1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass reassociates commutative expressions in an order that is designed
11 // to promote better constant propagation, GCSE, LICM, PRE, etc.
12 //
13 // For example: 4 + (x + 5) -> x + (4 + 5)
14 //
15 // In the implementation of this algorithm, constants are assigned rank = 0,
16 // function arguments are rank = 1, and other values are assigned ranks
17 // corresponding to the reverse post order traversal of current function
18 // (starting at 2), which effectively gives values in deep loops higher rank
19 // than values not in loops.
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/Transforms/Scalar/Reassociate.h"
24 #include "llvm/ADT/APFloat.h"
25 #include "llvm/ADT/APInt.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/SetVector.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/Analysis/GlobalsModRef.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Operator.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/IR/PatternMatch.h"
48 #include "llvm/IR/Type.h"
49 #include "llvm/IR/User.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/IR/ValueHandle.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Transforms/Scalar.h"
58 #include "llvm/Transforms/Utils/Local.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <utility>
62 
63 using namespace llvm;
64 using namespace reassociate;
65 
66 #define DEBUG_TYPE "reassociate"
67 
68 STATISTIC(NumChanged, "Number of insts reassociated");
69 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
70 STATISTIC(NumFactor , "Number of multiplies factored");
71 
72 #ifndef NDEBUG
73 /// Print out the expression identified in the Ops list.
74 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
75   Module *M = I->getModule();
76   dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
77        << *Ops[0].Op->getType() << '\t';
78   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
79     dbgs() << "[ ";
80     Ops[i].Op->printAsOperand(dbgs(), false, M);
81     dbgs() << ", #" << Ops[i].Rank << "] ";
82   }
83 }
84 #endif
85 
86 /// Utility class representing a non-constant Xor-operand. We classify
87 /// non-constant Xor-Operands into two categories:
88 ///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
89 ///  C2)
90 ///    C2.1) The operand is in the form of "X | C", where C is a non-zero
91 ///          constant.
92 ///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
93 ///          operand as "E | 0"
94 class llvm::reassociate::XorOpnd {
95 public:
96   XorOpnd(Value *V);
97 
98   bool isInvalid() const { return SymbolicPart == nullptr; }
99   bool isOrExpr() const { return isOr; }
100   Value *getValue() const { return OrigVal; }
101   Value *getSymbolicPart() const { return SymbolicPart; }
102   unsigned getSymbolicRank() const { return SymbolicRank; }
103   const APInt &getConstPart() const { return ConstPart; }
104 
105   void Invalidate() { SymbolicPart = OrigVal = nullptr; }
106   void setSymbolicRank(unsigned R) { SymbolicRank = R; }
107 
108 private:
109   Value *OrigVal;
110   Value *SymbolicPart;
111   APInt ConstPart;
112   unsigned SymbolicRank;
113   bool isOr;
114 };
115 
116 XorOpnd::XorOpnd(Value *V) {
117   assert(!isa<ConstantInt>(V) && "No ConstantInt");
118   OrigVal = V;
119   Instruction *I = dyn_cast<Instruction>(V);
120   SymbolicRank = 0;
121 
122   if (I && (I->getOpcode() == Instruction::Or ||
123             I->getOpcode() == Instruction::And)) {
124     Value *V0 = I->getOperand(0);
125     Value *V1 = I->getOperand(1);
126     const APInt *C;
127     if (match(V0, PatternMatch::m_APInt(C)))
128       std::swap(V0, V1);
129 
130     if (match(V1, PatternMatch::m_APInt(C))) {
131       ConstPart = *C;
132       SymbolicPart = V0;
133       isOr = (I->getOpcode() == Instruction::Or);
134       return;
135     }
136   }
137 
138   // view the operand as "V | 0"
139   SymbolicPart = V;
140   ConstPart = APInt::getNullValue(V->getType()->getScalarSizeInBits());
141   isOr = true;
142 }
143 
144 /// Return true if V is an instruction of the specified opcode and if it
145 /// only has one use.
146 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
147   auto *I = dyn_cast<Instruction>(V);
148   if (I && I->hasOneUse() && I->getOpcode() == Opcode)
149     if (!isa<FPMathOperator>(I) || I->isFast())
150       return cast<BinaryOperator>(I);
151   return nullptr;
152 }
153 
154 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
155                                         unsigned Opcode2) {
156   auto *I = dyn_cast<Instruction>(V);
157   if (I && I->hasOneUse() &&
158       (I->getOpcode() == Opcode1 || I->getOpcode() == Opcode2))
159     if (!isa<FPMathOperator>(I) || I->isFast())
160       return cast<BinaryOperator>(I);
161   return nullptr;
162 }
163 
164 void ReassociatePass::BuildRankMap(Function &F,
165                                    ReversePostOrderTraversal<Function*> &RPOT) {
166   unsigned Rank = 2;
167 
168   // Assign distinct ranks to function arguments.
169   for (auto &Arg : F.args()) {
170     ValueRankMap[&Arg] = ++Rank;
171     DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank
172                  << "\n");
173   }
174 
175   // Traverse basic blocks in ReversePostOrder
176   for (BasicBlock *BB : RPOT) {
177     unsigned BBRank = RankMap[BB] = ++Rank << 16;
178 
179     // Walk the basic block, adding precomputed ranks for any instructions that
180     // we cannot move.  This ensures that the ranks for these instructions are
181     // all different in the block.
182     for (Instruction &I : *BB)
183       if (mayBeMemoryDependent(I))
184         ValueRankMap[&I] = ++BBRank;
185   }
186 }
187 
188 unsigned ReassociatePass::getRank(Value *V) {
189   Instruction *I = dyn_cast<Instruction>(V);
190   if (!I) {
191     if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
192     return 0;  // Otherwise it's a global or constant, rank 0.
193   }
194 
195   if (unsigned Rank = ValueRankMap[I])
196     return Rank;    // Rank already known?
197 
198   // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
199   // we can reassociate expressions for code motion!  Since we do not recurse
200   // for PHI nodes, we cannot have infinite recursion here, because there
201   // cannot be loops in the value graph that do not go through PHI nodes.
202   unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
203   for (unsigned i = 0, e = I->getNumOperands();
204        i != e && Rank != MaxRank; ++i)
205     Rank = std::max(Rank, getRank(I->getOperand(i)));
206 
207   // If this is a not or neg instruction, do not count it for rank.  This
208   // assures us that X and ~X will have the same rank.
209   if  (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
210        !BinaryOperator::isFNeg(I))
211     ++Rank;
212 
213   DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n");
214 
215   return ValueRankMap[I] = Rank;
216 }
217 
218 // Canonicalize constants to RHS.  Otherwise, sort the operands by rank.
219 void ReassociatePass::canonicalizeOperands(Instruction *I) {
220   assert(isa<BinaryOperator>(I) && "Expected binary operator.");
221   assert(I->isCommutative() && "Expected commutative operator.");
222 
223   Value *LHS = I->getOperand(0);
224   Value *RHS = I->getOperand(1);
225   if (LHS == RHS || isa<Constant>(RHS))
226     return;
227   if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS))
228     cast<BinaryOperator>(I)->swapOperands();
229 }
230 
231 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
232                                  Instruction *InsertBefore, Value *FlagsOp) {
233   if (S1->getType()->isIntOrIntVectorTy())
234     return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
235   else {
236     BinaryOperator *Res =
237         BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
238     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
239     return Res;
240   }
241 }
242 
243 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
244                                  Instruction *InsertBefore, Value *FlagsOp) {
245   if (S1->getType()->isIntOrIntVectorTy())
246     return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
247   else {
248     BinaryOperator *Res =
249       BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
250     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
251     return Res;
252   }
253 }
254 
255 static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
256                                  Instruction *InsertBefore, Value *FlagsOp) {
257   if (S1->getType()->isIntOrIntVectorTy())
258     return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
259   else {
260     BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
261     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
262     return Res;
263   }
264 }
265 
266 /// Replace 0-X with X*-1.
267 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
268   Type *Ty = Neg->getType();
269   Constant *NegOne = Ty->isIntOrIntVectorTy() ?
270     ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
271 
272   BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
273   Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
274   Res->takeName(Neg);
275   Neg->replaceAllUsesWith(Res);
276   Res->setDebugLoc(Neg->getDebugLoc());
277   return Res;
278 }
279 
280 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
281 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
282 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
283 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
284 /// even x in Bitwidth-bit arithmetic.
285 static unsigned CarmichaelShift(unsigned Bitwidth) {
286   if (Bitwidth < 3)
287     return Bitwidth - 1;
288   return Bitwidth - 2;
289 }
290 
291 /// Add the extra weight 'RHS' to the existing weight 'LHS',
292 /// reducing the combined weight using any special properties of the operation.
293 /// The existing weight LHS represents the computation X op X op ... op X where
294 /// X occurs LHS times.  The combined weight represents  X op X op ... op X with
295 /// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
296 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
297 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
298 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
299   // If we were working with infinite precision arithmetic then the combined
300   // weight would be LHS + RHS.  But we are using finite precision arithmetic,
301   // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
302   // for nilpotent operations and addition, but not for idempotent operations
303   // and multiplication), so it is important to correctly reduce the combined
304   // weight back into range if wrapping would be wrong.
305 
306   // If RHS is zero then the weight didn't change.
307   if (RHS.isMinValue())
308     return;
309   // If LHS is zero then the combined weight is RHS.
310   if (LHS.isMinValue()) {
311     LHS = RHS;
312     return;
313   }
314   // From this point on we know that neither LHS nor RHS is zero.
315 
316   if (Instruction::isIdempotent(Opcode)) {
317     // Idempotent means X op X === X, so any non-zero weight is equivalent to a
318     // weight of 1.  Keeping weights at zero or one also means that wrapping is
319     // not a problem.
320     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
321     return; // Return a weight of 1.
322   }
323   if (Instruction::isNilpotent(Opcode)) {
324     // Nilpotent means X op X === 0, so reduce weights modulo 2.
325     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
326     LHS = 0; // 1 + 1 === 0 modulo 2.
327     return;
328   }
329   if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
330     // TODO: Reduce the weight by exploiting nsw/nuw?
331     LHS += RHS;
332     return;
333   }
334 
335   assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
336          "Unknown associative operation!");
337   unsigned Bitwidth = LHS.getBitWidth();
338   // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
339   // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
340   // bit number x, since either x is odd in which case x^CM = 1, or x is even in
341   // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
342   // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
343   // which by a happy accident means that they can always be represented using
344   // Bitwidth bits.
345   // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
346   // the Carmichael number).
347   if (Bitwidth > 3) {
348     /// CM - The value of Carmichael's lambda function.
349     APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
350     // Any weight W >= Threshold can be replaced with W - CM.
351     APInt Threshold = CM + Bitwidth;
352     assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
353     // For Bitwidth 4 or more the following sum does not overflow.
354     LHS += RHS;
355     while (LHS.uge(Threshold))
356       LHS -= CM;
357   } else {
358     // To avoid problems with overflow do everything the same as above but using
359     // a larger type.
360     unsigned CM = 1U << CarmichaelShift(Bitwidth);
361     unsigned Threshold = CM + Bitwidth;
362     assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
363            "Weights not reduced!");
364     unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
365     while (Total >= Threshold)
366       Total -= CM;
367     LHS = Total;
368   }
369 }
370 
371 using RepeatedValue = std::pair<Value*, APInt>;
372 
373 /// Given an associative binary expression, return the leaf
374 /// nodes in Ops along with their weights (how many times the leaf occurs).  The
375 /// original expression is the same as
376 ///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
377 /// op
378 ///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
379 /// op
380 ///   ...
381 /// op
382 ///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
383 ///
384 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
385 ///
386 /// This routine may modify the function, in which case it returns 'true'.  The
387 /// changes it makes may well be destructive, changing the value computed by 'I'
388 /// to something completely different.  Thus if the routine returns 'true' then
389 /// you MUST either replace I with a new expression computed from the Ops array,
390 /// or use RewriteExprTree to put the values back in.
391 ///
392 /// A leaf node is either not a binary operation of the same kind as the root
393 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
394 /// opcode), or is the same kind of binary operator but has a use which either
395 /// does not belong to the expression, or does belong to the expression but is
396 /// a leaf node.  Every leaf node has at least one use that is a non-leaf node
397 /// of the expression, while for non-leaf nodes (except for the root 'I') every
398 /// use is a non-leaf node of the expression.
399 ///
400 /// For example:
401 ///           expression graph        node names
402 ///
403 ///                     +        |        I
404 ///                    / \       |
405 ///                   +   +      |      A,  B
406 ///                  / \ / \     |
407 ///                 *   +   *    |    C,  D,  E
408 ///                / \ / \ / \   |
409 ///                   +   *      |      F,  G
410 ///
411 /// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
412 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
413 ///
414 /// The expression is maximal: if some instruction is a binary operator of the
415 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
416 /// then the instruction also belongs to the expression, is not a leaf node of
417 /// it, and its operands also belong to the expression (but may be leaf nodes).
418 ///
419 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
420 /// order to ensure that every non-root node in the expression has *exactly one*
421 /// use by a non-leaf node of the expression.  This destruction means that the
422 /// caller MUST either replace 'I' with a new expression or use something like
423 /// RewriteExprTree to put the values back in if the routine indicates that it
424 /// made a change by returning 'true'.
425 ///
426 /// In the above example either the right operand of A or the left operand of B
427 /// will be replaced by undef.  If it is B's operand then this gives:
428 ///
429 ///                     +        |        I
430 ///                    / \       |
431 ///                   +   +      |      A,  B - operand of B replaced with undef
432 ///                  / \   \     |
433 ///                 *   +   *    |    C,  D,  E
434 ///                / \ / \ / \   |
435 ///                   +   *      |      F,  G
436 ///
437 /// Note that such undef operands can only be reached by passing through 'I'.
438 /// For example, if you visit operands recursively starting from a leaf node
439 /// then you will never see such an undef operand unless you get back to 'I',
440 /// which requires passing through a phi node.
441 ///
442 /// Note that this routine may also mutate binary operators of the wrong type
443 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
444 /// of the expression) if it can turn them into binary operators of the right
445 /// type and thus make the expression bigger.
446 static bool LinearizeExprTree(BinaryOperator *I,
447                               SmallVectorImpl<RepeatedValue> &Ops) {
448   DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
449   unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
450   unsigned Opcode = I->getOpcode();
451   assert(I->isAssociative() && I->isCommutative() &&
452          "Expected an associative and commutative operation!");
453 
454   // Visit all operands of the expression, keeping track of their weight (the
455   // number of paths from the expression root to the operand, or if you like
456   // the number of times that operand occurs in the linearized expression).
457   // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
458   // while A has weight two.
459 
460   // Worklist of non-leaf nodes (their operands are in the expression too) along
461   // with their weights, representing a certain number of paths to the operator.
462   // If an operator occurs in the worklist multiple times then we found multiple
463   // ways to get to it.
464   SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
465   Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
466   bool Changed = false;
467 
468   // Leaves of the expression are values that either aren't the right kind of
469   // operation (eg: a constant, or a multiply in an add tree), or are, but have
470   // some uses that are not inside the expression.  For example, in I = X + X,
471   // X = A + B, the value X has two uses (by I) that are in the expression.  If
472   // X has any other uses, for example in a return instruction, then we consider
473   // X to be a leaf, and won't analyze it further.  When we first visit a value,
474   // if it has more than one use then at first we conservatively consider it to
475   // be a leaf.  Later, as the expression is explored, we may discover some more
476   // uses of the value from inside the expression.  If all uses turn out to be
477   // from within the expression (and the value is a binary operator of the right
478   // kind) then the value is no longer considered to be a leaf, and its operands
479   // are explored.
480 
481   // Leaves - Keeps track of the set of putative leaves as well as the number of
482   // paths to each leaf seen so far.
483   using LeafMap = DenseMap<Value *, APInt>;
484   LeafMap Leaves; // Leaf -> Total weight so far.
485   SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order.
486 
487 #ifndef NDEBUG
488   SmallPtrSet<Value *, 8> Visited; // For sanity checking the iteration scheme.
489 #endif
490   while (!Worklist.empty()) {
491     std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
492     I = P.first; // We examine the operands of this binary operator.
493 
494     for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
495       Value *Op = I->getOperand(OpIdx);
496       APInt Weight = P.second; // Number of paths to this operand.
497       DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
498       assert(!Op->use_empty() && "No uses, so how did we get to it?!");
499 
500       // If this is a binary operation of the right kind with only one use then
501       // add its operands to the expression.
502       if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
503         assert(Visited.insert(Op).second && "Not first visit!");
504         DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
505         Worklist.push_back(std::make_pair(BO, Weight));
506         continue;
507       }
508 
509       // Appears to be a leaf.  Is the operand already in the set of leaves?
510       LeafMap::iterator It = Leaves.find(Op);
511       if (It == Leaves.end()) {
512         // Not in the leaf map.  Must be the first time we saw this operand.
513         assert(Visited.insert(Op).second && "Not first visit!");
514         if (!Op->hasOneUse()) {
515           // This value has uses not accounted for by the expression, so it is
516           // not safe to modify.  Mark it as being a leaf.
517           DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
518           LeafOrder.push_back(Op);
519           Leaves[Op] = Weight;
520           continue;
521         }
522         // No uses outside the expression, try morphing it.
523       } else {
524         // Already in the leaf map.
525         assert(It != Leaves.end() && Visited.count(Op) &&
526                "In leaf map but not visited!");
527 
528         // Update the number of paths to the leaf.
529         IncorporateWeight(It->second, Weight, Opcode);
530 
531 #if 0   // TODO: Re-enable once PR13021 is fixed.
532         // The leaf already has one use from inside the expression.  As we want
533         // exactly one such use, drop this new use of the leaf.
534         assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
535         I->setOperand(OpIdx, UndefValue::get(I->getType()));
536         Changed = true;
537 
538         // If the leaf is a binary operation of the right kind and we now see
539         // that its multiple original uses were in fact all by nodes belonging
540         // to the expression, then no longer consider it to be a leaf and add
541         // its operands to the expression.
542         if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
543           DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
544           Worklist.push_back(std::make_pair(BO, It->second));
545           Leaves.erase(It);
546           continue;
547         }
548 #endif
549 
550         // If we still have uses that are not accounted for by the expression
551         // then it is not safe to modify the value.
552         if (!Op->hasOneUse())
553           continue;
554 
555         // No uses outside the expression, try morphing it.
556         Weight = It->second;
557         Leaves.erase(It); // Since the value may be morphed below.
558       }
559 
560       // At this point we have a value which, first of all, is not a binary
561       // expression of the right kind, and secondly, is only used inside the
562       // expression.  This means that it can safely be modified.  See if we
563       // can usefully morph it into an expression of the right kind.
564       assert((!isa<Instruction>(Op) ||
565               cast<Instruction>(Op)->getOpcode() != Opcode
566               || (isa<FPMathOperator>(Op) &&
567                   !cast<Instruction>(Op)->isFast())) &&
568              "Should have been handled above!");
569       assert(Op->hasOneUse() && "Has uses outside the expression tree!");
570 
571       // If this is a multiply expression, turn any internal negations into
572       // multiplies by -1 so they can be reassociated.
573       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
574         if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) ||
575             (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) {
576           DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
577           BO = LowerNegateToMultiply(BO);
578           DEBUG(dbgs() << *BO << '\n');
579           Worklist.push_back(std::make_pair(BO, Weight));
580           Changed = true;
581           continue;
582         }
583 
584       // Failed to morph into an expression of the right type.  This really is
585       // a leaf.
586       DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
587       assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
588       LeafOrder.push_back(Op);
589       Leaves[Op] = Weight;
590     }
591   }
592 
593   // The leaves, repeated according to their weights, represent the linearized
594   // form of the expression.
595   for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
596     Value *V = LeafOrder[i];
597     LeafMap::iterator It = Leaves.find(V);
598     if (It == Leaves.end())
599       // Node initially thought to be a leaf wasn't.
600       continue;
601     assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
602     APInt Weight = It->second;
603     if (Weight.isMinValue())
604       // Leaf already output or weight reduction eliminated it.
605       continue;
606     // Ensure the leaf is only output once.
607     It->second = 0;
608     Ops.push_back(std::make_pair(V, Weight));
609   }
610 
611   // For nilpotent operations or addition there may be no operands, for example
612   // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
613   // in both cases the weight reduces to 0 causing the value to be skipped.
614   if (Ops.empty()) {
615     Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
616     assert(Identity && "Associative operation without identity!");
617     Ops.emplace_back(Identity, APInt(Bitwidth, 1));
618   }
619 
620   return Changed;
621 }
622 
623 /// Now that the operands for this expression tree are
624 /// linearized and optimized, emit them in-order.
625 void ReassociatePass::RewriteExprTree(BinaryOperator *I,
626                                       SmallVectorImpl<ValueEntry> &Ops) {
627   assert(Ops.size() > 1 && "Single values should be used directly!");
628 
629   // Since our optimizations should never increase the number of operations, the
630   // new expression can usually be written reusing the existing binary operators
631   // from the original expression tree, without creating any new instructions,
632   // though the rewritten expression may have a completely different topology.
633   // We take care to not change anything if the new expression will be the same
634   // as the original.  If more than trivial changes (like commuting operands)
635   // were made then we are obliged to clear out any optional subclass data like
636   // nsw flags.
637 
638   /// NodesToRewrite - Nodes from the original expression available for writing
639   /// the new expression into.
640   SmallVector<BinaryOperator*, 8> NodesToRewrite;
641   unsigned Opcode = I->getOpcode();
642   BinaryOperator *Op = I;
643 
644   /// NotRewritable - The operands being written will be the leaves of the new
645   /// expression and must not be used as inner nodes (via NodesToRewrite) by
646   /// mistake.  Inner nodes are always reassociable, and usually leaves are not
647   /// (if they were they would have been incorporated into the expression and so
648   /// would not be leaves), so most of the time there is no danger of this.  But
649   /// in rare cases a leaf may become reassociable if an optimization kills uses
650   /// of it, or it may momentarily become reassociable during rewriting (below)
651   /// due it being removed as an operand of one of its uses.  Ensure that misuse
652   /// of leaf nodes as inner nodes cannot occur by remembering all of the future
653   /// leaves and refusing to reuse any of them as inner nodes.
654   SmallPtrSet<Value*, 8> NotRewritable;
655   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
656     NotRewritable.insert(Ops[i].Op);
657 
658   // ExpressionChanged - Non-null if the rewritten expression differs from the
659   // original in some non-trivial way, requiring the clearing of optional flags.
660   // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
661   BinaryOperator *ExpressionChanged = nullptr;
662   for (unsigned i = 0; ; ++i) {
663     // The last operation (which comes earliest in the IR) is special as both
664     // operands will come from Ops, rather than just one with the other being
665     // a subexpression.
666     if (i+2 == Ops.size()) {
667       Value *NewLHS = Ops[i].Op;
668       Value *NewRHS = Ops[i+1].Op;
669       Value *OldLHS = Op->getOperand(0);
670       Value *OldRHS = Op->getOperand(1);
671 
672       if (NewLHS == OldLHS && NewRHS == OldRHS)
673         // Nothing changed, leave it alone.
674         break;
675 
676       if (NewLHS == OldRHS && NewRHS == OldLHS) {
677         // The order of the operands was reversed.  Swap them.
678         DEBUG(dbgs() << "RA: " << *Op << '\n');
679         Op->swapOperands();
680         DEBUG(dbgs() << "TO: " << *Op << '\n');
681         MadeChange = true;
682         ++NumChanged;
683         break;
684       }
685 
686       // The new operation differs non-trivially from the original. Overwrite
687       // the old operands with the new ones.
688       DEBUG(dbgs() << "RA: " << *Op << '\n');
689       if (NewLHS != OldLHS) {
690         BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
691         if (BO && !NotRewritable.count(BO))
692           NodesToRewrite.push_back(BO);
693         Op->setOperand(0, NewLHS);
694       }
695       if (NewRHS != OldRHS) {
696         BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
697         if (BO && !NotRewritable.count(BO))
698           NodesToRewrite.push_back(BO);
699         Op->setOperand(1, NewRHS);
700       }
701       DEBUG(dbgs() << "TO: " << *Op << '\n');
702 
703       ExpressionChanged = Op;
704       MadeChange = true;
705       ++NumChanged;
706 
707       break;
708     }
709 
710     // Not the last operation.  The left-hand side will be a sub-expression
711     // while the right-hand side will be the current element of Ops.
712     Value *NewRHS = Ops[i].Op;
713     if (NewRHS != Op->getOperand(1)) {
714       DEBUG(dbgs() << "RA: " << *Op << '\n');
715       if (NewRHS == Op->getOperand(0)) {
716         // The new right-hand side was already present as the left operand.  If
717         // we are lucky then swapping the operands will sort out both of them.
718         Op->swapOperands();
719       } else {
720         // Overwrite with the new right-hand side.
721         BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
722         if (BO && !NotRewritable.count(BO))
723           NodesToRewrite.push_back(BO);
724         Op->setOperand(1, NewRHS);
725         ExpressionChanged = Op;
726       }
727       DEBUG(dbgs() << "TO: " << *Op << '\n');
728       MadeChange = true;
729       ++NumChanged;
730     }
731 
732     // Now deal with the left-hand side.  If this is already an operation node
733     // from the original expression then just rewrite the rest of the expression
734     // into it.
735     BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
736     if (BO && !NotRewritable.count(BO)) {
737       Op = BO;
738       continue;
739     }
740 
741     // Otherwise, grab a spare node from the original expression and use that as
742     // the left-hand side.  If there are no nodes left then the optimizers made
743     // an expression with more nodes than the original!  This usually means that
744     // they did something stupid but it might mean that the problem was just too
745     // hard (finding the mimimal number of multiplications needed to realize a
746     // multiplication expression is NP-complete).  Whatever the reason, smart or
747     // stupid, create a new node if there are none left.
748     BinaryOperator *NewOp;
749     if (NodesToRewrite.empty()) {
750       Constant *Undef = UndefValue::get(I->getType());
751       NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
752                                      Undef, Undef, "", I);
753       if (NewOp->getType()->isFPOrFPVectorTy())
754         NewOp->setFastMathFlags(I->getFastMathFlags());
755     } else {
756       NewOp = NodesToRewrite.pop_back_val();
757     }
758 
759     DEBUG(dbgs() << "RA: " << *Op << '\n');
760     Op->setOperand(0, NewOp);
761     DEBUG(dbgs() << "TO: " << *Op << '\n');
762     ExpressionChanged = Op;
763     MadeChange = true;
764     ++NumChanged;
765     Op = NewOp;
766   }
767 
768   // If the expression changed non-trivially then clear out all subclass data
769   // starting from the operator specified in ExpressionChanged, and compactify
770   // the operators to just before the expression root to guarantee that the
771   // expression tree is dominated by all of Ops.
772   if (ExpressionChanged)
773     do {
774       // Preserve FastMathFlags.
775       if (isa<FPMathOperator>(I)) {
776         FastMathFlags Flags = I->getFastMathFlags();
777         ExpressionChanged->clearSubclassOptionalData();
778         ExpressionChanged->setFastMathFlags(Flags);
779       } else
780         ExpressionChanged->clearSubclassOptionalData();
781 
782       if (ExpressionChanged == I)
783         break;
784       ExpressionChanged->moveBefore(I);
785       ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
786     } while (true);
787 
788   // Throw away any left over nodes from the original expression.
789   for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
790     RedoInsts.insert(NodesToRewrite[i]);
791 }
792 
793 /// Insert instructions before the instruction pointed to by BI,
794 /// that computes the negative version of the value specified.  The negative
795 /// version of the value is returned, and BI is left pointing at the instruction
796 /// that should be processed next by the reassociation pass.
797 /// Also add intermediate instructions to the redo list that are modified while
798 /// pushing the negates through adds.  These will be revisited to see if
799 /// additional opportunities have been exposed.
800 static Value *NegateValue(Value *V, Instruction *BI,
801                           SetVector<AssertingVH<Instruction>> &ToRedo) {
802   if (auto *C = dyn_cast<Constant>(V))
803     return C->getType()->isFPOrFPVectorTy() ? ConstantExpr::getFNeg(C) :
804                                               ConstantExpr::getNeg(C);
805 
806   // We are trying to expose opportunity for reassociation.  One of the things
807   // that we want to do to achieve this is to push a negation as deep into an
808   // expression chain as possible, to expose the add instructions.  In practice,
809   // this means that we turn this:
810   //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
811   // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
812   // the constants.  We assume that instcombine will clean up the mess later if
813   // we introduce tons of unnecessary negation instructions.
814   //
815   if (BinaryOperator *I =
816           isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
817     // Push the negates through the add.
818     I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
819     I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
820     if (I->getOpcode() == Instruction::Add) {
821       I->setHasNoUnsignedWrap(false);
822       I->setHasNoSignedWrap(false);
823     }
824 
825     // We must move the add instruction here, because the neg instructions do
826     // not dominate the old add instruction in general.  By moving it, we are
827     // assured that the neg instructions we just inserted dominate the
828     // instruction we are about to insert after them.
829     //
830     I->moveBefore(BI);
831     I->setName(I->getName()+".neg");
832 
833     // Add the intermediate negates to the redo list as processing them later
834     // could expose more reassociating opportunities.
835     ToRedo.insert(I);
836     return I;
837   }
838 
839   // Okay, we need to materialize a negated version of V with an instruction.
840   // Scan the use lists of V to see if we have one already.
841   for (User *U : V->users()) {
842     if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U))
843       continue;
844 
845     // We found one!  Now we have to make sure that the definition dominates
846     // this use.  We do this by moving it to the entry block (if it is a
847     // non-instruction value) or right after the definition.  These negates will
848     // be zapped by reassociate later, so we don't need much finesse here.
849     BinaryOperator *TheNeg = cast<BinaryOperator>(U);
850 
851     // Verify that the negate is in this function, V might be a constant expr.
852     if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
853       continue;
854 
855     BasicBlock::iterator InsertPt;
856     if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
857       if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
858         InsertPt = II->getNormalDest()->begin();
859       } else {
860         InsertPt = ++InstInput->getIterator();
861       }
862       while (isa<PHINode>(InsertPt)) ++InsertPt;
863     } else {
864       InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
865     }
866     TheNeg->moveBefore(&*InsertPt);
867     if (TheNeg->getOpcode() == Instruction::Sub) {
868       TheNeg->setHasNoUnsignedWrap(false);
869       TheNeg->setHasNoSignedWrap(false);
870     } else {
871       TheNeg->andIRFlags(BI);
872     }
873     ToRedo.insert(TheNeg);
874     return TheNeg;
875   }
876 
877   // Insert a 'neg' instruction that subtracts the value from zero to get the
878   // negation.
879   BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
880   ToRedo.insert(NewNeg);
881   return NewNeg;
882 }
883 
884 /// Return true if we should break up this subtract of X-Y into (X + -Y).
885 static bool ShouldBreakUpSubtract(Instruction *Sub) {
886   // If this is a negation, we can't split it up!
887   if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub))
888     return false;
889 
890   // Don't breakup X - undef.
891   if (isa<UndefValue>(Sub->getOperand(1)))
892     return false;
893 
894   // Don't bother to break this up unless either the LHS is an associable add or
895   // subtract or if this is only used by one.
896   Value *V0 = Sub->getOperand(0);
897   if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
898       isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
899     return true;
900   Value *V1 = Sub->getOperand(1);
901   if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
902       isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
903     return true;
904   Value *VB = Sub->user_back();
905   if (Sub->hasOneUse() &&
906       (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
907        isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
908     return true;
909 
910   return false;
911 }
912 
913 /// If we have (X-Y), and if either X is an add, or if this is only used by an
914 /// add, transform this into (X+(0-Y)) to promote better reassociation.
915 static BinaryOperator *
916 BreakUpSubtract(Instruction *Sub, SetVector<AssertingVH<Instruction>> &ToRedo) {
917   // Convert a subtract into an add and a neg instruction. This allows sub
918   // instructions to be commuted with other add instructions.
919   //
920   // Calculate the negative value of Operand 1 of the sub instruction,
921   // and set it as the RHS of the add instruction we just made.
922   Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
923   BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
924   Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
925   Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
926   New->takeName(Sub);
927 
928   // Everyone now refers to the add instruction.
929   Sub->replaceAllUsesWith(New);
930   New->setDebugLoc(Sub->getDebugLoc());
931 
932   DEBUG(dbgs() << "Negated: " << *New << '\n');
933   return New;
934 }
935 
936 /// If this is a shift of a reassociable multiply or is used by one, change
937 /// this into a multiply by a constant to assist with further reassociation.
938 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
939   Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
940   MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
941 
942   BinaryOperator *Mul =
943     BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
944   Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
945   Mul->takeName(Shl);
946 
947   // Everyone now refers to the mul instruction.
948   Shl->replaceAllUsesWith(Mul);
949   Mul->setDebugLoc(Shl->getDebugLoc());
950 
951   // We can safely preserve the nuw flag in all cases.  It's also safe to turn a
952   // nuw nsw shl into a nuw nsw mul.  However, nsw in isolation requires special
953   // handling.
954   bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
955   bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
956   if (NSW && NUW)
957     Mul->setHasNoSignedWrap(true);
958   Mul->setHasNoUnsignedWrap(NUW);
959   return Mul;
960 }
961 
962 /// Scan backwards and forwards among values with the same rank as element i
963 /// to see if X exists.  If X does not exist, return i.  This is useful when
964 /// scanning for 'x' when we see '-x' because they both get the same rank.
965 static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops,
966                                   unsigned i, Value *X) {
967   unsigned XRank = Ops[i].Rank;
968   unsigned e = Ops.size();
969   for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
970     if (Ops[j].Op == X)
971       return j;
972     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
973       if (Instruction *I2 = dyn_cast<Instruction>(X))
974         if (I1->isIdenticalTo(I2))
975           return j;
976   }
977   // Scan backwards.
978   for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
979     if (Ops[j].Op == X)
980       return j;
981     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
982       if (Instruction *I2 = dyn_cast<Instruction>(X))
983         if (I1->isIdenticalTo(I2))
984           return j;
985   }
986   return i;
987 }
988 
989 /// Emit a tree of add instructions, summing Ops together
990 /// and returning the result.  Insert the tree before I.
991 static Value *EmitAddTreeOfValues(Instruction *I,
992                                   SmallVectorImpl<WeakTrackingVH> &Ops) {
993   if (Ops.size() == 1) return Ops.back();
994 
995   Value *V1 = Ops.back();
996   Ops.pop_back();
997   Value *V2 = EmitAddTreeOfValues(I, Ops);
998   return CreateAdd(V2, V1, "reass.add", I, I);
999 }
1000 
1001 /// If V is an expression tree that is a multiplication sequence,
1002 /// and if this sequence contains a multiply by Factor,
1003 /// remove Factor from the tree and return the new tree.
1004 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
1005   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1006   if (!BO)
1007     return nullptr;
1008 
1009   SmallVector<RepeatedValue, 8> Tree;
1010   MadeChange |= LinearizeExprTree(BO, Tree);
1011   SmallVector<ValueEntry, 8> Factors;
1012   Factors.reserve(Tree.size());
1013   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1014     RepeatedValue E = Tree[i];
1015     Factors.append(E.second.getZExtValue(),
1016                    ValueEntry(getRank(E.first), E.first));
1017   }
1018 
1019   bool FoundFactor = false;
1020   bool NeedsNegate = false;
1021   for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1022     if (Factors[i].Op == Factor) {
1023       FoundFactor = true;
1024       Factors.erase(Factors.begin()+i);
1025       break;
1026     }
1027 
1028     // If this is a negative version of this factor, remove it.
1029     if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
1030       if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1031         if (FC1->getValue() == -FC2->getValue()) {
1032           FoundFactor = NeedsNegate = true;
1033           Factors.erase(Factors.begin()+i);
1034           break;
1035         }
1036     } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1037       if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
1038         const APFloat &F1 = FC1->getValueAPF();
1039         APFloat F2(FC2->getValueAPF());
1040         F2.changeSign();
1041         if (F1.compare(F2) == APFloat::cmpEqual) {
1042           FoundFactor = NeedsNegate = true;
1043           Factors.erase(Factors.begin() + i);
1044           break;
1045         }
1046       }
1047     }
1048   }
1049 
1050   if (!FoundFactor) {
1051     // Make sure to restore the operands to the expression tree.
1052     RewriteExprTree(BO, Factors);
1053     return nullptr;
1054   }
1055 
1056   BasicBlock::iterator InsertPt = ++BO->getIterator();
1057 
1058   // If this was just a single multiply, remove the multiply and return the only
1059   // remaining operand.
1060   if (Factors.size() == 1) {
1061     RedoInsts.insert(BO);
1062     V = Factors[0].Op;
1063   } else {
1064     RewriteExprTree(BO, Factors);
1065     V = BO;
1066   }
1067 
1068   if (NeedsNegate)
1069     V = CreateNeg(V, "neg", &*InsertPt, BO);
1070 
1071   return V;
1072 }
1073 
1074 /// If V is a single-use multiply, recursively add its operands as factors,
1075 /// otherwise add V to the list of factors.
1076 ///
1077 /// Ops is the top-level list of add operands we're trying to factor.
1078 static void FindSingleUseMultiplyFactors(Value *V,
1079                                          SmallVectorImpl<Value*> &Factors) {
1080   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1081   if (!BO) {
1082     Factors.push_back(V);
1083     return;
1084   }
1085 
1086   // Otherwise, add the LHS and RHS to the list of factors.
1087   FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
1088   FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
1089 }
1090 
1091 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1092 /// This optimizes based on identities.  If it can be reduced to a single Value,
1093 /// it is returned, otherwise the Ops list is mutated as necessary.
1094 static Value *OptimizeAndOrXor(unsigned Opcode,
1095                                SmallVectorImpl<ValueEntry> &Ops) {
1096   // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1097   // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1098   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1099     // First, check for X and ~X in the operand list.
1100     assert(i < Ops.size());
1101     if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
1102       Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1103       unsigned FoundX = FindInOperandList(Ops, i, X);
1104       if (FoundX != i) {
1105         if (Opcode == Instruction::And)   // ...&X&~X = 0
1106           return Constant::getNullValue(X->getType());
1107 
1108         if (Opcode == Instruction::Or)    // ...|X|~X = -1
1109           return Constant::getAllOnesValue(X->getType());
1110       }
1111     }
1112 
1113     // Next, check for duplicate pairs of values, which we assume are next to
1114     // each other, due to our sorting criteria.
1115     assert(i < Ops.size());
1116     if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1117       if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1118         // Drop duplicate values for And and Or.
1119         Ops.erase(Ops.begin()+i);
1120         --i; --e;
1121         ++NumAnnihil;
1122         continue;
1123       }
1124 
1125       // Drop pairs of values for Xor.
1126       assert(Opcode == Instruction::Xor);
1127       if (e == 2)
1128         return Constant::getNullValue(Ops[0].Op->getType());
1129 
1130       // Y ^ X^X -> Y
1131       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1132       i -= 1; e -= 2;
1133       ++NumAnnihil;
1134     }
1135   }
1136   return nullptr;
1137 }
1138 
1139 /// Helper function of CombineXorOpnd(). It creates a bitwise-and
1140 /// instruction with the given two operands, and return the resulting
1141 /// instruction. There are two special cases: 1) if the constant operand is 0,
1142 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1143 /// be returned.
1144 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1145                              const APInt &ConstOpnd) {
1146   if (ConstOpnd.isNullValue())
1147     return nullptr;
1148 
1149   if (ConstOpnd.isAllOnesValue())
1150     return Opnd;
1151 
1152   Instruction *I = BinaryOperator::CreateAnd(
1153       Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra",
1154       InsertBefore);
1155   I->setDebugLoc(InsertBefore->getDebugLoc());
1156   return I;
1157 }
1158 
1159 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1160 // into "R ^ C", where C would be 0, and R is a symbolic value.
1161 //
1162 // If it was successful, true is returned, and the "R" and "C" is returned
1163 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1164 // and both "Res" and "ConstOpnd" remain unchanged.
1165 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1166                                      APInt &ConstOpnd, Value *&Res) {
1167   // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1168   //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
1169   //                       = (x & ~c1) ^ (c1 ^ c2)
1170   // It is useful only when c1 == c2.
1171   if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isNullValue())
1172     return false;
1173 
1174   if (!Opnd1->getValue()->hasOneUse())
1175     return false;
1176 
1177   const APInt &C1 = Opnd1->getConstPart();
1178   if (C1 != ConstOpnd)
1179     return false;
1180 
1181   Value *X = Opnd1->getSymbolicPart();
1182   Res = createAndInstr(I, X, ~C1);
1183   // ConstOpnd was C2, now C1 ^ C2.
1184   ConstOpnd ^= C1;
1185 
1186   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1187     RedoInsts.insert(T);
1188   return true;
1189 }
1190 
1191 // Helper function of OptimizeXor(). It tries to simplify
1192 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1193 // symbolic value.
1194 //
1195 // If it was successful, true is returned, and the "R" and "C" is returned
1196 // via "Res" and "ConstOpnd", respectively (If the entire expression is
1197 // evaluated to a constant, the Res is set to NULL); otherwise, false is
1198 // returned, and both "Res" and "ConstOpnd" remain unchanged.
1199 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1200                                      XorOpnd *Opnd2, APInt &ConstOpnd,
1201                                      Value *&Res) {
1202   Value *X = Opnd1->getSymbolicPart();
1203   if (X != Opnd2->getSymbolicPart())
1204     return false;
1205 
1206   // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1207   int DeadInstNum = 1;
1208   if (Opnd1->getValue()->hasOneUse())
1209     DeadInstNum++;
1210   if (Opnd2->getValue()->hasOneUse())
1211     DeadInstNum++;
1212 
1213   // Xor-Rule 2:
1214   //  (x | c1) ^ (x & c2)
1215   //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1216   //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
1217   //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
1218   //
1219   if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1220     if (Opnd2->isOrExpr())
1221       std::swap(Opnd1, Opnd2);
1222 
1223     const APInt &C1 = Opnd1->getConstPart();
1224     const APInt &C2 = Opnd2->getConstPart();
1225     APInt C3((~C1) ^ C2);
1226 
1227     // Do not increase code size!
1228     if (!C3.isNullValue() && !C3.isAllOnesValue()) {
1229       int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1230       if (NewInstNum > DeadInstNum)
1231         return false;
1232     }
1233 
1234     Res = createAndInstr(I, X, C3);
1235     ConstOpnd ^= C1;
1236   } else if (Opnd1->isOrExpr()) {
1237     // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1238     //
1239     const APInt &C1 = Opnd1->getConstPart();
1240     const APInt &C2 = Opnd2->getConstPart();
1241     APInt C3 = C1 ^ C2;
1242 
1243     // Do not increase code size
1244     if (!C3.isNullValue() && !C3.isAllOnesValue()) {
1245       int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1246       if (NewInstNum > DeadInstNum)
1247         return false;
1248     }
1249 
1250     Res = createAndInstr(I, X, C3);
1251     ConstOpnd ^= C3;
1252   } else {
1253     // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1254     //
1255     const APInt &C1 = Opnd1->getConstPart();
1256     const APInt &C2 = Opnd2->getConstPart();
1257     APInt C3 = C1 ^ C2;
1258     Res = createAndInstr(I, X, C3);
1259   }
1260 
1261   // Put the original operands in the Redo list; hope they will be deleted
1262   // as dead code.
1263   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1264     RedoInsts.insert(T);
1265   if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1266     RedoInsts.insert(T);
1267 
1268   return true;
1269 }
1270 
1271 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1272 /// to a single Value, it is returned, otherwise the Ops list is mutated as
1273 /// necessary.
1274 Value *ReassociatePass::OptimizeXor(Instruction *I,
1275                                     SmallVectorImpl<ValueEntry> &Ops) {
1276   if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1277     return V;
1278 
1279   if (Ops.size() == 1)
1280     return nullptr;
1281 
1282   SmallVector<XorOpnd, 8> Opnds;
1283   SmallVector<XorOpnd*, 8> OpndPtrs;
1284   Type *Ty = Ops[0].Op->getType();
1285   APInt ConstOpnd(Ty->getScalarSizeInBits(), 0);
1286 
1287   // Step 1: Convert ValueEntry to XorOpnd
1288   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1289     Value *V = Ops[i].Op;
1290     const APInt *C;
1291     // TODO: Support non-splat vectors.
1292     if (match(V, PatternMatch::m_APInt(C))) {
1293       ConstOpnd ^= *C;
1294     } else {
1295       XorOpnd O(V);
1296       O.setSymbolicRank(getRank(O.getSymbolicPart()));
1297       Opnds.push_back(O);
1298     }
1299   }
1300 
1301   // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1302   //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1303   //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1304   //  with the previous loop --- the iterator of the "Opnds" may be invalidated
1305   //  when new elements are added to the vector.
1306   for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1307     OpndPtrs.push_back(&Opnds[i]);
1308 
1309   // Step 2: Sort the Xor-Operands in a way such that the operands containing
1310   //  the same symbolic value cluster together. For instance, the input operand
1311   //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1312   //  ("x | 123", "x & 789", "y & 456").
1313   //
1314   //  The purpose is twofold:
1315   //  1) Cluster together the operands sharing the same symbolic-value.
1316   //  2) Operand having smaller symbolic-value-rank is permuted earlier, which
1317   //     could potentially shorten crital path, and expose more loop-invariants.
1318   //     Note that values' rank are basically defined in RPO order (FIXME).
1319   //     So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
1320   //     than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
1321   //     "z" in the order of X-Y-Z is better than any other orders.
1322   std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(),
1323                    [](XorOpnd *LHS, XorOpnd *RHS) {
1324     return LHS->getSymbolicRank() < RHS->getSymbolicRank();
1325   });
1326 
1327   // Step 3: Combine adjacent operands
1328   XorOpnd *PrevOpnd = nullptr;
1329   bool Changed = false;
1330   for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
1331     XorOpnd *CurrOpnd = OpndPtrs[i];
1332     // The combined value
1333     Value *CV;
1334 
1335     // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1336     if (!ConstOpnd.isNullValue() &&
1337         CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1338       Changed = true;
1339       if (CV)
1340         *CurrOpnd = XorOpnd(CV);
1341       else {
1342         CurrOpnd->Invalidate();
1343         continue;
1344       }
1345     }
1346 
1347     if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1348       PrevOpnd = CurrOpnd;
1349       continue;
1350     }
1351 
1352     // step 3.2: When previous and current operands share the same symbolic
1353     //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1354     if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1355       // Remove previous operand
1356       PrevOpnd->Invalidate();
1357       if (CV) {
1358         *CurrOpnd = XorOpnd(CV);
1359         PrevOpnd = CurrOpnd;
1360       } else {
1361         CurrOpnd->Invalidate();
1362         PrevOpnd = nullptr;
1363       }
1364       Changed = true;
1365     }
1366   }
1367 
1368   // Step 4: Reassemble the Ops
1369   if (Changed) {
1370     Ops.clear();
1371     for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1372       XorOpnd &O = Opnds[i];
1373       if (O.isInvalid())
1374         continue;
1375       ValueEntry VE(getRank(O.getValue()), O.getValue());
1376       Ops.push_back(VE);
1377     }
1378     if (!ConstOpnd.isNullValue()) {
1379       Value *C = ConstantInt::get(Ty, ConstOpnd);
1380       ValueEntry VE(getRank(C), C);
1381       Ops.push_back(VE);
1382     }
1383     unsigned Sz = Ops.size();
1384     if (Sz == 1)
1385       return Ops.back().Op;
1386     if (Sz == 0) {
1387       assert(ConstOpnd.isNullValue());
1388       return ConstantInt::get(Ty, ConstOpnd);
1389     }
1390   }
1391 
1392   return nullptr;
1393 }
1394 
1395 /// Optimize a series of operands to an 'add' instruction.  This
1396 /// optimizes based on identities.  If it can be reduced to a single Value, it
1397 /// is returned, otherwise the Ops list is mutated as necessary.
1398 Value *ReassociatePass::OptimizeAdd(Instruction *I,
1399                                     SmallVectorImpl<ValueEntry> &Ops) {
1400   // Scan the operand lists looking for X and -X pairs.  If we find any, we
1401   // can simplify expressions like X+-X == 0 and X+~X ==-1.  While we're at it,
1402   // scan for any
1403   // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1404 
1405   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1406     Value *TheOp = Ops[i].Op;
1407     // Check to see if we've seen this operand before.  If so, we factor all
1408     // instances of the operand together.  Due to our sorting criteria, we know
1409     // that these need to be next to each other in the vector.
1410     if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1411       // Rescan the list, remove all instances of this operand from the expr.
1412       unsigned NumFound = 0;
1413       do {
1414         Ops.erase(Ops.begin()+i);
1415         ++NumFound;
1416       } while (i != Ops.size() && Ops[i].Op == TheOp);
1417 
1418       DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
1419       ++NumFactor;
1420 
1421       // Insert a new multiply.
1422       Type *Ty = TheOp->getType();
1423       Constant *C = Ty->isIntOrIntVectorTy() ?
1424         ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
1425       Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
1426 
1427       // Now that we have inserted a multiply, optimize it. This allows us to
1428       // handle cases that require multiple factoring steps, such as this:
1429       // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1430       RedoInsts.insert(Mul);
1431 
1432       // If every add operand was a duplicate, return the multiply.
1433       if (Ops.empty())
1434         return Mul;
1435 
1436       // Otherwise, we had some input that didn't have the dupe, such as
1437       // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
1438       // things being added by this operation.
1439       Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1440 
1441       --i;
1442       e = Ops.size();
1443       continue;
1444     }
1445 
1446     // Check for X and -X or X and ~X in the operand list.
1447     if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) &&
1448         !BinaryOperator::isNot(TheOp))
1449       continue;
1450 
1451     Value *X = nullptr;
1452     if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))
1453       X = BinaryOperator::getNegArgument(TheOp);
1454     else if (BinaryOperator::isNot(TheOp))
1455       X = BinaryOperator::getNotArgument(TheOp);
1456 
1457     unsigned FoundX = FindInOperandList(Ops, i, X);
1458     if (FoundX == i)
1459       continue;
1460 
1461     // Remove X and -X from the operand list.
1462     if (Ops.size() == 2 &&
1463         (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)))
1464       return Constant::getNullValue(X->getType());
1465 
1466     // Remove X and ~X from the operand list.
1467     if (Ops.size() == 2 && BinaryOperator::isNot(TheOp))
1468       return Constant::getAllOnesValue(X->getType());
1469 
1470     Ops.erase(Ops.begin()+i);
1471     if (i < FoundX)
1472       --FoundX;
1473     else
1474       --i;   // Need to back up an extra one.
1475     Ops.erase(Ops.begin()+FoundX);
1476     ++NumAnnihil;
1477     --i;     // Revisit element.
1478     e -= 2;  // Removed two elements.
1479 
1480     // if X and ~X we append -1 to the operand list.
1481     if (BinaryOperator::isNot(TheOp)) {
1482       Value *V = Constant::getAllOnesValue(X->getType());
1483       Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1484       e += 1;
1485     }
1486   }
1487 
1488   // Scan the operand list, checking to see if there are any common factors
1489   // between operands.  Consider something like A*A+A*B*C+D.  We would like to
1490   // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1491   // To efficiently find this, we count the number of times a factor occurs
1492   // for any ADD operands that are MULs.
1493   DenseMap<Value*, unsigned> FactorOccurrences;
1494 
1495   // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1496   // where they are actually the same multiply.
1497   unsigned MaxOcc = 0;
1498   Value *MaxOccVal = nullptr;
1499   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1500     BinaryOperator *BOp =
1501         isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1502     if (!BOp)
1503       continue;
1504 
1505     // Compute all of the factors of this added value.
1506     SmallVector<Value*, 8> Factors;
1507     FindSingleUseMultiplyFactors(BOp, Factors);
1508     assert(Factors.size() > 1 && "Bad linearize!");
1509 
1510     // Add one to FactorOccurrences for each unique factor in this op.
1511     SmallPtrSet<Value*, 8> Duplicates;
1512     for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1513       Value *Factor = Factors[i];
1514       if (!Duplicates.insert(Factor).second)
1515         continue;
1516 
1517       unsigned Occ = ++FactorOccurrences[Factor];
1518       if (Occ > MaxOcc) {
1519         MaxOcc = Occ;
1520         MaxOccVal = Factor;
1521       }
1522 
1523       // If Factor is a negative constant, add the negated value as a factor
1524       // because we can percolate the negate out.  Watch for minint, which
1525       // cannot be positivified.
1526       if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
1527         if (CI->isNegative() && !CI->isMinValue(true)) {
1528           Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1529           if (!Duplicates.insert(Factor).second)
1530             continue;
1531           unsigned Occ = ++FactorOccurrences[Factor];
1532           if (Occ > MaxOcc) {
1533             MaxOcc = Occ;
1534             MaxOccVal = Factor;
1535           }
1536         }
1537       } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1538         if (CF->isNegative()) {
1539           APFloat F(CF->getValueAPF());
1540           F.changeSign();
1541           Factor = ConstantFP::get(CF->getContext(), F);
1542           if (!Duplicates.insert(Factor).second)
1543             continue;
1544           unsigned Occ = ++FactorOccurrences[Factor];
1545           if (Occ > MaxOcc) {
1546             MaxOcc = Occ;
1547             MaxOccVal = Factor;
1548           }
1549         }
1550       }
1551     }
1552   }
1553 
1554   // If any factor occurred more than one time, we can pull it out.
1555   if (MaxOcc > 1) {
1556     DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
1557     ++NumFactor;
1558 
1559     // Create a new instruction that uses the MaxOccVal twice.  If we don't do
1560     // this, we could otherwise run into situations where removing a factor
1561     // from an expression will drop a use of maxocc, and this can cause
1562     // RemoveFactorFromExpression on successive values to behave differently.
1563     Instruction *DummyInst =
1564         I->getType()->isIntOrIntVectorTy()
1565             ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1566             : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1567 
1568     SmallVector<WeakTrackingVH, 4> NewMulOps;
1569     for (unsigned i = 0; i != Ops.size(); ++i) {
1570       // Only try to remove factors from expressions we're allowed to.
1571       BinaryOperator *BOp =
1572           isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1573       if (!BOp)
1574         continue;
1575 
1576       if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1577         // The factorized operand may occur several times.  Convert them all in
1578         // one fell swoop.
1579         for (unsigned j = Ops.size(); j != i;) {
1580           --j;
1581           if (Ops[j].Op == Ops[i].Op) {
1582             NewMulOps.push_back(V);
1583             Ops.erase(Ops.begin()+j);
1584           }
1585         }
1586         --i;
1587       }
1588     }
1589 
1590     // No need for extra uses anymore.
1591     DummyInst->deleteValue();
1592 
1593     unsigned NumAddedValues = NewMulOps.size();
1594     Value *V = EmitAddTreeOfValues(I, NewMulOps);
1595 
1596     // Now that we have inserted the add tree, optimize it. This allows us to
1597     // handle cases that require multiple factoring steps, such as this:
1598     // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
1599     assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1600     (void)NumAddedValues;
1601     if (Instruction *VI = dyn_cast<Instruction>(V))
1602       RedoInsts.insert(VI);
1603 
1604     // Create the multiply.
1605     Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I);
1606 
1607     // Rerun associate on the multiply in case the inner expression turned into
1608     // a multiply.  We want to make sure that we keep things in canonical form.
1609     RedoInsts.insert(V2);
1610 
1611     // If every add operand included the factor (e.g. "A*B + A*C"), then the
1612     // entire result expression is just the multiply "A*(B+C)".
1613     if (Ops.empty())
1614       return V2;
1615 
1616     // Otherwise, we had some input that didn't have the factor, such as
1617     // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
1618     // things being added by this operation.
1619     Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1620   }
1621 
1622   return nullptr;
1623 }
1624 
1625 /// \brief Build up a vector of value/power pairs factoring a product.
1626 ///
1627 /// Given a series of multiplication operands, build a vector of factors and
1628 /// the powers each is raised to when forming the final product. Sort them in
1629 /// the order of descending power.
1630 ///
1631 ///      (x*x)          -> [(x, 2)]
1632 ///     ((x*x)*x)       -> [(x, 3)]
1633 ///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1634 ///
1635 /// \returns Whether any factors have a power greater than one.
1636 static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1637                                    SmallVectorImpl<Factor> &Factors) {
1638   // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1639   // Compute the sum of powers of simplifiable factors.
1640   unsigned FactorPowerSum = 0;
1641   for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1642     Value *Op = Ops[Idx-1].Op;
1643 
1644     // Count the number of occurrences of this value.
1645     unsigned Count = 1;
1646     for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1647       ++Count;
1648     // Track for simplification all factors which occur 2 or more times.
1649     if (Count > 1)
1650       FactorPowerSum += Count;
1651   }
1652 
1653   // We can only simplify factors if the sum of the powers of our simplifiable
1654   // factors is 4 or higher. When that is the case, we will *always* have
1655   // a simplification. This is an important invariant to prevent cyclicly
1656   // trying to simplify already minimal formations.
1657   if (FactorPowerSum < 4)
1658     return false;
1659 
1660   // Now gather the simplifiable factors, removing them from Ops.
1661   FactorPowerSum = 0;
1662   for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1663     Value *Op = Ops[Idx-1].Op;
1664 
1665     // Count the number of occurrences of this value.
1666     unsigned Count = 1;
1667     for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1668       ++Count;
1669     if (Count == 1)
1670       continue;
1671     // Move an even number of occurrences to Factors.
1672     Count &= ~1U;
1673     Idx -= Count;
1674     FactorPowerSum += Count;
1675     Factors.push_back(Factor(Op, Count));
1676     Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1677   }
1678 
1679   // None of the adjustments above should have reduced the sum of factor powers
1680   // below our mininum of '4'.
1681   assert(FactorPowerSum >= 4);
1682 
1683   std::stable_sort(Factors.begin(), Factors.end(),
1684                    [](const Factor &LHS, const Factor &RHS) {
1685     return LHS.Power > RHS.Power;
1686   });
1687   return true;
1688 }
1689 
1690 /// \brief Build a tree of multiplies, computing the product of Ops.
1691 static Value *buildMultiplyTree(IRBuilder<> &Builder,
1692                                 SmallVectorImpl<Value*> &Ops) {
1693   if (Ops.size() == 1)
1694     return Ops.back();
1695 
1696   Value *LHS = Ops.pop_back_val();
1697   do {
1698     if (LHS->getType()->isIntOrIntVectorTy())
1699       LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1700     else
1701       LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
1702   } while (!Ops.empty());
1703 
1704   return LHS;
1705 }
1706 
1707 /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1708 ///
1709 /// Given a vector of values raised to various powers, where no two values are
1710 /// equal and the powers are sorted in decreasing order, compute the minimal
1711 /// DAG of multiplies to compute the final product, and return that product
1712 /// value.
1713 Value *
1714 ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1715                                          SmallVectorImpl<Factor> &Factors) {
1716   assert(Factors[0].Power);
1717   SmallVector<Value *, 4> OuterProduct;
1718   for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1719        Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1720     if (Factors[Idx].Power != Factors[LastIdx].Power) {
1721       LastIdx = Idx;
1722       continue;
1723     }
1724 
1725     // We want to multiply across all the factors with the same power so that
1726     // we can raise them to that power as a single entity. Build a mini tree
1727     // for that.
1728     SmallVector<Value *, 4> InnerProduct;
1729     InnerProduct.push_back(Factors[LastIdx].Base);
1730     do {
1731       InnerProduct.push_back(Factors[Idx].Base);
1732       ++Idx;
1733     } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1734 
1735     // Reset the base value of the first factor to the new expression tree.
1736     // We'll remove all the factors with the same power in a second pass.
1737     Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1738     if (Instruction *MI = dyn_cast<Instruction>(M))
1739       RedoInsts.insert(MI);
1740 
1741     LastIdx = Idx;
1742   }
1743   // Unique factors with equal powers -- we've folded them into the first one's
1744   // base.
1745   Factors.erase(std::unique(Factors.begin(), Factors.end(),
1746                             [](const Factor &LHS, const Factor &RHS) {
1747                               return LHS.Power == RHS.Power;
1748                             }),
1749                 Factors.end());
1750 
1751   // Iteratively collect the base of each factor with an add power into the
1752   // outer product, and halve each power in preparation for squaring the
1753   // expression.
1754   for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1755     if (Factors[Idx].Power & 1)
1756       OuterProduct.push_back(Factors[Idx].Base);
1757     Factors[Idx].Power >>= 1;
1758   }
1759   if (Factors[0].Power) {
1760     Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1761     OuterProduct.push_back(SquareRoot);
1762     OuterProduct.push_back(SquareRoot);
1763   }
1764   if (OuterProduct.size() == 1)
1765     return OuterProduct.front();
1766 
1767   Value *V = buildMultiplyTree(Builder, OuterProduct);
1768   return V;
1769 }
1770 
1771 Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
1772                                     SmallVectorImpl<ValueEntry> &Ops) {
1773   // We can only optimize the multiplies when there is a chain of more than
1774   // three, such that a balanced tree might require fewer total multiplies.
1775   if (Ops.size() < 4)
1776     return nullptr;
1777 
1778   // Try to turn linear trees of multiplies without other uses of the
1779   // intermediate stages into minimal multiply DAGs with perfect sub-expression
1780   // re-use.
1781   SmallVector<Factor, 4> Factors;
1782   if (!collectMultiplyFactors(Ops, Factors))
1783     return nullptr; // All distinct factors, so nothing left for us to do.
1784 
1785   IRBuilder<> Builder(I);
1786   // The reassociate transformation for FP operations is performed only
1787   // if unsafe algebra is permitted by FastMathFlags. Propagate those flags
1788   // to the newly generated operations.
1789   if (auto FPI = dyn_cast<FPMathOperator>(I))
1790     Builder.setFastMathFlags(FPI->getFastMathFlags());
1791 
1792   Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1793   if (Ops.empty())
1794     return V;
1795 
1796   ValueEntry NewEntry = ValueEntry(getRank(V), V);
1797   Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
1798   return nullptr;
1799 }
1800 
1801 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
1802                                            SmallVectorImpl<ValueEntry> &Ops) {
1803   // Now that we have the linearized expression tree, try to optimize it.
1804   // Start by folding any constants that we found.
1805   Constant *Cst = nullptr;
1806   unsigned Opcode = I->getOpcode();
1807   while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1808     Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1809     Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1810   }
1811   // If there was nothing but constants then we are done.
1812   if (Ops.empty())
1813     return Cst;
1814 
1815   // Put the combined constant back at the end of the operand list, except if
1816   // there is no point.  For example, an add of 0 gets dropped here, while a
1817   // multiplication by zero turns the whole expression into zero.
1818   if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1819     if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1820       return Cst;
1821     Ops.push_back(ValueEntry(0, Cst));
1822   }
1823 
1824   if (Ops.size() == 1) return Ops[0].Op;
1825 
1826   // Handle destructive annihilation due to identities between elements in the
1827   // argument list here.
1828   unsigned NumOps = Ops.size();
1829   switch (Opcode) {
1830   default: break;
1831   case Instruction::And:
1832   case Instruction::Or:
1833     if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1834       return Result;
1835     break;
1836 
1837   case Instruction::Xor:
1838     if (Value *Result = OptimizeXor(I, Ops))
1839       return Result;
1840     break;
1841 
1842   case Instruction::Add:
1843   case Instruction::FAdd:
1844     if (Value *Result = OptimizeAdd(I, Ops))
1845       return Result;
1846     break;
1847 
1848   case Instruction::Mul:
1849   case Instruction::FMul:
1850     if (Value *Result = OptimizeMul(I, Ops))
1851       return Result;
1852     break;
1853   }
1854 
1855   if (Ops.size() != NumOps)
1856     return OptimizeExpression(I, Ops);
1857   return nullptr;
1858 }
1859 
1860 // Remove dead instructions and if any operands are trivially dead add them to
1861 // Insts so they will be removed as well.
1862 void ReassociatePass::RecursivelyEraseDeadInsts(
1863     Instruction *I, SetVector<AssertingVH<Instruction>> &Insts) {
1864   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1865   SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end());
1866   ValueRankMap.erase(I);
1867   Insts.remove(I);
1868   RedoInsts.remove(I);
1869   I->eraseFromParent();
1870   for (auto Op : Ops)
1871     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1872       if (OpInst->use_empty())
1873         Insts.insert(OpInst);
1874 }
1875 
1876 /// Zap the given instruction, adding interesting operands to the work list.
1877 void ReassociatePass::EraseInst(Instruction *I) {
1878   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1879   DEBUG(dbgs() << "Erasing dead inst: "; I->dump());
1880 
1881   SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1882   // Erase the dead instruction.
1883   ValueRankMap.erase(I);
1884   RedoInsts.remove(I);
1885   I->eraseFromParent();
1886   // Optimize its operands.
1887   SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
1888   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1889     if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1890       // If this is a node in an expression tree, climb to the expression root
1891       // and add that since that's where optimization actually happens.
1892       unsigned Opcode = Op->getOpcode();
1893       while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
1894              Visited.insert(Op).second)
1895         Op = Op->user_back();
1896       RedoInsts.insert(Op);
1897     }
1898 
1899   MadeChange = true;
1900 }
1901 
1902 // Canonicalize expressions of the following form:
1903 //  x + (-Constant * y) -> x - (Constant * y)
1904 //  x - (-Constant * y) -> x + (Constant * y)
1905 Instruction *ReassociatePass::canonicalizeNegConstExpr(Instruction *I) {
1906   if (!I->hasOneUse() || I->getType()->isVectorTy())
1907     return nullptr;
1908 
1909   // Must be a fmul or fdiv instruction.
1910   unsigned Opcode = I->getOpcode();
1911   if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv)
1912     return nullptr;
1913 
1914   auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
1915   auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
1916 
1917   // Both operands are constant, let it get constant folded away.
1918   if (C0 && C1)
1919     return nullptr;
1920 
1921   ConstantFP *CF = C0 ? C0 : C1;
1922 
1923   // Must have one constant operand.
1924   if (!CF)
1925     return nullptr;
1926 
1927   // Must be a negative ConstantFP.
1928   if (!CF->isNegative())
1929     return nullptr;
1930 
1931   // User must be a binary operator with one or more uses.
1932   Instruction *User = I->user_back();
1933   if (!isa<BinaryOperator>(User) || User->use_empty())
1934     return nullptr;
1935 
1936   unsigned UserOpcode = User->getOpcode();
1937   if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub)
1938     return nullptr;
1939 
1940   // Subtraction is not commutative. Explicitly, the following transform is
1941   // not valid: (-Constant * y) - x  -> x + (Constant * y)
1942   if (!User->isCommutative() && User->getOperand(1) != I)
1943     return nullptr;
1944 
1945   // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the
1946   // resulting subtract will be broken up later.  This can get us into an
1947   // infinite loop during reassociation.
1948   if (UserOpcode == Instruction::FAdd && ShouldBreakUpSubtract(User))
1949     return nullptr;
1950 
1951   // Change the sign of the constant.
1952   APFloat Val = CF->getValueAPF();
1953   Val.changeSign();
1954   I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val));
1955 
1956   // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
1957   // ((-Const*y) + x) -> (x + (-Const*y)).
1958   if (User->getOperand(0) == I && User->isCommutative())
1959     cast<BinaryOperator>(User)->swapOperands();
1960 
1961   Value *Op0 = User->getOperand(0);
1962   Value *Op1 = User->getOperand(1);
1963   BinaryOperator *NI;
1964   switch (UserOpcode) {
1965   default:
1966     llvm_unreachable("Unexpected Opcode!");
1967   case Instruction::FAdd:
1968     NI = BinaryOperator::CreateFSub(Op0, Op1);
1969     NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1970     break;
1971   case Instruction::FSub:
1972     NI = BinaryOperator::CreateFAdd(Op0, Op1);
1973     NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1974     break;
1975   }
1976 
1977   NI->insertBefore(User);
1978   NI->setName(User->getName());
1979   User->replaceAllUsesWith(NI);
1980   NI->setDebugLoc(I->getDebugLoc());
1981   RedoInsts.insert(I);
1982   MadeChange = true;
1983   return NI;
1984 }
1985 
1986 /// Inspect and optimize the given instruction. Note that erasing
1987 /// instructions is not allowed.
1988 void ReassociatePass::OptimizeInst(Instruction *I) {
1989   // Only consider operations that we understand.
1990   if (!isa<BinaryOperator>(I))
1991     return;
1992 
1993   if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
1994     // If an operand of this shift is a reassociable multiply, or if the shift
1995     // is used by a reassociable multiply or add, turn into a multiply.
1996     if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
1997         (I->hasOneUse() &&
1998          (isReassociableOp(I->user_back(), Instruction::Mul) ||
1999           isReassociableOp(I->user_back(), Instruction::Add)))) {
2000       Instruction *NI = ConvertShiftToMul(I);
2001       RedoInsts.insert(I);
2002       MadeChange = true;
2003       I = NI;
2004     }
2005 
2006   // Canonicalize negative constants out of expressions.
2007   if (Instruction *Res = canonicalizeNegConstExpr(I))
2008     I = Res;
2009 
2010   // Commute binary operators, to canonicalize the order of their operands.
2011   // This can potentially expose more CSE opportunities, and makes writing other
2012   // transformations simpler.
2013   if (I->isCommutative())
2014     canonicalizeOperands(I);
2015 
2016   // Don't optimize floating-point instructions unless they are 'fast'.
2017   if (I->getType()->isFPOrFPVectorTy() && !I->isFast())
2018     return;
2019 
2020   // Do not reassociate boolean (i1) expressions.  We want to preserve the
2021   // original order of evaluation for short-circuited comparisons that
2022   // SimplifyCFG has folded to AND/OR expressions.  If the expression
2023   // is not further optimized, it is likely to be transformed back to a
2024   // short-circuited form for code gen, and the source order may have been
2025   // optimized for the most likely conditions.
2026   if (I->getType()->isIntegerTy(1))
2027     return;
2028 
2029   // If this is a subtract instruction which is not already in negate form,
2030   // see if we can convert it to X+-Y.
2031   if (I->getOpcode() == Instruction::Sub) {
2032     if (ShouldBreakUpSubtract(I)) {
2033       Instruction *NI = BreakUpSubtract(I, RedoInsts);
2034       RedoInsts.insert(I);
2035       MadeChange = true;
2036       I = NI;
2037     } else if (BinaryOperator::isNeg(I)) {
2038       // Otherwise, this is a negation.  See if the operand is a multiply tree
2039       // and if this is not an inner node of a multiply tree.
2040       if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2041           (!I->hasOneUse() ||
2042            !isReassociableOp(I->user_back(), Instruction::Mul))) {
2043         Instruction *NI = LowerNegateToMultiply(I);
2044         // If the negate was simplified, revisit the users to see if we can
2045         // reassociate further.
2046         for (User *U : NI->users()) {
2047           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2048             RedoInsts.insert(Tmp);
2049         }
2050         RedoInsts.insert(I);
2051         MadeChange = true;
2052         I = NI;
2053       }
2054     }
2055   } else if (I->getOpcode() == Instruction::FSub) {
2056     if (ShouldBreakUpSubtract(I)) {
2057       Instruction *NI = BreakUpSubtract(I, RedoInsts);
2058       RedoInsts.insert(I);
2059       MadeChange = true;
2060       I = NI;
2061     } else if (BinaryOperator::isFNeg(I)) {
2062       // Otherwise, this is a negation.  See if the operand is a multiply tree
2063       // and if this is not an inner node of a multiply tree.
2064       if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
2065           (!I->hasOneUse() ||
2066            !isReassociableOp(I->user_back(), Instruction::FMul))) {
2067         // If the negate was simplified, revisit the users to see if we can
2068         // reassociate further.
2069         Instruction *NI = LowerNegateToMultiply(I);
2070         for (User *U : NI->users()) {
2071           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2072             RedoInsts.insert(Tmp);
2073         }
2074         RedoInsts.insert(I);
2075         MadeChange = true;
2076         I = NI;
2077       }
2078     }
2079   }
2080 
2081   // If this instruction is an associative binary operator, process it.
2082   if (!I->isAssociative()) return;
2083   BinaryOperator *BO = cast<BinaryOperator>(I);
2084 
2085   // If this is an interior node of a reassociable tree, ignore it until we
2086   // get to the root of the tree, to avoid N^2 analysis.
2087   unsigned Opcode = BO->getOpcode();
2088   if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2089     // During the initial run we will get to the root of the tree.
2090     // But if we get here while we are redoing instructions, there is no
2091     // guarantee that the root will be visited. So Redo later
2092     if (BO->user_back() != BO &&
2093         BO->getParent() == BO->user_back()->getParent())
2094       RedoInsts.insert(BO->user_back());
2095     return;
2096   }
2097 
2098   // If this is an add tree that is used by a sub instruction, ignore it
2099   // until we process the subtract.
2100   if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
2101       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
2102     return;
2103   if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2104       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2105     return;
2106 
2107   ReassociateExpression(BO);
2108 }
2109 
2110 void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
2111   // First, walk the expression tree, linearizing the tree, collecting the
2112   // operand information.
2113   SmallVector<RepeatedValue, 8> Tree;
2114   MadeChange |= LinearizeExprTree(I, Tree);
2115   SmallVector<ValueEntry, 8> Ops;
2116   Ops.reserve(Tree.size());
2117   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
2118     RepeatedValue E = Tree[i];
2119     Ops.append(E.second.getZExtValue(),
2120                ValueEntry(getRank(E.first), E.first));
2121   }
2122 
2123   DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2124 
2125   // Now that we have linearized the tree to a list and have gathered all of
2126   // the operands and their ranks, sort the operands by their rank.  Use a
2127   // stable_sort so that values with equal ranks will have their relative
2128   // positions maintained (and so the compiler is deterministic).  Note that
2129   // this sorts so that the highest ranking values end up at the beginning of
2130   // the vector.
2131   std::stable_sort(Ops.begin(), Ops.end());
2132 
2133   // Now that we have the expression tree in a convenient
2134   // sorted form, optimize it globally if possible.
2135   if (Value *V = OptimizeExpression(I, Ops)) {
2136     if (V == I)
2137       // Self-referential expression in unreachable code.
2138       return;
2139     // This expression tree simplified to something that isn't a tree,
2140     // eliminate it.
2141     DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
2142     I->replaceAllUsesWith(V);
2143     if (Instruction *VI = dyn_cast<Instruction>(V))
2144       if (I->getDebugLoc())
2145         VI->setDebugLoc(I->getDebugLoc());
2146     RedoInsts.insert(I);
2147     ++NumAnnihil;
2148     return;
2149   }
2150 
2151   // We want to sink immediates as deeply as possible except in the case where
2152   // this is a multiply tree used only by an add, and the immediate is a -1.
2153   // In this case we reassociate to put the negation on the outside so that we
2154   // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
2155   if (I->hasOneUse()) {
2156     if (I->getOpcode() == Instruction::Mul &&
2157         cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2158         isa<ConstantInt>(Ops.back().Op) &&
2159         cast<ConstantInt>(Ops.back().Op)->isMinusOne()) {
2160       ValueEntry Tmp = Ops.pop_back_val();
2161       Ops.insert(Ops.begin(), Tmp);
2162     } else if (I->getOpcode() == Instruction::FMul &&
2163                cast<Instruction>(I->user_back())->getOpcode() ==
2164                    Instruction::FAdd &&
2165                isa<ConstantFP>(Ops.back().Op) &&
2166                cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2167       ValueEntry Tmp = Ops.pop_back_val();
2168       Ops.insert(Ops.begin(), Tmp);
2169     }
2170   }
2171 
2172   DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
2173 
2174   if (Ops.size() == 1) {
2175     if (Ops[0].Op == I)
2176       // Self-referential expression in unreachable code.
2177       return;
2178 
2179     // This expression tree simplified to something that isn't a tree,
2180     // eliminate it.
2181     I->replaceAllUsesWith(Ops[0].Op);
2182     if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2183       OI->setDebugLoc(I->getDebugLoc());
2184     RedoInsts.insert(I);
2185     return;
2186   }
2187 
2188   if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) {
2189     // Find the pair with the highest count in the pairmap and move it to the
2190     // back of the list so that it can later be CSE'd.
2191     // example:
2192     //   a*b*c*d*e
2193     // if c*e is the most "popular" pair, we can express this as
2194     //   (((c*e)*d)*b)*a
2195     unsigned Max = 1;
2196     unsigned BestRank = 0;
2197     std::pair<unsigned, unsigned> BestPair;
2198     unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin;
2199     for (unsigned i = 0; i < Ops.size() - 1; ++i)
2200       for (unsigned j = i + 1; j < Ops.size(); ++j) {
2201         unsigned Score = 0;
2202         Value *Op0 = Ops[i].Op;
2203         Value *Op1 = Ops[j].Op;
2204         if (std::less<Value *>()(Op1, Op0))
2205           std::swap(Op0, Op1);
2206         auto it = PairMap[Idx].find({Op0, Op1});
2207         if (it != PairMap[Idx].end())
2208           Score += it->second;
2209 
2210         unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank);
2211         if (Score > Max || (Score == Max && MaxRank < BestRank)) {
2212           BestPair = {i, j};
2213           Max = Score;
2214           BestRank = MaxRank;
2215         }
2216       }
2217     if (Max > 1) {
2218       auto Op0 = Ops[BestPair.first];
2219       auto Op1 = Ops[BestPair.second];
2220       Ops.erase(&Ops[BestPair.second]);
2221       Ops.erase(&Ops[BestPair.first]);
2222       Ops.push_back(Op0);
2223       Ops.push_back(Op1);
2224     }
2225   }
2226   // Now that we ordered and optimized the expressions, splat them back into
2227   // the expression tree, removing any unneeded nodes.
2228   RewriteExprTree(I, Ops);
2229 }
2230 
2231 void
2232 ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) {
2233   // Make a "pairmap" of how often each operand pair occurs.
2234   for (BasicBlock *BI : RPOT) {
2235     for (Instruction &I : *BI) {
2236       if (!I.isAssociative())
2237         continue;
2238 
2239       // Ignore nodes that aren't at the root of trees.
2240       if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode())
2241         continue;
2242 
2243       // Collect all operands in a single reassociable expression.
2244       // Since Reassociate has already been run once, we can assume things
2245       // are already canonical according to Reassociation's regime.
2246       SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) };
2247       SmallVector<Value *, 8> Ops;
2248       while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) {
2249         Value *Op = Worklist.pop_back_val();
2250         Instruction *OpI = dyn_cast<Instruction>(Op);
2251         if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) {
2252           Ops.push_back(Op);
2253           continue;
2254         }
2255         // Be paranoid about self-referencing expressions in unreachable code.
2256         if (OpI->getOperand(0) != OpI)
2257           Worklist.push_back(OpI->getOperand(0));
2258         if (OpI->getOperand(1) != OpI)
2259           Worklist.push_back(OpI->getOperand(1));
2260       }
2261       // Skip extremely long expressions.
2262       if (Ops.size() > GlobalReassociateLimit)
2263         continue;
2264 
2265       // Add all pairwise combinations of operands to the pair map.
2266       unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin;
2267       SmallSet<std::pair<Value *, Value*>, 32> Visited;
2268       for (unsigned i = 0; i < Ops.size() - 1; ++i) {
2269         for (unsigned j = i + 1; j < Ops.size(); ++j) {
2270           // Canonicalize operand orderings.
2271           Value *Op0 = Ops[i];
2272           Value *Op1 = Ops[j];
2273           if (std::less<Value *>()(Op1, Op0))
2274             std::swap(Op0, Op1);
2275           if (!Visited.insert({Op0, Op1}).second)
2276             continue;
2277           auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, 1});
2278           if (!res.second)
2279             ++res.first->second;
2280         }
2281       }
2282     }
2283   }
2284 }
2285 
2286 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
2287   // Get the functions basic blocks in Reverse Post Order. This order is used by
2288   // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic
2289   // blocks (it has been seen that the analysis in this pass could hang when
2290   // analysing dead basic blocks).
2291   ReversePostOrderTraversal<Function *> RPOT(&F);
2292 
2293   // Calculate the rank map for F.
2294   BuildRankMap(F, RPOT);
2295 
2296   // Build the pair map before running reassociate.
2297   // Technically this would be more accurate if we did it after one round
2298   // of reassociation, but in practice it doesn't seem to help much on
2299   // real-world code, so don't waste the compile time running reassociate
2300   // twice.
2301   // If a user wants, they could expicitly run reassociate twice in their
2302   // pass pipeline for further potential gains.
2303   // It might also be possible to update the pair map during runtime, but the
2304   // overhead of that may be large if there's many reassociable chains.
2305   BuildPairMap(RPOT);
2306 
2307   MadeChange = false;
2308 
2309   // Traverse the same blocks that were analysed by BuildRankMap.
2310   for (BasicBlock *BI : RPOT) {
2311     assert(RankMap.count(&*BI) && "BB should be ranked.");
2312     // Optimize every instruction in the basic block.
2313     for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;)
2314       if (isInstructionTriviallyDead(&*II)) {
2315         EraseInst(&*II++);
2316       } else {
2317         OptimizeInst(&*II);
2318         assert(II->getParent() == &*BI && "Moved to a different block!");
2319         ++II;
2320       }
2321 
2322     // Make a copy of all the instructions to be redone so we can remove dead
2323     // instructions.
2324     SetVector<AssertingVH<Instruction>> ToRedo(RedoInsts);
2325     // Iterate over all instructions to be reevaluated and remove trivially dead
2326     // instructions. If any operand of the trivially dead instruction becomes
2327     // dead mark it for deletion as well. Continue this process until all
2328     // trivially dead instructions have been removed.
2329     while (!ToRedo.empty()) {
2330       Instruction *I = ToRedo.pop_back_val();
2331       if (isInstructionTriviallyDead(I)) {
2332         RecursivelyEraseDeadInsts(I, ToRedo);
2333         MadeChange = true;
2334       }
2335     }
2336 
2337     // Now that we have removed dead instructions, we can reoptimize the
2338     // remaining instructions.
2339     while (!RedoInsts.empty()) {
2340       Instruction *I = RedoInsts.pop_back_val();
2341       if (isInstructionTriviallyDead(I))
2342         EraseInst(I);
2343       else
2344         OptimizeInst(I);
2345     }
2346   }
2347 
2348   // We are done with the rank map and pair map.
2349   RankMap.clear();
2350   ValueRankMap.clear();
2351   for (auto &Entry : PairMap)
2352     Entry.clear();
2353 
2354   if (MadeChange) {
2355     PreservedAnalyses PA;
2356     PA.preserveSet<CFGAnalyses>();
2357     PA.preserve<GlobalsAA>();
2358     return PA;
2359   }
2360 
2361   return PreservedAnalyses::all();
2362 }
2363 
2364 namespace {
2365 
2366   class ReassociateLegacyPass : public FunctionPass {
2367     ReassociatePass Impl;
2368 
2369   public:
2370     static char ID; // Pass identification, replacement for typeid
2371 
2372     ReassociateLegacyPass() : FunctionPass(ID) {
2373       initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
2374     }
2375 
2376     bool runOnFunction(Function &F) override {
2377       if (skipFunction(F))
2378         return false;
2379 
2380       FunctionAnalysisManager DummyFAM;
2381       auto PA = Impl.run(F, DummyFAM);
2382       return !PA.areAllPreserved();
2383     }
2384 
2385     void getAnalysisUsage(AnalysisUsage &AU) const override {
2386       AU.setPreservesCFG();
2387       AU.addPreserved<GlobalsAAWrapperPass>();
2388     }
2389   };
2390 
2391 } // end anonymous namespace
2392 
2393 char ReassociateLegacyPass::ID = 0;
2394 
2395 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
2396                 "Reassociate expressions", false, false)
2397 
2398 // Public interface to the Reassociate pass
2399 FunctionPass *llvm::createReassociatePass() {
2400   return new ReassociateLegacyPass();
2401 }
2402