1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass reassociates commutative expressions in an order that is designed 10 // to promote better constant propagation, GCSE, LICM, PRE, etc. 11 // 12 // For example: 4 + (x + 5) -> x + (4 + 5) 13 // 14 // In the implementation of this algorithm, constants are assigned rank = 0, 15 // function arguments are rank = 1, and other values are assigned ranks 16 // corresponding to the reverse post order traversal of current function 17 // (starting at 2), which effectively gives values in deep loops higher rank 18 // than values not in loops. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "llvm/Transforms/Scalar/Reassociate.h" 23 #include "llvm/ADT/APFloat.h" 24 #include "llvm/ADT/APInt.h" 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/Analysis/BasicAliasAnalysis.h" 32 #include "llvm/Analysis/GlobalsModRef.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/CFG.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/IRBuilder.h" 41 #include "llvm/IR/InstrTypes.h" 42 #include "llvm/IR/Instruction.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/IR/PassManager.h" 46 #include "llvm/IR/PatternMatch.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/IR/User.h" 49 #include "llvm/IR/Value.h" 50 #include "llvm/IR/ValueHandle.h" 51 #include "llvm/InitializePasses.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Transforms/Scalar.h" 57 #include "llvm/Transforms/Utils/Local.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <utility> 61 62 using namespace llvm; 63 using namespace reassociate; 64 using namespace PatternMatch; 65 66 #define DEBUG_TYPE "reassociate" 67 68 STATISTIC(NumChanged, "Number of insts reassociated"); 69 STATISTIC(NumAnnihil, "Number of expr tree annihilated"); 70 STATISTIC(NumFactor , "Number of multiplies factored"); 71 72 #ifndef NDEBUG 73 /// Print out the expression identified in the Ops list. 74 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) { 75 Module *M = I->getModule(); 76 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " " 77 << *Ops[0].Op->getType() << '\t'; 78 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 79 dbgs() << "[ "; 80 Ops[i].Op->printAsOperand(dbgs(), false, M); 81 dbgs() << ", #" << Ops[i].Rank << "] "; 82 } 83 } 84 #endif 85 86 /// Utility class representing a non-constant Xor-operand. We classify 87 /// non-constant Xor-Operands into two categories: 88 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0 89 /// C2) 90 /// C2.1) The operand is in the form of "X | C", where C is a non-zero 91 /// constant. 92 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this 93 /// operand as "E | 0" 94 class llvm::reassociate::XorOpnd { 95 public: 96 XorOpnd(Value *V); 97 98 bool isInvalid() const { return SymbolicPart == nullptr; } 99 bool isOrExpr() const { return isOr; } 100 Value *getValue() const { return OrigVal; } 101 Value *getSymbolicPart() const { return SymbolicPart; } 102 unsigned getSymbolicRank() const { return SymbolicRank; } 103 const APInt &getConstPart() const { return ConstPart; } 104 105 void Invalidate() { SymbolicPart = OrigVal = nullptr; } 106 void setSymbolicRank(unsigned R) { SymbolicRank = R; } 107 108 private: 109 Value *OrigVal; 110 Value *SymbolicPart; 111 APInt ConstPart; 112 unsigned SymbolicRank; 113 bool isOr; 114 }; 115 116 XorOpnd::XorOpnd(Value *V) { 117 assert(!isa<ConstantInt>(V) && "No ConstantInt"); 118 OrigVal = V; 119 Instruction *I = dyn_cast<Instruction>(V); 120 SymbolicRank = 0; 121 122 if (I && (I->getOpcode() == Instruction::Or || 123 I->getOpcode() == Instruction::And)) { 124 Value *V0 = I->getOperand(0); 125 Value *V1 = I->getOperand(1); 126 const APInt *C; 127 if (match(V0, m_APInt(C))) 128 std::swap(V0, V1); 129 130 if (match(V1, m_APInt(C))) { 131 ConstPart = *C; 132 SymbolicPart = V0; 133 isOr = (I->getOpcode() == Instruction::Or); 134 return; 135 } 136 } 137 138 // view the operand as "V | 0" 139 SymbolicPart = V; 140 ConstPart = APInt::getZero(V->getType()->getScalarSizeInBits()); 141 isOr = true; 142 } 143 144 /// Return true if V is an instruction of the specified opcode and if it 145 /// only has one use. 146 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) { 147 auto *I = dyn_cast<Instruction>(V); 148 if (I && I->hasOneUse() && I->getOpcode() == Opcode) 149 if (!isa<FPMathOperator>(I) || I->isFast()) 150 return cast<BinaryOperator>(I); 151 return nullptr; 152 } 153 154 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1, 155 unsigned Opcode2) { 156 auto *I = dyn_cast<Instruction>(V); 157 if (I && I->hasOneUse() && 158 (I->getOpcode() == Opcode1 || I->getOpcode() == Opcode2)) 159 if (!isa<FPMathOperator>(I) || I->isFast()) 160 return cast<BinaryOperator>(I); 161 return nullptr; 162 } 163 164 void ReassociatePass::BuildRankMap(Function &F, 165 ReversePostOrderTraversal<Function*> &RPOT) { 166 unsigned Rank = 2; 167 168 // Assign distinct ranks to function arguments. 169 for (auto &Arg : F.args()) { 170 ValueRankMap[&Arg] = ++Rank; 171 LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank 172 << "\n"); 173 } 174 175 // Traverse basic blocks in ReversePostOrder. 176 for (BasicBlock *BB : RPOT) { 177 unsigned BBRank = RankMap[BB] = ++Rank << 16; 178 179 // Walk the basic block, adding precomputed ranks for any instructions that 180 // we cannot move. This ensures that the ranks for these instructions are 181 // all different in the block. 182 for (Instruction &I : *BB) 183 if (mayHaveNonDefUseDependency(I)) 184 ValueRankMap[&I] = ++BBRank; 185 } 186 } 187 188 unsigned ReassociatePass::getRank(Value *V) { 189 Instruction *I = dyn_cast<Instruction>(V); 190 if (!I) { 191 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument. 192 return 0; // Otherwise it's a global or constant, rank 0. 193 } 194 195 if (unsigned Rank = ValueRankMap[I]) 196 return Rank; // Rank already known? 197 198 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that 199 // we can reassociate expressions for code motion! Since we do not recurse 200 // for PHI nodes, we cannot have infinite recursion here, because there 201 // cannot be loops in the value graph that do not go through PHI nodes. 202 unsigned Rank = 0, MaxRank = RankMap[I->getParent()]; 203 for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i) 204 Rank = std::max(Rank, getRank(I->getOperand(i))); 205 206 // If this is a 'not' or 'neg' instruction, do not count it for rank. This 207 // assures us that X and ~X will have the same rank. 208 if (!match(I, m_Not(m_Value())) && !match(I, m_Neg(m_Value())) && 209 !match(I, m_FNeg(m_Value()))) 210 ++Rank; 211 212 LLVM_DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank 213 << "\n"); 214 215 return ValueRankMap[I] = Rank; 216 } 217 218 // Canonicalize constants to RHS. Otherwise, sort the operands by rank. 219 void ReassociatePass::canonicalizeOperands(Instruction *I) { 220 assert(isa<BinaryOperator>(I) && "Expected binary operator."); 221 assert(I->isCommutative() && "Expected commutative operator."); 222 223 Value *LHS = I->getOperand(0); 224 Value *RHS = I->getOperand(1); 225 if (LHS == RHS || isa<Constant>(RHS)) 226 return; 227 if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS)) 228 cast<BinaryOperator>(I)->swapOperands(); 229 } 230 231 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name, 232 Instruction *InsertBefore, Value *FlagsOp) { 233 if (S1->getType()->isIntOrIntVectorTy()) 234 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore); 235 else { 236 BinaryOperator *Res = 237 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore); 238 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 239 return Res; 240 } 241 } 242 243 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name, 244 Instruction *InsertBefore, Value *FlagsOp) { 245 if (S1->getType()->isIntOrIntVectorTy()) 246 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore); 247 else { 248 BinaryOperator *Res = 249 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore); 250 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 251 return Res; 252 } 253 } 254 255 static Instruction *CreateNeg(Value *S1, const Twine &Name, 256 Instruction *InsertBefore, Value *FlagsOp) { 257 if (S1->getType()->isIntOrIntVectorTy()) 258 return BinaryOperator::CreateNeg(S1, Name, InsertBefore); 259 260 if (auto *FMFSource = dyn_cast<Instruction>(FlagsOp)) 261 return UnaryOperator::CreateFNegFMF(S1, FMFSource, Name, InsertBefore); 262 263 return UnaryOperator::CreateFNeg(S1, Name, InsertBefore); 264 } 265 266 /// Replace 0-X with X*-1. 267 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) { 268 assert((isa<UnaryOperator>(Neg) || isa<BinaryOperator>(Neg)) && 269 "Expected a Negate!"); 270 // FIXME: It's not safe to lower a unary FNeg into a FMul by -1.0. 271 unsigned OpNo = isa<BinaryOperator>(Neg) ? 1 : 0; 272 Type *Ty = Neg->getType(); 273 Constant *NegOne = Ty->isIntOrIntVectorTy() ? 274 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0); 275 276 BinaryOperator *Res = CreateMul(Neg->getOperand(OpNo), NegOne, "", Neg, Neg); 277 Neg->setOperand(OpNo, Constant::getNullValue(Ty)); // Drop use of op. 278 Res->takeName(Neg); 279 Neg->replaceAllUsesWith(Res); 280 Res->setDebugLoc(Neg->getDebugLoc()); 281 return Res; 282 } 283 284 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael 285 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for 286 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic. 287 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every 288 /// even x in Bitwidth-bit arithmetic. 289 static unsigned CarmichaelShift(unsigned Bitwidth) { 290 if (Bitwidth < 3) 291 return Bitwidth - 1; 292 return Bitwidth - 2; 293 } 294 295 /// Add the extra weight 'RHS' to the existing weight 'LHS', 296 /// reducing the combined weight using any special properties of the operation. 297 /// The existing weight LHS represents the computation X op X op ... op X where 298 /// X occurs LHS times. The combined weight represents X op X op ... op X with 299 /// X occurring LHS + RHS times. If op is "Xor" for example then the combined 300 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even; 301 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second. 302 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) { 303 // If we were working with infinite precision arithmetic then the combined 304 // weight would be LHS + RHS. But we are using finite precision arithmetic, 305 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct 306 // for nilpotent operations and addition, but not for idempotent operations 307 // and multiplication), so it is important to correctly reduce the combined 308 // weight back into range if wrapping would be wrong. 309 310 // If RHS is zero then the weight didn't change. 311 if (RHS.isMinValue()) 312 return; 313 // If LHS is zero then the combined weight is RHS. 314 if (LHS.isMinValue()) { 315 LHS = RHS; 316 return; 317 } 318 // From this point on we know that neither LHS nor RHS is zero. 319 320 if (Instruction::isIdempotent(Opcode)) { 321 // Idempotent means X op X === X, so any non-zero weight is equivalent to a 322 // weight of 1. Keeping weights at zero or one also means that wrapping is 323 // not a problem. 324 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 325 return; // Return a weight of 1. 326 } 327 if (Instruction::isNilpotent(Opcode)) { 328 // Nilpotent means X op X === 0, so reduce weights modulo 2. 329 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 330 LHS = 0; // 1 + 1 === 0 modulo 2. 331 return; 332 } 333 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) { 334 // TODO: Reduce the weight by exploiting nsw/nuw? 335 LHS += RHS; 336 return; 337 } 338 339 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) && 340 "Unknown associative operation!"); 341 unsigned Bitwidth = LHS.getBitWidth(); 342 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth 343 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth 344 // bit number x, since either x is odd in which case x^CM = 1, or x is even in 345 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples 346 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth) 347 // which by a happy accident means that they can always be represented using 348 // Bitwidth bits. 349 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than 350 // the Carmichael number). 351 if (Bitwidth > 3) { 352 /// CM - The value of Carmichael's lambda function. 353 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth)); 354 // Any weight W >= Threshold can be replaced with W - CM. 355 APInt Threshold = CM + Bitwidth; 356 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!"); 357 // For Bitwidth 4 or more the following sum does not overflow. 358 LHS += RHS; 359 while (LHS.uge(Threshold)) 360 LHS -= CM; 361 } else { 362 // To avoid problems with overflow do everything the same as above but using 363 // a larger type. 364 unsigned CM = 1U << CarmichaelShift(Bitwidth); 365 unsigned Threshold = CM + Bitwidth; 366 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold && 367 "Weights not reduced!"); 368 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue(); 369 while (Total >= Threshold) 370 Total -= CM; 371 LHS = Total; 372 } 373 } 374 375 using RepeatedValue = std::pair<Value*, APInt>; 376 377 /// Given an associative binary expression, return the leaf 378 /// nodes in Ops along with their weights (how many times the leaf occurs). The 379 /// original expression is the same as 380 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times 381 /// op 382 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times 383 /// op 384 /// ... 385 /// op 386 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times 387 /// 388 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct. 389 /// 390 /// This routine may modify the function, in which case it returns 'true'. The 391 /// changes it makes may well be destructive, changing the value computed by 'I' 392 /// to something completely different. Thus if the routine returns 'true' then 393 /// you MUST either replace I with a new expression computed from the Ops array, 394 /// or use RewriteExprTree to put the values back in. 395 /// 396 /// A leaf node is either not a binary operation of the same kind as the root 397 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different 398 /// opcode), or is the same kind of binary operator but has a use which either 399 /// does not belong to the expression, or does belong to the expression but is 400 /// a leaf node. Every leaf node has at least one use that is a non-leaf node 401 /// of the expression, while for non-leaf nodes (except for the root 'I') every 402 /// use is a non-leaf node of the expression. 403 /// 404 /// For example: 405 /// expression graph node names 406 /// 407 /// + | I 408 /// / \ | 409 /// + + | A, B 410 /// / \ / \ | 411 /// * + * | C, D, E 412 /// / \ / \ / \ | 413 /// + * | F, G 414 /// 415 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in 416 /// that order) (C, 1), (E, 1), (F, 2), (G, 2). 417 /// 418 /// The expression is maximal: if some instruction is a binary operator of the 419 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression, 420 /// then the instruction also belongs to the expression, is not a leaf node of 421 /// it, and its operands also belong to the expression (but may be leaf nodes). 422 /// 423 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in 424 /// order to ensure that every non-root node in the expression has *exactly one* 425 /// use by a non-leaf node of the expression. This destruction means that the 426 /// caller MUST either replace 'I' with a new expression or use something like 427 /// RewriteExprTree to put the values back in if the routine indicates that it 428 /// made a change by returning 'true'. 429 /// 430 /// In the above example either the right operand of A or the left operand of B 431 /// will be replaced by undef. If it is B's operand then this gives: 432 /// 433 /// + | I 434 /// / \ | 435 /// + + | A, B - operand of B replaced with undef 436 /// / \ \ | 437 /// * + * | C, D, E 438 /// / \ / \ / \ | 439 /// + * | F, G 440 /// 441 /// Note that such undef operands can only be reached by passing through 'I'. 442 /// For example, if you visit operands recursively starting from a leaf node 443 /// then you will never see such an undef operand unless you get back to 'I', 444 /// which requires passing through a phi node. 445 /// 446 /// Note that this routine may also mutate binary operators of the wrong type 447 /// that have all uses inside the expression (i.e. only used by non-leaf nodes 448 /// of the expression) if it can turn them into binary operators of the right 449 /// type and thus make the expression bigger. 450 static bool LinearizeExprTree(Instruction *I, 451 SmallVectorImpl<RepeatedValue> &Ops) { 452 assert((isa<UnaryOperator>(I) || isa<BinaryOperator>(I)) && 453 "Expected a UnaryOperator or BinaryOperator!"); 454 LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I << '\n'); 455 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits(); 456 unsigned Opcode = I->getOpcode(); 457 assert(I->isAssociative() && I->isCommutative() && 458 "Expected an associative and commutative operation!"); 459 460 // Visit all operands of the expression, keeping track of their weight (the 461 // number of paths from the expression root to the operand, or if you like 462 // the number of times that operand occurs in the linearized expression). 463 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1 464 // while A has weight two. 465 466 // Worklist of non-leaf nodes (their operands are in the expression too) along 467 // with their weights, representing a certain number of paths to the operator. 468 // If an operator occurs in the worklist multiple times then we found multiple 469 // ways to get to it. 470 SmallVector<std::pair<Instruction*, APInt>, 8> Worklist; // (Op, Weight) 471 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1))); 472 bool Changed = false; 473 474 // Leaves of the expression are values that either aren't the right kind of 475 // operation (eg: a constant, or a multiply in an add tree), or are, but have 476 // some uses that are not inside the expression. For example, in I = X + X, 477 // X = A + B, the value X has two uses (by I) that are in the expression. If 478 // X has any other uses, for example in a return instruction, then we consider 479 // X to be a leaf, and won't analyze it further. When we first visit a value, 480 // if it has more than one use then at first we conservatively consider it to 481 // be a leaf. Later, as the expression is explored, we may discover some more 482 // uses of the value from inside the expression. If all uses turn out to be 483 // from within the expression (and the value is a binary operator of the right 484 // kind) then the value is no longer considered to be a leaf, and its operands 485 // are explored. 486 487 // Leaves - Keeps track of the set of putative leaves as well as the number of 488 // paths to each leaf seen so far. 489 using LeafMap = DenseMap<Value *, APInt>; 490 LeafMap Leaves; // Leaf -> Total weight so far. 491 SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order. 492 493 #ifndef NDEBUG 494 SmallPtrSet<Value *, 8> Visited; // For checking the iteration scheme. 495 #endif 496 while (!Worklist.empty()) { 497 std::pair<Instruction*, APInt> P = Worklist.pop_back_val(); 498 I = P.first; // We examine the operands of this binary operator. 499 500 for (unsigned OpIdx = 0; OpIdx < I->getNumOperands(); ++OpIdx) { // Visit operands. 501 Value *Op = I->getOperand(OpIdx); 502 APInt Weight = P.second; // Number of paths to this operand. 503 LLVM_DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n"); 504 assert(!Op->use_empty() && "No uses, so how did we get to it?!"); 505 506 // If this is a binary operation of the right kind with only one use then 507 // add its operands to the expression. 508 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 509 assert(Visited.insert(Op).second && "Not first visit!"); 510 LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n"); 511 Worklist.push_back(std::make_pair(BO, Weight)); 512 continue; 513 } 514 515 // Appears to be a leaf. Is the operand already in the set of leaves? 516 LeafMap::iterator It = Leaves.find(Op); 517 if (It == Leaves.end()) { 518 // Not in the leaf map. Must be the first time we saw this operand. 519 assert(Visited.insert(Op).second && "Not first visit!"); 520 if (!Op->hasOneUse()) { 521 // This value has uses not accounted for by the expression, so it is 522 // not safe to modify. Mark it as being a leaf. 523 LLVM_DEBUG(dbgs() 524 << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n"); 525 LeafOrder.push_back(Op); 526 Leaves[Op] = Weight; 527 continue; 528 } 529 // No uses outside the expression, try morphing it. 530 } else { 531 // Already in the leaf map. 532 assert(It != Leaves.end() && Visited.count(Op) && 533 "In leaf map but not visited!"); 534 535 // Update the number of paths to the leaf. 536 IncorporateWeight(It->second, Weight, Opcode); 537 538 #if 0 // TODO: Re-enable once PR13021 is fixed. 539 // The leaf already has one use from inside the expression. As we want 540 // exactly one such use, drop this new use of the leaf. 541 assert(!Op->hasOneUse() && "Only one use, but we got here twice!"); 542 I->setOperand(OpIdx, UndefValue::get(I->getType())); 543 Changed = true; 544 545 // If the leaf is a binary operation of the right kind and we now see 546 // that its multiple original uses were in fact all by nodes belonging 547 // to the expression, then no longer consider it to be a leaf and add 548 // its operands to the expression. 549 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 550 LLVM_DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n"); 551 Worklist.push_back(std::make_pair(BO, It->second)); 552 Leaves.erase(It); 553 continue; 554 } 555 #endif 556 557 // If we still have uses that are not accounted for by the expression 558 // then it is not safe to modify the value. 559 if (!Op->hasOneUse()) 560 continue; 561 562 // No uses outside the expression, try morphing it. 563 Weight = It->second; 564 Leaves.erase(It); // Since the value may be morphed below. 565 } 566 567 // At this point we have a value which, first of all, is not a binary 568 // expression of the right kind, and secondly, is only used inside the 569 // expression. This means that it can safely be modified. See if we 570 // can usefully morph it into an expression of the right kind. 571 assert((!isa<Instruction>(Op) || 572 cast<Instruction>(Op)->getOpcode() != Opcode 573 || (isa<FPMathOperator>(Op) && 574 !cast<Instruction>(Op)->isFast())) && 575 "Should have been handled above!"); 576 assert(Op->hasOneUse() && "Has uses outside the expression tree!"); 577 578 // If this is a multiply expression, turn any internal negations into 579 // multiplies by -1 so they can be reassociated. 580 if (Instruction *Tmp = dyn_cast<Instruction>(Op)) 581 if ((Opcode == Instruction::Mul && match(Tmp, m_Neg(m_Value()))) || 582 (Opcode == Instruction::FMul && match(Tmp, m_FNeg(m_Value())))) { 583 LLVM_DEBUG(dbgs() 584 << "MORPH LEAF: " << *Op << " (" << Weight << ") TO "); 585 Tmp = LowerNegateToMultiply(Tmp); 586 LLVM_DEBUG(dbgs() << *Tmp << '\n'); 587 Worklist.push_back(std::make_pair(Tmp, Weight)); 588 Changed = true; 589 continue; 590 } 591 592 // Failed to morph into an expression of the right type. This really is 593 // a leaf. 594 LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n"); 595 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?"); 596 LeafOrder.push_back(Op); 597 Leaves[Op] = Weight; 598 } 599 } 600 601 // The leaves, repeated according to their weights, represent the linearized 602 // form of the expression. 603 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) { 604 Value *V = LeafOrder[i]; 605 LeafMap::iterator It = Leaves.find(V); 606 if (It == Leaves.end()) 607 // Node initially thought to be a leaf wasn't. 608 continue; 609 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!"); 610 APInt Weight = It->second; 611 if (Weight.isMinValue()) 612 // Leaf already output or weight reduction eliminated it. 613 continue; 614 // Ensure the leaf is only output once. 615 It->second = 0; 616 Ops.push_back(std::make_pair(V, Weight)); 617 } 618 619 // For nilpotent operations or addition there may be no operands, for example 620 // because the expression was "X xor X" or consisted of 2^Bitwidth additions: 621 // in both cases the weight reduces to 0 causing the value to be skipped. 622 if (Ops.empty()) { 623 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType()); 624 assert(Identity && "Associative operation without identity!"); 625 Ops.emplace_back(Identity, APInt(Bitwidth, 1)); 626 } 627 628 return Changed; 629 } 630 631 /// Now that the operands for this expression tree are 632 /// linearized and optimized, emit them in-order. 633 void ReassociatePass::RewriteExprTree(BinaryOperator *I, 634 SmallVectorImpl<ValueEntry> &Ops) { 635 assert(Ops.size() > 1 && "Single values should be used directly!"); 636 637 // Since our optimizations should never increase the number of operations, the 638 // new expression can usually be written reusing the existing binary operators 639 // from the original expression tree, without creating any new instructions, 640 // though the rewritten expression may have a completely different topology. 641 // We take care to not change anything if the new expression will be the same 642 // as the original. If more than trivial changes (like commuting operands) 643 // were made then we are obliged to clear out any optional subclass data like 644 // nsw flags. 645 646 /// NodesToRewrite - Nodes from the original expression available for writing 647 /// the new expression into. 648 SmallVector<BinaryOperator*, 8> NodesToRewrite; 649 unsigned Opcode = I->getOpcode(); 650 BinaryOperator *Op = I; 651 652 /// NotRewritable - The operands being written will be the leaves of the new 653 /// expression and must not be used as inner nodes (via NodesToRewrite) by 654 /// mistake. Inner nodes are always reassociable, and usually leaves are not 655 /// (if they were they would have been incorporated into the expression and so 656 /// would not be leaves), so most of the time there is no danger of this. But 657 /// in rare cases a leaf may become reassociable if an optimization kills uses 658 /// of it, or it may momentarily become reassociable during rewriting (below) 659 /// due it being removed as an operand of one of its uses. Ensure that misuse 660 /// of leaf nodes as inner nodes cannot occur by remembering all of the future 661 /// leaves and refusing to reuse any of them as inner nodes. 662 SmallPtrSet<Value*, 8> NotRewritable; 663 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 664 NotRewritable.insert(Ops[i].Op); 665 666 // ExpressionChanged - Non-null if the rewritten expression differs from the 667 // original in some non-trivial way, requiring the clearing of optional flags. 668 // Flags are cleared from the operator in ExpressionChanged up to I inclusive. 669 BinaryOperator *ExpressionChanged = nullptr; 670 for (unsigned i = 0; ; ++i) { 671 // The last operation (which comes earliest in the IR) is special as both 672 // operands will come from Ops, rather than just one with the other being 673 // a subexpression. 674 if (i+2 == Ops.size()) { 675 Value *NewLHS = Ops[i].Op; 676 Value *NewRHS = Ops[i+1].Op; 677 Value *OldLHS = Op->getOperand(0); 678 Value *OldRHS = Op->getOperand(1); 679 680 if (NewLHS == OldLHS && NewRHS == OldRHS) 681 // Nothing changed, leave it alone. 682 break; 683 684 if (NewLHS == OldRHS && NewRHS == OldLHS) { 685 // The order of the operands was reversed. Swap them. 686 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 687 Op->swapOperands(); 688 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 689 MadeChange = true; 690 ++NumChanged; 691 break; 692 } 693 694 // The new operation differs non-trivially from the original. Overwrite 695 // the old operands with the new ones. 696 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 697 if (NewLHS != OldLHS) { 698 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode); 699 if (BO && !NotRewritable.count(BO)) 700 NodesToRewrite.push_back(BO); 701 Op->setOperand(0, NewLHS); 702 } 703 if (NewRHS != OldRHS) { 704 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode); 705 if (BO && !NotRewritable.count(BO)) 706 NodesToRewrite.push_back(BO); 707 Op->setOperand(1, NewRHS); 708 } 709 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 710 711 ExpressionChanged = Op; 712 MadeChange = true; 713 ++NumChanged; 714 715 break; 716 } 717 718 // Not the last operation. The left-hand side will be a sub-expression 719 // while the right-hand side will be the current element of Ops. 720 Value *NewRHS = Ops[i].Op; 721 if (NewRHS != Op->getOperand(1)) { 722 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 723 if (NewRHS == Op->getOperand(0)) { 724 // The new right-hand side was already present as the left operand. If 725 // we are lucky then swapping the operands will sort out both of them. 726 Op->swapOperands(); 727 } else { 728 // Overwrite with the new right-hand side. 729 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode); 730 if (BO && !NotRewritable.count(BO)) 731 NodesToRewrite.push_back(BO); 732 Op->setOperand(1, NewRHS); 733 ExpressionChanged = Op; 734 } 735 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 736 MadeChange = true; 737 ++NumChanged; 738 } 739 740 // Now deal with the left-hand side. If this is already an operation node 741 // from the original expression then just rewrite the rest of the expression 742 // into it. 743 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode); 744 if (BO && !NotRewritable.count(BO)) { 745 Op = BO; 746 continue; 747 } 748 749 // Otherwise, grab a spare node from the original expression and use that as 750 // the left-hand side. If there are no nodes left then the optimizers made 751 // an expression with more nodes than the original! This usually means that 752 // they did something stupid but it might mean that the problem was just too 753 // hard (finding the mimimal number of multiplications needed to realize a 754 // multiplication expression is NP-complete). Whatever the reason, smart or 755 // stupid, create a new node if there are none left. 756 BinaryOperator *NewOp; 757 if (NodesToRewrite.empty()) { 758 Constant *Undef = UndefValue::get(I->getType()); 759 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode), 760 Undef, Undef, "", I); 761 if (NewOp->getType()->isFPOrFPVectorTy()) 762 NewOp->setFastMathFlags(I->getFastMathFlags()); 763 } else { 764 NewOp = NodesToRewrite.pop_back_val(); 765 } 766 767 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 768 Op->setOperand(0, NewOp); 769 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 770 ExpressionChanged = Op; 771 MadeChange = true; 772 ++NumChanged; 773 Op = NewOp; 774 } 775 776 // If the expression changed non-trivially then clear out all subclass data 777 // starting from the operator specified in ExpressionChanged, and compactify 778 // the operators to just before the expression root to guarantee that the 779 // expression tree is dominated by all of Ops. 780 if (ExpressionChanged) 781 do { 782 // Preserve FastMathFlags. 783 if (isa<FPMathOperator>(I)) { 784 FastMathFlags Flags = I->getFastMathFlags(); 785 ExpressionChanged->clearSubclassOptionalData(); 786 ExpressionChanged->setFastMathFlags(Flags); 787 } else 788 ExpressionChanged->clearSubclassOptionalData(); 789 790 if (ExpressionChanged == I) 791 break; 792 793 // Discard any debug info related to the expressions that has changed (we 794 // can leave debug infor related to the root, since the result of the 795 // expression tree should be the same even after reassociation). 796 replaceDbgUsesWithUndef(ExpressionChanged); 797 798 ExpressionChanged->moveBefore(I); 799 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin()); 800 } while (true); 801 802 // Throw away any left over nodes from the original expression. 803 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i) 804 RedoInsts.insert(NodesToRewrite[i]); 805 } 806 807 /// Insert instructions before the instruction pointed to by BI, 808 /// that computes the negative version of the value specified. The negative 809 /// version of the value is returned, and BI is left pointing at the instruction 810 /// that should be processed next by the reassociation pass. 811 /// Also add intermediate instructions to the redo list that are modified while 812 /// pushing the negates through adds. These will be revisited to see if 813 /// additional opportunities have been exposed. 814 static Value *NegateValue(Value *V, Instruction *BI, 815 ReassociatePass::OrderedSet &ToRedo) { 816 if (auto *C = dyn_cast<Constant>(V)) 817 return C->getType()->isFPOrFPVectorTy() ? ConstantExpr::getFNeg(C) : 818 ConstantExpr::getNeg(C); 819 820 // We are trying to expose opportunity for reassociation. One of the things 821 // that we want to do to achieve this is to push a negation as deep into an 822 // expression chain as possible, to expose the add instructions. In practice, 823 // this means that we turn this: 824 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D 825 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate 826 // the constants. We assume that instcombine will clean up the mess later if 827 // we introduce tons of unnecessary negation instructions. 828 // 829 if (BinaryOperator *I = 830 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) { 831 // Push the negates through the add. 832 I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo)); 833 I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo)); 834 if (I->getOpcode() == Instruction::Add) { 835 I->setHasNoUnsignedWrap(false); 836 I->setHasNoSignedWrap(false); 837 } 838 839 // We must move the add instruction here, because the neg instructions do 840 // not dominate the old add instruction in general. By moving it, we are 841 // assured that the neg instructions we just inserted dominate the 842 // instruction we are about to insert after them. 843 // 844 I->moveBefore(BI); 845 I->setName(I->getName()+".neg"); 846 847 // Add the intermediate negates to the redo list as processing them later 848 // could expose more reassociating opportunities. 849 ToRedo.insert(I); 850 return I; 851 } 852 853 // Okay, we need to materialize a negated version of V with an instruction. 854 // Scan the use lists of V to see if we have one already. 855 for (User *U : V->users()) { 856 if (!match(U, m_Neg(m_Value())) && !match(U, m_FNeg(m_Value()))) 857 continue; 858 859 // We found one! Now we have to make sure that the definition dominates 860 // this use. We do this by moving it to the entry block (if it is a 861 // non-instruction value) or right after the definition. These negates will 862 // be zapped by reassociate later, so we don't need much finesse here. 863 Instruction *TheNeg = cast<Instruction>(U); 864 865 // Verify that the negate is in this function, V might be a constant expr. 866 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent()) 867 continue; 868 869 bool FoundCatchSwitch = false; 870 871 BasicBlock::iterator InsertPt; 872 if (Instruction *InstInput = dyn_cast<Instruction>(V)) { 873 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) { 874 InsertPt = II->getNormalDest()->begin(); 875 } else { 876 InsertPt = ++InstInput->getIterator(); 877 } 878 879 const BasicBlock *BB = InsertPt->getParent(); 880 881 // Make sure we don't move anything before PHIs or exception 882 // handling pads. 883 while (InsertPt != BB->end() && (isa<PHINode>(InsertPt) || 884 InsertPt->isEHPad())) { 885 if (isa<CatchSwitchInst>(InsertPt)) 886 // A catchswitch cannot have anything in the block except 887 // itself and PHIs. We'll bail out below. 888 FoundCatchSwitch = true; 889 ++InsertPt; 890 } 891 } else { 892 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin(); 893 } 894 895 // We found a catchswitch in the block where we want to move the 896 // neg. We cannot move anything into that block. Bail and just 897 // create the neg before BI, as if we hadn't found an existing 898 // neg. 899 if (FoundCatchSwitch) 900 break; 901 902 TheNeg->moveBefore(&*InsertPt); 903 if (TheNeg->getOpcode() == Instruction::Sub) { 904 TheNeg->setHasNoUnsignedWrap(false); 905 TheNeg->setHasNoSignedWrap(false); 906 } else { 907 TheNeg->andIRFlags(BI); 908 } 909 ToRedo.insert(TheNeg); 910 return TheNeg; 911 } 912 913 // Insert a 'neg' instruction that subtracts the value from zero to get the 914 // negation. 915 Instruction *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI); 916 ToRedo.insert(NewNeg); 917 return NewNeg; 918 } 919 920 // See if this `or` looks like an load widening reduction, i.e. that it 921 // consists of an `or`/`shl`/`zext`/`load` nodes only. Note that we don't 922 // ensure that the pattern is *really* a load widening reduction, 923 // we do not ensure that it can really be replaced with a widened load, 924 // only that it mostly looks like one. 925 static bool isLoadCombineCandidate(Instruction *Or) { 926 SmallVector<Instruction *, 8> Worklist; 927 SmallSet<Instruction *, 8> Visited; 928 929 auto Enqueue = [&](Value *V) { 930 auto *I = dyn_cast<Instruction>(V); 931 // Each node of an `or` reduction must be an instruction, 932 if (!I) 933 return false; // Node is certainly not part of an `or` load reduction. 934 // Only process instructions we have never processed before. 935 if (Visited.insert(I).second) 936 Worklist.emplace_back(I); 937 return true; // Will need to look at parent nodes. 938 }; 939 940 if (!Enqueue(Or)) 941 return false; // Not an `or` reduction pattern. 942 943 while (!Worklist.empty()) { 944 auto *I = Worklist.pop_back_val(); 945 946 // Okay, which instruction is this node? 947 switch (I->getOpcode()) { 948 case Instruction::Or: 949 // Got an `or` node. That's fine, just recurse into it's operands. 950 for (Value *Op : I->operands()) 951 if (!Enqueue(Op)) 952 return false; // Not an `or` reduction pattern. 953 continue; 954 955 case Instruction::Shl: 956 case Instruction::ZExt: 957 // `shl`/`zext` nodes are fine, just recurse into their base operand. 958 if (!Enqueue(I->getOperand(0))) 959 return false; // Not an `or` reduction pattern. 960 continue; 961 962 case Instruction::Load: 963 // Perfect, `load` node means we've reached an edge of the graph. 964 continue; 965 966 default: // Unknown node. 967 return false; // Not an `or` reduction pattern. 968 } 969 } 970 971 return true; 972 } 973 974 /// Return true if it may be profitable to convert this (X|Y) into (X+Y). 975 static bool shouldConvertOrWithNoCommonBitsToAdd(Instruction *Or) { 976 // Don't bother to convert this up unless either the LHS is an associable add 977 // or subtract or mul or if this is only used by one of the above. 978 // This is only a compile-time improvement, it is not needed for correctness! 979 auto isInteresting = [](Value *V) { 980 for (auto Op : {Instruction::Add, Instruction::Sub, Instruction::Mul, 981 Instruction::Shl}) 982 if (isReassociableOp(V, Op)) 983 return true; 984 return false; 985 }; 986 987 if (any_of(Or->operands(), isInteresting)) 988 return true; 989 990 Value *VB = Or->user_back(); 991 if (Or->hasOneUse() && isInteresting(VB)) 992 return true; 993 994 return false; 995 } 996 997 /// If we have (X|Y), and iff X and Y have no common bits set, 998 /// transform this into (X+Y) to allow arithmetics reassociation. 999 static BinaryOperator *convertOrWithNoCommonBitsToAdd(Instruction *Or) { 1000 // Convert an or into an add. 1001 BinaryOperator *New = 1002 CreateAdd(Or->getOperand(0), Or->getOperand(1), "", Or, Or); 1003 New->setHasNoSignedWrap(); 1004 New->setHasNoUnsignedWrap(); 1005 New->takeName(Or); 1006 1007 // Everyone now refers to the add instruction. 1008 Or->replaceAllUsesWith(New); 1009 New->setDebugLoc(Or->getDebugLoc()); 1010 1011 LLVM_DEBUG(dbgs() << "Converted or into an add: " << *New << '\n'); 1012 return New; 1013 } 1014 1015 /// Return true if we should break up this subtract of X-Y into (X + -Y). 1016 static bool ShouldBreakUpSubtract(Instruction *Sub) { 1017 // If this is a negation, we can't split it up! 1018 if (match(Sub, m_Neg(m_Value())) || match(Sub, m_FNeg(m_Value()))) 1019 return false; 1020 1021 // Don't breakup X - undef. 1022 if (isa<UndefValue>(Sub->getOperand(1))) 1023 return false; 1024 1025 // Don't bother to break this up unless either the LHS is an associable add or 1026 // subtract or if this is only used by one. 1027 Value *V0 = Sub->getOperand(0); 1028 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) || 1029 isReassociableOp(V0, Instruction::Sub, Instruction::FSub)) 1030 return true; 1031 Value *V1 = Sub->getOperand(1); 1032 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) || 1033 isReassociableOp(V1, Instruction::Sub, Instruction::FSub)) 1034 return true; 1035 Value *VB = Sub->user_back(); 1036 if (Sub->hasOneUse() && 1037 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) || 1038 isReassociableOp(VB, Instruction::Sub, Instruction::FSub))) 1039 return true; 1040 1041 return false; 1042 } 1043 1044 /// If we have (X-Y), and if either X is an add, or if this is only used by an 1045 /// add, transform this into (X+(0-Y)) to promote better reassociation. 1046 static BinaryOperator *BreakUpSubtract(Instruction *Sub, 1047 ReassociatePass::OrderedSet &ToRedo) { 1048 // Convert a subtract into an add and a neg instruction. This allows sub 1049 // instructions to be commuted with other add instructions. 1050 // 1051 // Calculate the negative value of Operand 1 of the sub instruction, 1052 // and set it as the RHS of the add instruction we just made. 1053 Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo); 1054 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub); 1055 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op. 1056 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op. 1057 New->takeName(Sub); 1058 1059 // Everyone now refers to the add instruction. 1060 Sub->replaceAllUsesWith(New); 1061 New->setDebugLoc(Sub->getDebugLoc()); 1062 1063 LLVM_DEBUG(dbgs() << "Negated: " << *New << '\n'); 1064 return New; 1065 } 1066 1067 /// If this is a shift of a reassociable multiply or is used by one, change 1068 /// this into a multiply by a constant to assist with further reassociation. 1069 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) { 1070 Constant *MulCst = ConstantInt::get(Shl->getType(), 1); 1071 auto *SA = cast<ConstantInt>(Shl->getOperand(1)); 1072 MulCst = ConstantExpr::getShl(MulCst, SA); 1073 1074 BinaryOperator *Mul = 1075 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl); 1076 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op. 1077 Mul->takeName(Shl); 1078 1079 // Everyone now refers to the mul instruction. 1080 Shl->replaceAllUsesWith(Mul); 1081 Mul->setDebugLoc(Shl->getDebugLoc()); 1082 1083 // We can safely preserve the nuw flag in all cases. It's also safe to turn a 1084 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special 1085 // handling. It can be preserved as long as we're not left shifting by 1086 // bitwidth - 1. 1087 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap(); 1088 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap(); 1089 unsigned BitWidth = Shl->getType()->getIntegerBitWidth(); 1090 if (NSW && (NUW || SA->getValue().ult(BitWidth - 1))) 1091 Mul->setHasNoSignedWrap(true); 1092 Mul->setHasNoUnsignedWrap(NUW); 1093 return Mul; 1094 } 1095 1096 /// Scan backwards and forwards among values with the same rank as element i 1097 /// to see if X exists. If X does not exist, return i. This is useful when 1098 /// scanning for 'x' when we see '-x' because they both get the same rank. 1099 static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops, 1100 unsigned i, Value *X) { 1101 unsigned XRank = Ops[i].Rank; 1102 unsigned e = Ops.size(); 1103 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) { 1104 if (Ops[j].Op == X) 1105 return j; 1106 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 1107 if (Instruction *I2 = dyn_cast<Instruction>(X)) 1108 if (I1->isIdenticalTo(I2)) 1109 return j; 1110 } 1111 // Scan backwards. 1112 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) { 1113 if (Ops[j].Op == X) 1114 return j; 1115 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 1116 if (Instruction *I2 = dyn_cast<Instruction>(X)) 1117 if (I1->isIdenticalTo(I2)) 1118 return j; 1119 } 1120 return i; 1121 } 1122 1123 /// Emit a tree of add instructions, summing Ops together 1124 /// and returning the result. Insert the tree before I. 1125 static Value *EmitAddTreeOfValues(Instruction *I, 1126 SmallVectorImpl<WeakTrackingVH> &Ops) { 1127 if (Ops.size() == 1) return Ops.back(); 1128 1129 Value *V1 = Ops.pop_back_val(); 1130 Value *V2 = EmitAddTreeOfValues(I, Ops); 1131 return CreateAdd(V2, V1, "reass.add", I, I); 1132 } 1133 1134 /// If V is an expression tree that is a multiplication sequence, 1135 /// and if this sequence contains a multiply by Factor, 1136 /// remove Factor from the tree and return the new tree. 1137 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) { 1138 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1139 if (!BO) 1140 return nullptr; 1141 1142 SmallVector<RepeatedValue, 8> Tree; 1143 MadeChange |= LinearizeExprTree(BO, Tree); 1144 SmallVector<ValueEntry, 8> Factors; 1145 Factors.reserve(Tree.size()); 1146 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 1147 RepeatedValue E = Tree[i]; 1148 Factors.append(E.second.getZExtValue(), 1149 ValueEntry(getRank(E.first), E.first)); 1150 } 1151 1152 bool FoundFactor = false; 1153 bool NeedsNegate = false; 1154 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1155 if (Factors[i].Op == Factor) { 1156 FoundFactor = true; 1157 Factors.erase(Factors.begin()+i); 1158 break; 1159 } 1160 1161 // If this is a negative version of this factor, remove it. 1162 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) { 1163 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op)) 1164 if (FC1->getValue() == -FC2->getValue()) { 1165 FoundFactor = NeedsNegate = true; 1166 Factors.erase(Factors.begin()+i); 1167 break; 1168 } 1169 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) { 1170 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) { 1171 const APFloat &F1 = FC1->getValueAPF(); 1172 APFloat F2(FC2->getValueAPF()); 1173 F2.changeSign(); 1174 if (F1 == F2) { 1175 FoundFactor = NeedsNegate = true; 1176 Factors.erase(Factors.begin() + i); 1177 break; 1178 } 1179 } 1180 } 1181 } 1182 1183 if (!FoundFactor) { 1184 // Make sure to restore the operands to the expression tree. 1185 RewriteExprTree(BO, Factors); 1186 return nullptr; 1187 } 1188 1189 BasicBlock::iterator InsertPt = ++BO->getIterator(); 1190 1191 // If this was just a single multiply, remove the multiply and return the only 1192 // remaining operand. 1193 if (Factors.size() == 1) { 1194 RedoInsts.insert(BO); 1195 V = Factors[0].Op; 1196 } else { 1197 RewriteExprTree(BO, Factors); 1198 V = BO; 1199 } 1200 1201 if (NeedsNegate) 1202 V = CreateNeg(V, "neg", &*InsertPt, BO); 1203 1204 return V; 1205 } 1206 1207 /// If V is a single-use multiply, recursively add its operands as factors, 1208 /// otherwise add V to the list of factors. 1209 /// 1210 /// Ops is the top-level list of add operands we're trying to factor. 1211 static void FindSingleUseMultiplyFactors(Value *V, 1212 SmallVectorImpl<Value*> &Factors) { 1213 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1214 if (!BO) { 1215 Factors.push_back(V); 1216 return; 1217 } 1218 1219 // Otherwise, add the LHS and RHS to the list of factors. 1220 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors); 1221 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors); 1222 } 1223 1224 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction. 1225 /// This optimizes based on identities. If it can be reduced to a single Value, 1226 /// it is returned, otherwise the Ops list is mutated as necessary. 1227 static Value *OptimizeAndOrXor(unsigned Opcode, 1228 SmallVectorImpl<ValueEntry> &Ops) { 1229 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs. 1230 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1. 1231 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1232 // First, check for X and ~X in the operand list. 1233 assert(i < Ops.size()); 1234 Value *X; 1235 if (match(Ops[i].Op, m_Not(m_Value(X)))) { // Cannot occur for ^. 1236 unsigned FoundX = FindInOperandList(Ops, i, X); 1237 if (FoundX != i) { 1238 if (Opcode == Instruction::And) // ...&X&~X = 0 1239 return Constant::getNullValue(X->getType()); 1240 1241 if (Opcode == Instruction::Or) // ...|X|~X = -1 1242 return Constant::getAllOnesValue(X->getType()); 1243 } 1244 } 1245 1246 // Next, check for duplicate pairs of values, which we assume are next to 1247 // each other, due to our sorting criteria. 1248 assert(i < Ops.size()); 1249 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) { 1250 if (Opcode == Instruction::And || Opcode == Instruction::Or) { 1251 // Drop duplicate values for And and Or. 1252 Ops.erase(Ops.begin()+i); 1253 --i; --e; 1254 ++NumAnnihil; 1255 continue; 1256 } 1257 1258 // Drop pairs of values for Xor. 1259 assert(Opcode == Instruction::Xor); 1260 if (e == 2) 1261 return Constant::getNullValue(Ops[0].Op->getType()); 1262 1263 // Y ^ X^X -> Y 1264 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1265 i -= 1; e -= 2; 1266 ++NumAnnihil; 1267 } 1268 } 1269 return nullptr; 1270 } 1271 1272 /// Helper function of CombineXorOpnd(). It creates a bitwise-and 1273 /// instruction with the given two operands, and return the resulting 1274 /// instruction. There are two special cases: 1) if the constant operand is 0, 1275 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will 1276 /// be returned. 1277 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd, 1278 const APInt &ConstOpnd) { 1279 if (ConstOpnd.isZero()) 1280 return nullptr; 1281 1282 if (ConstOpnd.isAllOnes()) 1283 return Opnd; 1284 1285 Instruction *I = BinaryOperator::CreateAnd( 1286 Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra", 1287 InsertBefore); 1288 I->setDebugLoc(InsertBefore->getDebugLoc()); 1289 return I; 1290 } 1291 1292 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd" 1293 // into "R ^ C", where C would be 0, and R is a symbolic value. 1294 // 1295 // If it was successful, true is returned, and the "R" and "C" is returned 1296 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned, 1297 // and both "Res" and "ConstOpnd" remain unchanged. 1298 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1299 APInt &ConstOpnd, Value *&Res) { 1300 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2 1301 // = ((x | c1) ^ c1) ^ (c1 ^ c2) 1302 // = (x & ~c1) ^ (c1 ^ c2) 1303 // It is useful only when c1 == c2. 1304 if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isZero()) 1305 return false; 1306 1307 if (!Opnd1->getValue()->hasOneUse()) 1308 return false; 1309 1310 const APInt &C1 = Opnd1->getConstPart(); 1311 if (C1 != ConstOpnd) 1312 return false; 1313 1314 Value *X = Opnd1->getSymbolicPart(); 1315 Res = createAndInstr(I, X, ~C1); 1316 // ConstOpnd was C2, now C1 ^ C2. 1317 ConstOpnd ^= C1; 1318 1319 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1320 RedoInsts.insert(T); 1321 return true; 1322 } 1323 1324 // Helper function of OptimizeXor(). It tries to simplify 1325 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a 1326 // symbolic value. 1327 // 1328 // If it was successful, true is returned, and the "R" and "C" is returned 1329 // via "Res" and "ConstOpnd", respectively (If the entire expression is 1330 // evaluated to a constant, the Res is set to NULL); otherwise, false is 1331 // returned, and both "Res" and "ConstOpnd" remain unchanged. 1332 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1333 XorOpnd *Opnd2, APInt &ConstOpnd, 1334 Value *&Res) { 1335 Value *X = Opnd1->getSymbolicPart(); 1336 if (X != Opnd2->getSymbolicPart()) 1337 return false; 1338 1339 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.) 1340 int DeadInstNum = 1; 1341 if (Opnd1->getValue()->hasOneUse()) 1342 DeadInstNum++; 1343 if (Opnd2->getValue()->hasOneUse()) 1344 DeadInstNum++; 1345 1346 // Xor-Rule 2: 1347 // (x | c1) ^ (x & c2) 1348 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1 1349 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1 1350 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3 1351 // 1352 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) { 1353 if (Opnd2->isOrExpr()) 1354 std::swap(Opnd1, Opnd2); 1355 1356 const APInt &C1 = Opnd1->getConstPart(); 1357 const APInt &C2 = Opnd2->getConstPart(); 1358 APInt C3((~C1) ^ C2); 1359 1360 // Do not increase code size! 1361 if (!C3.isZero() && !C3.isAllOnes()) { 1362 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2; 1363 if (NewInstNum > DeadInstNum) 1364 return false; 1365 } 1366 1367 Res = createAndInstr(I, X, C3); 1368 ConstOpnd ^= C1; 1369 } else if (Opnd1->isOrExpr()) { 1370 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2 1371 // 1372 const APInt &C1 = Opnd1->getConstPart(); 1373 const APInt &C2 = Opnd2->getConstPart(); 1374 APInt C3 = C1 ^ C2; 1375 1376 // Do not increase code size 1377 if (!C3.isZero() && !C3.isAllOnes()) { 1378 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2; 1379 if (NewInstNum > DeadInstNum) 1380 return false; 1381 } 1382 1383 Res = createAndInstr(I, X, C3); 1384 ConstOpnd ^= C3; 1385 } else { 1386 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2)) 1387 // 1388 const APInt &C1 = Opnd1->getConstPart(); 1389 const APInt &C2 = Opnd2->getConstPart(); 1390 APInt C3 = C1 ^ C2; 1391 Res = createAndInstr(I, X, C3); 1392 } 1393 1394 // Put the original operands in the Redo list; hope they will be deleted 1395 // as dead code. 1396 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1397 RedoInsts.insert(T); 1398 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue())) 1399 RedoInsts.insert(T); 1400 1401 return true; 1402 } 1403 1404 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced 1405 /// to a single Value, it is returned, otherwise the Ops list is mutated as 1406 /// necessary. 1407 Value *ReassociatePass::OptimizeXor(Instruction *I, 1408 SmallVectorImpl<ValueEntry> &Ops) { 1409 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops)) 1410 return V; 1411 1412 if (Ops.size() == 1) 1413 return nullptr; 1414 1415 SmallVector<XorOpnd, 8> Opnds; 1416 SmallVector<XorOpnd*, 8> OpndPtrs; 1417 Type *Ty = Ops[0].Op->getType(); 1418 APInt ConstOpnd(Ty->getScalarSizeInBits(), 0); 1419 1420 // Step 1: Convert ValueEntry to XorOpnd 1421 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1422 Value *V = Ops[i].Op; 1423 const APInt *C; 1424 // TODO: Support non-splat vectors. 1425 if (match(V, m_APInt(C))) { 1426 ConstOpnd ^= *C; 1427 } else { 1428 XorOpnd O(V); 1429 O.setSymbolicRank(getRank(O.getSymbolicPart())); 1430 Opnds.push_back(O); 1431 } 1432 } 1433 1434 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds". 1435 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate 1436 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop 1437 // with the previous loop --- the iterator of the "Opnds" may be invalidated 1438 // when new elements are added to the vector. 1439 for (unsigned i = 0, e = Opnds.size(); i != e; ++i) 1440 OpndPtrs.push_back(&Opnds[i]); 1441 1442 // Step 2: Sort the Xor-Operands in a way such that the operands containing 1443 // the same symbolic value cluster together. For instance, the input operand 1444 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into: 1445 // ("x | 123", "x & 789", "y & 456"). 1446 // 1447 // The purpose is twofold: 1448 // 1) Cluster together the operands sharing the same symbolic-value. 1449 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which 1450 // could potentially shorten crital path, and expose more loop-invariants. 1451 // Note that values' rank are basically defined in RPO order (FIXME). 1452 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier 1453 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2", 1454 // "z" in the order of X-Y-Z is better than any other orders. 1455 llvm::stable_sort(OpndPtrs, [](XorOpnd *LHS, XorOpnd *RHS) { 1456 return LHS->getSymbolicRank() < RHS->getSymbolicRank(); 1457 }); 1458 1459 // Step 3: Combine adjacent operands 1460 XorOpnd *PrevOpnd = nullptr; 1461 bool Changed = false; 1462 for (unsigned i = 0, e = Opnds.size(); i < e; i++) { 1463 XorOpnd *CurrOpnd = OpndPtrs[i]; 1464 // The combined value 1465 Value *CV; 1466 1467 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd" 1468 if (!ConstOpnd.isZero() && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) { 1469 Changed = true; 1470 if (CV) 1471 *CurrOpnd = XorOpnd(CV); 1472 else { 1473 CurrOpnd->Invalidate(); 1474 continue; 1475 } 1476 } 1477 1478 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) { 1479 PrevOpnd = CurrOpnd; 1480 continue; 1481 } 1482 1483 // step 3.2: When previous and current operands share the same symbolic 1484 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd" 1485 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) { 1486 // Remove previous operand 1487 PrevOpnd->Invalidate(); 1488 if (CV) { 1489 *CurrOpnd = XorOpnd(CV); 1490 PrevOpnd = CurrOpnd; 1491 } else { 1492 CurrOpnd->Invalidate(); 1493 PrevOpnd = nullptr; 1494 } 1495 Changed = true; 1496 } 1497 } 1498 1499 // Step 4: Reassemble the Ops 1500 if (Changed) { 1501 Ops.clear(); 1502 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) { 1503 XorOpnd &O = Opnds[i]; 1504 if (O.isInvalid()) 1505 continue; 1506 ValueEntry VE(getRank(O.getValue()), O.getValue()); 1507 Ops.push_back(VE); 1508 } 1509 if (!ConstOpnd.isZero()) { 1510 Value *C = ConstantInt::get(Ty, ConstOpnd); 1511 ValueEntry VE(getRank(C), C); 1512 Ops.push_back(VE); 1513 } 1514 unsigned Sz = Ops.size(); 1515 if (Sz == 1) 1516 return Ops.back().Op; 1517 if (Sz == 0) { 1518 assert(ConstOpnd.isZero()); 1519 return ConstantInt::get(Ty, ConstOpnd); 1520 } 1521 } 1522 1523 return nullptr; 1524 } 1525 1526 /// Optimize a series of operands to an 'add' instruction. This 1527 /// optimizes based on identities. If it can be reduced to a single Value, it 1528 /// is returned, otherwise the Ops list is mutated as necessary. 1529 Value *ReassociatePass::OptimizeAdd(Instruction *I, 1530 SmallVectorImpl<ValueEntry> &Ops) { 1531 // Scan the operand lists looking for X and -X pairs. If we find any, we 1532 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it, 1533 // scan for any 1534 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z. 1535 1536 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1537 Value *TheOp = Ops[i].Op; 1538 // Check to see if we've seen this operand before. If so, we factor all 1539 // instances of the operand together. Due to our sorting criteria, we know 1540 // that these need to be next to each other in the vector. 1541 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) { 1542 // Rescan the list, remove all instances of this operand from the expr. 1543 unsigned NumFound = 0; 1544 do { 1545 Ops.erase(Ops.begin()+i); 1546 ++NumFound; 1547 } while (i != Ops.size() && Ops[i].Op == TheOp); 1548 1549 LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp 1550 << '\n'); 1551 ++NumFactor; 1552 1553 // Insert a new multiply. 1554 Type *Ty = TheOp->getType(); 1555 Constant *C = Ty->isIntOrIntVectorTy() ? 1556 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound); 1557 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I); 1558 1559 // Now that we have inserted a multiply, optimize it. This allows us to 1560 // handle cases that require multiple factoring steps, such as this: 1561 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6 1562 RedoInsts.insert(Mul); 1563 1564 // If every add operand was a duplicate, return the multiply. 1565 if (Ops.empty()) 1566 return Mul; 1567 1568 // Otherwise, we had some input that didn't have the dupe, such as 1569 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of 1570 // things being added by this operation. 1571 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul)); 1572 1573 --i; 1574 e = Ops.size(); 1575 continue; 1576 } 1577 1578 // Check for X and -X or X and ~X in the operand list. 1579 Value *X; 1580 if (!match(TheOp, m_Neg(m_Value(X))) && !match(TheOp, m_Not(m_Value(X))) && 1581 !match(TheOp, m_FNeg(m_Value(X)))) 1582 continue; 1583 1584 unsigned FoundX = FindInOperandList(Ops, i, X); 1585 if (FoundX == i) 1586 continue; 1587 1588 // Remove X and -X from the operand list. 1589 if (Ops.size() == 2 && 1590 (match(TheOp, m_Neg(m_Value())) || match(TheOp, m_FNeg(m_Value())))) 1591 return Constant::getNullValue(X->getType()); 1592 1593 // Remove X and ~X from the operand list. 1594 if (Ops.size() == 2 && match(TheOp, m_Not(m_Value()))) 1595 return Constant::getAllOnesValue(X->getType()); 1596 1597 Ops.erase(Ops.begin()+i); 1598 if (i < FoundX) 1599 --FoundX; 1600 else 1601 --i; // Need to back up an extra one. 1602 Ops.erase(Ops.begin()+FoundX); 1603 ++NumAnnihil; 1604 --i; // Revisit element. 1605 e -= 2; // Removed two elements. 1606 1607 // if X and ~X we append -1 to the operand list. 1608 if (match(TheOp, m_Not(m_Value()))) { 1609 Value *V = Constant::getAllOnesValue(X->getType()); 1610 Ops.insert(Ops.end(), ValueEntry(getRank(V), V)); 1611 e += 1; 1612 } 1613 } 1614 1615 // Scan the operand list, checking to see if there are any common factors 1616 // between operands. Consider something like A*A+A*B*C+D. We would like to 1617 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies. 1618 // To efficiently find this, we count the number of times a factor occurs 1619 // for any ADD operands that are MULs. 1620 DenseMap<Value*, unsigned> FactorOccurrences; 1621 1622 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4) 1623 // where they are actually the same multiply. 1624 unsigned MaxOcc = 0; 1625 Value *MaxOccVal = nullptr; 1626 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1627 BinaryOperator *BOp = 1628 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1629 if (!BOp) 1630 continue; 1631 1632 // Compute all of the factors of this added value. 1633 SmallVector<Value*, 8> Factors; 1634 FindSingleUseMultiplyFactors(BOp, Factors); 1635 assert(Factors.size() > 1 && "Bad linearize!"); 1636 1637 // Add one to FactorOccurrences for each unique factor in this op. 1638 SmallPtrSet<Value*, 8> Duplicates; 1639 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1640 Value *Factor = Factors[i]; 1641 if (!Duplicates.insert(Factor).second) 1642 continue; 1643 1644 unsigned Occ = ++FactorOccurrences[Factor]; 1645 if (Occ > MaxOcc) { 1646 MaxOcc = Occ; 1647 MaxOccVal = Factor; 1648 } 1649 1650 // If Factor is a negative constant, add the negated value as a factor 1651 // because we can percolate the negate out. Watch for minint, which 1652 // cannot be positivified. 1653 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) { 1654 if (CI->isNegative() && !CI->isMinValue(true)) { 1655 Factor = ConstantInt::get(CI->getContext(), -CI->getValue()); 1656 if (!Duplicates.insert(Factor).second) 1657 continue; 1658 unsigned Occ = ++FactorOccurrences[Factor]; 1659 if (Occ > MaxOcc) { 1660 MaxOcc = Occ; 1661 MaxOccVal = Factor; 1662 } 1663 } 1664 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) { 1665 if (CF->isNegative()) { 1666 APFloat F(CF->getValueAPF()); 1667 F.changeSign(); 1668 Factor = ConstantFP::get(CF->getContext(), F); 1669 if (!Duplicates.insert(Factor).second) 1670 continue; 1671 unsigned Occ = ++FactorOccurrences[Factor]; 1672 if (Occ > MaxOcc) { 1673 MaxOcc = Occ; 1674 MaxOccVal = Factor; 1675 } 1676 } 1677 } 1678 } 1679 } 1680 1681 // If any factor occurred more than one time, we can pull it out. 1682 if (MaxOcc > 1) { 1683 LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal 1684 << '\n'); 1685 ++NumFactor; 1686 1687 // Create a new instruction that uses the MaxOccVal twice. If we don't do 1688 // this, we could otherwise run into situations where removing a factor 1689 // from an expression will drop a use of maxocc, and this can cause 1690 // RemoveFactorFromExpression on successive values to behave differently. 1691 Instruction *DummyInst = 1692 I->getType()->isIntOrIntVectorTy() 1693 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal) 1694 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal); 1695 1696 SmallVector<WeakTrackingVH, 4> NewMulOps; 1697 for (unsigned i = 0; i != Ops.size(); ++i) { 1698 // Only try to remove factors from expressions we're allowed to. 1699 BinaryOperator *BOp = 1700 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1701 if (!BOp) 1702 continue; 1703 1704 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) { 1705 // The factorized operand may occur several times. Convert them all in 1706 // one fell swoop. 1707 for (unsigned j = Ops.size(); j != i;) { 1708 --j; 1709 if (Ops[j].Op == Ops[i].Op) { 1710 NewMulOps.push_back(V); 1711 Ops.erase(Ops.begin()+j); 1712 } 1713 } 1714 --i; 1715 } 1716 } 1717 1718 // No need for extra uses anymore. 1719 DummyInst->deleteValue(); 1720 1721 unsigned NumAddedValues = NewMulOps.size(); 1722 Value *V = EmitAddTreeOfValues(I, NewMulOps); 1723 1724 // Now that we have inserted the add tree, optimize it. This allows us to 1725 // handle cases that require multiple factoring steps, such as this: 1726 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C)) 1727 assert(NumAddedValues > 1 && "Each occurrence should contribute a value"); 1728 (void)NumAddedValues; 1729 if (Instruction *VI = dyn_cast<Instruction>(V)) 1730 RedoInsts.insert(VI); 1731 1732 // Create the multiply. 1733 Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I); 1734 1735 // Rerun associate on the multiply in case the inner expression turned into 1736 // a multiply. We want to make sure that we keep things in canonical form. 1737 RedoInsts.insert(V2); 1738 1739 // If every add operand included the factor (e.g. "A*B + A*C"), then the 1740 // entire result expression is just the multiply "A*(B+C)". 1741 if (Ops.empty()) 1742 return V2; 1743 1744 // Otherwise, we had some input that didn't have the factor, such as 1745 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of 1746 // things being added by this operation. 1747 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2)); 1748 } 1749 1750 return nullptr; 1751 } 1752 1753 /// Build up a vector of value/power pairs factoring a product. 1754 /// 1755 /// Given a series of multiplication operands, build a vector of factors and 1756 /// the powers each is raised to when forming the final product. Sort them in 1757 /// the order of descending power. 1758 /// 1759 /// (x*x) -> [(x, 2)] 1760 /// ((x*x)*x) -> [(x, 3)] 1761 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)] 1762 /// 1763 /// \returns Whether any factors have a power greater than one. 1764 static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, 1765 SmallVectorImpl<Factor> &Factors) { 1766 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this. 1767 // Compute the sum of powers of simplifiable factors. 1768 unsigned FactorPowerSum = 0; 1769 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) { 1770 Value *Op = Ops[Idx-1].Op; 1771 1772 // Count the number of occurrences of this value. 1773 unsigned Count = 1; 1774 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx) 1775 ++Count; 1776 // Track for simplification all factors which occur 2 or more times. 1777 if (Count > 1) 1778 FactorPowerSum += Count; 1779 } 1780 1781 // We can only simplify factors if the sum of the powers of our simplifiable 1782 // factors is 4 or higher. When that is the case, we will *always* have 1783 // a simplification. This is an important invariant to prevent cyclicly 1784 // trying to simplify already minimal formations. 1785 if (FactorPowerSum < 4) 1786 return false; 1787 1788 // Now gather the simplifiable factors, removing them from Ops. 1789 FactorPowerSum = 0; 1790 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) { 1791 Value *Op = Ops[Idx-1].Op; 1792 1793 // Count the number of occurrences of this value. 1794 unsigned Count = 1; 1795 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx) 1796 ++Count; 1797 if (Count == 1) 1798 continue; 1799 // Move an even number of occurrences to Factors. 1800 Count &= ~1U; 1801 Idx -= Count; 1802 FactorPowerSum += Count; 1803 Factors.push_back(Factor(Op, Count)); 1804 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count); 1805 } 1806 1807 // None of the adjustments above should have reduced the sum of factor powers 1808 // below our mininum of '4'. 1809 assert(FactorPowerSum >= 4); 1810 1811 llvm::stable_sort(Factors, [](const Factor &LHS, const Factor &RHS) { 1812 return LHS.Power > RHS.Power; 1813 }); 1814 return true; 1815 } 1816 1817 /// Build a tree of multiplies, computing the product of Ops. 1818 static Value *buildMultiplyTree(IRBuilderBase &Builder, 1819 SmallVectorImpl<Value*> &Ops) { 1820 if (Ops.size() == 1) 1821 return Ops.back(); 1822 1823 Value *LHS = Ops.pop_back_val(); 1824 do { 1825 if (LHS->getType()->isIntOrIntVectorTy()) 1826 LHS = Builder.CreateMul(LHS, Ops.pop_back_val()); 1827 else 1828 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val()); 1829 } while (!Ops.empty()); 1830 1831 return LHS; 1832 } 1833 1834 /// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*... 1835 /// 1836 /// Given a vector of values raised to various powers, where no two values are 1837 /// equal and the powers are sorted in decreasing order, compute the minimal 1838 /// DAG of multiplies to compute the final product, and return that product 1839 /// value. 1840 Value * 1841 ReassociatePass::buildMinimalMultiplyDAG(IRBuilderBase &Builder, 1842 SmallVectorImpl<Factor> &Factors) { 1843 assert(Factors[0].Power); 1844 SmallVector<Value *, 4> OuterProduct; 1845 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size(); 1846 Idx < Size && Factors[Idx].Power > 0; ++Idx) { 1847 if (Factors[Idx].Power != Factors[LastIdx].Power) { 1848 LastIdx = Idx; 1849 continue; 1850 } 1851 1852 // We want to multiply across all the factors with the same power so that 1853 // we can raise them to that power as a single entity. Build a mini tree 1854 // for that. 1855 SmallVector<Value *, 4> InnerProduct; 1856 InnerProduct.push_back(Factors[LastIdx].Base); 1857 do { 1858 InnerProduct.push_back(Factors[Idx].Base); 1859 ++Idx; 1860 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power); 1861 1862 // Reset the base value of the first factor to the new expression tree. 1863 // We'll remove all the factors with the same power in a second pass. 1864 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct); 1865 if (Instruction *MI = dyn_cast<Instruction>(M)) 1866 RedoInsts.insert(MI); 1867 1868 LastIdx = Idx; 1869 } 1870 // Unique factors with equal powers -- we've folded them into the first one's 1871 // base. 1872 Factors.erase(std::unique(Factors.begin(), Factors.end(), 1873 [](const Factor &LHS, const Factor &RHS) { 1874 return LHS.Power == RHS.Power; 1875 }), 1876 Factors.end()); 1877 1878 // Iteratively collect the base of each factor with an add power into the 1879 // outer product, and halve each power in preparation for squaring the 1880 // expression. 1881 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) { 1882 if (Factors[Idx].Power & 1) 1883 OuterProduct.push_back(Factors[Idx].Base); 1884 Factors[Idx].Power >>= 1; 1885 } 1886 if (Factors[0].Power) { 1887 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors); 1888 OuterProduct.push_back(SquareRoot); 1889 OuterProduct.push_back(SquareRoot); 1890 } 1891 if (OuterProduct.size() == 1) 1892 return OuterProduct.front(); 1893 1894 Value *V = buildMultiplyTree(Builder, OuterProduct); 1895 return V; 1896 } 1897 1898 Value *ReassociatePass::OptimizeMul(BinaryOperator *I, 1899 SmallVectorImpl<ValueEntry> &Ops) { 1900 // We can only optimize the multiplies when there is a chain of more than 1901 // three, such that a balanced tree might require fewer total multiplies. 1902 if (Ops.size() < 4) 1903 return nullptr; 1904 1905 // Try to turn linear trees of multiplies without other uses of the 1906 // intermediate stages into minimal multiply DAGs with perfect sub-expression 1907 // re-use. 1908 SmallVector<Factor, 4> Factors; 1909 if (!collectMultiplyFactors(Ops, Factors)) 1910 return nullptr; // All distinct factors, so nothing left for us to do. 1911 1912 IRBuilder<> Builder(I); 1913 // The reassociate transformation for FP operations is performed only 1914 // if unsafe algebra is permitted by FastMathFlags. Propagate those flags 1915 // to the newly generated operations. 1916 if (auto FPI = dyn_cast<FPMathOperator>(I)) 1917 Builder.setFastMathFlags(FPI->getFastMathFlags()); 1918 1919 Value *V = buildMinimalMultiplyDAG(Builder, Factors); 1920 if (Ops.empty()) 1921 return V; 1922 1923 ValueEntry NewEntry = ValueEntry(getRank(V), V); 1924 Ops.insert(llvm::lower_bound(Ops, NewEntry), NewEntry); 1925 return nullptr; 1926 } 1927 1928 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I, 1929 SmallVectorImpl<ValueEntry> &Ops) { 1930 // Now that we have the linearized expression tree, try to optimize it. 1931 // Start by folding any constants that we found. 1932 Constant *Cst = nullptr; 1933 unsigned Opcode = I->getOpcode(); 1934 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) { 1935 Constant *C = cast<Constant>(Ops.pop_back_val().Op); 1936 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C; 1937 } 1938 // If there was nothing but constants then we are done. 1939 if (Ops.empty()) 1940 return Cst; 1941 1942 // Put the combined constant back at the end of the operand list, except if 1943 // there is no point. For example, an add of 0 gets dropped here, while a 1944 // multiplication by zero turns the whole expression into zero. 1945 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) { 1946 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType())) 1947 return Cst; 1948 Ops.push_back(ValueEntry(0, Cst)); 1949 } 1950 1951 if (Ops.size() == 1) return Ops[0].Op; 1952 1953 // Handle destructive annihilation due to identities between elements in the 1954 // argument list here. 1955 unsigned NumOps = Ops.size(); 1956 switch (Opcode) { 1957 default: break; 1958 case Instruction::And: 1959 case Instruction::Or: 1960 if (Value *Result = OptimizeAndOrXor(Opcode, Ops)) 1961 return Result; 1962 break; 1963 1964 case Instruction::Xor: 1965 if (Value *Result = OptimizeXor(I, Ops)) 1966 return Result; 1967 break; 1968 1969 case Instruction::Add: 1970 case Instruction::FAdd: 1971 if (Value *Result = OptimizeAdd(I, Ops)) 1972 return Result; 1973 break; 1974 1975 case Instruction::Mul: 1976 case Instruction::FMul: 1977 if (Value *Result = OptimizeMul(I, Ops)) 1978 return Result; 1979 break; 1980 } 1981 1982 if (Ops.size() != NumOps) 1983 return OptimizeExpression(I, Ops); 1984 return nullptr; 1985 } 1986 1987 // Remove dead instructions and if any operands are trivially dead add them to 1988 // Insts so they will be removed as well. 1989 void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I, 1990 OrderedSet &Insts) { 1991 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1992 SmallVector<Value *, 4> Ops(I->operands()); 1993 ValueRankMap.erase(I); 1994 Insts.remove(I); 1995 RedoInsts.remove(I); 1996 llvm::salvageDebugInfo(*I); 1997 I->eraseFromParent(); 1998 for (auto Op : Ops) 1999 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 2000 if (OpInst->use_empty()) 2001 Insts.insert(OpInst); 2002 } 2003 2004 /// Zap the given instruction, adding interesting operands to the work list. 2005 void ReassociatePass::EraseInst(Instruction *I) { 2006 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 2007 LLVM_DEBUG(dbgs() << "Erasing dead inst: "; I->dump()); 2008 2009 SmallVector<Value *, 8> Ops(I->operands()); 2010 // Erase the dead instruction. 2011 ValueRankMap.erase(I); 2012 RedoInsts.remove(I); 2013 llvm::salvageDebugInfo(*I); 2014 I->eraseFromParent(); 2015 // Optimize its operands. 2016 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes. 2017 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2018 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) { 2019 // If this is a node in an expression tree, climb to the expression root 2020 // and add that since that's where optimization actually happens. 2021 unsigned Opcode = Op->getOpcode(); 2022 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode && 2023 Visited.insert(Op).second) 2024 Op = Op->user_back(); 2025 2026 // The instruction we're going to push may be coming from a 2027 // dead block, and Reassociate skips the processing of unreachable 2028 // blocks because it's a waste of time and also because it can 2029 // lead to infinite loop due to LLVM's non-standard definition 2030 // of dominance. 2031 if (ValueRankMap.find(Op) != ValueRankMap.end()) 2032 RedoInsts.insert(Op); 2033 } 2034 2035 MadeChange = true; 2036 } 2037 2038 /// Recursively analyze an expression to build a list of instructions that have 2039 /// negative floating-point constant operands. The caller can then transform 2040 /// the list to create positive constants for better reassociation and CSE. 2041 static void getNegatibleInsts(Value *V, 2042 SmallVectorImpl<Instruction *> &Candidates) { 2043 // Handle only one-use instructions. Combining negations does not justify 2044 // replicating instructions. 2045 Instruction *I; 2046 if (!match(V, m_OneUse(m_Instruction(I)))) 2047 return; 2048 2049 // Handle expressions of multiplications and divisions. 2050 // TODO: This could look through floating-point casts. 2051 const APFloat *C; 2052 switch (I->getOpcode()) { 2053 case Instruction::FMul: 2054 // Not expecting non-canonical code here. Bail out and wait. 2055 if (match(I->getOperand(0), m_Constant())) 2056 break; 2057 2058 if (match(I->getOperand(1), m_APFloat(C)) && C->isNegative()) { 2059 Candidates.push_back(I); 2060 LLVM_DEBUG(dbgs() << "FMul with negative constant: " << *I << '\n'); 2061 } 2062 getNegatibleInsts(I->getOperand(0), Candidates); 2063 getNegatibleInsts(I->getOperand(1), Candidates); 2064 break; 2065 case Instruction::FDiv: 2066 // Not expecting non-canonical code here. Bail out and wait. 2067 if (match(I->getOperand(0), m_Constant()) && 2068 match(I->getOperand(1), m_Constant())) 2069 break; 2070 2071 if ((match(I->getOperand(0), m_APFloat(C)) && C->isNegative()) || 2072 (match(I->getOperand(1), m_APFloat(C)) && C->isNegative())) { 2073 Candidates.push_back(I); 2074 LLVM_DEBUG(dbgs() << "FDiv with negative constant: " << *I << '\n'); 2075 } 2076 getNegatibleInsts(I->getOperand(0), Candidates); 2077 getNegatibleInsts(I->getOperand(1), Candidates); 2078 break; 2079 default: 2080 break; 2081 } 2082 } 2083 2084 /// Given an fadd/fsub with an operand that is a one-use instruction 2085 /// (the fadd/fsub), try to change negative floating-point constants into 2086 /// positive constants to increase potential for reassociation and CSE. 2087 Instruction *ReassociatePass::canonicalizeNegFPConstantsForOp(Instruction *I, 2088 Instruction *Op, 2089 Value *OtherOp) { 2090 assert((I->getOpcode() == Instruction::FAdd || 2091 I->getOpcode() == Instruction::FSub) && "Expected fadd/fsub"); 2092 2093 // Collect instructions with negative FP constants from the subtree that ends 2094 // in Op. 2095 SmallVector<Instruction *, 4> Candidates; 2096 getNegatibleInsts(Op, Candidates); 2097 if (Candidates.empty()) 2098 return nullptr; 2099 2100 // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the 2101 // resulting subtract will be broken up later. This can get us into an 2102 // infinite loop during reassociation. 2103 bool IsFSub = I->getOpcode() == Instruction::FSub; 2104 bool NeedsSubtract = !IsFSub && Candidates.size() % 2 == 1; 2105 if (NeedsSubtract && ShouldBreakUpSubtract(I)) 2106 return nullptr; 2107 2108 for (Instruction *Negatible : Candidates) { 2109 const APFloat *C; 2110 if (match(Negatible->getOperand(0), m_APFloat(C))) { 2111 assert(!match(Negatible->getOperand(1), m_Constant()) && 2112 "Expecting only 1 constant operand"); 2113 assert(C->isNegative() && "Expected negative FP constant"); 2114 Negatible->setOperand(0, ConstantFP::get(Negatible->getType(), abs(*C))); 2115 MadeChange = true; 2116 } 2117 if (match(Negatible->getOperand(1), m_APFloat(C))) { 2118 assert(!match(Negatible->getOperand(0), m_Constant()) && 2119 "Expecting only 1 constant operand"); 2120 assert(C->isNegative() && "Expected negative FP constant"); 2121 Negatible->setOperand(1, ConstantFP::get(Negatible->getType(), abs(*C))); 2122 MadeChange = true; 2123 } 2124 } 2125 assert(MadeChange == true && "Negative constant candidate was not changed"); 2126 2127 // Negations cancelled out. 2128 if (Candidates.size() % 2 == 0) 2129 return I; 2130 2131 // Negate the final operand in the expression by flipping the opcode of this 2132 // fadd/fsub. 2133 assert(Candidates.size() % 2 == 1 && "Expected odd number"); 2134 IRBuilder<> Builder(I); 2135 Value *NewInst = IsFSub ? Builder.CreateFAddFMF(OtherOp, Op, I) 2136 : Builder.CreateFSubFMF(OtherOp, Op, I); 2137 I->replaceAllUsesWith(NewInst); 2138 RedoInsts.insert(I); 2139 return dyn_cast<Instruction>(NewInst); 2140 } 2141 2142 /// Canonicalize expressions that contain a negative floating-point constant 2143 /// of the following form: 2144 /// OtherOp + (subtree) -> OtherOp {+/-} (canonical subtree) 2145 /// (subtree) + OtherOp -> OtherOp {+/-} (canonical subtree) 2146 /// OtherOp - (subtree) -> OtherOp {+/-} (canonical subtree) 2147 /// 2148 /// The fadd/fsub opcode may be switched to allow folding a negation into the 2149 /// input instruction. 2150 Instruction *ReassociatePass::canonicalizeNegFPConstants(Instruction *I) { 2151 LLVM_DEBUG(dbgs() << "Combine negations for: " << *I << '\n'); 2152 Value *X; 2153 Instruction *Op; 2154 if (match(I, m_FAdd(m_Value(X), m_OneUse(m_Instruction(Op))))) 2155 if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X)) 2156 I = R; 2157 if (match(I, m_FAdd(m_OneUse(m_Instruction(Op)), m_Value(X)))) 2158 if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X)) 2159 I = R; 2160 if (match(I, m_FSub(m_Value(X), m_OneUse(m_Instruction(Op))))) 2161 if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X)) 2162 I = R; 2163 return I; 2164 } 2165 2166 /// Inspect and optimize the given instruction. Note that erasing 2167 /// instructions is not allowed. 2168 void ReassociatePass::OptimizeInst(Instruction *I) { 2169 // Only consider operations that we understand. 2170 if (!isa<UnaryOperator>(I) && !isa<BinaryOperator>(I)) 2171 return; 2172 2173 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1))) 2174 // If an operand of this shift is a reassociable multiply, or if the shift 2175 // is used by a reassociable multiply or add, turn into a multiply. 2176 if (isReassociableOp(I->getOperand(0), Instruction::Mul) || 2177 (I->hasOneUse() && 2178 (isReassociableOp(I->user_back(), Instruction::Mul) || 2179 isReassociableOp(I->user_back(), Instruction::Add)))) { 2180 Instruction *NI = ConvertShiftToMul(I); 2181 RedoInsts.insert(I); 2182 MadeChange = true; 2183 I = NI; 2184 } 2185 2186 // Commute binary operators, to canonicalize the order of their operands. 2187 // This can potentially expose more CSE opportunities, and makes writing other 2188 // transformations simpler. 2189 if (I->isCommutative()) 2190 canonicalizeOperands(I); 2191 2192 // Canonicalize negative constants out of expressions. 2193 if (Instruction *Res = canonicalizeNegFPConstants(I)) 2194 I = Res; 2195 2196 // Don't optimize floating-point instructions unless they are 'fast'. 2197 if (I->getType()->isFPOrFPVectorTy() && !I->isFast()) 2198 return; 2199 2200 // Do not reassociate boolean (i1) expressions. We want to preserve the 2201 // original order of evaluation for short-circuited comparisons that 2202 // SimplifyCFG has folded to AND/OR expressions. If the expression 2203 // is not further optimized, it is likely to be transformed back to a 2204 // short-circuited form for code gen, and the source order may have been 2205 // optimized for the most likely conditions. 2206 if (I->getType()->isIntegerTy(1)) 2207 return; 2208 2209 // If this is a bitwise or instruction of operands 2210 // with no common bits set, convert it to X+Y. 2211 if (I->getOpcode() == Instruction::Or && 2212 shouldConvertOrWithNoCommonBitsToAdd(I) && !isLoadCombineCandidate(I) && 2213 haveNoCommonBitsSet(I->getOperand(0), I->getOperand(1), 2214 I->getModule()->getDataLayout(), /*AC=*/nullptr, I, 2215 /*DT=*/nullptr)) { 2216 Instruction *NI = convertOrWithNoCommonBitsToAdd(I); 2217 RedoInsts.insert(I); 2218 MadeChange = true; 2219 I = NI; 2220 } 2221 2222 // If this is a subtract instruction which is not already in negate form, 2223 // see if we can convert it to X+-Y. 2224 if (I->getOpcode() == Instruction::Sub) { 2225 if (ShouldBreakUpSubtract(I)) { 2226 Instruction *NI = BreakUpSubtract(I, RedoInsts); 2227 RedoInsts.insert(I); 2228 MadeChange = true; 2229 I = NI; 2230 } else if (match(I, m_Neg(m_Value()))) { 2231 // Otherwise, this is a negation. See if the operand is a multiply tree 2232 // and if this is not an inner node of a multiply tree. 2233 if (isReassociableOp(I->getOperand(1), Instruction::Mul) && 2234 (!I->hasOneUse() || 2235 !isReassociableOp(I->user_back(), Instruction::Mul))) { 2236 Instruction *NI = LowerNegateToMultiply(I); 2237 // If the negate was simplified, revisit the users to see if we can 2238 // reassociate further. 2239 for (User *U : NI->users()) { 2240 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U)) 2241 RedoInsts.insert(Tmp); 2242 } 2243 RedoInsts.insert(I); 2244 MadeChange = true; 2245 I = NI; 2246 } 2247 } 2248 } else if (I->getOpcode() == Instruction::FNeg || 2249 I->getOpcode() == Instruction::FSub) { 2250 if (ShouldBreakUpSubtract(I)) { 2251 Instruction *NI = BreakUpSubtract(I, RedoInsts); 2252 RedoInsts.insert(I); 2253 MadeChange = true; 2254 I = NI; 2255 } else if (match(I, m_FNeg(m_Value()))) { 2256 // Otherwise, this is a negation. See if the operand is a multiply tree 2257 // and if this is not an inner node of a multiply tree. 2258 Value *Op = isa<BinaryOperator>(I) ? I->getOperand(1) : 2259 I->getOperand(0); 2260 if (isReassociableOp(Op, Instruction::FMul) && 2261 (!I->hasOneUse() || 2262 !isReassociableOp(I->user_back(), Instruction::FMul))) { 2263 // If the negate was simplified, revisit the users to see if we can 2264 // reassociate further. 2265 Instruction *NI = LowerNegateToMultiply(I); 2266 for (User *U : NI->users()) { 2267 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U)) 2268 RedoInsts.insert(Tmp); 2269 } 2270 RedoInsts.insert(I); 2271 MadeChange = true; 2272 I = NI; 2273 } 2274 } 2275 } 2276 2277 // If this instruction is an associative binary operator, process it. 2278 if (!I->isAssociative()) return; 2279 BinaryOperator *BO = cast<BinaryOperator>(I); 2280 2281 // If this is an interior node of a reassociable tree, ignore it until we 2282 // get to the root of the tree, to avoid N^2 analysis. 2283 unsigned Opcode = BO->getOpcode(); 2284 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) { 2285 // During the initial run we will get to the root of the tree. 2286 // But if we get here while we are redoing instructions, there is no 2287 // guarantee that the root will be visited. So Redo later 2288 if (BO->user_back() != BO && 2289 BO->getParent() == BO->user_back()->getParent()) 2290 RedoInsts.insert(BO->user_back()); 2291 return; 2292 } 2293 2294 // If this is an add tree that is used by a sub instruction, ignore it 2295 // until we process the subtract. 2296 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add && 2297 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub) 2298 return; 2299 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd && 2300 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub) 2301 return; 2302 2303 ReassociateExpression(BO); 2304 } 2305 2306 void ReassociatePass::ReassociateExpression(BinaryOperator *I) { 2307 // First, walk the expression tree, linearizing the tree, collecting the 2308 // operand information. 2309 SmallVector<RepeatedValue, 8> Tree; 2310 MadeChange |= LinearizeExprTree(I, Tree); 2311 SmallVector<ValueEntry, 8> Ops; 2312 Ops.reserve(Tree.size()); 2313 for (const RepeatedValue &E : Tree) 2314 Ops.append(E.second.getZExtValue(), ValueEntry(getRank(E.first), E.first)); 2315 2316 LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2317 2318 // Now that we have linearized the tree to a list and have gathered all of 2319 // the operands and their ranks, sort the operands by their rank. Use a 2320 // stable_sort so that values with equal ranks will have their relative 2321 // positions maintained (and so the compiler is deterministic). Note that 2322 // this sorts so that the highest ranking values end up at the beginning of 2323 // the vector. 2324 llvm::stable_sort(Ops); 2325 2326 // Now that we have the expression tree in a convenient 2327 // sorted form, optimize it globally if possible. 2328 if (Value *V = OptimizeExpression(I, Ops)) { 2329 if (V == I) 2330 // Self-referential expression in unreachable code. 2331 return; 2332 // This expression tree simplified to something that isn't a tree, 2333 // eliminate it. 2334 LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n'); 2335 I->replaceAllUsesWith(V); 2336 if (Instruction *VI = dyn_cast<Instruction>(V)) 2337 if (I->getDebugLoc()) 2338 VI->setDebugLoc(I->getDebugLoc()); 2339 RedoInsts.insert(I); 2340 ++NumAnnihil; 2341 return; 2342 } 2343 2344 // We want to sink immediates as deeply as possible except in the case where 2345 // this is a multiply tree used only by an add, and the immediate is a -1. 2346 // In this case we reassociate to put the negation on the outside so that we 2347 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y 2348 if (I->hasOneUse()) { 2349 if (I->getOpcode() == Instruction::Mul && 2350 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add && 2351 isa<ConstantInt>(Ops.back().Op) && 2352 cast<ConstantInt>(Ops.back().Op)->isMinusOne()) { 2353 ValueEntry Tmp = Ops.pop_back_val(); 2354 Ops.insert(Ops.begin(), Tmp); 2355 } else if (I->getOpcode() == Instruction::FMul && 2356 cast<Instruction>(I->user_back())->getOpcode() == 2357 Instruction::FAdd && 2358 isa<ConstantFP>(Ops.back().Op) && 2359 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) { 2360 ValueEntry Tmp = Ops.pop_back_val(); 2361 Ops.insert(Ops.begin(), Tmp); 2362 } 2363 } 2364 2365 LLVM_DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2366 2367 if (Ops.size() == 1) { 2368 if (Ops[0].Op == I) 2369 // Self-referential expression in unreachable code. 2370 return; 2371 2372 // This expression tree simplified to something that isn't a tree, 2373 // eliminate it. 2374 I->replaceAllUsesWith(Ops[0].Op); 2375 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op)) 2376 OI->setDebugLoc(I->getDebugLoc()); 2377 RedoInsts.insert(I); 2378 return; 2379 } 2380 2381 if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) { 2382 // Find the pair with the highest count in the pairmap and move it to the 2383 // back of the list so that it can later be CSE'd. 2384 // example: 2385 // a*b*c*d*e 2386 // if c*e is the most "popular" pair, we can express this as 2387 // (((c*e)*d)*b)*a 2388 unsigned Max = 1; 2389 unsigned BestRank = 0; 2390 std::pair<unsigned, unsigned> BestPair; 2391 unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin; 2392 for (unsigned i = 0; i < Ops.size() - 1; ++i) 2393 for (unsigned j = i + 1; j < Ops.size(); ++j) { 2394 unsigned Score = 0; 2395 Value *Op0 = Ops[i].Op; 2396 Value *Op1 = Ops[j].Op; 2397 if (std::less<Value *>()(Op1, Op0)) 2398 std::swap(Op0, Op1); 2399 auto it = PairMap[Idx].find({Op0, Op1}); 2400 if (it != PairMap[Idx].end()) { 2401 // Functions like BreakUpSubtract() can erase the Values we're using 2402 // as keys and create new Values after we built the PairMap. There's a 2403 // small chance that the new nodes can have the same address as 2404 // something already in the table. We shouldn't accumulate the stored 2405 // score in that case as it refers to the wrong Value. 2406 if (it->second.isValid()) 2407 Score += it->second.Score; 2408 } 2409 2410 unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank); 2411 if (Score > Max || (Score == Max && MaxRank < BestRank)) { 2412 BestPair = {i, j}; 2413 Max = Score; 2414 BestRank = MaxRank; 2415 } 2416 } 2417 if (Max > 1) { 2418 auto Op0 = Ops[BestPair.first]; 2419 auto Op1 = Ops[BestPair.second]; 2420 Ops.erase(&Ops[BestPair.second]); 2421 Ops.erase(&Ops[BestPair.first]); 2422 Ops.push_back(Op0); 2423 Ops.push_back(Op1); 2424 } 2425 } 2426 // Now that we ordered and optimized the expressions, splat them back into 2427 // the expression tree, removing any unneeded nodes. 2428 RewriteExprTree(I, Ops); 2429 } 2430 2431 void 2432 ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) { 2433 // Make a "pairmap" of how often each operand pair occurs. 2434 for (BasicBlock *BI : RPOT) { 2435 for (Instruction &I : *BI) { 2436 if (!I.isAssociative()) 2437 continue; 2438 2439 // Ignore nodes that aren't at the root of trees. 2440 if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode()) 2441 continue; 2442 2443 // Collect all operands in a single reassociable expression. 2444 // Since Reassociate has already been run once, we can assume things 2445 // are already canonical according to Reassociation's regime. 2446 SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) }; 2447 SmallVector<Value *, 8> Ops; 2448 while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) { 2449 Value *Op = Worklist.pop_back_val(); 2450 Instruction *OpI = dyn_cast<Instruction>(Op); 2451 if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) { 2452 Ops.push_back(Op); 2453 continue; 2454 } 2455 // Be paranoid about self-referencing expressions in unreachable code. 2456 if (OpI->getOperand(0) != OpI) 2457 Worklist.push_back(OpI->getOperand(0)); 2458 if (OpI->getOperand(1) != OpI) 2459 Worklist.push_back(OpI->getOperand(1)); 2460 } 2461 // Skip extremely long expressions. 2462 if (Ops.size() > GlobalReassociateLimit) 2463 continue; 2464 2465 // Add all pairwise combinations of operands to the pair map. 2466 unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin; 2467 SmallSet<std::pair<Value *, Value*>, 32> Visited; 2468 for (unsigned i = 0; i < Ops.size() - 1; ++i) { 2469 for (unsigned j = i + 1; j < Ops.size(); ++j) { 2470 // Canonicalize operand orderings. 2471 Value *Op0 = Ops[i]; 2472 Value *Op1 = Ops[j]; 2473 if (std::less<Value *>()(Op1, Op0)) 2474 std::swap(Op0, Op1); 2475 if (!Visited.insert({Op0, Op1}).second) 2476 continue; 2477 auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, {Op0, Op1, 1}}); 2478 if (!res.second) { 2479 // If either key value has been erased then we've got the same 2480 // address by coincidence. That can't happen here because nothing is 2481 // erasing values but it can happen by the time we're querying the 2482 // map. 2483 assert(res.first->second.isValid() && "WeakVH invalidated"); 2484 ++res.first->second.Score; 2485 } 2486 } 2487 } 2488 } 2489 } 2490 } 2491 2492 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) { 2493 // Get the functions basic blocks in Reverse Post Order. This order is used by 2494 // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic 2495 // blocks (it has been seen that the analysis in this pass could hang when 2496 // analysing dead basic blocks). 2497 ReversePostOrderTraversal<Function *> RPOT(&F); 2498 2499 // Calculate the rank map for F. 2500 BuildRankMap(F, RPOT); 2501 2502 // Build the pair map before running reassociate. 2503 // Technically this would be more accurate if we did it after one round 2504 // of reassociation, but in practice it doesn't seem to help much on 2505 // real-world code, so don't waste the compile time running reassociate 2506 // twice. 2507 // If a user wants, they could expicitly run reassociate twice in their 2508 // pass pipeline for further potential gains. 2509 // It might also be possible to update the pair map during runtime, but the 2510 // overhead of that may be large if there's many reassociable chains. 2511 BuildPairMap(RPOT); 2512 2513 MadeChange = false; 2514 2515 // Traverse the same blocks that were analysed by BuildRankMap. 2516 for (BasicBlock *BI : RPOT) { 2517 assert(RankMap.count(&*BI) && "BB should be ranked."); 2518 // Optimize every instruction in the basic block. 2519 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;) 2520 if (isInstructionTriviallyDead(&*II)) { 2521 EraseInst(&*II++); 2522 } else { 2523 OptimizeInst(&*II); 2524 assert(II->getParent() == &*BI && "Moved to a different block!"); 2525 ++II; 2526 } 2527 2528 // Make a copy of all the instructions to be redone so we can remove dead 2529 // instructions. 2530 OrderedSet ToRedo(RedoInsts); 2531 // Iterate over all instructions to be reevaluated and remove trivially dead 2532 // instructions. If any operand of the trivially dead instruction becomes 2533 // dead mark it for deletion as well. Continue this process until all 2534 // trivially dead instructions have been removed. 2535 while (!ToRedo.empty()) { 2536 Instruction *I = ToRedo.pop_back_val(); 2537 if (isInstructionTriviallyDead(I)) { 2538 RecursivelyEraseDeadInsts(I, ToRedo); 2539 MadeChange = true; 2540 } 2541 } 2542 2543 // Now that we have removed dead instructions, we can reoptimize the 2544 // remaining instructions. 2545 while (!RedoInsts.empty()) { 2546 Instruction *I = RedoInsts.front(); 2547 RedoInsts.erase(RedoInsts.begin()); 2548 if (isInstructionTriviallyDead(I)) 2549 EraseInst(I); 2550 else 2551 OptimizeInst(I); 2552 } 2553 } 2554 2555 // We are done with the rank map and pair map. 2556 RankMap.clear(); 2557 ValueRankMap.clear(); 2558 for (auto &Entry : PairMap) 2559 Entry.clear(); 2560 2561 if (MadeChange) { 2562 PreservedAnalyses PA; 2563 PA.preserveSet<CFGAnalyses>(); 2564 return PA; 2565 } 2566 2567 return PreservedAnalyses::all(); 2568 } 2569 2570 namespace { 2571 2572 class ReassociateLegacyPass : public FunctionPass { 2573 ReassociatePass Impl; 2574 2575 public: 2576 static char ID; // Pass identification, replacement for typeid 2577 2578 ReassociateLegacyPass() : FunctionPass(ID) { 2579 initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry()); 2580 } 2581 2582 bool runOnFunction(Function &F) override { 2583 if (skipFunction(F)) 2584 return false; 2585 2586 FunctionAnalysisManager DummyFAM; 2587 auto PA = Impl.run(F, DummyFAM); 2588 return !PA.areAllPreserved(); 2589 } 2590 2591 void getAnalysisUsage(AnalysisUsage &AU) const override { 2592 AU.setPreservesCFG(); 2593 AU.addPreserved<AAResultsWrapperPass>(); 2594 AU.addPreserved<BasicAAWrapperPass>(); 2595 AU.addPreserved<GlobalsAAWrapperPass>(); 2596 } 2597 }; 2598 2599 } // end anonymous namespace 2600 2601 char ReassociateLegacyPass::ID = 0; 2602 2603 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate", 2604 "Reassociate expressions", false, false) 2605 2606 // Public interface to the Reassociate pass 2607 FunctionPass *llvm::createReassociatePass() { 2608 return new ReassociateLegacyPass(); 2609 } 2610