that product 1642 /// value. 1643 Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder, 1644 SmallVectorImpl<Factor> &Factors) { 1645 assert(Factors[0].Power); 1646 SmallVector<Value *, 4> OuterProduct; 1647 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size(); 1648 Idx < Size && Factors[Idx].Power > 0; ++Idx) { 1649 if (Factors[Idx].Power != Factors[LastIdx].Power) { 1650 LastIdx = Idx; 1651 continue; 1652 } 1653 1654 // We want to multiply across all the factors with the same power so that 1655 // we can raise them to that power as a single entity. Build a mini tree 1656 // for that. 1657 SmallVector<Value *, 4> InnerProduct; 1658 InnerProduct.push_back(Factors[LastIdx].Base); 1659 do { 1660 InnerProduct.push_back(Factors[Idx].Base); 1661 ++Idx; 1662 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power); 1663 1664 // Reset the base value of the first factor to the new expression tree. 1665 // We'll remove all the factors with the same power in a second pass. 1666 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct); 1667 if (Instruction *MI = dyn_cast<Instruction>(M)) 1668 RedoInsts.insert(MI); 1669 1670 LastIdx = Idx; 1671 } 1672 // Unique factors with equal powers -- we've folded them into the first one's 1673 // base. 1674 Factors.erase(std::unique(Factors.begin(), Factors.end(), 1675 Factor::PowerEqual()), 1676 Factors.end()); 1677 1678 // Iteratively collect the base of each factor with an add power into the 1679 // outer product, and halve each power in preparation for squaring the 1680 // expression. 1681 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) { 1682 if (Factors[Idx].Power & 1) 1683 OuterProduct.push_back(Factors[Idx].Base); 1684 Factors[Idx].Power >>= 1; 1685 } 1686 if (Factors[0].Power) { 1687 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors); 1688 OuterProduct.push_back(SquareRoot); 1689 OuterProduct.push_back(SquareRoot); 1690 } 1691 if (OuterProduct.size() == 1) 1692 return OuterProduct.front(); 1693 1694 Value *V = buildMultiplyTree(Builder, OuterProduct); 1695 return V; 1696 } 1697 1698 Value *Reassociate::OptimizeMul(BinaryOperator *I, 1699 SmallVectorImpl<ValueEntry> &Ops) { 1700 // We can only optimize the multiplies when there is a chain of more than 1701 // three, such that a balanced tree might require fewer total multiplies. 1702 if (Ops.size() < 4) 1703 return 0; 1704 1705 // Try to turn linear trees of multiplies without other uses of the 1706 // intermediate stages into minimal multiply DAGs with perfect sub-expression 1707 // re-use. 1708 SmallVector<Factor, 4> Factors; 1709 if (!collectMultiplyFactors(Ops, Factors)) 1710 return 0; // All distinct factors, so nothing left for us to do. 1711 1712 IRBuilder<> Builder(I); 1713 Value *V = buildMinimalMultiplyDAG(Builder, Factors); 1714 if (Ops.empty()) 1715 return V; 1716 1717 ValueEntry NewEntry = ValueEntry(getRank(V), V); 1718 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry); 1719 return 0; 1720 } 1721 1722 Value *Reassociate::OptimizeExpression(BinaryOperator *I, 1723 SmallVectorImpl<ValueEntry> &Ops) { 1724 // Now that we have the linearized expression tree, try to optimize it. 1725 // Start by folding any constants that we found. 1726 Constant *Cst = 0; 1727 unsigned Opcode = I->getOpcode(); 1728 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) { 1729 Constant *C = cast<Constant>(Ops.pop_back_val().Op); 1730 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C; 1731 } 1732 // If there was nothing but constants then we are done. 1733 if (Ops.empty()) 1734 return Cst; 1735 1736 // Put the combined constant back at the end of the operand list, except if 1737 // there is no point. For example, an add of 0 gets dropped here, while a 1738 // multiplication by zero turns the whole expression into zero. 1739 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) { 1740 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType())) 1741 return Cst; 1742 Ops.push_back(ValueEntry(0, Cst)); 1743 } 1744 1745 if (Ops.size() == 1) return Ops[0].Op; 1746 1747 // Handle destructive annihilation due to identities between elements in the 1748 // argument list here. 1749 unsigned NumOps = Ops.size(); 1750 switch (Opcode) { 1751 default: break; 1752 case Instruction::And: 1753 case Instruction::Or: 1754 if (Value *Result = OptimizeAndOrXor(Opcode, Ops)) 1755 return Result; 1756 break; 1757 1758 case Instruction::Xor: 1759 if (Value *Result = OptimizeXor(I, Ops)) 1760 return Result; 1761 break; 1762 1763 case Instruction::Add: 1764 if (Value *Result = OptimizeAdd(I, Ops)) 1765 return Result; 1766 break; 1767 1768 case Instruction::Mul: 1769 if (Value *Result = OptimizeMul(I, Ops)) 1770 return Result; 1771 break; 1772 } 1773 1774 if (Ops.size() != NumOps) 1775 return OptimizeExpression(I, Ops); 1776 return 0; 1777 } 1778 1779 /// EraseInst - Zap the given instruction, adding interesting operands to the 1780 /// work list. 1781 void Reassociate::EraseInst(Instruction *I) { 1782 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1783 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 1784 // Erase the dead instruction. 1785 ValueRankMap.erase(I); 1786 RedoInsts.remove(I); 1787 I->eraseFromParent(); 1788 // Optimize its operands. 1789 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes. 1790 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1791 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) { 1792 // If this is a node in an expression tree, climb to the expression root 1793 // and add that since that's where optimization actually happens. 1794 unsigned Opcode = Op->getOpcode(); 1795 while (Op->hasOneUse() && Op->use_back()->getOpcode() == Opcode && 1796 Visited.insert(Op)) 1797 Op = Op->use_back(); 1798 RedoInsts.insert(Op); 1799 } 1800 } 1801 1802 /// OptimizeInst - Inspect and optimize the given instruction. Note that erasing 1803 /// instructions is not allowed. 1804 void Reassociate::OptimizeInst(Instruction *I) { 1805 // Only consider operations that we understand. 1806 if (!isa<BinaryOperator>(I)) 1807 return; 1808 1809 if (I->getOpcode() == Instruction::Shl && 1810 isa<ConstantInt>(I->getOperand(1))) 1811 // If an operand of this shift is a reassociable multiply, or if the shift 1812 // is used by a reassociable multiply or add, turn into a multiply. 1813 if (isReassociableOp(I->getOperand(0), Instruction::Mul) || 1814 (I->hasOneUse() && 1815 (isReassociableOp(I->use_back(), Instruction::Mul) || 1816 isReassociableOp(I->use_back(), Instruction::Add)))) { 1817 Instruction *NI = ConvertShiftToMul(I); 1818 RedoInsts.insert(I); 1819 MadeChange = true; 1820 I = NI; 1821 } 1822 1823 // Floating point binary operators are not associative, but we can still 1824 // commute (some) of them, to canonicalize the order of their operands. 1825 // This can potentially expose more CSE opportunities, and makes writing 1826 // other transformations simpler. 1827 if ((I->getType()->isFloatingPointTy() || I->getType()->isVectorTy())) { 1828 // FAdd and FMul can be commuted. 1829 if (I->getOpcode() != Instruction::FMul && 1830 I->getOpcode() != Instruction::FAdd) 1831 return; 1832 1833 Value *LHS = I->getOperand(0); 1834 Value *RHS = I->getOperand(1); 1835 unsigned LHSRank = getRank(LHS); 1836 unsigned RHSRank = getRank(RHS); 1837 1838 // Sort the operands by rank. 1839 if (RHSRank < LHSRank) { 1840 I->setOperand(0, RHS); 1841 I->setOperand(1, LHS); 1842 } 1843 1844 return; 1845 } 1846 1847 // Do not reassociate boolean (i1) expressions. We want to preserve the 1848 // original order of evaluation for short-circuited comparisons that 1849 // SimplifyCFG has folded to AND/OR expressions. If the expression 1850 // is not further optimized, it is likely to be transformed back to a 1851 // short-circuited form for code gen, and the source order may have been 1852 // optimized for the most likely conditions. 1853 if (I->getType()->isIntegerTy(1)) 1854 return; 1855 1856 // If this is a subtract instruction which is not already in negate form, 1857 // see if we can convert it to X+-Y. 1858 if (I->getOpcode() == Instruction::Sub) { 1859 if (ShouldBreakUpSubtract(I)) { 1860 Instruction *NI = BreakUpSubtract(I); 1861 RedoInsts.insert(I); 1862 MadeChange = true; 1863 I = NI; 1864 } else if (BinaryOperator::isNeg(I)) { 1865 // Otherwise, this is a negation. See if the operand is a multiply tree 1866 // and if this is not an inner node of a multiply tree. 1867 if (isReassociableOp(I->getOperand(1), Instruction::Mul) && 1868 (!I->hasOneUse() || 1869 !isReassociableOp(I->use_back(), Instruction::Mul))) { 1870 Instruction *NI = LowerNegateToMultiply(I); 1871 RedoInsts.insert(I); 1872 MadeChange = true; 1873 I = NI; 1874 } 1875 } 1876 } 1877 1878 // If this instruction is an associative binary operator, process it. 1879 if (!I->isAssociative()) return; 1880 BinaryOperator *BO = cast<BinaryOperator>(I); 1881 1882 // If this is an interior node of a reassociable tree, ignore it until we 1883 // get to the root of the tree, to avoid N^2 analysis. 1884 unsigned Opcode = BO->getOpcode(); 1885 if (BO->hasOneUse() && BO->use_back()->getOpcode() == Opcode) 1886 return; 1887 1888 // If this is an add tree that is used by a sub instruction, ignore it 1889 // until we process the subtract. 1890 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add && 1891 cast<Instruction>(BO->use_back())->getOpcode() == Instruction::Sub) 1892 return; 1893 1894 ReassociateExpression(BO); 1895 } 1896 1897 void Reassociate::ReassociateExpression(BinaryOperator *I) { 1898 1899 // First, walk the expression tree, linearizing the tree, collecting the 1900 // operand information. 1901 SmallVector<RepeatedValue, 8> Tree; 1902 MadeChange |= LinearizeExprTree(I, Tree); 1903 SmallVector<ValueEntry, 8> Ops; 1904 Ops.reserve(Tree.size()); 1905 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 1906 RepeatedValue E = Tree[i]; 1907 Ops.append(E.second.getZExtValue(), 1908 ValueEntry(getRank(E.first), E.first)); 1909 } 1910 1911 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n'); 1912 1913 // Now that we have linearized the tree to a list and have gathered all of 1914 // the operands and their ranks, sort the operands by their rank. Use a 1915 // stable_sort so that values with equal ranks will have their relative 1916 // positions maintained (and so the compiler is deterministic). Note that 1917 // this sorts so that the highest ranking values end up at the beginning of 1918 // the vector. 1919 std::stable_sort(Ops.begin(), Ops.end()); 1920 1921 // OptimizeExpression - Now that we have the expression tree in a convenient 1922 // sorted form, optimize it globally if possible. 1923 if (Value *V = OptimizeExpression(I, Ops)) { 1924 if (V == I) 1925 // Self-referential expression in unreachable code. 1926 return; 1927 // This expression tree simplified to something that isn't a tree, 1928 // eliminate it. 1929 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n'); 1930 I->replaceAllUsesWith(V); 1931 if (Instruction *VI = dyn_cast<Instruction>(V)) 1932 VI->setDebugLoc(I->getDebugLoc()); 1933 RedoInsts.insert(I); 1934 ++NumAnnihil; 1935 return; 1936 } 1937 1938 // We want to sink immediates as deeply as possible except in the case where 1939 // this is a multiply tree used only by an add, and the immediate is a -1. 1940 // In this case we reassociate to put the negation on the outside so that we 1941 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y 1942 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() && 1943 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add && 1944 isa<ConstantInt>(Ops.back().Op) && 1945 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) { 1946 ValueEntry Tmp = Ops.pop_back_val(); 1947 Ops.insert(Ops.begin(), Tmp); 1948 } 1949 1950 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n'); 1951 1952 if (Ops.size() == 1) { 1953 if (Ops[0].Op == I) 1954 // Self-referential expression in unreachable code. 1955 return; 1956 1957 // This expression tree simplified to something that isn't a tree, 1958 // eliminate it. 1959 I->replaceAllUsesWith(Ops[0].Op); 1960 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op)) 1961 OI->setDebugLoc(I->getDebugLoc()); 1962 RedoInsts.insert(I); 1963 return; 1964 } 1965 1966 // Now that we ordered and optimized the expressions, splat them back into 1967 // the expression tree, removing any unneeded nodes. 1968 RewriteExprTree(I, Ops); 1969 } 1970 1971 bool Reassociate::runOnFunction(Function &F) { 1972 // Calculate the rank map for F 1973 BuildRankMap(F); 1974 1975 MadeChange = false; 1976 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) { 1977 // Optimize every instruction in the basic block. 1978 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; ) 1979 if (isInstructionTriviallyDead(II)) { 1980 EraseInst(II++); 1981 } else { 1982 OptimizeInst(II); 1983 assert(II->getParent() == BI && "Moved to a different block!"); 1984 ++II; 1985 } 1986 1987 // If this produced extra instructions to optimize, handle them now. 1988 while (!RedoInsts.empty()) { 1989 Instruction *I = RedoInsts.pop_back_val(); 1990 if (isInstructionTriviallyDead(I)) 1991 EraseInst(I); 1992 else 1993 OptimizeInst(I); 1994 } 1995 } 1996 1997 // We are done with the rank map. 1998 RankMap.clear(); 1999 ValueRankMap.clear(); 2000 2001 return MadeChange; 2002 } 2003