1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass reassociates commutative expressions in an order that is designed 10 // to promote better constant propagation, GCSE, LICM, PRE, etc. 11 // 12 // For example: 4 + (x + 5) -> x + (4 + 5) 13 // 14 // In the implementation of this algorithm, constants are assigned rank = 0, 15 // function arguments are rank = 1, and other values are assigned ranks 16 // corresponding to the reverse post order traversal of current function 17 // (starting at 2), which effectively gives values in deep loops higher rank 18 // than values not in loops. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "llvm/Transforms/Scalar/Reassociate.h" 23 #include "llvm/ADT/APFloat.h" 24 #include "llvm/ADT/APInt.h" 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/BasicAliasAnalysis.h" 33 #include "llvm/Analysis/GlobalsModRef.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/IRBuilder.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Operator.h" 47 #include "llvm/IR/PassManager.h" 48 #include "llvm/IR/PatternMatch.h" 49 #include "llvm/IR/Type.h" 50 #include "llvm/IR/User.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/IR/ValueHandle.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Transforms/Scalar.h" 60 #include "llvm/Transforms/Utils/Local.h" 61 #include <algorithm> 62 #include <cassert> 63 #include <utility> 64 65 using namespace llvm; 66 using namespace reassociate; 67 using namespace PatternMatch; 68 69 #define DEBUG_TYPE "reassociate" 70 71 STATISTIC(NumChanged, "Number of insts reassociated"); 72 STATISTIC(NumAnnihil, "Number of expr tree annihilated"); 73 STATISTIC(NumFactor , "Number of multiplies factored"); 74 75 #ifndef NDEBUG 76 /// Print out the expression identified in the Ops list. 77 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) { 78 Module *M = I->getModule(); 79 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " " 80 << *Ops[0].Op->getType() << '\t'; 81 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 82 dbgs() << "[ "; 83 Ops[i].Op->printAsOperand(dbgs(), false, M); 84 dbgs() << ", #" << Ops[i].Rank << "] "; 85 } 86 } 87 #endif 88 89 /// Utility class representing a non-constant Xor-operand. We classify 90 /// non-constant Xor-Operands into two categories: 91 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0 92 /// C2) 93 /// C2.1) The operand is in the form of "X | C", where C is a non-zero 94 /// constant. 95 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this 96 /// operand as "E | 0" 97 class llvm::reassociate::XorOpnd { 98 public: 99 XorOpnd(Value *V); 100 101 bool isInvalid() const { return SymbolicPart == nullptr; } 102 bool isOrExpr() const { return isOr; } 103 Value *getValue() const { return OrigVal; } 104 Value *getSymbolicPart() const { return SymbolicPart; } 105 unsigned getSymbolicRank() const { return SymbolicRank; } 106 const APInt &getConstPart() const { return ConstPart; } 107 108 void Invalidate() { SymbolicPart = OrigVal = nullptr; } 109 void setSymbolicRank(unsigned R) { SymbolicRank = R; } 110 111 private: 112 Value *OrigVal; 113 Value *SymbolicPart; 114 APInt ConstPart; 115 unsigned SymbolicRank; 116 bool isOr; 117 }; 118 119 XorOpnd::XorOpnd(Value *V) { 120 assert(!isa<ConstantInt>(V) && "No ConstantInt"); 121 OrigVal = V; 122 Instruction *I = dyn_cast<Instruction>(V); 123 SymbolicRank = 0; 124 125 if (I && (I->getOpcode() == Instruction::Or || 126 I->getOpcode() == Instruction::And)) { 127 Value *V0 = I->getOperand(0); 128 Value *V1 = I->getOperand(1); 129 const APInt *C; 130 if (match(V0, m_APInt(C))) 131 std::swap(V0, V1); 132 133 if (match(V1, m_APInt(C))) { 134 ConstPart = *C; 135 SymbolicPart = V0; 136 isOr = (I->getOpcode() == Instruction::Or); 137 return; 138 } 139 } 140 141 // view the operand as "V | 0" 142 SymbolicPart = V; 143 ConstPart = APInt::getNullValue(V->getType()->getScalarSizeInBits()); 144 isOr = true; 145 } 146 147 /// Return true if V is an instruction of the specified opcode and if it 148 /// only has one use. 149 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) { 150 auto *I = dyn_cast<Instruction>(V); 151 if (I && I->hasOneUse() && I->getOpcode() == Opcode) 152 if (!isa<FPMathOperator>(I) || I->isFast()) 153 return cast<BinaryOperator>(I); 154 return nullptr; 155 } 156 157 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1, 158 unsigned Opcode2) { 159 auto *I = dyn_cast<Instruction>(V); 160 if (I && I->hasOneUse() && 161 (I->getOpcode() == Opcode1 || I->getOpcode() == Opcode2)) 162 if (!isa<FPMathOperator>(I) || I->isFast()) 163 return cast<BinaryOperator>(I); 164 return nullptr; 165 } 166 167 void ReassociatePass::BuildRankMap(Function &F, 168 ReversePostOrderTraversal<Function*> &RPOT) { 169 unsigned Rank = 2; 170 171 // Assign distinct ranks to function arguments. 172 for (auto &Arg : F.args()) { 173 ValueRankMap[&Arg] = ++Rank; 174 LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank 175 << "\n"); 176 } 177 178 // Traverse basic blocks in ReversePostOrder. 179 for (BasicBlock *BB : RPOT) { 180 unsigned BBRank = RankMap[BB] = ++Rank << 16; 181 182 // Walk the basic block, adding precomputed ranks for any instructions that 183 // we cannot move. This ensures that the ranks for these instructions are 184 // all different in the block. 185 for (Instruction &I : *BB) 186 if (mayBeMemoryDependent(I)) 187 ValueRankMap[&I] = ++BBRank; 188 } 189 } 190 191 unsigned ReassociatePass::getRank(Value *V) { 192 Instruction *I = dyn_cast<Instruction>(V); 193 if (!I) { 194 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument. 195 return 0; // Otherwise it's a global or constant, rank 0. 196 } 197 198 if (unsigned Rank = ValueRankMap[I]) 199 return Rank; // Rank already known? 200 201 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that 202 // we can reassociate expressions for code motion! Since we do not recurse 203 // for PHI nodes, we cannot have infinite recursion here, because there 204 // cannot be loops in the value graph that do not go through PHI nodes. 205 unsigned Rank = 0, MaxRank = RankMap[I->getParent()]; 206 for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i) 207 Rank = std::max(Rank, getRank(I->getOperand(i))); 208 209 // If this is a 'not' or 'neg' instruction, do not count it for rank. This 210 // assures us that X and ~X will have the same rank. 211 if (!match(I, m_Not(m_Value())) && !match(I, m_Neg(m_Value())) && 212 !match(I, m_FNeg(m_Value()))) 213 ++Rank; 214 215 LLVM_DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank 216 << "\n"); 217 218 return ValueRankMap[I] = Rank; 219 } 220 221 // Canonicalize constants to RHS. Otherwise, sort the operands by rank. 222 void ReassociatePass::canonicalizeOperands(Instruction *I) { 223 assert(isa<BinaryOperator>(I) && "Expected binary operator."); 224 assert(I->isCommutative() && "Expected commutative operator."); 225 226 Value *LHS = I->getOperand(0); 227 Value *RHS = I->getOperand(1); 228 if (LHS == RHS || isa<Constant>(RHS)) 229 return; 230 if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS)) 231 cast<BinaryOperator>(I)->swapOperands(); 232 } 233 234 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name, 235 Instruction *InsertBefore, Value *FlagsOp) { 236 if (S1->getType()->isIntOrIntVectorTy()) 237 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore); 238 else { 239 BinaryOperator *Res = 240 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore); 241 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 242 return Res; 243 } 244 } 245 246 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name, 247 Instruction *InsertBefore, Value *FlagsOp) { 248 if (S1->getType()->isIntOrIntVectorTy()) 249 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore); 250 else { 251 BinaryOperator *Res = 252 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore); 253 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 254 return Res; 255 } 256 } 257 258 static Instruction *CreateNeg(Value *S1, const Twine &Name, 259 Instruction *InsertBefore, Value *FlagsOp) { 260 if (S1->getType()->isIntOrIntVectorTy()) 261 return BinaryOperator::CreateNeg(S1, Name, InsertBefore); 262 263 if (auto *FMFSource = dyn_cast<Instruction>(FlagsOp)) 264 return UnaryOperator::CreateFNegFMF(S1, FMFSource, Name, InsertBefore); 265 266 return UnaryOperator::CreateFNeg(S1, Name, InsertBefore); 267 } 268 269 /// Replace 0-X with X*-1. 270 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) { 271 assert((isa<UnaryOperator>(Neg) || isa<BinaryOperator>(Neg)) && 272 "Expected a Negate!"); 273 // FIXME: It's not safe to lower a unary FNeg into a FMul by -1.0. 274 unsigned OpNo = isa<BinaryOperator>(Neg) ? 1 : 0; 275 Type *Ty = Neg->getType(); 276 Constant *NegOne = Ty->isIntOrIntVectorTy() ? 277 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0); 278 279 BinaryOperator *Res = CreateMul(Neg->getOperand(OpNo), NegOne, "", Neg, Neg); 280 Neg->setOperand(OpNo, Constant::getNullValue(Ty)); // Drop use of op. 281 Res->takeName(Neg); 282 Neg->replaceAllUsesWith(Res); 283 Res->setDebugLoc(Neg->getDebugLoc()); 284 return Res; 285 } 286 287 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael 288 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for 289 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic. 290 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every 291 /// even x in Bitwidth-bit arithmetic. 292 static unsigned CarmichaelShift(unsigned Bitwidth) { 293 if (Bitwidth < 3) 294 return Bitwidth - 1; 295 return Bitwidth - 2; 296 } 297 298 /// Add the extra weight 'RHS' to the existing weight 'LHS', 299 /// reducing the combined weight using any special properties of the operation. 300 /// The existing weight LHS represents the computation X op X op ... op X where 301 /// X occurs LHS times. The combined weight represents X op X op ... op X with 302 /// X occurring LHS + RHS times. If op is "Xor" for example then the combined 303 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even; 304 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second. 305 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) { 306 // If we were working with infinite precision arithmetic then the combined 307 // weight would be LHS + RHS. But we are using finite precision arithmetic, 308 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct 309 // for nilpotent operations and addition, but not for idempotent operations 310 // and multiplication), so it is important to correctly reduce the combined 311 // weight back into range if wrapping would be wrong. 312 313 // If RHS is zero then the weight didn't change. 314 if (RHS.isMinValue()) 315 return; 316 // If LHS is zero then the combined weight is RHS. 317 if (LHS.isMinValue()) { 318 LHS = RHS; 319 return; 320 } 321 // From this point on we know that neither LHS nor RHS is zero. 322 323 if (Instruction::isIdempotent(Opcode)) { 324 // Idempotent means X op X === X, so any non-zero weight is equivalent to a 325 // weight of 1. Keeping weights at zero or one also means that wrapping is 326 // not a problem. 327 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 328 return; // Return a weight of 1. 329 } 330 if (Instruction::isNilpotent(Opcode)) { 331 // Nilpotent means X op X === 0, so reduce weights modulo 2. 332 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 333 LHS = 0; // 1 + 1 === 0 modulo 2. 334 return; 335 } 336 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) { 337 // TODO: Reduce the weight by exploiting nsw/nuw? 338 LHS += RHS; 339 return; 340 } 341 342 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) && 343 "Unknown associative operation!"); 344 unsigned Bitwidth = LHS.getBitWidth(); 345 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth 346 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth 347 // bit number x, since either x is odd in which case x^CM = 1, or x is even in 348 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples 349 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth) 350 // which by a happy accident means that they can always be represented using 351 // Bitwidth bits. 352 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than 353 // the Carmichael number). 354 if (Bitwidth > 3) { 355 /// CM - The value of Carmichael's lambda function. 356 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth)); 357 // Any weight W >= Threshold can be replaced with W - CM. 358 APInt Threshold = CM + Bitwidth; 359 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!"); 360 // For Bitwidth 4 or more the following sum does not overflow. 361 LHS += RHS; 362 while (LHS.uge(Threshold)) 363 LHS -= CM; 364 } else { 365 // To avoid problems with overflow do everything the same as above but using 366 // a larger type. 367 unsigned CM = 1U << CarmichaelShift(Bitwidth); 368 unsigned Threshold = CM + Bitwidth; 369 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold && 370 "Weights not reduced!"); 371 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue(); 372 while (Total >= Threshold) 373 Total -= CM; 374 LHS = Total; 375 } 376 } 377 378 using RepeatedValue = std::pair<Value*, APInt>; 379 380 /// Given an associative binary expression, return the leaf 381 /// nodes in Ops along with their weights (how many times the leaf occurs). The 382 /// original expression is the same as 383 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times 384 /// op 385 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times 386 /// op 387 /// ... 388 /// op 389 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times 390 /// 391 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct. 392 /// 393 /// This routine may modify the function, in which case it returns 'true'. The 394 /// changes it makes may well be destructive, changing the value computed by 'I' 395 /// to something completely different. Thus if the routine returns 'true' then 396 /// you MUST either replace I with a new expression computed from the Ops array, 397 /// or use RewriteExprTree to put the values back in. 398 /// 399 /// A leaf node is either not a binary operation of the same kind as the root 400 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different 401 /// opcode), or is the same kind of binary operator but has a use which either 402 /// does not belong to the expression, or does belong to the expression but is 403 /// a leaf node. Every leaf node has at least one use that is a non-leaf node 404 /// of the expression, while for non-leaf nodes (except for the root 'I') every 405 /// use is a non-leaf node of the expression. 406 /// 407 /// For example: 408 /// expression graph node names 409 /// 410 /// + | I 411 /// / \ | 412 /// + + | A, B 413 /// / \ / \ | 414 /// * + * | C, D, E 415 /// / \ / \ / \ | 416 /// + * | F, G 417 /// 418 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in 419 /// that order) (C, 1), (E, 1), (F, 2), (G, 2). 420 /// 421 /// The expression is maximal: if some instruction is a binary operator of the 422 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression, 423 /// then the instruction also belongs to the expression, is not a leaf node of 424 /// it, and its operands also belong to the expression (but may be leaf nodes). 425 /// 426 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in 427 /// order to ensure that every non-root node in the expression has *exactly one* 428 /// use by a non-leaf node of the expression. This destruction means that the 429 /// caller MUST either replace 'I' with a new expression or use something like 430 /// RewriteExprTree to put the values back in if the routine indicates that it 431 /// made a change by returning 'true'. 432 /// 433 /// In the above example either the right operand of A or the left operand of B 434 /// will be replaced by undef. If it is B's operand then this gives: 435 /// 436 /// + | I 437 /// / \ | 438 /// + + | A, B - operand of B replaced with undef 439 /// / \ \ | 440 /// * + * | C, D, E 441 /// / \ / \ / \ | 442 /// + * | F, G 443 /// 444 /// Note that such undef operands can only be reached by passing through 'I'. 445 /// For example, if you visit operands recursively starting from a leaf node 446 /// then you will never see such an undef operand unless you get back to 'I', 447 /// which requires passing through a phi node. 448 /// 449 /// Note that this routine may also mutate binary operators of the wrong type 450 /// that have all uses inside the expression (i.e. only used by non-leaf nodes 451 /// of the expression) if it can turn them into binary operators of the right 452 /// type and thus make the expression bigger. 453 static bool LinearizeExprTree(Instruction *I, 454 SmallVectorImpl<RepeatedValue> &Ops) { 455 assert((isa<UnaryOperator>(I) || isa<BinaryOperator>(I)) && 456 "Expected a UnaryOperator or BinaryOperator!"); 457 LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I << '\n'); 458 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits(); 459 unsigned Opcode = I->getOpcode(); 460 assert(I->isAssociative() && I->isCommutative() && 461 "Expected an associative and commutative operation!"); 462 463 // Visit all operands of the expression, keeping track of their weight (the 464 // number of paths from the expression root to the operand, or if you like 465 // the number of times that operand occurs in the linearized expression). 466 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1 467 // while A has weight two. 468 469 // Worklist of non-leaf nodes (their operands are in the expression too) along 470 // with their weights, representing a certain number of paths to the operator. 471 // If an operator occurs in the worklist multiple times then we found multiple 472 // ways to get to it. 473 SmallVector<std::pair<Instruction*, APInt>, 8> Worklist; // (Op, Weight) 474 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1))); 475 bool Changed = false; 476 477 // Leaves of the expression are values that either aren't the right kind of 478 // operation (eg: a constant, or a multiply in an add tree), or are, but have 479 // some uses that are not inside the expression. For example, in I = X + X, 480 // X = A + B, the value X has two uses (by I) that are in the expression. If 481 // X has any other uses, for example in a return instruction, then we consider 482 // X to be a leaf, and won't analyze it further. When we first visit a value, 483 // if it has more than one use then at first we conservatively consider it to 484 // be a leaf. Later, as the expression is explored, we may discover some more 485 // uses of the value from inside the expression. If all uses turn out to be 486 // from within the expression (and the value is a binary operator of the right 487 // kind) then the value is no longer considered to be a leaf, and its operands 488 // are explored. 489 490 // Leaves - Keeps track of the set of putative leaves as well as the number of 491 // paths to each leaf seen so far. 492 using LeafMap = DenseMap<Value *, APInt>; 493 LeafMap Leaves; // Leaf -> Total weight so far. 494 SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order. 495 496 #ifndef NDEBUG 497 SmallPtrSet<Value *, 8> Visited; // For sanity checking the iteration scheme. 498 #endif 499 while (!Worklist.empty()) { 500 std::pair<Instruction*, APInt> P = Worklist.pop_back_val(); 501 I = P.first; // We examine the operands of this binary operator. 502 503 for (unsigned OpIdx = 0; OpIdx < I->getNumOperands(); ++OpIdx) { // Visit operands. 504 Value *Op = I->getOperand(OpIdx); 505 APInt Weight = P.second; // Number of paths to this operand. 506 LLVM_DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n"); 507 assert(!Op->use_empty() && "No uses, so how did we get to it?!"); 508 509 // If this is a binary operation of the right kind with only one use then 510 // add its operands to the expression. 511 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 512 assert(Visited.insert(Op).second && "Not first visit!"); 513 LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n"); 514 Worklist.push_back(std::make_pair(BO, Weight)); 515 continue; 516 } 517 518 // Appears to be a leaf. Is the operand already in the set of leaves? 519 LeafMap::iterator It = Leaves.find(Op); 520 if (It == Leaves.end()) { 521 // Not in the leaf map. Must be the first time we saw this operand. 522 assert(Visited.insert(Op).second && "Not first visit!"); 523 if (!Op->hasOneUse()) { 524 // This value has uses not accounted for by the expression, so it is 525 // not safe to modify. Mark it as being a leaf. 526 LLVM_DEBUG(dbgs() 527 << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n"); 528 LeafOrder.push_back(Op); 529 Leaves[Op] = Weight; 530 continue; 531 } 532 // No uses outside the expression, try morphing it. 533 } else { 534 // Already in the leaf map. 535 assert(It != Leaves.end() && Visited.count(Op) && 536 "In leaf map but not visited!"); 537 538 // Update the number of paths to the leaf. 539 IncorporateWeight(It->second, Weight, Opcode); 540 541 #if 0 // TODO: Re-enable once PR13021 is fixed. 542 // The leaf already has one use from inside the expression. As we want 543 // exactly one such use, drop this new use of the leaf. 544 assert(!Op->hasOneUse() && "Only one use, but we got here twice!"); 545 I->setOperand(OpIdx, UndefValue::get(I->getType())); 546 Changed = true; 547 548 // If the leaf is a binary operation of the right kind and we now see 549 // that its multiple original uses were in fact all by nodes belonging 550 // to the expression, then no longer consider it to be a leaf and add 551 // its operands to the expression. 552 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 553 LLVM_DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n"); 554 Worklist.push_back(std::make_pair(BO, It->second)); 555 Leaves.erase(It); 556 continue; 557 } 558 #endif 559 560 // If we still have uses that are not accounted for by the expression 561 // then it is not safe to modify the value. 562 if (!Op->hasOneUse()) 563 continue; 564 565 // No uses outside the expression, try morphing it. 566 Weight = It->second; 567 Leaves.erase(It); // Since the value may be morphed below. 568 } 569 570 // At this point we have a value which, first of all, is not a binary 571 // expression of the right kind, and secondly, is only used inside the 572 // expression. This means that it can safely be modified. See if we 573 // can usefully morph it into an expression of the right kind. 574 assert((!isa<Instruction>(Op) || 575 cast<Instruction>(Op)->getOpcode() != Opcode 576 || (isa<FPMathOperator>(Op) && 577 !cast<Instruction>(Op)->isFast())) && 578 "Should have been handled above!"); 579 assert(Op->hasOneUse() && "Has uses outside the expression tree!"); 580 581 // If this is a multiply expression, turn any internal negations into 582 // multiplies by -1 so they can be reassociated. 583 if (Instruction *Tmp = dyn_cast<Instruction>(Op)) 584 if ((Opcode == Instruction::Mul && match(Tmp, m_Neg(m_Value()))) || 585 (Opcode == Instruction::FMul && match(Tmp, m_FNeg(m_Value())))) { 586 LLVM_DEBUG(dbgs() 587 << "MORPH LEAF: " << *Op << " (" << Weight << ") TO "); 588 Tmp = LowerNegateToMultiply(Tmp); 589 LLVM_DEBUG(dbgs() << *Tmp << '\n'); 590 Worklist.push_back(std::make_pair(Tmp, Weight)); 591 Changed = true; 592 continue; 593 } 594 595 // Failed to morph into an expression of the right type. This really is 596 // a leaf. 597 LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n"); 598 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?"); 599 LeafOrder.push_back(Op); 600 Leaves[Op] = Weight; 601 } 602 } 603 604 // The leaves, repeated according to their weights, represent the linearized 605 // form of the expression. 606 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) { 607 Value *V = LeafOrder[i]; 608 LeafMap::iterator It = Leaves.find(V); 609 if (It == Leaves.end()) 610 // Node initially thought to be a leaf wasn't. 611 continue; 612 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!"); 613 APInt Weight = It->second; 614 if (Weight.isMinValue()) 615 // Leaf already output or weight reduction eliminated it. 616 continue; 617 // Ensure the leaf is only output once. 618 It->second = 0; 619 Ops.push_back(std::make_pair(V, Weight)); 620 } 621 622 // For nilpotent operations or addition there may be no operands, for example 623 // because the expression was "X xor X" or consisted of 2^Bitwidth additions: 624 // in both cases the weight reduces to 0 causing the value to be skipped. 625 if (Ops.empty()) { 626 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType()); 627 assert(Identity && "Associative operation without identity!"); 628 Ops.emplace_back(Identity, APInt(Bitwidth, 1)); 629 } 630 631 return Changed; 632 } 633 634 /// Now that the operands for this expression tree are 635 /// linearized and optimized, emit them in-order. 636 void ReassociatePass::RewriteExprTree(BinaryOperator *I, 637 SmallVectorImpl<ValueEntry> &Ops) { 638 assert(Ops.size() > 1 && "Single values should be used directly!"); 639 640 // Since our optimizations should never increase the number of operations, the 641 // new expression can usually be written reusing the existing binary operators 642 // from the original expression tree, without creating any new instructions, 643 // though the rewritten expression may have a completely different topology. 644 // We take care to not change anything if the new expression will be the same 645 // as the original. If more than trivial changes (like commuting operands) 646 // were made then we are obliged to clear out any optional subclass data like 647 // nsw flags. 648 649 /// NodesToRewrite - Nodes from the original expression available for writing 650 /// the new expression into. 651 SmallVector<BinaryOperator*, 8> NodesToRewrite; 652 unsigned Opcode = I->getOpcode(); 653 BinaryOperator *Op = I; 654 655 /// NotRewritable - The operands being written will be the leaves of the new 656 /// expression and must not be used as inner nodes (via NodesToRewrite) by 657 /// mistake. Inner nodes are always reassociable, and usually leaves are not 658 /// (if they were they would have been incorporated into the expression and so 659 /// would not be leaves), so most of the time there is no danger of this. But 660 /// in rare cases a leaf may become reassociable if an optimization kills uses 661 /// of it, or it may momentarily become reassociable during rewriting (below) 662 /// due it being removed as an operand of one of its uses. Ensure that misuse 663 /// of leaf nodes as inner nodes cannot occur by remembering all of the future 664 /// leaves and refusing to reuse any of them as inner nodes. 665 SmallPtrSet<Value*, 8> NotRewritable; 666 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 667 NotRewritable.insert(Ops[i].Op); 668 669 // ExpressionChanged - Non-null if the rewritten expression differs from the 670 // original in some non-trivial way, requiring the clearing of optional flags. 671 // Flags are cleared from the operator in ExpressionChanged up to I inclusive. 672 BinaryOperator *ExpressionChanged = nullptr; 673 for (unsigned i = 0; ; ++i) { 674 // The last operation (which comes earliest in the IR) is special as both 675 // operands will come from Ops, rather than just one with the other being 676 // a subexpression. 677 if (i+2 == Ops.size()) { 678 Value *NewLHS = Ops[i].Op; 679 Value *NewRHS = Ops[i+1].Op; 680 Value *OldLHS = Op->getOperand(0); 681 Value *OldRHS = Op->getOperand(1); 682 683 if (NewLHS == OldLHS && NewRHS == OldRHS) 684 // Nothing changed, leave it alone. 685 break; 686 687 if (NewLHS == OldRHS && NewRHS == OldLHS) { 688 // The order of the operands was reversed. Swap them. 689 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 690 Op->swapOperands(); 691 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 692 MadeChange = true; 693 ++NumChanged; 694 break; 695 } 696 697 // The new operation differs non-trivially from the original. Overwrite 698 // the old operands with the new ones. 699 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 700 if (NewLHS != OldLHS) { 701 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode); 702 if (BO && !NotRewritable.count(BO)) 703 NodesToRewrite.push_back(BO); 704 Op->setOperand(0, NewLHS); 705 } 706 if (NewRHS != OldRHS) { 707 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode); 708 if (BO && !NotRewritable.count(BO)) 709 NodesToRewrite.push_back(BO); 710 Op->setOperand(1, NewRHS); 711 } 712 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 713 714 ExpressionChanged = Op; 715 MadeChange = true; 716 ++NumChanged; 717 718 break; 719 } 720 721 // Not the last operation. The left-hand side will be a sub-expression 722 // while the right-hand side will be the current element of Ops. 723 Value *NewRHS = Ops[i].Op; 724 if (NewRHS != Op->getOperand(1)) { 725 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 726 if (NewRHS == Op->getOperand(0)) { 727 // The new right-hand side was already present as the left operand. If 728 // we are lucky then swapping the operands will sort out both of them. 729 Op->swapOperands(); 730 } else { 731 // Overwrite with the new right-hand side. 732 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode); 733 if (BO && !NotRewritable.count(BO)) 734 NodesToRewrite.push_back(BO); 735 Op->setOperand(1, NewRHS); 736 ExpressionChanged = Op; 737 } 738 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 739 MadeChange = true; 740 ++NumChanged; 741 } 742 743 // Now deal with the left-hand side. If this is already an operation node 744 // from the original expression then just rewrite the rest of the expression 745 // into it. 746 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode); 747 if (BO && !NotRewritable.count(BO)) { 748 Op = BO; 749 continue; 750 } 751 752 // Otherwise, grab a spare node from the original expression and use that as 753 // the left-hand side. If there are no nodes left then the optimizers made 754 // an expression with more nodes than the original! This usually means that 755 // they did something stupid but it might mean that the problem was just too 756 // hard (finding the mimimal number of multiplications needed to realize a 757 // multiplication expression is NP-complete). Whatever the reason, smart or 758 // stupid, create a new node if there are none left. 759 BinaryOperator *NewOp; 760 if (NodesToRewrite.empty()) { 761 Constant *Undef = UndefValue::get(I->getType()); 762 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode), 763 Undef, Undef, "", I); 764 if (NewOp->getType()->isFPOrFPVectorTy()) 765 NewOp->setFastMathFlags(I->getFastMathFlags()); 766 } else { 767 NewOp = NodesToRewrite.pop_back_val(); 768 } 769 770 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 771 Op->setOperand(0, NewOp); 772 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 773 ExpressionChanged = Op; 774 MadeChange = true; 775 ++NumChanged; 776 Op = NewOp; 777 } 778 779 // If the expression changed non-trivially then clear out all subclass data 780 // starting from the operator specified in ExpressionChanged, and compactify 781 // the operators to just before the expression root to guarantee that the 782 // expression tree is dominated by all of Ops. 783 if (ExpressionChanged) 784 do { 785 // Preserve FastMathFlags. 786 if (isa<FPMathOperator>(I)) { 787 FastMathFlags Flags = I->getFastMathFlags(); 788 ExpressionChanged->clearSubclassOptionalData(); 789 ExpressionChanged->setFastMathFlags(Flags); 790 } else 791 ExpressionChanged->clearSubclassOptionalData(); 792 793 if (ExpressionChanged == I) 794 break; 795 796 // Discard any debug info related to the expressions that has changed (we 797 // can leave debug infor related to the root, since the result of the 798 // expression tree should be the same even after reassociation). 799 replaceDbgUsesWithUndef(ExpressionChanged); 800 801 ExpressionChanged->moveBefore(I); 802 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin()); 803 } while (true); 804 805 // Throw away any left over nodes from the original expression. 806 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i) 807 RedoInsts.insert(NodesToRewrite[i]); 808 } 809 810 /// Insert instructions before the instruction pointed to by BI, 811 /// that computes the negative version of the value specified. The negative 812 /// version of the value is returned, and BI is left pointing at the instruction 813 /// that should be processed next by the reassociation pass. 814 /// Also add intermediate instructions to the redo list that are modified while 815 /// pushing the negates through adds. These will be revisited to see if 816 /// additional opportunities have been exposed. 817 static Value *NegateValue(Value *V, Instruction *BI, 818 ReassociatePass::OrderedSet &ToRedo) { 819 if (auto *C = dyn_cast<Constant>(V)) 820 return C->getType()->isFPOrFPVectorTy() ? ConstantExpr::getFNeg(C) : 821 ConstantExpr::getNeg(C); 822 823 // We are trying to expose opportunity for reassociation. One of the things 824 // that we want to do to achieve this is to push a negation as deep into an 825 // expression chain as possible, to expose the add instructions. In practice, 826 // this means that we turn this: 827 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D 828 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate 829 // the constants. We assume that instcombine will clean up the mess later if 830 // we introduce tons of unnecessary negation instructions. 831 // 832 if (BinaryOperator *I = 833 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) { 834 // Push the negates through the add. 835 I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo)); 836 I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo)); 837 if (I->getOpcode() == Instruction::Add) { 838 I->setHasNoUnsignedWrap(false); 839 I->setHasNoSignedWrap(false); 840 } 841 842 // We must move the add instruction here, because the neg instructions do 843 // not dominate the old add instruction in general. By moving it, we are 844 // assured that the neg instructions we just inserted dominate the 845 // instruction we are about to insert after them. 846 // 847 I->moveBefore(BI); 848 I->setName(I->getName()+".neg"); 849 850 // Add the intermediate negates to the redo list as processing them later 851 // could expose more reassociating opportunities. 852 ToRedo.insert(I); 853 return I; 854 } 855 856 // Okay, we need to materialize a negated version of V with an instruction. 857 // Scan the use lists of V to see if we have one already. 858 for (User *U : V->users()) { 859 if (!match(U, m_Neg(m_Value())) && !match(U, m_FNeg(m_Value()))) 860 continue; 861 862 // We found one! Now we have to make sure that the definition dominates 863 // this use. We do this by moving it to the entry block (if it is a 864 // non-instruction value) or right after the definition. These negates will 865 // be zapped by reassociate later, so we don't need much finesse here. 866 Instruction *TheNeg = cast<Instruction>(U); 867 868 // Verify that the negate is in this function, V might be a constant expr. 869 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent()) 870 continue; 871 872 bool FoundCatchSwitch = false; 873 874 BasicBlock::iterator InsertPt; 875 if (Instruction *InstInput = dyn_cast<Instruction>(V)) { 876 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) { 877 InsertPt = II->getNormalDest()->begin(); 878 } else { 879 InsertPt = ++InstInput->getIterator(); 880 } 881 882 const BasicBlock *BB = InsertPt->getParent(); 883 884 // Make sure we don't move anything before PHIs or exception 885 // handling pads. 886 while (InsertPt != BB->end() && (isa<PHINode>(InsertPt) || 887 InsertPt->isEHPad())) { 888 if (isa<CatchSwitchInst>(InsertPt)) 889 // A catchswitch cannot have anything in the block except 890 // itself and PHIs. We'll bail out below. 891 FoundCatchSwitch = true; 892 ++InsertPt; 893 } 894 } else { 895 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin(); 896 } 897 898 // We found a catchswitch in the block where we want to move the 899 // neg. We cannot move anything into that block. Bail and just 900 // create the neg before BI, as if we hadn't found an existing 901 // neg. 902 if (FoundCatchSwitch) 903 break; 904 905 TheNeg->moveBefore(&*InsertPt); 906 if (TheNeg->getOpcode() == Instruction::Sub) { 907 TheNeg->setHasNoUnsignedWrap(false); 908 TheNeg->setHasNoSignedWrap(false); 909 } else { 910 TheNeg->andIRFlags(BI); 911 } 912 ToRedo.insert(TheNeg); 913 return TheNeg; 914 } 915 916 // Insert a 'neg' instruction that subtracts the value from zero to get the 917 // negation. 918 Instruction *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI); 919 ToRedo.insert(NewNeg); 920 return NewNeg; 921 } 922 923 /// Return true if it may be profitable to convert this (X|Y) into (X+Y). 924 static bool ShouldConvertOrWithNoCommonBitsToAdd(Instruction *Or) { 925 // Don't bother to convert this up unless either the LHS is an associable add 926 // or subtract or mul or if this is only used by one of the above. 927 // This is only a compile-time improvement, it is not needed for correctness! 928 auto isInteresting = [](Value *V) { 929 for (auto Op : {Instruction::Add, Instruction::Sub, Instruction::Mul}) 930 if (isReassociableOp(V, Op)) 931 return true; 932 return false; 933 }; 934 935 if (any_of(Or->operands(), isInteresting)) 936 return true; 937 938 Value *VB = Or->user_back(); 939 if (Or->hasOneUse() && isInteresting(VB)) 940 return true; 941 942 return false; 943 } 944 945 /// If we have (X|Y), and iff X and Y have no common bits set, 946 /// transform this into (X+Y) to allow arithmetics reassociation. 947 static BinaryOperator *ConvertOrWithNoCommonBitsToAdd(Instruction *Or) { 948 // Convert an or into an add. 949 BinaryOperator *New = 950 CreateAdd(Or->getOperand(0), Or->getOperand(1), "", Or, Or); 951 New->setHasNoSignedWrap(); 952 New->setHasNoUnsignedWrap(); 953 New->takeName(Or); 954 955 // Everyone now refers to the add instruction. 956 Or->replaceAllUsesWith(New); 957 New->setDebugLoc(Or->getDebugLoc()); 958 959 LLVM_DEBUG(dbgs() << "Converted or into an add: " << *New << '\n'); 960 return New; 961 } 962 963 /// Return true if we should break up this subtract of X-Y into (X + -Y). 964 static bool ShouldBreakUpSubtract(Instruction *Sub) { 965 // If this is a negation, we can't split it up! 966 if (match(Sub, m_Neg(m_Value())) || match(Sub, m_FNeg(m_Value()))) 967 return false; 968 969 // Don't breakup X - undef. 970 if (isa<UndefValue>(Sub->getOperand(1))) 971 return false; 972 973 // Don't bother to break this up unless either the LHS is an associable add or 974 // subtract or if this is only used by one. 975 Value *V0 = Sub->getOperand(0); 976 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) || 977 isReassociableOp(V0, Instruction::Sub, Instruction::FSub)) 978 return true; 979 Value *V1 = Sub->getOperand(1); 980 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) || 981 isReassociableOp(V1, Instruction::Sub, Instruction::FSub)) 982 return true; 983 Value *VB = Sub->user_back(); 984 if (Sub->hasOneUse() && 985 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) || 986 isReassociableOp(VB, Instruction::Sub, Instruction::FSub))) 987 return true; 988 989 return false; 990 } 991 992 /// If we have (X-Y), and if either X is an add, or if this is only used by an 993 /// add, transform this into (X+(0-Y)) to promote better reassociation. 994 static BinaryOperator *BreakUpSubtract(Instruction *Sub, 995 ReassociatePass::OrderedSet &ToRedo) { 996 // Convert a subtract into an add and a neg instruction. This allows sub 997 // instructions to be commuted with other add instructions. 998 // 999 // Calculate the negative value of Operand 1 of the sub instruction, 1000 // and set it as the RHS of the add instruction we just made. 1001 Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo); 1002 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub); 1003 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op. 1004 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op. 1005 New->takeName(Sub); 1006 1007 // Everyone now refers to the add instruction. 1008 Sub->replaceAllUsesWith(New); 1009 New->setDebugLoc(Sub->getDebugLoc()); 1010 1011 LLVM_DEBUG(dbgs() << "Negated: " << *New << '\n'); 1012 return New; 1013 } 1014 1015 /// If this is a shift of a reassociable multiply or is used by one, change 1016 /// this into a multiply by a constant to assist with further reassociation. 1017 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) { 1018 Constant *MulCst = ConstantInt::get(Shl->getType(), 1); 1019 auto *SA = cast<ConstantInt>(Shl->getOperand(1)); 1020 MulCst = ConstantExpr::getShl(MulCst, SA); 1021 1022 BinaryOperator *Mul = 1023 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl); 1024 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op. 1025 Mul->takeName(Shl); 1026 1027 // Everyone now refers to the mul instruction. 1028 Shl->replaceAllUsesWith(Mul); 1029 Mul->setDebugLoc(Shl->getDebugLoc()); 1030 1031 // We can safely preserve the nuw flag in all cases. It's also safe to turn a 1032 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special 1033 // handling. It can be preserved as long as we're not left shifting by 1034 // bitwidth - 1. 1035 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap(); 1036 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap(); 1037 unsigned BitWidth = Shl->getType()->getIntegerBitWidth(); 1038 if (NSW && (NUW || SA->getValue().ult(BitWidth - 1))) 1039 Mul->setHasNoSignedWrap(true); 1040 Mul->setHasNoUnsignedWrap(NUW); 1041 return Mul; 1042 } 1043 1044 /// Scan backwards and forwards among values with the same rank as element i 1045 /// to see if X exists. If X does not exist, return i. This is useful when 1046 /// scanning for 'x' when we see '-x' because they both get the same rank. 1047 static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops, 1048 unsigned i, Value *X) { 1049 unsigned XRank = Ops[i].Rank; 1050 unsigned e = Ops.size(); 1051 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) { 1052 if (Ops[j].Op == X) 1053 return j; 1054 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 1055 if (Instruction *I2 = dyn_cast<Instruction>(X)) 1056 if (I1->isIdenticalTo(I2)) 1057 return j; 1058 } 1059 // Scan backwards. 1060 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) { 1061 if (Ops[j].Op == X) 1062 return j; 1063 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 1064 if (Instruction *I2 = dyn_cast<Instruction>(X)) 1065 if (I1->isIdenticalTo(I2)) 1066 return j; 1067 } 1068 return i; 1069 } 1070 1071 /// Emit a tree of add instructions, summing Ops together 1072 /// and returning the result. Insert the tree before I. 1073 static Value *EmitAddTreeOfValues(Instruction *I, 1074 SmallVectorImpl<WeakTrackingVH> &Ops) { 1075 if (Ops.size() == 1) return Ops.back(); 1076 1077 Value *V1 = Ops.back(); 1078 Ops.pop_back(); 1079 Value *V2 = EmitAddTreeOfValues(I, Ops); 1080 return CreateAdd(V2, V1, "reass.add", I, I); 1081 } 1082 1083 /// If V is an expression tree that is a multiplication sequence, 1084 /// and if this sequence contains a multiply by Factor, 1085 /// remove Factor from the tree and return the new tree. 1086 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) { 1087 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1088 if (!BO) 1089 return nullptr; 1090 1091 SmallVector<RepeatedValue, 8> Tree; 1092 MadeChange |= LinearizeExprTree(BO, Tree); 1093 SmallVector<ValueEntry, 8> Factors; 1094 Factors.reserve(Tree.size()); 1095 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 1096 RepeatedValue E = Tree[i]; 1097 Factors.append(E.second.getZExtValue(), 1098 ValueEntry(getRank(E.first), E.first)); 1099 } 1100 1101 bool FoundFactor = false; 1102 bool NeedsNegate = false; 1103 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1104 if (Factors[i].Op == Factor) { 1105 FoundFactor = true; 1106 Factors.erase(Factors.begin()+i); 1107 break; 1108 } 1109 1110 // If this is a negative version of this factor, remove it. 1111 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) { 1112 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op)) 1113 if (FC1->getValue() == -FC2->getValue()) { 1114 FoundFactor = NeedsNegate = true; 1115 Factors.erase(Factors.begin()+i); 1116 break; 1117 } 1118 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) { 1119 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) { 1120 const APFloat &F1 = FC1->getValueAPF(); 1121 APFloat F2(FC2->getValueAPF()); 1122 F2.changeSign(); 1123 if (F1 == F2) { 1124 FoundFactor = NeedsNegate = true; 1125 Factors.erase(Factors.begin() + i); 1126 break; 1127 } 1128 } 1129 } 1130 } 1131 1132 if (!FoundFactor) { 1133 // Make sure to restore the operands to the expression tree. 1134 RewriteExprTree(BO, Factors); 1135 return nullptr; 1136 } 1137 1138 BasicBlock::iterator InsertPt = ++BO->getIterator(); 1139 1140 // If this was just a single multiply, remove the multiply and return the only 1141 // remaining operand. 1142 if (Factors.size() == 1) { 1143 RedoInsts.insert(BO); 1144 V = Factors[0].Op; 1145 } else { 1146 RewriteExprTree(BO, Factors); 1147 V = BO; 1148 } 1149 1150 if (NeedsNegate) 1151 V = CreateNeg(V, "neg", &*InsertPt, BO); 1152 1153 return V; 1154 } 1155 1156 /// If V is a single-use multiply, recursively add its operands as factors, 1157 /// otherwise add V to the list of factors. 1158 /// 1159 /// Ops is the top-level list of add operands we're trying to factor. 1160 static void FindSingleUseMultiplyFactors(Value *V, 1161 SmallVectorImpl<Value*> &Factors) { 1162 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1163 if (!BO) { 1164 Factors.push_back(V); 1165 return; 1166 } 1167 1168 // Otherwise, add the LHS and RHS to the list of factors. 1169 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors); 1170 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors); 1171 } 1172 1173 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction. 1174 /// This optimizes based on identities. If it can be reduced to a single Value, 1175 /// it is returned, otherwise the Ops list is mutated as necessary. 1176 static Value *OptimizeAndOrXor(unsigned Opcode, 1177 SmallVectorImpl<ValueEntry> &Ops) { 1178 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs. 1179 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1. 1180 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1181 // First, check for X and ~X in the operand list. 1182 assert(i < Ops.size()); 1183 Value *X; 1184 if (match(Ops[i].Op, m_Not(m_Value(X)))) { // Cannot occur for ^. 1185 unsigned FoundX = FindInOperandList(Ops, i, X); 1186 if (FoundX != i) { 1187 if (Opcode == Instruction::And) // ...&X&~X = 0 1188 return Constant::getNullValue(X->getType()); 1189 1190 if (Opcode == Instruction::Or) // ...|X|~X = -1 1191 return Constant::getAllOnesValue(X->getType()); 1192 } 1193 } 1194 1195 // Next, check for duplicate pairs of values, which we assume are next to 1196 // each other, due to our sorting criteria. 1197 assert(i < Ops.size()); 1198 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) { 1199 if (Opcode == Instruction::And || Opcode == Instruction::Or) { 1200 // Drop duplicate values for And and Or. 1201 Ops.erase(Ops.begin()+i); 1202 --i; --e; 1203 ++NumAnnihil; 1204 continue; 1205 } 1206 1207 // Drop pairs of values for Xor. 1208 assert(Opcode == Instruction::Xor); 1209 if (e == 2) 1210 return Constant::getNullValue(Ops[0].Op->getType()); 1211 1212 // Y ^ X^X -> Y 1213 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1214 i -= 1; e -= 2; 1215 ++NumAnnihil; 1216 } 1217 } 1218 return nullptr; 1219 } 1220 1221 /// Helper function of CombineXorOpnd(). It creates a bitwise-and 1222 /// instruction with the given two operands, and return the resulting 1223 /// instruction. There are two special cases: 1) if the constant operand is 0, 1224 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will 1225 /// be returned. 1226 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd, 1227 const APInt &ConstOpnd) { 1228 if (ConstOpnd.isNullValue()) 1229 return nullptr; 1230 1231 if (ConstOpnd.isAllOnesValue()) 1232 return Opnd; 1233 1234 Instruction *I = BinaryOperator::CreateAnd( 1235 Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra", 1236 InsertBefore); 1237 I->setDebugLoc(InsertBefore->getDebugLoc()); 1238 return I; 1239 } 1240 1241 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd" 1242 // into "R ^ C", where C would be 0, and R is a symbolic value. 1243 // 1244 // If it was successful, true is returned, and the "R" and "C" is returned 1245 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned, 1246 // and both "Res" and "ConstOpnd" remain unchanged. 1247 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1248 APInt &ConstOpnd, Value *&Res) { 1249 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2 1250 // = ((x | c1) ^ c1) ^ (c1 ^ c2) 1251 // = (x & ~c1) ^ (c1 ^ c2) 1252 // It is useful only when c1 == c2. 1253 if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isNullValue()) 1254 return false; 1255 1256 if (!Opnd1->getValue()->hasOneUse()) 1257 return false; 1258 1259 const APInt &C1 = Opnd1->getConstPart(); 1260 if (C1 != ConstOpnd) 1261 return false; 1262 1263 Value *X = Opnd1->getSymbolicPart(); 1264 Res = createAndInstr(I, X, ~C1); 1265 // ConstOpnd was C2, now C1 ^ C2. 1266 ConstOpnd ^= C1; 1267 1268 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1269 RedoInsts.insert(T); 1270 return true; 1271 } 1272 1273 // Helper function of OptimizeXor(). It tries to simplify 1274 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a 1275 // symbolic value. 1276 // 1277 // If it was successful, true is returned, and the "R" and "C" is returned 1278 // via "Res" and "ConstOpnd", respectively (If the entire expression is 1279 // evaluated to a constant, the Res is set to NULL); otherwise, false is 1280 // returned, and both "Res" and "ConstOpnd" remain unchanged. 1281 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1282 XorOpnd *Opnd2, APInt &ConstOpnd, 1283 Value *&Res) { 1284 Value *X = Opnd1->getSymbolicPart(); 1285 if (X != Opnd2->getSymbolicPart()) 1286 return false; 1287 1288 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.) 1289 int DeadInstNum = 1; 1290 if (Opnd1->getValue()->hasOneUse()) 1291 DeadInstNum++; 1292 if (Opnd2->getValue()->hasOneUse()) 1293 DeadInstNum++; 1294 1295 // Xor-Rule 2: 1296 // (x | c1) ^ (x & c2) 1297 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1 1298 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1 1299 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3 1300 // 1301 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) { 1302 if (Opnd2->isOrExpr()) 1303 std::swap(Opnd1, Opnd2); 1304 1305 const APInt &C1 = Opnd1->getConstPart(); 1306 const APInt &C2 = Opnd2->getConstPart(); 1307 APInt C3((~C1) ^ C2); 1308 1309 // Do not increase code size! 1310 if (!C3.isNullValue() && !C3.isAllOnesValue()) { 1311 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2; 1312 if (NewInstNum > DeadInstNum) 1313 return false; 1314 } 1315 1316 Res = createAndInstr(I, X, C3); 1317 ConstOpnd ^= C1; 1318 } else if (Opnd1->isOrExpr()) { 1319 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2 1320 // 1321 const APInt &C1 = Opnd1->getConstPart(); 1322 const APInt &C2 = Opnd2->getConstPart(); 1323 APInt C3 = C1 ^ C2; 1324 1325 // Do not increase code size 1326 if (!C3.isNullValue() && !C3.isAllOnesValue()) { 1327 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2; 1328 if (NewInstNum > DeadInstNum) 1329 return false; 1330 } 1331 1332 Res = createAndInstr(I, X, C3); 1333 ConstOpnd ^= C3; 1334 } else { 1335 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2)) 1336 // 1337 const APInt &C1 = Opnd1->getConstPart(); 1338 const APInt &C2 = Opnd2->getConstPart(); 1339 APInt C3 = C1 ^ C2; 1340 Res = createAndInstr(I, X, C3); 1341 } 1342 1343 // Put the original operands in the Redo list; hope they will be deleted 1344 // as dead code. 1345 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1346 RedoInsts.insert(T); 1347 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue())) 1348 RedoInsts.insert(T); 1349 1350 return true; 1351 } 1352 1353 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced 1354 /// to a single Value, it is returned, otherwise the Ops list is mutated as 1355 /// necessary. 1356 Value *ReassociatePass::OptimizeXor(Instruction *I, 1357 SmallVectorImpl<ValueEntry> &Ops) { 1358 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops)) 1359 return V; 1360 1361 if (Ops.size() == 1) 1362 return nullptr; 1363 1364 SmallVector<XorOpnd, 8> Opnds; 1365 SmallVector<XorOpnd*, 8> OpndPtrs; 1366 Type *Ty = Ops[0].Op->getType(); 1367 APInt ConstOpnd(Ty->getScalarSizeInBits(), 0); 1368 1369 // Step 1: Convert ValueEntry to XorOpnd 1370 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1371 Value *V = Ops[i].Op; 1372 const APInt *C; 1373 // TODO: Support non-splat vectors. 1374 if (match(V, m_APInt(C))) { 1375 ConstOpnd ^= *C; 1376 } else { 1377 XorOpnd O(V); 1378 O.setSymbolicRank(getRank(O.getSymbolicPart())); 1379 Opnds.push_back(O); 1380 } 1381 } 1382 1383 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds". 1384 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate 1385 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop 1386 // with the previous loop --- the iterator of the "Opnds" may be invalidated 1387 // when new elements are added to the vector. 1388 for (unsigned i = 0, e = Opnds.size(); i != e; ++i) 1389 OpndPtrs.push_back(&Opnds[i]); 1390 1391 // Step 2: Sort the Xor-Operands in a way such that the operands containing 1392 // the same symbolic value cluster together. For instance, the input operand 1393 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into: 1394 // ("x | 123", "x & 789", "y & 456"). 1395 // 1396 // The purpose is twofold: 1397 // 1) Cluster together the operands sharing the same symbolic-value. 1398 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which 1399 // could potentially shorten crital path, and expose more loop-invariants. 1400 // Note that values' rank are basically defined in RPO order (FIXME). 1401 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier 1402 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2", 1403 // "z" in the order of X-Y-Z is better than any other orders. 1404 llvm::stable_sort(OpndPtrs, [](XorOpnd *LHS, XorOpnd *RHS) { 1405 return LHS->getSymbolicRank() < RHS->getSymbolicRank(); 1406 }); 1407 1408 // Step 3: Combine adjacent operands 1409 XorOpnd *PrevOpnd = nullptr; 1410 bool Changed = false; 1411 for (unsigned i = 0, e = Opnds.size(); i < e; i++) { 1412 XorOpnd *CurrOpnd = OpndPtrs[i]; 1413 // The combined value 1414 Value *CV; 1415 1416 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd" 1417 if (!ConstOpnd.isNullValue() && 1418 CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) { 1419 Changed = true; 1420 if (CV) 1421 *CurrOpnd = XorOpnd(CV); 1422 else { 1423 CurrOpnd->Invalidate(); 1424 continue; 1425 } 1426 } 1427 1428 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) { 1429 PrevOpnd = CurrOpnd; 1430 continue; 1431 } 1432 1433 // step 3.2: When previous and current operands share the same symbolic 1434 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd" 1435 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) { 1436 // Remove previous operand 1437 PrevOpnd->Invalidate(); 1438 if (CV) { 1439 *CurrOpnd = XorOpnd(CV); 1440 PrevOpnd = CurrOpnd; 1441 } else { 1442 CurrOpnd->Invalidate(); 1443 PrevOpnd = nullptr; 1444 } 1445 Changed = true; 1446 } 1447 } 1448 1449 // Step 4: Reassemble the Ops 1450 if (Changed) { 1451 Ops.clear(); 1452 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) { 1453 XorOpnd &O = Opnds[i]; 1454 if (O.isInvalid()) 1455 continue; 1456 ValueEntry VE(getRank(O.getValue()), O.getValue()); 1457 Ops.push_back(VE); 1458 } 1459 if (!ConstOpnd.isNullValue()) { 1460 Value *C = ConstantInt::get(Ty, ConstOpnd); 1461 ValueEntry VE(getRank(C), C); 1462 Ops.push_back(VE); 1463 } 1464 unsigned Sz = Ops.size(); 1465 if (Sz == 1) 1466 return Ops.back().Op; 1467 if (Sz == 0) { 1468 assert(ConstOpnd.isNullValue()); 1469 return ConstantInt::get(Ty, ConstOpnd); 1470 } 1471 } 1472 1473 return nullptr; 1474 } 1475 1476 /// Optimize a series of operands to an 'add' instruction. This 1477 /// optimizes based on identities. If it can be reduced to a single Value, it 1478 /// is returned, otherwise the Ops list is mutated as necessary. 1479 Value *ReassociatePass::OptimizeAdd(Instruction *I, 1480 SmallVectorImpl<ValueEntry> &Ops) { 1481 // Scan the operand lists looking for X and -X pairs. If we find any, we 1482 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it, 1483 // scan for any 1484 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z. 1485 1486 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1487 Value *TheOp = Ops[i].Op; 1488 // Check to see if we've seen this operand before. If so, we factor all 1489 // instances of the operand together. Due to our sorting criteria, we know 1490 // that these need to be next to each other in the vector. 1491 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) { 1492 // Rescan the list, remove all instances of this operand from the expr. 1493 unsigned NumFound = 0; 1494 do { 1495 Ops.erase(Ops.begin()+i); 1496 ++NumFound; 1497 } while (i != Ops.size() && Ops[i].Op == TheOp); 1498 1499 LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp 1500 << '\n'); 1501 ++NumFactor; 1502 1503 // Insert a new multiply. 1504 Type *Ty = TheOp->getType(); 1505 Constant *C = Ty->isIntOrIntVectorTy() ? 1506 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound); 1507 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I); 1508 1509 // Now that we have inserted a multiply, optimize it. This allows us to 1510 // handle cases that require multiple factoring steps, such as this: 1511 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6 1512 RedoInsts.insert(Mul); 1513 1514 // If every add operand was a duplicate, return the multiply. 1515 if (Ops.empty()) 1516 return Mul; 1517 1518 // Otherwise, we had some input that didn't have the dupe, such as 1519 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of 1520 // things being added by this operation. 1521 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul)); 1522 1523 --i; 1524 e = Ops.size(); 1525 continue; 1526 } 1527 1528 // Check for X and -X or X and ~X in the operand list. 1529 Value *X; 1530 if (!match(TheOp, m_Neg(m_Value(X))) && !match(TheOp, m_Not(m_Value(X))) && 1531 !match(TheOp, m_FNeg(m_Value(X)))) 1532 continue; 1533 1534 unsigned FoundX = FindInOperandList(Ops, i, X); 1535 if (FoundX == i) 1536 continue; 1537 1538 // Remove X and -X from the operand list. 1539 if (Ops.size() == 2 && 1540 (match(TheOp, m_Neg(m_Value())) || match(TheOp, m_FNeg(m_Value())))) 1541 return Constant::getNullValue(X->getType()); 1542 1543 // Remove X and ~X from the operand list. 1544 if (Ops.size() == 2 && match(TheOp, m_Not(m_Value()))) 1545 return Constant::getAllOnesValue(X->getType()); 1546 1547 Ops.erase(Ops.begin()+i); 1548 if (i < FoundX) 1549 --FoundX; 1550 else 1551 --i; // Need to back up an extra one. 1552 Ops.erase(Ops.begin()+FoundX); 1553 ++NumAnnihil; 1554 --i; // Revisit element. 1555 e -= 2; // Removed two elements. 1556 1557 // if X and ~X we append -1 to the operand list. 1558 if (match(TheOp, m_Not(m_Value()))) { 1559 Value *V = Constant::getAllOnesValue(X->getType()); 1560 Ops.insert(Ops.end(), ValueEntry(getRank(V), V)); 1561 e += 1; 1562 } 1563 } 1564 1565 // Scan the operand list, checking to see if there are any common factors 1566 // between operands. Consider something like A*A+A*B*C+D. We would like to 1567 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies. 1568 // To efficiently find this, we count the number of times a factor occurs 1569 // for any ADD operands that are MULs. 1570 DenseMap<Value*, unsigned> FactorOccurrences; 1571 1572 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4) 1573 // where they are actually the same multiply. 1574 unsigned MaxOcc = 0; 1575 Value *MaxOccVal = nullptr; 1576 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1577 BinaryOperator *BOp = 1578 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1579 if (!BOp) 1580 continue; 1581 1582 // Compute all of the factors of this added value. 1583 SmallVector<Value*, 8> Factors; 1584 FindSingleUseMultiplyFactors(BOp, Factors); 1585 assert(Factors.size() > 1 && "Bad linearize!"); 1586 1587 // Add one to FactorOccurrences for each unique factor in this op. 1588 SmallPtrSet<Value*, 8> Duplicates; 1589 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1590 Value *Factor = Factors[i]; 1591 if (!Duplicates.insert(Factor).second) 1592 continue; 1593 1594 unsigned Occ = ++FactorOccurrences[Factor]; 1595 if (Occ > MaxOcc) { 1596 MaxOcc = Occ; 1597 MaxOccVal = Factor; 1598 } 1599 1600 // If Factor is a negative constant, add the negated value as a factor 1601 // because we can percolate the negate out. Watch for minint, which 1602 // cannot be positivified. 1603 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) { 1604 if (CI->isNegative() && !CI->isMinValue(true)) { 1605 Factor = ConstantInt::get(CI->getContext(), -CI->getValue()); 1606 if (!Duplicates.insert(Factor).second) 1607 continue; 1608 unsigned Occ = ++FactorOccurrences[Factor]; 1609 if (Occ > MaxOcc) { 1610 MaxOcc = Occ; 1611 MaxOccVal = Factor; 1612 } 1613 } 1614 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) { 1615 if (CF->isNegative()) { 1616 APFloat F(CF->getValueAPF()); 1617 F.changeSign(); 1618 Factor = ConstantFP::get(CF->getContext(), F); 1619 if (!Duplicates.insert(Factor).second) 1620 continue; 1621 unsigned Occ = ++FactorOccurrences[Factor]; 1622 if (Occ > MaxOcc) { 1623 MaxOcc = Occ; 1624 MaxOccVal = Factor; 1625 } 1626 } 1627 } 1628 } 1629 } 1630 1631 // If any factor occurred more than one time, we can pull it out. 1632 if (MaxOcc > 1) { 1633 LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal 1634 << '\n'); 1635 ++NumFactor; 1636 1637 // Create a new instruction that uses the MaxOccVal twice. If we don't do 1638 // this, we could otherwise run into situations where removing a factor 1639 // from an expression will drop a use of maxocc, and this can cause 1640 // RemoveFactorFromExpression on successive values to behave differently. 1641 Instruction *DummyInst = 1642 I->getType()->isIntOrIntVectorTy() 1643 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal) 1644 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal); 1645 1646 SmallVector<WeakTrackingVH, 4> NewMulOps; 1647 for (unsigned i = 0; i != Ops.size(); ++i) { 1648 // Only try to remove factors from expressions we're allowed to. 1649 BinaryOperator *BOp = 1650 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1651 if (!BOp) 1652 continue; 1653 1654 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) { 1655 // The factorized operand may occur several times. Convert them all in 1656 // one fell swoop. 1657 for (unsigned j = Ops.size(); j != i;) { 1658 --j; 1659 if (Ops[j].Op == Ops[i].Op) { 1660 NewMulOps.push_back(V); 1661 Ops.erase(Ops.begin()+j); 1662 } 1663 } 1664 --i; 1665 } 1666 } 1667 1668 // No need for extra uses anymore. 1669 DummyInst->deleteValue(); 1670 1671 unsigned NumAddedValues = NewMulOps.size(); 1672 Value *V = EmitAddTreeOfValues(I, NewMulOps); 1673 1674 // Now that we have inserted the add tree, optimize it. This allows us to 1675 // handle cases that require multiple factoring steps, such as this: 1676 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C)) 1677 assert(NumAddedValues > 1 && "Each occurrence should contribute a value"); 1678 (void)NumAddedValues; 1679 if (Instruction *VI = dyn_cast<Instruction>(V)) 1680 RedoInsts.insert(VI); 1681 1682 // Create the multiply. 1683 Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I); 1684 1685 // Rerun associate on the multiply in case the inner expression turned into 1686 // a multiply. We want to make sure that we keep things in canonical form. 1687 RedoInsts.insert(V2); 1688 1689 // If every add operand included the factor (e.g. "A*B + A*C"), then the 1690 // entire result expression is just the multiply "A*(B+C)". 1691 if (Ops.empty()) 1692 return V2; 1693 1694 // Otherwise, we had some input that didn't have the factor, such as 1695 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of 1696 // things being added by this operation. 1697 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2)); 1698 } 1699 1700 return nullptr; 1701 } 1702 1703 /// Build up a vector of value/power pairs factoring a product. 1704 /// 1705 /// Given a series of multiplication operands, build a vector of factors and 1706 /// the powers each is raised to when forming the final product. Sort them in 1707 /// the order of descending power. 1708 /// 1709 /// (x*x) -> [(x, 2)] 1710 /// ((x*x)*x) -> [(x, 3)] 1711 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)] 1712 /// 1713 /// \returns Whether any factors have a power greater than one. 1714 static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, 1715 SmallVectorImpl<Factor> &Factors) { 1716 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this. 1717 // Compute the sum of powers of simplifiable factors. 1718 unsigned FactorPowerSum = 0; 1719 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) { 1720 Value *Op = Ops[Idx-1].Op; 1721 1722 // Count the number of occurrences of this value. 1723 unsigned Count = 1; 1724 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx) 1725 ++Count; 1726 // Track for simplification all factors which occur 2 or more times. 1727 if (Count > 1) 1728 FactorPowerSum += Count; 1729 } 1730 1731 // We can only simplify factors if the sum of the powers of our simplifiable 1732 // factors is 4 or higher. When that is the case, we will *always* have 1733 // a simplification. This is an important invariant to prevent cyclicly 1734 // trying to simplify already minimal formations. 1735 if (FactorPowerSum < 4) 1736 return false; 1737 1738 // Now gather the simplifiable factors, removing them from Ops. 1739 FactorPowerSum = 0; 1740 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) { 1741 Value *Op = Ops[Idx-1].Op; 1742 1743 // Count the number of occurrences of this value. 1744 unsigned Count = 1; 1745 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx) 1746 ++Count; 1747 if (Count == 1) 1748 continue; 1749 // Move an even number of occurrences to Factors. 1750 Count &= ~1U; 1751 Idx -= Count; 1752 FactorPowerSum += Count; 1753 Factors.push_back(Factor(Op, Count)); 1754 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count); 1755 } 1756 1757 // None of the adjustments above should have reduced the sum of factor powers 1758 // below our mininum of '4'. 1759 assert(FactorPowerSum >= 4); 1760 1761 llvm::stable_sort(Factors, [](const Factor &LHS, const Factor &RHS) { 1762 return LHS.Power > RHS.Power; 1763 }); 1764 return true; 1765 } 1766 1767 /// Build a tree of multiplies, computing the product of Ops. 1768 static Value *buildMultiplyTree(IRBuilderBase &Builder, 1769 SmallVectorImpl<Value*> &Ops) { 1770 if (Ops.size() == 1) 1771 return Ops.back(); 1772 1773 Value *LHS = Ops.pop_back_val(); 1774 do { 1775 if (LHS->getType()->isIntOrIntVectorTy()) 1776 LHS = Builder.CreateMul(LHS, Ops.pop_back_val()); 1777 else 1778 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val()); 1779 } while (!Ops.empty()); 1780 1781 return LHS; 1782 } 1783 1784 /// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*... 1785 /// 1786 /// Given a vector of values raised to various powers, where no two values are 1787 /// equal and the powers are sorted in decreasing order, compute the minimal 1788 /// DAG of multiplies to compute the final product, and return that product 1789 /// value. 1790 Value * 1791 ReassociatePass::buildMinimalMultiplyDAG(IRBuilderBase &Builder, 1792 SmallVectorImpl<Factor> &Factors) { 1793 assert(Factors[0].Power); 1794 SmallVector<Value *, 4> OuterProduct; 1795 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size(); 1796 Idx < Size && Factors[Idx].Power > 0; ++Idx) { 1797 if (Factors[Idx].Power != Factors[LastIdx].Power) { 1798 LastIdx = Idx; 1799 continue; 1800 } 1801 1802 // We want to multiply across all the factors with the same power so that 1803 // we can raise them to that power as a single entity. Build a mini tree 1804 // for that. 1805 SmallVector<Value *, 4> InnerProduct; 1806 InnerProduct.push_back(Factors[LastIdx].Base); 1807 do { 1808 InnerProduct.push_back(Factors[Idx].Base); 1809 ++Idx; 1810 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power); 1811 1812 // Reset the base value of the first factor to the new expression tree. 1813 // We'll remove all the factors with the same power in a second pass. 1814 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct); 1815 if (Instruction *MI = dyn_cast<Instruction>(M)) 1816 RedoInsts.insert(MI); 1817 1818 LastIdx = Idx; 1819 } 1820 // Unique factors with equal powers -- we've folded them into the first one's 1821 // base. 1822 Factors.erase(std::unique(Factors.begin(), Factors.end(), 1823 [](const Factor &LHS, const Factor &RHS) { 1824 return LHS.Power == RHS.Power; 1825 }), 1826 Factors.end()); 1827 1828 // Iteratively collect the base of each factor with an add power into the 1829 // outer product, and halve each power in preparation for squaring the 1830 // expression. 1831 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) { 1832 if (Factors[Idx].Power & 1) 1833 OuterProduct.push_back(Factors[Idx].Base); 1834 Factors[Idx].Power >>= 1; 1835 } 1836 if (Factors[0].Power) { 1837 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors); 1838 OuterProduct.push_back(SquareRoot); 1839 OuterProduct.push_back(SquareRoot); 1840 } 1841 if (OuterProduct.size() == 1) 1842 return OuterProduct.front(); 1843 1844 Value *V = buildMultiplyTree(Builder, OuterProduct); 1845 return V; 1846 } 1847 1848 Value *ReassociatePass::OptimizeMul(BinaryOperator *I, 1849 SmallVectorImpl<ValueEntry> &Ops) { 1850 // We can only optimize the multiplies when there is a chain of more than 1851 // three, such that a balanced tree might require fewer total multiplies. 1852 if (Ops.size() < 4) 1853 return nullptr; 1854 1855 // Try to turn linear trees of multiplies without other uses of the 1856 // intermediate stages into minimal multiply DAGs with perfect sub-expression 1857 // re-use. 1858 SmallVector<Factor, 4> Factors; 1859 if (!collectMultiplyFactors(Ops, Factors)) 1860 return nullptr; // All distinct factors, so nothing left for us to do. 1861 1862 IRBuilder<> Builder(I); 1863 // The reassociate transformation for FP operations is performed only 1864 // if unsafe algebra is permitted by FastMathFlags. Propagate those flags 1865 // to the newly generated operations. 1866 if (auto FPI = dyn_cast<FPMathOperator>(I)) 1867 Builder.setFastMathFlags(FPI->getFastMathFlags()); 1868 1869 Value *V = buildMinimalMultiplyDAG(Builder, Factors); 1870 if (Ops.empty()) 1871 return V; 1872 1873 ValueEntry NewEntry = ValueEntry(getRank(V), V); 1874 Ops.insert(llvm::lower_bound(Ops, NewEntry), NewEntry); 1875 return nullptr; 1876 } 1877 1878 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I, 1879 SmallVectorImpl<ValueEntry> &Ops) { 1880 // Now that we have the linearized expression tree, try to optimize it. 1881 // Start by folding any constants that we found. 1882 Constant *Cst = nullptr; 1883 unsigned Opcode = I->getOpcode(); 1884 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) { 1885 Constant *C = cast<Constant>(Ops.pop_back_val().Op); 1886 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C; 1887 } 1888 // If there was nothing but constants then we are done. 1889 if (Ops.empty()) 1890 return Cst; 1891 1892 // Put the combined constant back at the end of the operand list, except if 1893 // there is no point. For example, an add of 0 gets dropped here, while a 1894 // multiplication by zero turns the whole expression into zero. 1895 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) { 1896 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType())) 1897 return Cst; 1898 Ops.push_back(ValueEntry(0, Cst)); 1899 } 1900 1901 if (Ops.size() == 1) return Ops[0].Op; 1902 1903 // Handle destructive annihilation due to identities between elements in the 1904 // argument list here. 1905 unsigned NumOps = Ops.size(); 1906 switch (Opcode) { 1907 default: break; 1908 case Instruction::And: 1909 case Instruction::Or: 1910 if (Value *Result = OptimizeAndOrXor(Opcode, Ops)) 1911 return Result; 1912 break; 1913 1914 case Instruction::Xor: 1915 if (Value *Result = OptimizeXor(I, Ops)) 1916 return Result; 1917 break; 1918 1919 case Instruction::Add: 1920 case Instruction::FAdd: 1921 if (Value *Result = OptimizeAdd(I, Ops)) 1922 return Result; 1923 break; 1924 1925 case Instruction::Mul: 1926 case Instruction::FMul: 1927 if (Value *Result = OptimizeMul(I, Ops)) 1928 return Result; 1929 break; 1930 } 1931 1932 if (Ops.size() != NumOps) 1933 return OptimizeExpression(I, Ops); 1934 return nullptr; 1935 } 1936 1937 // Remove dead instructions and if any operands are trivially dead add them to 1938 // Insts so they will be removed as well. 1939 void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I, 1940 OrderedSet &Insts) { 1941 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1942 SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end()); 1943 ValueRankMap.erase(I); 1944 Insts.remove(I); 1945 RedoInsts.remove(I); 1946 llvm::salvageDebugInfo(*I); 1947 I->eraseFromParent(); 1948 for (auto Op : Ops) 1949 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1950 if (OpInst->use_empty()) 1951 Insts.insert(OpInst); 1952 } 1953 1954 /// Zap the given instruction, adding interesting operands to the work list. 1955 void ReassociatePass::EraseInst(Instruction *I) { 1956 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1957 LLVM_DEBUG(dbgs() << "Erasing dead inst: "; I->dump()); 1958 1959 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 1960 // Erase the dead instruction. 1961 ValueRankMap.erase(I); 1962 RedoInsts.remove(I); 1963 llvm::salvageDebugInfo(*I); 1964 I->eraseFromParent(); 1965 // Optimize its operands. 1966 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes. 1967 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1968 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) { 1969 // If this is a node in an expression tree, climb to the expression root 1970 // and add that since that's where optimization actually happens. 1971 unsigned Opcode = Op->getOpcode(); 1972 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode && 1973 Visited.insert(Op).second) 1974 Op = Op->user_back(); 1975 1976 // The instruction we're going to push may be coming from a 1977 // dead block, and Reassociate skips the processing of unreachable 1978 // blocks because it's a waste of time and also because it can 1979 // lead to infinite loop due to LLVM's non-standard definition 1980 // of dominance. 1981 if (ValueRankMap.find(Op) != ValueRankMap.end()) 1982 RedoInsts.insert(Op); 1983 } 1984 1985 MadeChange = true; 1986 } 1987 1988 /// Recursively analyze an expression to build a list of instructions that have 1989 /// negative floating-point constant operands. The caller can then transform 1990 /// the list to create positive constants for better reassociation and CSE. 1991 static void getNegatibleInsts(Value *V, 1992 SmallVectorImpl<Instruction *> &Candidates) { 1993 // Handle only one-use instructions. Combining negations does not justify 1994 // replicating instructions. 1995 Instruction *I; 1996 if (!match(V, m_OneUse(m_Instruction(I)))) 1997 return; 1998 1999 // Handle expressions of multiplications and divisions. 2000 // TODO: This could look through floating-point casts. 2001 const APFloat *C; 2002 switch (I->getOpcode()) { 2003 case Instruction::FMul: 2004 // Not expecting non-canonical code here. Bail out and wait. 2005 if (match(I->getOperand(0), m_Constant())) 2006 break; 2007 2008 if (match(I->getOperand(1), m_APFloat(C)) && C->isNegative()) { 2009 Candidates.push_back(I); 2010 LLVM_DEBUG(dbgs() << "FMul with negative constant: " << *I << '\n'); 2011 } 2012 getNegatibleInsts(I->getOperand(0), Candidates); 2013 getNegatibleInsts(I->getOperand(1), Candidates); 2014 break; 2015 case Instruction::FDiv: 2016 // Not expecting non-canonical code here. Bail out and wait. 2017 if (match(I->getOperand(0), m_Constant()) && 2018 match(I->getOperand(1), m_Constant())) 2019 break; 2020 2021 if ((match(I->getOperand(0), m_APFloat(C)) && C->isNegative()) || 2022 (match(I->getOperand(1), m_APFloat(C)) && C->isNegative())) { 2023 Candidates.push_back(I); 2024 LLVM_DEBUG(dbgs() << "FDiv with negative constant: " << *I << '\n'); 2025 } 2026 getNegatibleInsts(I->getOperand(0), Candidates); 2027 getNegatibleInsts(I->getOperand(1), Candidates); 2028 break; 2029 default: 2030 break; 2031 } 2032 } 2033 2034 /// Given an fadd/fsub with an operand that is a one-use instruction 2035 /// (the fadd/fsub), try to change negative floating-point constants into 2036 /// positive constants to increase potential for reassociation and CSE. 2037 Instruction *ReassociatePass::canonicalizeNegFPConstantsForOp(Instruction *I, 2038 Instruction *Op, 2039 Value *OtherOp) { 2040 assert((I->getOpcode() == Instruction::FAdd || 2041 I->getOpcode() == Instruction::FSub) && "Expected fadd/fsub"); 2042 2043 // Collect instructions with negative FP constants from the subtree that ends 2044 // in Op. 2045 SmallVector<Instruction *, 4> Candidates; 2046 getNegatibleInsts(Op, Candidates); 2047 if (Candidates.empty()) 2048 return nullptr; 2049 2050 // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the 2051 // resulting subtract will be broken up later. This can get us into an 2052 // infinite loop during reassociation. 2053 bool IsFSub = I->getOpcode() == Instruction::FSub; 2054 bool NeedsSubtract = !IsFSub && Candidates.size() % 2 == 1; 2055 if (NeedsSubtract && ShouldBreakUpSubtract(I)) 2056 return nullptr; 2057 2058 for (Instruction *Negatible : Candidates) { 2059 const APFloat *C; 2060 if (match(Negatible->getOperand(0), m_APFloat(C))) { 2061 assert(!match(Negatible->getOperand(1), m_Constant()) && 2062 "Expecting only 1 constant operand"); 2063 assert(C->isNegative() && "Expected negative FP constant"); 2064 Negatible->setOperand(0, ConstantFP::get(Negatible->getType(), abs(*C))); 2065 MadeChange = true; 2066 } 2067 if (match(Negatible->getOperand(1), m_APFloat(C))) { 2068 assert(!match(Negatible->getOperand(0), m_Constant()) && 2069 "Expecting only 1 constant operand"); 2070 assert(C->isNegative() && "Expected negative FP constant"); 2071 Negatible->setOperand(1, ConstantFP::get(Negatible->getType(), abs(*C))); 2072 MadeChange = true; 2073 } 2074 } 2075 assert(MadeChange == true && "Negative constant candidate was not changed"); 2076 2077 // Negations cancelled out. 2078 if (Candidates.size() % 2 == 0) 2079 return I; 2080 2081 // Negate the final operand in the expression by flipping the opcode of this 2082 // fadd/fsub. 2083 assert(Candidates.size() % 2 == 1 && "Expected odd number"); 2084 IRBuilder<> Builder(I); 2085 Value *NewInst = IsFSub ? Builder.CreateFAddFMF(OtherOp, Op, I) 2086 : Builder.CreateFSubFMF(OtherOp, Op, I); 2087 I->replaceAllUsesWith(NewInst); 2088 RedoInsts.insert(I); 2089 return dyn_cast<Instruction>(NewInst); 2090 } 2091 2092 /// Canonicalize expressions that contain a negative floating-point constant 2093 /// of the following form: 2094 /// OtherOp + (subtree) -> OtherOp {+/-} (canonical subtree) 2095 /// (subtree) + OtherOp -> OtherOp {+/-} (canonical subtree) 2096 /// OtherOp - (subtree) -> OtherOp {+/-} (canonical subtree) 2097 /// 2098 /// The fadd/fsub opcode may be switched to allow folding a negation into the 2099 /// input instruction. 2100 Instruction *ReassociatePass::canonicalizeNegFPConstants(Instruction *I) { 2101 LLVM_DEBUG(dbgs() << "Combine negations for: " << *I << '\n'); 2102 Value *X; 2103 Instruction *Op; 2104 if (match(I, m_FAdd(m_Value(X), m_OneUse(m_Instruction(Op))))) 2105 if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X)) 2106 I = R; 2107 if (match(I, m_FAdd(m_OneUse(m_Instruction(Op)), m_Value(X)))) 2108 if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X)) 2109 I = R; 2110 if (match(I, m_FSub(m_Value(X), m_OneUse(m_Instruction(Op))))) 2111 if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X)) 2112 I = R; 2113 return I; 2114 } 2115 2116 /// Inspect and optimize the given instruction. Note that erasing 2117 /// instructions is not allowed. 2118 void ReassociatePass::OptimizeInst(Instruction *I) { 2119 // Only consider operations that we understand. 2120 if (!isa<UnaryOperator>(I) && !isa<BinaryOperator>(I)) 2121 return; 2122 2123 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1))) 2124 // If an operand of this shift is a reassociable multiply, or if the shift 2125 // is used by a reassociable multiply or add, turn into a multiply. 2126 if (isReassociableOp(I->getOperand(0), Instruction::Mul) || 2127 (I->hasOneUse() && 2128 (isReassociableOp(I->user_back(), Instruction::Mul) || 2129 isReassociableOp(I->user_back(), Instruction::Add)))) { 2130 Instruction *NI = ConvertShiftToMul(I); 2131 RedoInsts.insert(I); 2132 MadeChange = true; 2133 I = NI; 2134 } 2135 2136 // Commute binary operators, to canonicalize the order of their operands. 2137 // This can potentially expose more CSE opportunities, and makes writing other 2138 // transformations simpler. 2139 if (I->isCommutative()) 2140 canonicalizeOperands(I); 2141 2142 // Canonicalize negative constants out of expressions. 2143 if (Instruction *Res = canonicalizeNegFPConstants(I)) 2144 I = Res; 2145 2146 // Don't optimize floating-point instructions unless they are 'fast'. 2147 if (I->getType()->isFPOrFPVectorTy() && !I->isFast()) 2148 return; 2149 2150 // Do not reassociate boolean (i1) expressions. We want to preserve the 2151 // original order of evaluation for short-circuited comparisons that 2152 // SimplifyCFG has folded to AND/OR expressions. If the expression 2153 // is not further optimized, it is likely to be transformed back to a 2154 // short-circuited form for code gen, and the source order may have been 2155 // optimized for the most likely conditions. 2156 if (I->getType()->isIntegerTy(1)) 2157 return; 2158 2159 // If this is a bitwise or instruction of operands 2160 // with no common bits set, convert it to X+Y. 2161 if (I->getOpcode() == Instruction::Or && 2162 ShouldConvertOrWithNoCommonBitsToAdd(I) && 2163 haveNoCommonBitsSet(I->getOperand(0), I->getOperand(1), 2164 I->getModule()->getDataLayout(), /*AC=*/nullptr, I, 2165 /*DT=*/nullptr)) { 2166 Instruction *NI = ConvertOrWithNoCommonBitsToAdd(I); 2167 RedoInsts.insert(I); 2168 MadeChange = true; 2169 I = NI; 2170 } 2171 2172 // If this is a subtract instruction which is not already in negate form, 2173 // see if we can convert it to X+-Y. 2174 if (I->getOpcode() == Instruction::Sub) { 2175 if (ShouldBreakUpSubtract(I)) { 2176 Instruction *NI = BreakUpSubtract(I, RedoInsts); 2177 RedoInsts.insert(I); 2178 MadeChange = true; 2179 I = NI; 2180 } else if (match(I, m_Neg(m_Value()))) { 2181 // Otherwise, this is a negation. See if the operand is a multiply tree 2182 // and if this is not an inner node of a multiply tree. 2183 if (isReassociableOp(I->getOperand(1), Instruction::Mul) && 2184 (!I->hasOneUse() || 2185 !isReassociableOp(I->user_back(), Instruction::Mul))) { 2186 Instruction *NI = LowerNegateToMultiply(I); 2187 // If the negate was simplified, revisit the users to see if we can 2188 // reassociate further. 2189 for (User *U : NI->users()) { 2190 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U)) 2191 RedoInsts.insert(Tmp); 2192 } 2193 RedoInsts.insert(I); 2194 MadeChange = true; 2195 I = NI; 2196 } 2197 } 2198 } else if (I->getOpcode() == Instruction::FNeg || 2199 I->getOpcode() == Instruction::FSub) { 2200 if (ShouldBreakUpSubtract(I)) { 2201 Instruction *NI = BreakUpSubtract(I, RedoInsts); 2202 RedoInsts.insert(I); 2203 MadeChange = true; 2204 I = NI; 2205 } else if (match(I, m_FNeg(m_Value()))) { 2206 // Otherwise, this is a negation. See if the operand is a multiply tree 2207 // and if this is not an inner node of a multiply tree. 2208 Value *Op = isa<BinaryOperator>(I) ? I->getOperand(1) : 2209 I->getOperand(0); 2210 if (isReassociableOp(Op, Instruction::FMul) && 2211 (!I->hasOneUse() || 2212 !isReassociableOp(I->user_back(), Instruction::FMul))) { 2213 // If the negate was simplified, revisit the users to see if we can 2214 // reassociate further. 2215 Instruction *NI = LowerNegateToMultiply(I); 2216 for (User *U : NI->users()) { 2217 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U)) 2218 RedoInsts.insert(Tmp); 2219 } 2220 RedoInsts.insert(I); 2221 MadeChange = true; 2222 I = NI; 2223 } 2224 } 2225 } 2226 2227 // If this instruction is an associative binary operator, process it. 2228 if (!I->isAssociative()) return; 2229 BinaryOperator *BO = cast<BinaryOperator>(I); 2230 2231 // If this is an interior node of a reassociable tree, ignore it until we 2232 // get to the root of the tree, to avoid N^2 analysis. 2233 unsigned Opcode = BO->getOpcode(); 2234 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) { 2235 // During the initial run we will get to the root of the tree. 2236 // But if we get here while we are redoing instructions, there is no 2237 // guarantee that the root will be visited. So Redo later 2238 if (BO->user_back() != BO && 2239 BO->getParent() == BO->user_back()->getParent()) 2240 RedoInsts.insert(BO->user_back()); 2241 return; 2242 } 2243 2244 // If this is an add tree that is used by a sub instruction, ignore it 2245 // until we process the subtract. 2246 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add && 2247 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub) 2248 return; 2249 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd && 2250 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub) 2251 return; 2252 2253 ReassociateExpression(BO); 2254 } 2255 2256 void ReassociatePass::ReassociateExpression(BinaryOperator *I) { 2257 // First, walk the expression tree, linearizing the tree, collecting the 2258 // operand information. 2259 SmallVector<RepeatedValue, 8> Tree; 2260 MadeChange |= LinearizeExprTree(I, Tree); 2261 SmallVector<ValueEntry, 8> Ops; 2262 Ops.reserve(Tree.size()); 2263 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 2264 RepeatedValue E = Tree[i]; 2265 Ops.append(E.second.getZExtValue(), 2266 ValueEntry(getRank(E.first), E.first)); 2267 } 2268 2269 LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2270 2271 // Now that we have linearized the tree to a list and have gathered all of 2272 // the operands and their ranks, sort the operands by their rank. Use a 2273 // stable_sort so that values with equal ranks will have their relative 2274 // positions maintained (and so the compiler is deterministic). Note that 2275 // this sorts so that the highest ranking values end up at the beginning of 2276 // the vector. 2277 llvm::stable_sort(Ops); 2278 2279 // Now that we have the expression tree in a convenient 2280 // sorted form, optimize it globally if possible. 2281 if (Value *V = OptimizeExpression(I, Ops)) { 2282 if (V == I) 2283 // Self-referential expression in unreachable code. 2284 return; 2285 // This expression tree simplified to something that isn't a tree, 2286 // eliminate it. 2287 LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n'); 2288 I->replaceAllUsesWith(V); 2289 if (Instruction *VI = dyn_cast<Instruction>(V)) 2290 if (I->getDebugLoc()) 2291 VI->setDebugLoc(I->getDebugLoc()); 2292 RedoInsts.insert(I); 2293 ++NumAnnihil; 2294 return; 2295 } 2296 2297 // We want to sink immediates as deeply as possible except in the case where 2298 // this is a multiply tree used only by an add, and the immediate is a -1. 2299 // In this case we reassociate to put the negation on the outside so that we 2300 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y 2301 if (I->hasOneUse()) { 2302 if (I->getOpcode() == Instruction::Mul && 2303 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add && 2304 isa<ConstantInt>(Ops.back().Op) && 2305 cast<ConstantInt>(Ops.back().Op)->isMinusOne()) { 2306 ValueEntry Tmp = Ops.pop_back_val(); 2307 Ops.insert(Ops.begin(), Tmp); 2308 } else if (I->getOpcode() == Instruction::FMul && 2309 cast<Instruction>(I->user_back())->getOpcode() == 2310 Instruction::FAdd && 2311 isa<ConstantFP>(Ops.back().Op) && 2312 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) { 2313 ValueEntry Tmp = Ops.pop_back_val(); 2314 Ops.insert(Ops.begin(), Tmp); 2315 } 2316 } 2317 2318 LLVM_DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2319 2320 if (Ops.size() == 1) { 2321 if (Ops[0].Op == I) 2322 // Self-referential expression in unreachable code. 2323 return; 2324 2325 // This expression tree simplified to something that isn't a tree, 2326 // eliminate it. 2327 I->replaceAllUsesWith(Ops[0].Op); 2328 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op)) 2329 OI->setDebugLoc(I->getDebugLoc()); 2330 RedoInsts.insert(I); 2331 return; 2332 } 2333 2334 if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) { 2335 // Find the pair with the highest count in the pairmap and move it to the 2336 // back of the list so that it can later be CSE'd. 2337 // example: 2338 // a*b*c*d*e 2339 // if c*e is the most "popular" pair, we can express this as 2340 // (((c*e)*d)*b)*a 2341 unsigned Max = 1; 2342 unsigned BestRank = 0; 2343 std::pair<unsigned, unsigned> BestPair; 2344 unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin; 2345 for (unsigned i = 0; i < Ops.size() - 1; ++i) 2346 for (unsigned j = i + 1; j < Ops.size(); ++j) { 2347 unsigned Score = 0; 2348 Value *Op0 = Ops[i].Op; 2349 Value *Op1 = Ops[j].Op; 2350 if (std::less<Value *>()(Op1, Op0)) 2351 std::swap(Op0, Op1); 2352 auto it = PairMap[Idx].find({Op0, Op1}); 2353 if (it != PairMap[Idx].end()) { 2354 // Functions like BreakUpSubtract() can erase the Values we're using 2355 // as keys and create new Values after we built the PairMap. There's a 2356 // small chance that the new nodes can have the same address as 2357 // something already in the table. We shouldn't accumulate the stored 2358 // score in that case as it refers to the wrong Value. 2359 if (it->second.isValid()) 2360 Score += it->second.Score; 2361 } 2362 2363 unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank); 2364 if (Score > Max || (Score == Max && MaxRank < BestRank)) { 2365 BestPair = {i, j}; 2366 Max = Score; 2367 BestRank = MaxRank; 2368 } 2369 } 2370 if (Max > 1) { 2371 auto Op0 = Ops[BestPair.first]; 2372 auto Op1 = Ops[BestPair.second]; 2373 Ops.erase(&Ops[BestPair.second]); 2374 Ops.erase(&Ops[BestPair.first]); 2375 Ops.push_back(Op0); 2376 Ops.push_back(Op1); 2377 } 2378 } 2379 // Now that we ordered and optimized the expressions, splat them back into 2380 // the expression tree, removing any unneeded nodes. 2381 RewriteExprTree(I, Ops); 2382 } 2383 2384 void 2385 ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) { 2386 // Make a "pairmap" of how often each operand pair occurs. 2387 for (BasicBlock *BI : RPOT) { 2388 for (Instruction &I : *BI) { 2389 if (!I.isAssociative()) 2390 continue; 2391 2392 // Ignore nodes that aren't at the root of trees. 2393 if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode()) 2394 continue; 2395 2396 // Collect all operands in a single reassociable expression. 2397 // Since Reassociate has already been run once, we can assume things 2398 // are already canonical according to Reassociation's regime. 2399 SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) }; 2400 SmallVector<Value *, 8> Ops; 2401 while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) { 2402 Value *Op = Worklist.pop_back_val(); 2403 Instruction *OpI = dyn_cast<Instruction>(Op); 2404 if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) { 2405 Ops.push_back(Op); 2406 continue; 2407 } 2408 // Be paranoid about self-referencing expressions in unreachable code. 2409 if (OpI->getOperand(0) != OpI) 2410 Worklist.push_back(OpI->getOperand(0)); 2411 if (OpI->getOperand(1) != OpI) 2412 Worklist.push_back(OpI->getOperand(1)); 2413 } 2414 // Skip extremely long expressions. 2415 if (Ops.size() > GlobalReassociateLimit) 2416 continue; 2417 2418 // Add all pairwise combinations of operands to the pair map. 2419 unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin; 2420 SmallSet<std::pair<Value *, Value*>, 32> Visited; 2421 for (unsigned i = 0; i < Ops.size() - 1; ++i) { 2422 for (unsigned j = i + 1; j < Ops.size(); ++j) { 2423 // Canonicalize operand orderings. 2424 Value *Op0 = Ops[i]; 2425 Value *Op1 = Ops[j]; 2426 if (std::less<Value *>()(Op1, Op0)) 2427 std::swap(Op0, Op1); 2428 if (!Visited.insert({Op0, Op1}).second) 2429 continue; 2430 auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, {Op0, Op1, 1}}); 2431 if (!res.second) { 2432 // If either key value has been erased then we've got the same 2433 // address by coincidence. That can't happen here because nothing is 2434 // erasing values but it can happen by the time we're querying the 2435 // map. 2436 assert(res.first->second.isValid() && "WeakVH invalidated"); 2437 ++res.first->second.Score; 2438 } 2439 } 2440 } 2441 } 2442 } 2443 } 2444 2445 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) { 2446 // Get the functions basic blocks in Reverse Post Order. This order is used by 2447 // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic 2448 // blocks (it has been seen that the analysis in this pass could hang when 2449 // analysing dead basic blocks). 2450 ReversePostOrderTraversal<Function *> RPOT(&F); 2451 2452 // Calculate the rank map for F. 2453 BuildRankMap(F, RPOT); 2454 2455 // Build the pair map before running reassociate. 2456 // Technically this would be more accurate if we did it after one round 2457 // of reassociation, but in practice it doesn't seem to help much on 2458 // real-world code, so don't waste the compile time running reassociate 2459 // twice. 2460 // If a user wants, they could expicitly run reassociate twice in their 2461 // pass pipeline for further potential gains. 2462 // It might also be possible to update the pair map during runtime, but the 2463 // overhead of that may be large if there's many reassociable chains. 2464 BuildPairMap(RPOT); 2465 2466 MadeChange = false; 2467 2468 // Traverse the same blocks that were analysed by BuildRankMap. 2469 for (BasicBlock *BI : RPOT) { 2470 assert(RankMap.count(&*BI) && "BB should be ranked."); 2471 // Optimize every instruction in the basic block. 2472 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;) 2473 if (isInstructionTriviallyDead(&*II)) { 2474 EraseInst(&*II++); 2475 } else { 2476 OptimizeInst(&*II); 2477 assert(II->getParent() == &*BI && "Moved to a different block!"); 2478 ++II; 2479 } 2480 2481 // Make a copy of all the instructions to be redone so we can remove dead 2482 // instructions. 2483 OrderedSet ToRedo(RedoInsts); 2484 // Iterate over all instructions to be reevaluated and remove trivially dead 2485 // instructions. If any operand of the trivially dead instruction becomes 2486 // dead mark it for deletion as well. Continue this process until all 2487 // trivially dead instructions have been removed. 2488 while (!ToRedo.empty()) { 2489 Instruction *I = ToRedo.pop_back_val(); 2490 if (isInstructionTriviallyDead(I)) { 2491 RecursivelyEraseDeadInsts(I, ToRedo); 2492 MadeChange = true; 2493 } 2494 } 2495 2496 // Now that we have removed dead instructions, we can reoptimize the 2497 // remaining instructions. 2498 while (!RedoInsts.empty()) { 2499 Instruction *I = RedoInsts.front(); 2500 RedoInsts.erase(RedoInsts.begin()); 2501 if (isInstructionTriviallyDead(I)) 2502 EraseInst(I); 2503 else 2504 OptimizeInst(I); 2505 } 2506 } 2507 2508 // We are done with the rank map and pair map. 2509 RankMap.clear(); 2510 ValueRankMap.clear(); 2511 for (auto &Entry : PairMap) 2512 Entry.clear(); 2513 2514 if (MadeChange) { 2515 PreservedAnalyses PA; 2516 PA.preserveSet<CFGAnalyses>(); 2517 PA.preserve<AAManager>(); 2518 PA.preserve<BasicAA>(); 2519 PA.preserve<GlobalsAA>(); 2520 return PA; 2521 } 2522 2523 return PreservedAnalyses::all(); 2524 } 2525 2526 namespace { 2527 2528 class ReassociateLegacyPass : public FunctionPass { 2529 ReassociatePass Impl; 2530 2531 public: 2532 static char ID; // Pass identification, replacement for typeid 2533 2534 ReassociateLegacyPass() : FunctionPass(ID) { 2535 initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry()); 2536 } 2537 2538 bool runOnFunction(Function &F) override { 2539 if (skipFunction(F)) 2540 return false; 2541 2542 FunctionAnalysisManager DummyFAM; 2543 auto PA = Impl.run(F, DummyFAM); 2544 return !PA.areAllPreserved(); 2545 } 2546 2547 void getAnalysisUsage(AnalysisUsage &AU) const override { 2548 AU.setPreservesCFG(); 2549 AU.addPreserved<AAResultsWrapperPass>(); 2550 AU.addPreserved<BasicAAWrapperPass>(); 2551 AU.addPreserved<GlobalsAAWrapperPass>(); 2552 } 2553 }; 2554 2555 } // end anonymous namespace 2556 2557 char ReassociateLegacyPass::ID = 0; 2558 2559 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate", 2560 "Reassociate expressions", false, false) 2561 2562 // Public interface to the Reassociate pass 2563 FunctionPass *llvm::createReassociatePass() { 2564 return new ReassociateLegacyPass(); 2565 } 2566