1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass reassociates commutative expressions in an order that is designed
10 // to promote better constant propagation, GCSE, LICM, PRE, etc.
11 //
12 // For example: 4 + (x + 5) -> x + (4 + 5)
13 //
14 // In the implementation of this algorithm, constants are assigned rank = 0,
15 // function arguments are rank = 1, and other values are assigned ranks
16 // corresponding to the reverse post order traversal of current function
17 // (starting at 2), which effectively gives values in deep loops higher rank
18 // than values not in loops.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "llvm/Transforms/Scalar/Reassociate.h"
23 #include "llvm/ADT/APFloat.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/PostOrderIterator.h"
27 #include "llvm/ADT/SetVector.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/GlobalsModRef.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Operator.h"
47 #include "llvm/IR/PassManager.h"
48 #include "llvm/IR/PatternMatch.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/IR/ValueHandle.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Scalar.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <utility>
62 
63 using namespace llvm;
64 using namespace reassociate;
65 using namespace PatternMatch;
66 
67 #define DEBUG_TYPE "reassociate"
68 
69 STATISTIC(NumChanged, "Number of insts reassociated");
70 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
71 STATISTIC(NumFactor , "Number of multiplies factored");
72 
73 #ifndef NDEBUG
74 /// Print out the expression identified in the Ops list.
75 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
76   Module *M = I->getModule();
77   dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
78        << *Ops[0].Op->getType() << '\t';
79   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
80     dbgs() << "[ ";
81     Ops[i].Op->printAsOperand(dbgs(), false, M);
82     dbgs() << ", #" << Ops[i].Rank << "] ";
83   }
84 }
85 #endif
86 
87 /// Utility class representing a non-constant Xor-operand. We classify
88 /// non-constant Xor-Operands into two categories:
89 ///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
90 ///  C2)
91 ///    C2.1) The operand is in the form of "X | C", where C is a non-zero
92 ///          constant.
93 ///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
94 ///          operand as "E | 0"
95 class llvm::reassociate::XorOpnd {
96 public:
97   XorOpnd(Value *V);
98 
99   bool isInvalid() const { return SymbolicPart == nullptr; }
100   bool isOrExpr() const { return isOr; }
101   Value *getValue() const { return OrigVal; }
102   Value *getSymbolicPart() const { return SymbolicPart; }
103   unsigned getSymbolicRank() const { return SymbolicRank; }
104   const APInt &getConstPart() const { return ConstPart; }
105 
106   void Invalidate() { SymbolicPart = OrigVal = nullptr; }
107   void setSymbolicRank(unsigned R) { SymbolicRank = R; }
108 
109 private:
110   Value *OrigVal;
111   Value *SymbolicPart;
112   APInt ConstPart;
113   unsigned SymbolicRank;
114   bool isOr;
115 };
116 
117 XorOpnd::XorOpnd(Value *V) {
118   assert(!isa<ConstantInt>(V) && "No ConstantInt");
119   OrigVal = V;
120   Instruction *I = dyn_cast<Instruction>(V);
121   SymbolicRank = 0;
122 
123   if (I && (I->getOpcode() == Instruction::Or ||
124             I->getOpcode() == Instruction::And)) {
125     Value *V0 = I->getOperand(0);
126     Value *V1 = I->getOperand(1);
127     const APInt *C;
128     if (match(V0, m_APInt(C)))
129       std::swap(V0, V1);
130 
131     if (match(V1, m_APInt(C))) {
132       ConstPart = *C;
133       SymbolicPart = V0;
134       isOr = (I->getOpcode() == Instruction::Or);
135       return;
136     }
137   }
138 
139   // view the operand as "V | 0"
140   SymbolicPart = V;
141   ConstPart = APInt::getNullValue(V->getType()->getScalarSizeInBits());
142   isOr = true;
143 }
144 
145 /// Return true if V is an instruction of the specified opcode and if it
146 /// only has one use.
147 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
148   auto *I = dyn_cast<Instruction>(V);
149   if (I && I->hasOneUse() && I->getOpcode() == Opcode)
150     if (!isa<FPMathOperator>(I) || I->isFast())
151       return cast<BinaryOperator>(I);
152   return nullptr;
153 }
154 
155 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
156                                         unsigned Opcode2) {
157   auto *I = dyn_cast<Instruction>(V);
158   if (I && I->hasOneUse() &&
159       (I->getOpcode() == Opcode1 || I->getOpcode() == Opcode2))
160     if (!isa<FPMathOperator>(I) || I->isFast())
161       return cast<BinaryOperator>(I);
162   return nullptr;
163 }
164 
165 void ReassociatePass::BuildRankMap(Function &F,
166                                    ReversePostOrderTraversal<Function*> &RPOT) {
167   unsigned Rank = 2;
168 
169   // Assign distinct ranks to function arguments.
170   for (auto &Arg : F.args()) {
171     ValueRankMap[&Arg] = ++Rank;
172     LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank
173                       << "\n");
174   }
175 
176   // Traverse basic blocks in ReversePostOrder
177   for (BasicBlock *BB : RPOT) {
178     unsigned BBRank = RankMap[BB] = ++Rank << 16;
179 
180     // Walk the basic block, adding precomputed ranks for any instructions that
181     // we cannot move.  This ensures that the ranks for these instructions are
182     // all different in the block.
183     for (Instruction &I : *BB)
184       if (mayBeMemoryDependent(I))
185         ValueRankMap[&I] = ++BBRank;
186   }
187 }
188 
189 unsigned ReassociatePass::getRank(Value *V) {
190   Instruction *I = dyn_cast<Instruction>(V);
191   if (!I) {
192     if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
193     return 0;  // Otherwise it's a global or constant, rank 0.
194   }
195 
196   if (unsigned Rank = ValueRankMap[I])
197     return Rank;    // Rank already known?
198 
199   // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
200   // we can reassociate expressions for code motion!  Since we do not recurse
201   // for PHI nodes, we cannot have infinite recursion here, because there
202   // cannot be loops in the value graph that do not go through PHI nodes.
203   unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
204   for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i)
205     Rank = std::max(Rank, getRank(I->getOperand(i)));
206 
207   // If this is a 'not' or 'neg' instruction, do not count it for rank. This
208   // assures us that X and ~X will have the same rank.
209   if (!match(I, m_Not(m_Value())) && !match(I, m_Neg(m_Value())) &&
210       !match(I, m_FNeg(m_Value())))
211     ++Rank;
212 
213   LLVM_DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank
214                     << "\n");
215 
216   return ValueRankMap[I] = Rank;
217 }
218 
219 // Canonicalize constants to RHS.  Otherwise, sort the operands by rank.
220 void ReassociatePass::canonicalizeOperands(Instruction *I) {
221   assert(isa<BinaryOperator>(I) && "Expected binary operator.");
222   assert(I->isCommutative() && "Expected commutative operator.");
223 
224   Value *LHS = I->getOperand(0);
225   Value *RHS = I->getOperand(1);
226   if (LHS == RHS || isa<Constant>(RHS))
227     return;
228   if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS))
229     cast<BinaryOperator>(I)->swapOperands();
230 }
231 
232 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
233                                  Instruction *InsertBefore, Value *FlagsOp) {
234   if (S1->getType()->isIntOrIntVectorTy())
235     return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
236   else {
237     BinaryOperator *Res =
238         BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
239     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
240     return Res;
241   }
242 }
243 
244 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
245                                  Instruction *InsertBefore, Value *FlagsOp) {
246   if (S1->getType()->isIntOrIntVectorTy())
247     return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
248   else {
249     BinaryOperator *Res =
250       BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
251     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
252     return Res;
253   }
254 }
255 
256 static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
257                                  Instruction *InsertBefore, Value *FlagsOp) {
258   if (S1->getType()->isIntOrIntVectorTy())
259     return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
260   else {
261     BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
262     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
263     return Res;
264   }
265 }
266 
267 /// Replace 0-X with X*-1.
268 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
269   Type *Ty = Neg->getType();
270   Constant *NegOne = Ty->isIntOrIntVectorTy() ?
271     ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
272 
273   BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
274   Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
275   Res->takeName(Neg);
276   Neg->replaceAllUsesWith(Res);
277   Res->setDebugLoc(Neg->getDebugLoc());
278   return Res;
279 }
280 
281 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
282 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
283 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
284 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
285 /// even x in Bitwidth-bit arithmetic.
286 static unsigned CarmichaelShift(unsigned Bitwidth) {
287   if (Bitwidth < 3)
288     return Bitwidth - 1;
289   return Bitwidth - 2;
290 }
291 
292 /// Add the extra weight 'RHS' to the existing weight 'LHS',
293 /// reducing the combined weight using any special properties of the operation.
294 /// The existing weight LHS represents the computation X op X op ... op X where
295 /// X occurs LHS times.  The combined weight represents  X op X op ... op X with
296 /// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
297 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
298 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
299 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
300   // If we were working with infinite precision arithmetic then the combined
301   // weight would be LHS + RHS.  But we are using finite precision arithmetic,
302   // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
303   // for nilpotent operations and addition, but not for idempotent operations
304   // and multiplication), so it is important to correctly reduce the combined
305   // weight back into range if wrapping would be wrong.
306 
307   // If RHS is zero then the weight didn't change.
308   if (RHS.isMinValue())
309     return;
310   // If LHS is zero then the combined weight is RHS.
311   if (LHS.isMinValue()) {
312     LHS = RHS;
313     return;
314   }
315   // From this point on we know that neither LHS nor RHS is zero.
316 
317   if (Instruction::isIdempotent(Opcode)) {
318     // Idempotent means X op X === X, so any non-zero weight is equivalent to a
319     // weight of 1.  Keeping weights at zero or one also means that wrapping is
320     // not a problem.
321     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
322     return; // Return a weight of 1.
323   }
324   if (Instruction::isNilpotent(Opcode)) {
325     // Nilpotent means X op X === 0, so reduce weights modulo 2.
326     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
327     LHS = 0; // 1 + 1 === 0 modulo 2.
328     return;
329   }
330   if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
331     // TODO: Reduce the weight by exploiting nsw/nuw?
332     LHS += RHS;
333     return;
334   }
335 
336   assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
337          "Unknown associative operation!");
338   unsigned Bitwidth = LHS.getBitWidth();
339   // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
340   // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
341   // bit number x, since either x is odd in which case x^CM = 1, or x is even in
342   // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
343   // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
344   // which by a happy accident means that they can always be represented using
345   // Bitwidth bits.
346   // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
347   // the Carmichael number).
348   if (Bitwidth > 3) {
349     /// CM - The value of Carmichael's lambda function.
350     APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
351     // Any weight W >= Threshold can be replaced with W - CM.
352     APInt Threshold = CM + Bitwidth;
353     assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
354     // For Bitwidth 4 or more the following sum does not overflow.
355     LHS += RHS;
356     while (LHS.uge(Threshold))
357       LHS -= CM;
358   } else {
359     // To avoid problems with overflow do everything the same as above but using
360     // a larger type.
361     unsigned CM = 1U << CarmichaelShift(Bitwidth);
362     unsigned Threshold = CM + Bitwidth;
363     assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
364            "Weights not reduced!");
365     unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
366     while (Total >= Threshold)
367       Total -= CM;
368     LHS = Total;
369   }
370 }
371 
372 using RepeatedValue = std::pair<Value*, APInt>;
373 
374 /// Given an associative binary expression, return the leaf
375 /// nodes in Ops along with their weights (how many times the leaf occurs).  The
376 /// original expression is the same as
377 ///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
378 /// op
379 ///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
380 /// op
381 ///   ...
382 /// op
383 ///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
384 ///
385 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
386 ///
387 /// This routine may modify the function, in which case it returns 'true'.  The
388 /// changes it makes may well be destructive, changing the value computed by 'I'
389 /// to something completely different.  Thus if the routine returns 'true' then
390 /// you MUST either replace I with a new expression computed from the Ops array,
391 /// or use RewriteExprTree to put the values back in.
392 ///
393 /// A leaf node is either not a binary operation of the same kind as the root
394 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
395 /// opcode), or is the same kind of binary operator but has a use which either
396 /// does not belong to the expression, or does belong to the expression but is
397 /// a leaf node.  Every leaf node has at least one use that is a non-leaf node
398 /// of the expression, while for non-leaf nodes (except for the root 'I') every
399 /// use is a non-leaf node of the expression.
400 ///
401 /// For example:
402 ///           expression graph        node names
403 ///
404 ///                     +        |        I
405 ///                    / \       |
406 ///                   +   +      |      A,  B
407 ///                  / \ / \     |
408 ///                 *   +   *    |    C,  D,  E
409 ///                / \ / \ / \   |
410 ///                   +   *      |      F,  G
411 ///
412 /// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
413 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
414 ///
415 /// The expression is maximal: if some instruction is a binary operator of the
416 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
417 /// then the instruction also belongs to the expression, is not a leaf node of
418 /// it, and its operands also belong to the expression (but may be leaf nodes).
419 ///
420 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
421 /// order to ensure that every non-root node in the expression has *exactly one*
422 /// use by a non-leaf node of the expression.  This destruction means that the
423 /// caller MUST either replace 'I' with a new expression or use something like
424 /// RewriteExprTree to put the values back in if the routine indicates that it
425 /// made a change by returning 'true'.
426 ///
427 /// In the above example either the right operand of A or the left operand of B
428 /// will be replaced by undef.  If it is B's operand then this gives:
429 ///
430 ///                     +        |        I
431 ///                    / \       |
432 ///                   +   +      |      A,  B - operand of B replaced with undef
433 ///                  / \   \     |
434 ///                 *   +   *    |    C,  D,  E
435 ///                / \ / \ / \   |
436 ///                   +   *      |      F,  G
437 ///
438 /// Note that such undef operands can only be reached by passing through 'I'.
439 /// For example, if you visit operands recursively starting from a leaf node
440 /// then you will never see such an undef operand unless you get back to 'I',
441 /// which requires passing through a phi node.
442 ///
443 /// Note that this routine may also mutate binary operators of the wrong type
444 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
445 /// of the expression) if it can turn them into binary operators of the right
446 /// type and thus make the expression bigger.
447 static bool LinearizeExprTree(BinaryOperator *I,
448                               SmallVectorImpl<RepeatedValue> &Ops) {
449   LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
450   unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
451   unsigned Opcode = I->getOpcode();
452   assert(I->isAssociative() && I->isCommutative() &&
453          "Expected an associative and commutative operation!");
454 
455   // Visit all operands of the expression, keeping track of their weight (the
456   // number of paths from the expression root to the operand, or if you like
457   // the number of times that operand occurs in the linearized expression).
458   // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
459   // while A has weight two.
460 
461   // Worklist of non-leaf nodes (their operands are in the expression too) along
462   // with their weights, representing a certain number of paths to the operator.
463   // If an operator occurs in the worklist multiple times then we found multiple
464   // ways to get to it.
465   SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
466   Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
467   bool Changed = false;
468 
469   // Leaves of the expression are values that either aren't the right kind of
470   // operation (eg: a constant, or a multiply in an add tree), or are, but have
471   // some uses that are not inside the expression.  For example, in I = X + X,
472   // X = A + B, the value X has two uses (by I) that are in the expression.  If
473   // X has any other uses, for example in a return instruction, then we consider
474   // X to be a leaf, and won't analyze it further.  When we first visit a value,
475   // if it has more than one use then at first we conservatively consider it to
476   // be a leaf.  Later, as the expression is explored, we may discover some more
477   // uses of the value from inside the expression.  If all uses turn out to be
478   // from within the expression (and the value is a binary operator of the right
479   // kind) then the value is no longer considered to be a leaf, and its operands
480   // are explored.
481 
482   // Leaves - Keeps track of the set of putative leaves as well as the number of
483   // paths to each leaf seen so far.
484   using LeafMap = DenseMap<Value *, APInt>;
485   LeafMap Leaves; // Leaf -> Total weight so far.
486   SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order.
487 
488 #ifndef NDEBUG
489   SmallPtrSet<Value *, 8> Visited; // For sanity checking the iteration scheme.
490 #endif
491   while (!Worklist.empty()) {
492     std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
493     I = P.first; // We examine the operands of this binary operator.
494 
495     for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
496       Value *Op = I->getOperand(OpIdx);
497       APInt Weight = P.second; // Number of paths to this operand.
498       LLVM_DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
499       assert(!Op->use_empty() && "No uses, so how did we get to it?!");
500 
501       // If this is a binary operation of the right kind with only one use then
502       // add its operands to the expression.
503       if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
504         assert(Visited.insert(Op).second && "Not first visit!");
505         LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
506         Worklist.push_back(std::make_pair(BO, Weight));
507         continue;
508       }
509 
510       // Appears to be a leaf.  Is the operand already in the set of leaves?
511       LeafMap::iterator It = Leaves.find(Op);
512       if (It == Leaves.end()) {
513         // Not in the leaf map.  Must be the first time we saw this operand.
514         assert(Visited.insert(Op).second && "Not first visit!");
515         if (!Op->hasOneUse()) {
516           // This value has uses not accounted for by the expression, so it is
517           // not safe to modify.  Mark it as being a leaf.
518           LLVM_DEBUG(dbgs()
519                      << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
520           LeafOrder.push_back(Op);
521           Leaves[Op] = Weight;
522           continue;
523         }
524         // No uses outside the expression, try morphing it.
525       } else {
526         // Already in the leaf map.
527         assert(It != Leaves.end() && Visited.count(Op) &&
528                "In leaf map but not visited!");
529 
530         // Update the number of paths to the leaf.
531         IncorporateWeight(It->second, Weight, Opcode);
532 
533 #if 0   // TODO: Re-enable once PR13021 is fixed.
534         // The leaf already has one use from inside the expression.  As we want
535         // exactly one such use, drop this new use of the leaf.
536         assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
537         I->setOperand(OpIdx, UndefValue::get(I->getType()));
538         Changed = true;
539 
540         // If the leaf is a binary operation of the right kind and we now see
541         // that its multiple original uses were in fact all by nodes belonging
542         // to the expression, then no longer consider it to be a leaf and add
543         // its operands to the expression.
544         if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
545           LLVM_DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
546           Worklist.push_back(std::make_pair(BO, It->second));
547           Leaves.erase(It);
548           continue;
549         }
550 #endif
551 
552         // If we still have uses that are not accounted for by the expression
553         // then it is not safe to modify the value.
554         if (!Op->hasOneUse())
555           continue;
556 
557         // No uses outside the expression, try morphing it.
558         Weight = It->second;
559         Leaves.erase(It); // Since the value may be morphed below.
560       }
561 
562       // At this point we have a value which, first of all, is not a binary
563       // expression of the right kind, and secondly, is only used inside the
564       // expression.  This means that it can safely be modified.  See if we
565       // can usefully morph it into an expression of the right kind.
566       assert((!isa<Instruction>(Op) ||
567               cast<Instruction>(Op)->getOpcode() != Opcode
568               || (isa<FPMathOperator>(Op) &&
569                   !cast<Instruction>(Op)->isFast())) &&
570              "Should have been handled above!");
571       assert(Op->hasOneUse() && "Has uses outside the expression tree!");
572 
573       // If this is a multiply expression, turn any internal negations into
574       // multiplies by -1 so they can be reassociated.
575       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
576         if ((Opcode == Instruction::Mul && match(BO, m_Neg(m_Value()))) ||
577             (Opcode == Instruction::FMul && match(BO, m_FNeg(m_Value())))) {
578           LLVM_DEBUG(dbgs()
579                      << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
580           BO = LowerNegateToMultiply(BO);
581           LLVM_DEBUG(dbgs() << *BO << '\n');
582           Worklist.push_back(std::make_pair(BO, Weight));
583           Changed = true;
584           continue;
585         }
586 
587       // Failed to morph into an expression of the right type.  This really is
588       // a leaf.
589       LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
590       assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
591       LeafOrder.push_back(Op);
592       Leaves[Op] = Weight;
593     }
594   }
595 
596   // The leaves, repeated according to their weights, represent the linearized
597   // form of the expression.
598   for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
599     Value *V = LeafOrder[i];
600     LeafMap::iterator It = Leaves.find(V);
601     if (It == Leaves.end())
602       // Node initially thought to be a leaf wasn't.
603       continue;
604     assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
605     APInt Weight = It->second;
606     if (Weight.isMinValue())
607       // Leaf already output or weight reduction eliminated it.
608       continue;
609     // Ensure the leaf is only output once.
610     It->second = 0;
611     Ops.push_back(std::make_pair(V, Weight));
612   }
613 
614   // For nilpotent operations or addition there may be no operands, for example
615   // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
616   // in both cases the weight reduces to 0 causing the value to be skipped.
617   if (Ops.empty()) {
618     Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
619     assert(Identity && "Associative operation without identity!");
620     Ops.emplace_back(Identity, APInt(Bitwidth, 1));
621   }
622 
623   return Changed;
624 }
625 
626 /// Now that the operands for this expression tree are
627 /// linearized and optimized, emit them in-order.
628 void ReassociatePass::RewriteExprTree(BinaryOperator *I,
629                                       SmallVectorImpl<ValueEntry> &Ops) {
630   assert(Ops.size() > 1 && "Single values should be used directly!");
631 
632   // Since our optimizations should never increase the number of operations, the
633   // new expression can usually be written reusing the existing binary operators
634   // from the original expression tree, without creating any new instructions,
635   // though the rewritten expression may have a completely different topology.
636   // We take care to not change anything if the new expression will be the same
637   // as the original.  If more than trivial changes (like commuting operands)
638   // were made then we are obliged to clear out any optional subclass data like
639   // nsw flags.
640 
641   /// NodesToRewrite - Nodes from the original expression available for writing
642   /// the new expression into.
643   SmallVector<BinaryOperator*, 8> NodesToRewrite;
644   unsigned Opcode = I->getOpcode();
645   BinaryOperator *Op = I;
646 
647   /// NotRewritable - The operands being written will be the leaves of the new
648   /// expression and must not be used as inner nodes (via NodesToRewrite) by
649   /// mistake.  Inner nodes are always reassociable, and usually leaves are not
650   /// (if they were they would have been incorporated into the expression and so
651   /// would not be leaves), so most of the time there is no danger of this.  But
652   /// in rare cases a leaf may become reassociable if an optimization kills uses
653   /// of it, or it may momentarily become reassociable during rewriting (below)
654   /// due it being removed as an operand of one of its uses.  Ensure that misuse
655   /// of leaf nodes as inner nodes cannot occur by remembering all of the future
656   /// leaves and refusing to reuse any of them as inner nodes.
657   SmallPtrSet<Value*, 8> NotRewritable;
658   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
659     NotRewritable.insert(Ops[i].Op);
660 
661   // ExpressionChanged - Non-null if the rewritten expression differs from the
662   // original in some non-trivial way, requiring the clearing of optional flags.
663   // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
664   BinaryOperator *ExpressionChanged = nullptr;
665   for (unsigned i = 0; ; ++i) {
666     // The last operation (which comes earliest in the IR) is special as both
667     // operands will come from Ops, rather than just one with the other being
668     // a subexpression.
669     if (i+2 == Ops.size()) {
670       Value *NewLHS = Ops[i].Op;
671       Value *NewRHS = Ops[i+1].Op;
672       Value *OldLHS = Op->getOperand(0);
673       Value *OldRHS = Op->getOperand(1);
674 
675       if (NewLHS == OldLHS && NewRHS == OldRHS)
676         // Nothing changed, leave it alone.
677         break;
678 
679       if (NewLHS == OldRHS && NewRHS == OldLHS) {
680         // The order of the operands was reversed.  Swap them.
681         LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
682         Op->swapOperands();
683         LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
684         MadeChange = true;
685         ++NumChanged;
686         break;
687       }
688 
689       // The new operation differs non-trivially from the original. Overwrite
690       // the old operands with the new ones.
691       LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
692       if (NewLHS != OldLHS) {
693         BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
694         if (BO && !NotRewritable.count(BO))
695           NodesToRewrite.push_back(BO);
696         Op->setOperand(0, NewLHS);
697       }
698       if (NewRHS != OldRHS) {
699         BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
700         if (BO && !NotRewritable.count(BO))
701           NodesToRewrite.push_back(BO);
702         Op->setOperand(1, NewRHS);
703       }
704       LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
705 
706       ExpressionChanged = Op;
707       MadeChange = true;
708       ++NumChanged;
709 
710       break;
711     }
712 
713     // Not the last operation.  The left-hand side will be a sub-expression
714     // while the right-hand side will be the current element of Ops.
715     Value *NewRHS = Ops[i].Op;
716     if (NewRHS != Op->getOperand(1)) {
717       LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
718       if (NewRHS == Op->getOperand(0)) {
719         // The new right-hand side was already present as the left operand.  If
720         // we are lucky then swapping the operands will sort out both of them.
721         Op->swapOperands();
722       } else {
723         // Overwrite with the new right-hand side.
724         BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
725         if (BO && !NotRewritable.count(BO))
726           NodesToRewrite.push_back(BO);
727         Op->setOperand(1, NewRHS);
728         ExpressionChanged = Op;
729       }
730       LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
731       MadeChange = true;
732       ++NumChanged;
733     }
734 
735     // Now deal with the left-hand side.  If this is already an operation node
736     // from the original expression then just rewrite the rest of the expression
737     // into it.
738     BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
739     if (BO && !NotRewritable.count(BO)) {
740       Op = BO;
741       continue;
742     }
743 
744     // Otherwise, grab a spare node from the original expression and use that as
745     // the left-hand side.  If there are no nodes left then the optimizers made
746     // an expression with more nodes than the original!  This usually means that
747     // they did something stupid but it might mean that the problem was just too
748     // hard (finding the mimimal number of multiplications needed to realize a
749     // multiplication expression is NP-complete).  Whatever the reason, smart or
750     // stupid, create a new node if there are none left.
751     BinaryOperator *NewOp;
752     if (NodesToRewrite.empty()) {
753       Constant *Undef = UndefValue::get(I->getType());
754       NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
755                                      Undef, Undef, "", I);
756       if (NewOp->getType()->isFPOrFPVectorTy())
757         NewOp->setFastMathFlags(I->getFastMathFlags());
758     } else {
759       NewOp = NodesToRewrite.pop_back_val();
760     }
761 
762     LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
763     Op->setOperand(0, NewOp);
764     LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
765     ExpressionChanged = Op;
766     MadeChange = true;
767     ++NumChanged;
768     Op = NewOp;
769   }
770 
771   // If the expression changed non-trivially then clear out all subclass data
772   // starting from the operator specified in ExpressionChanged, and compactify
773   // the operators to just before the expression root to guarantee that the
774   // expression tree is dominated by all of Ops.
775   if (ExpressionChanged)
776     do {
777       // Preserve FastMathFlags.
778       if (isa<FPMathOperator>(I)) {
779         FastMathFlags Flags = I->getFastMathFlags();
780         ExpressionChanged->clearSubclassOptionalData();
781         ExpressionChanged->setFastMathFlags(Flags);
782       } else
783         ExpressionChanged->clearSubclassOptionalData();
784 
785       if (ExpressionChanged == I)
786         break;
787 
788       // Discard any debug info related to the expressions that has changed (we
789       // can leave debug infor related to the root, since the result of the
790       // expression tree should be the same even after reassociation).
791       replaceDbgUsesWithUndef(ExpressionChanged);
792 
793       ExpressionChanged->moveBefore(I);
794       ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
795     } while (true);
796 
797   // Throw away any left over nodes from the original expression.
798   for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
799     RedoInsts.insert(NodesToRewrite[i]);
800 }
801 
802 /// Insert instructions before the instruction pointed to by BI,
803 /// that computes the negative version of the value specified.  The negative
804 /// version of the value is returned, and BI is left pointing at the instruction
805 /// that should be processed next by the reassociation pass.
806 /// Also add intermediate instructions to the redo list that are modified while
807 /// pushing the negates through adds.  These will be revisited to see if
808 /// additional opportunities have been exposed.
809 static Value *NegateValue(Value *V, Instruction *BI,
810                           ReassociatePass::OrderedSet &ToRedo) {
811   if (auto *C = dyn_cast<Constant>(V))
812     return C->getType()->isFPOrFPVectorTy() ? ConstantExpr::getFNeg(C) :
813                                               ConstantExpr::getNeg(C);
814 
815   // We are trying to expose opportunity for reassociation.  One of the things
816   // that we want to do to achieve this is to push a negation as deep into an
817   // expression chain as possible, to expose the add instructions.  In practice,
818   // this means that we turn this:
819   //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
820   // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
821   // the constants.  We assume that instcombine will clean up the mess later if
822   // we introduce tons of unnecessary negation instructions.
823   //
824   if (BinaryOperator *I =
825           isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
826     // Push the negates through the add.
827     I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
828     I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
829     if (I->getOpcode() == Instruction::Add) {
830       I->setHasNoUnsignedWrap(false);
831       I->setHasNoSignedWrap(false);
832     }
833 
834     // We must move the add instruction here, because the neg instructions do
835     // not dominate the old add instruction in general.  By moving it, we are
836     // assured that the neg instructions we just inserted dominate the
837     // instruction we are about to insert after them.
838     //
839     I->moveBefore(BI);
840     I->setName(I->getName()+".neg");
841 
842     // Add the intermediate negates to the redo list as processing them later
843     // could expose more reassociating opportunities.
844     ToRedo.insert(I);
845     return I;
846   }
847 
848   // Okay, we need to materialize a negated version of V with an instruction.
849   // Scan the use lists of V to see if we have one already.
850   for (User *U : V->users()) {
851     if (!match(U, m_Neg(m_Value())) && !match(U, m_FNeg(m_Value())))
852       continue;
853 
854     // We found one!  Now we have to make sure that the definition dominates
855     // this use.  We do this by moving it to the entry block (if it is a
856     // non-instruction value) or right after the definition.  These negates will
857     // be zapped by reassociate later, so we don't need much finesse here.
858     BinaryOperator *TheNeg = cast<BinaryOperator>(U);
859 
860     // Verify that the negate is in this function, V might be a constant expr.
861     if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
862       continue;
863 
864     bool FoundCatchSwitch = false;
865 
866     BasicBlock::iterator InsertPt;
867     if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
868       if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
869         InsertPt = II->getNormalDest()->begin();
870       } else {
871         InsertPt = ++InstInput->getIterator();
872       }
873 
874       const BasicBlock *BB = InsertPt->getParent();
875 
876       // Make sure we don't move anything before PHIs or exception
877       // handling pads.
878       while (InsertPt != BB->end() && (isa<PHINode>(InsertPt) ||
879                                        InsertPt->isEHPad())) {
880         if (isa<CatchSwitchInst>(InsertPt))
881           // A catchswitch cannot have anything in the block except
882           // itself and PHIs.  We'll bail out below.
883           FoundCatchSwitch = true;
884         ++InsertPt;
885       }
886     } else {
887       InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
888     }
889 
890     // We found a catchswitch in the block where we want to move the
891     // neg.  We cannot move anything into that block.  Bail and just
892     // create the neg before BI, as if we hadn't found an existing
893     // neg.
894     if (FoundCatchSwitch)
895       break;
896 
897     TheNeg->moveBefore(&*InsertPt);
898     if (TheNeg->getOpcode() == Instruction::Sub) {
899       TheNeg->setHasNoUnsignedWrap(false);
900       TheNeg->setHasNoSignedWrap(false);
901     } else {
902       TheNeg->andIRFlags(BI);
903     }
904     ToRedo.insert(TheNeg);
905     return TheNeg;
906   }
907 
908   // Insert a 'neg' instruction that subtracts the value from zero to get the
909   // negation.
910   BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
911   ToRedo.insert(NewNeg);
912   return NewNeg;
913 }
914 
915 /// Return true if we should break up this subtract of X-Y into (X + -Y).
916 static bool ShouldBreakUpSubtract(Instruction *Sub) {
917   // If this is a negation, we can't split it up!
918   if (match(Sub, m_Neg(m_Value())) || match(Sub, m_FNeg(m_Value())))
919     return false;
920 
921   // Don't breakup X - undef.
922   if (isa<UndefValue>(Sub->getOperand(1)))
923     return false;
924 
925   // Don't bother to break this up unless either the LHS is an associable add or
926   // subtract or if this is only used by one.
927   Value *V0 = Sub->getOperand(0);
928   if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
929       isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
930     return true;
931   Value *V1 = Sub->getOperand(1);
932   if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
933       isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
934     return true;
935   Value *VB = Sub->user_back();
936   if (Sub->hasOneUse() &&
937       (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
938        isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
939     return true;
940 
941   return false;
942 }
943 
944 /// If we have (X-Y), and if either X is an add, or if this is only used by an
945 /// add, transform this into (X+(0-Y)) to promote better reassociation.
946 static BinaryOperator *BreakUpSubtract(Instruction *Sub,
947                                        ReassociatePass::OrderedSet &ToRedo) {
948   // Convert a subtract into an add and a neg instruction. This allows sub
949   // instructions to be commuted with other add instructions.
950   //
951   // Calculate the negative value of Operand 1 of the sub instruction,
952   // and set it as the RHS of the add instruction we just made.
953   Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
954   BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
955   Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
956   Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
957   New->takeName(Sub);
958 
959   // Everyone now refers to the add instruction.
960   Sub->replaceAllUsesWith(New);
961   New->setDebugLoc(Sub->getDebugLoc());
962 
963   LLVM_DEBUG(dbgs() << "Negated: " << *New << '\n');
964   return New;
965 }
966 
967 /// If this is a shift of a reassociable multiply or is used by one, change
968 /// this into a multiply by a constant to assist with further reassociation.
969 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
970   Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
971   MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
972 
973   BinaryOperator *Mul =
974     BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
975   Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
976   Mul->takeName(Shl);
977 
978   // Everyone now refers to the mul instruction.
979   Shl->replaceAllUsesWith(Mul);
980   Mul->setDebugLoc(Shl->getDebugLoc());
981 
982   // We can safely preserve the nuw flag in all cases.  It's also safe to turn a
983   // nuw nsw shl into a nuw nsw mul.  However, nsw in isolation requires special
984   // handling.
985   bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
986   bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
987   if (NSW && NUW)
988     Mul->setHasNoSignedWrap(true);
989   Mul->setHasNoUnsignedWrap(NUW);
990   return Mul;
991 }
992 
993 /// Scan backwards and forwards among values with the same rank as element i
994 /// to see if X exists.  If X does not exist, return i.  This is useful when
995 /// scanning for 'x' when we see '-x' because they both get the same rank.
996 static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops,
997                                   unsigned i, Value *X) {
998   unsigned XRank = Ops[i].Rank;
999   unsigned e = Ops.size();
1000   for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
1001     if (Ops[j].Op == X)
1002       return j;
1003     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1004       if (Instruction *I2 = dyn_cast<Instruction>(X))
1005         if (I1->isIdenticalTo(I2))
1006           return j;
1007   }
1008   // Scan backwards.
1009   for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
1010     if (Ops[j].Op == X)
1011       return j;
1012     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1013       if (Instruction *I2 = dyn_cast<Instruction>(X))
1014         if (I1->isIdenticalTo(I2))
1015           return j;
1016   }
1017   return i;
1018 }
1019 
1020 /// Emit a tree of add instructions, summing Ops together
1021 /// and returning the result.  Insert the tree before I.
1022 static Value *EmitAddTreeOfValues(Instruction *I,
1023                                   SmallVectorImpl<WeakTrackingVH> &Ops) {
1024   if (Ops.size() == 1) return Ops.back();
1025 
1026   Value *V1 = Ops.back();
1027   Ops.pop_back();
1028   Value *V2 = EmitAddTreeOfValues(I, Ops);
1029   return CreateAdd(V2, V1, "reass.add", I, I);
1030 }
1031 
1032 /// If V is an expression tree that is a multiplication sequence,
1033 /// and if this sequence contains a multiply by Factor,
1034 /// remove Factor from the tree and return the new tree.
1035 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
1036   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1037   if (!BO)
1038     return nullptr;
1039 
1040   SmallVector<RepeatedValue, 8> Tree;
1041   MadeChange |= LinearizeExprTree(BO, Tree);
1042   SmallVector<ValueEntry, 8> Factors;
1043   Factors.reserve(Tree.size());
1044   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1045     RepeatedValue E = Tree[i];
1046     Factors.append(E.second.getZExtValue(),
1047                    ValueEntry(getRank(E.first), E.first));
1048   }
1049 
1050   bool FoundFactor = false;
1051   bool NeedsNegate = false;
1052   for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1053     if (Factors[i].Op == Factor) {
1054       FoundFactor = true;
1055       Factors.erase(Factors.begin()+i);
1056       break;
1057     }
1058 
1059     // If this is a negative version of this factor, remove it.
1060     if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
1061       if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1062         if (FC1->getValue() == -FC2->getValue()) {
1063           FoundFactor = NeedsNegate = true;
1064           Factors.erase(Factors.begin()+i);
1065           break;
1066         }
1067     } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1068       if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
1069         const APFloat &F1 = FC1->getValueAPF();
1070         APFloat F2(FC2->getValueAPF());
1071         F2.changeSign();
1072         if (F1.compare(F2) == APFloat::cmpEqual) {
1073           FoundFactor = NeedsNegate = true;
1074           Factors.erase(Factors.begin() + i);
1075           break;
1076         }
1077       }
1078     }
1079   }
1080 
1081   if (!FoundFactor) {
1082     // Make sure to restore the operands to the expression tree.
1083     RewriteExprTree(BO, Factors);
1084     return nullptr;
1085   }
1086 
1087   BasicBlock::iterator InsertPt = ++BO->getIterator();
1088 
1089   // If this was just a single multiply, remove the multiply and return the only
1090   // remaining operand.
1091   if (Factors.size() == 1) {
1092     RedoInsts.insert(BO);
1093     V = Factors[0].Op;
1094   } else {
1095     RewriteExprTree(BO, Factors);
1096     V = BO;
1097   }
1098 
1099   if (NeedsNegate)
1100     V = CreateNeg(V, "neg", &*InsertPt, BO);
1101 
1102   return V;
1103 }
1104 
1105 /// If V is a single-use multiply, recursively add its operands as factors,
1106 /// otherwise add V to the list of factors.
1107 ///
1108 /// Ops is the top-level list of add operands we're trying to factor.
1109 static void FindSingleUseMultiplyFactors(Value *V,
1110                                          SmallVectorImpl<Value*> &Factors) {
1111   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1112   if (!BO) {
1113     Factors.push_back(V);
1114     return;
1115   }
1116 
1117   // Otherwise, add the LHS and RHS to the list of factors.
1118   FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
1119   FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
1120 }
1121 
1122 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1123 /// This optimizes based on identities.  If it can be reduced to a single Value,
1124 /// it is returned, otherwise the Ops list is mutated as necessary.
1125 static Value *OptimizeAndOrXor(unsigned Opcode,
1126                                SmallVectorImpl<ValueEntry> &Ops) {
1127   // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1128   // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1129   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1130     // First, check for X and ~X in the operand list.
1131     assert(i < Ops.size());
1132     Value *X;
1133     if (match(Ops[i].Op, m_Not(m_Value(X)))) {    // Cannot occur for ^.
1134       unsigned FoundX = FindInOperandList(Ops, i, X);
1135       if (FoundX != i) {
1136         if (Opcode == Instruction::And)   // ...&X&~X = 0
1137           return Constant::getNullValue(X->getType());
1138 
1139         if (Opcode == Instruction::Or)    // ...|X|~X = -1
1140           return Constant::getAllOnesValue(X->getType());
1141       }
1142     }
1143 
1144     // Next, check for duplicate pairs of values, which we assume are next to
1145     // each other, due to our sorting criteria.
1146     assert(i < Ops.size());
1147     if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1148       if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1149         // Drop duplicate values for And and Or.
1150         Ops.erase(Ops.begin()+i);
1151         --i; --e;
1152         ++NumAnnihil;
1153         continue;
1154       }
1155 
1156       // Drop pairs of values for Xor.
1157       assert(Opcode == Instruction::Xor);
1158       if (e == 2)
1159         return Constant::getNullValue(Ops[0].Op->getType());
1160 
1161       // Y ^ X^X -> Y
1162       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1163       i -= 1; e -= 2;
1164       ++NumAnnihil;
1165     }
1166   }
1167   return nullptr;
1168 }
1169 
1170 /// Helper function of CombineXorOpnd(). It creates a bitwise-and
1171 /// instruction with the given two operands, and return the resulting
1172 /// instruction. There are two special cases: 1) if the constant operand is 0,
1173 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1174 /// be returned.
1175 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1176                              const APInt &ConstOpnd) {
1177   if (ConstOpnd.isNullValue())
1178     return nullptr;
1179 
1180   if (ConstOpnd.isAllOnesValue())
1181     return Opnd;
1182 
1183   Instruction *I = BinaryOperator::CreateAnd(
1184       Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra",
1185       InsertBefore);
1186   I->setDebugLoc(InsertBefore->getDebugLoc());
1187   return I;
1188 }
1189 
1190 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1191 // into "R ^ C", where C would be 0, and R is a symbolic value.
1192 //
1193 // If it was successful, true is returned, and the "R" and "C" is returned
1194 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1195 // and both "Res" and "ConstOpnd" remain unchanged.
1196 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1197                                      APInt &ConstOpnd, Value *&Res) {
1198   // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1199   //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
1200   //                       = (x & ~c1) ^ (c1 ^ c2)
1201   // It is useful only when c1 == c2.
1202   if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isNullValue())
1203     return false;
1204 
1205   if (!Opnd1->getValue()->hasOneUse())
1206     return false;
1207 
1208   const APInt &C1 = Opnd1->getConstPart();
1209   if (C1 != ConstOpnd)
1210     return false;
1211 
1212   Value *X = Opnd1->getSymbolicPart();
1213   Res = createAndInstr(I, X, ~C1);
1214   // ConstOpnd was C2, now C1 ^ C2.
1215   ConstOpnd ^= C1;
1216 
1217   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1218     RedoInsts.insert(T);
1219   return true;
1220 }
1221 
1222 // Helper function of OptimizeXor(). It tries to simplify
1223 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1224 // symbolic value.
1225 //
1226 // If it was successful, true is returned, and the "R" and "C" is returned
1227 // via "Res" and "ConstOpnd", respectively (If the entire expression is
1228 // evaluated to a constant, the Res is set to NULL); otherwise, false is
1229 // returned, and both "Res" and "ConstOpnd" remain unchanged.
1230 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1231                                      XorOpnd *Opnd2, APInt &ConstOpnd,
1232                                      Value *&Res) {
1233   Value *X = Opnd1->getSymbolicPart();
1234   if (X != Opnd2->getSymbolicPart())
1235     return false;
1236 
1237   // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1238   int DeadInstNum = 1;
1239   if (Opnd1->getValue()->hasOneUse())
1240     DeadInstNum++;
1241   if (Opnd2->getValue()->hasOneUse())
1242     DeadInstNum++;
1243 
1244   // Xor-Rule 2:
1245   //  (x | c1) ^ (x & c2)
1246   //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1247   //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
1248   //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
1249   //
1250   if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1251     if (Opnd2->isOrExpr())
1252       std::swap(Opnd1, Opnd2);
1253 
1254     const APInt &C1 = Opnd1->getConstPart();
1255     const APInt &C2 = Opnd2->getConstPart();
1256     APInt C3((~C1) ^ C2);
1257 
1258     // Do not increase code size!
1259     if (!C3.isNullValue() && !C3.isAllOnesValue()) {
1260       int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1261       if (NewInstNum > DeadInstNum)
1262         return false;
1263     }
1264 
1265     Res = createAndInstr(I, X, C3);
1266     ConstOpnd ^= C1;
1267   } else if (Opnd1->isOrExpr()) {
1268     // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1269     //
1270     const APInt &C1 = Opnd1->getConstPart();
1271     const APInt &C2 = Opnd2->getConstPart();
1272     APInt C3 = C1 ^ C2;
1273 
1274     // Do not increase code size
1275     if (!C3.isNullValue() && !C3.isAllOnesValue()) {
1276       int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1277       if (NewInstNum > DeadInstNum)
1278         return false;
1279     }
1280 
1281     Res = createAndInstr(I, X, C3);
1282     ConstOpnd ^= C3;
1283   } else {
1284     // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1285     //
1286     const APInt &C1 = Opnd1->getConstPart();
1287     const APInt &C2 = Opnd2->getConstPart();
1288     APInt C3 = C1 ^ C2;
1289     Res = createAndInstr(I, X, C3);
1290   }
1291 
1292   // Put the original operands in the Redo list; hope they will be deleted
1293   // as dead code.
1294   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1295     RedoInsts.insert(T);
1296   if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1297     RedoInsts.insert(T);
1298 
1299   return true;
1300 }
1301 
1302 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1303 /// to a single Value, it is returned, otherwise the Ops list is mutated as
1304 /// necessary.
1305 Value *ReassociatePass::OptimizeXor(Instruction *I,
1306                                     SmallVectorImpl<ValueEntry> &Ops) {
1307   if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1308     return V;
1309 
1310   if (Ops.size() == 1)
1311     return nullptr;
1312 
1313   SmallVector<XorOpnd, 8> Opnds;
1314   SmallVector<XorOpnd*, 8> OpndPtrs;
1315   Type *Ty = Ops[0].Op->getType();
1316   APInt ConstOpnd(Ty->getScalarSizeInBits(), 0);
1317 
1318   // Step 1: Convert ValueEntry to XorOpnd
1319   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1320     Value *V = Ops[i].Op;
1321     const APInt *C;
1322     // TODO: Support non-splat vectors.
1323     if (match(V, m_APInt(C))) {
1324       ConstOpnd ^= *C;
1325     } else {
1326       XorOpnd O(V);
1327       O.setSymbolicRank(getRank(O.getSymbolicPart()));
1328       Opnds.push_back(O);
1329     }
1330   }
1331 
1332   // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1333   //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1334   //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1335   //  with the previous loop --- the iterator of the "Opnds" may be invalidated
1336   //  when new elements are added to the vector.
1337   for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1338     OpndPtrs.push_back(&Opnds[i]);
1339 
1340   // Step 2: Sort the Xor-Operands in a way such that the operands containing
1341   //  the same symbolic value cluster together. For instance, the input operand
1342   //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1343   //  ("x | 123", "x & 789", "y & 456").
1344   //
1345   //  The purpose is twofold:
1346   //  1) Cluster together the operands sharing the same symbolic-value.
1347   //  2) Operand having smaller symbolic-value-rank is permuted earlier, which
1348   //     could potentially shorten crital path, and expose more loop-invariants.
1349   //     Note that values' rank are basically defined in RPO order (FIXME).
1350   //     So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
1351   //     than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
1352   //     "z" in the order of X-Y-Z is better than any other orders.
1353   llvm::stable_sort(OpndPtrs, [](XorOpnd *LHS, XorOpnd *RHS) {
1354     return LHS->getSymbolicRank() < RHS->getSymbolicRank();
1355   });
1356 
1357   // Step 3: Combine adjacent operands
1358   XorOpnd *PrevOpnd = nullptr;
1359   bool Changed = false;
1360   for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
1361     XorOpnd *CurrOpnd = OpndPtrs[i];
1362     // The combined value
1363     Value *CV;
1364 
1365     // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1366     if (!ConstOpnd.isNullValue() &&
1367         CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1368       Changed = true;
1369       if (CV)
1370         *CurrOpnd = XorOpnd(CV);
1371       else {
1372         CurrOpnd->Invalidate();
1373         continue;
1374       }
1375     }
1376 
1377     if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1378       PrevOpnd = CurrOpnd;
1379       continue;
1380     }
1381 
1382     // step 3.2: When previous and current operands share the same symbolic
1383     //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1384     if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1385       // Remove previous operand
1386       PrevOpnd->Invalidate();
1387       if (CV) {
1388         *CurrOpnd = XorOpnd(CV);
1389         PrevOpnd = CurrOpnd;
1390       } else {
1391         CurrOpnd->Invalidate();
1392         PrevOpnd = nullptr;
1393       }
1394       Changed = true;
1395     }
1396   }
1397 
1398   // Step 4: Reassemble the Ops
1399   if (Changed) {
1400     Ops.clear();
1401     for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1402       XorOpnd &O = Opnds[i];
1403       if (O.isInvalid())
1404         continue;
1405       ValueEntry VE(getRank(O.getValue()), O.getValue());
1406       Ops.push_back(VE);
1407     }
1408     if (!ConstOpnd.isNullValue()) {
1409       Value *C = ConstantInt::get(Ty, ConstOpnd);
1410       ValueEntry VE(getRank(C), C);
1411       Ops.push_back(VE);
1412     }
1413     unsigned Sz = Ops.size();
1414     if (Sz == 1)
1415       return Ops.back().Op;
1416     if (Sz == 0) {
1417       assert(ConstOpnd.isNullValue());
1418       return ConstantInt::get(Ty, ConstOpnd);
1419     }
1420   }
1421 
1422   return nullptr;
1423 }
1424 
1425 /// Optimize a series of operands to an 'add' instruction.  This
1426 /// optimizes based on identities.  If it can be reduced to a single Value, it
1427 /// is returned, otherwise the Ops list is mutated as necessary.
1428 Value *ReassociatePass::OptimizeAdd(Instruction *I,
1429                                     SmallVectorImpl<ValueEntry> &Ops) {
1430   // Scan the operand lists looking for X and -X pairs.  If we find any, we
1431   // can simplify expressions like X+-X == 0 and X+~X ==-1.  While we're at it,
1432   // scan for any
1433   // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1434 
1435   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1436     Value *TheOp = Ops[i].Op;
1437     // Check to see if we've seen this operand before.  If so, we factor all
1438     // instances of the operand together.  Due to our sorting criteria, we know
1439     // that these need to be next to each other in the vector.
1440     if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1441       // Rescan the list, remove all instances of this operand from the expr.
1442       unsigned NumFound = 0;
1443       do {
1444         Ops.erase(Ops.begin()+i);
1445         ++NumFound;
1446       } while (i != Ops.size() && Ops[i].Op == TheOp);
1447 
1448       LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp
1449                         << '\n');
1450       ++NumFactor;
1451 
1452       // Insert a new multiply.
1453       Type *Ty = TheOp->getType();
1454       Constant *C = Ty->isIntOrIntVectorTy() ?
1455         ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
1456       Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
1457 
1458       // Now that we have inserted a multiply, optimize it. This allows us to
1459       // handle cases that require multiple factoring steps, such as this:
1460       // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1461       RedoInsts.insert(Mul);
1462 
1463       // If every add operand was a duplicate, return the multiply.
1464       if (Ops.empty())
1465         return Mul;
1466 
1467       // Otherwise, we had some input that didn't have the dupe, such as
1468       // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
1469       // things being added by this operation.
1470       Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1471 
1472       --i;
1473       e = Ops.size();
1474       continue;
1475     }
1476 
1477     // Check for X and -X or X and ~X in the operand list.
1478     Value *X;
1479     if (!match(TheOp, m_Neg(m_Value(X))) && !match(TheOp, m_Not(m_Value(X))) &&
1480         !match(TheOp, m_FNeg(m_Value(X))))
1481       continue;
1482 
1483     unsigned FoundX = FindInOperandList(Ops, i, X);
1484     if (FoundX == i)
1485       continue;
1486 
1487     // Remove X and -X from the operand list.
1488     if (Ops.size() == 2 &&
1489         (match(TheOp, m_Neg(m_Value())) || match(TheOp, m_FNeg(m_Value()))))
1490       return Constant::getNullValue(X->getType());
1491 
1492     // Remove X and ~X from the operand list.
1493     if (Ops.size() == 2 && match(TheOp, m_Not(m_Value())))
1494       return Constant::getAllOnesValue(X->getType());
1495 
1496     Ops.erase(Ops.begin()+i);
1497     if (i < FoundX)
1498       --FoundX;
1499     else
1500       --i;   // Need to back up an extra one.
1501     Ops.erase(Ops.begin()+FoundX);
1502     ++NumAnnihil;
1503     --i;     // Revisit element.
1504     e -= 2;  // Removed two elements.
1505 
1506     // if X and ~X we append -1 to the operand list.
1507     if (match(TheOp, m_Not(m_Value()))) {
1508       Value *V = Constant::getAllOnesValue(X->getType());
1509       Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1510       e += 1;
1511     }
1512   }
1513 
1514   // Scan the operand list, checking to see if there are any common factors
1515   // between operands.  Consider something like A*A+A*B*C+D.  We would like to
1516   // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1517   // To efficiently find this, we count the number of times a factor occurs
1518   // for any ADD operands that are MULs.
1519   DenseMap<Value*, unsigned> FactorOccurrences;
1520 
1521   // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1522   // where they are actually the same multiply.
1523   unsigned MaxOcc = 0;
1524   Value *MaxOccVal = nullptr;
1525   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1526     BinaryOperator *BOp =
1527         isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1528     if (!BOp)
1529       continue;
1530 
1531     // Compute all of the factors of this added value.
1532     SmallVector<Value*, 8> Factors;
1533     FindSingleUseMultiplyFactors(BOp, Factors);
1534     assert(Factors.size() > 1 && "Bad linearize!");
1535 
1536     // Add one to FactorOccurrences for each unique factor in this op.
1537     SmallPtrSet<Value*, 8> Duplicates;
1538     for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1539       Value *Factor = Factors[i];
1540       if (!Duplicates.insert(Factor).second)
1541         continue;
1542 
1543       unsigned Occ = ++FactorOccurrences[Factor];
1544       if (Occ > MaxOcc) {
1545         MaxOcc = Occ;
1546         MaxOccVal = Factor;
1547       }
1548 
1549       // If Factor is a negative constant, add the negated value as a factor
1550       // because we can percolate the negate out.  Watch for minint, which
1551       // cannot be positivified.
1552       if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
1553         if (CI->isNegative() && !CI->isMinValue(true)) {
1554           Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1555           if (!Duplicates.insert(Factor).second)
1556             continue;
1557           unsigned Occ = ++FactorOccurrences[Factor];
1558           if (Occ > MaxOcc) {
1559             MaxOcc = Occ;
1560             MaxOccVal = Factor;
1561           }
1562         }
1563       } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1564         if (CF->isNegative()) {
1565           APFloat F(CF->getValueAPF());
1566           F.changeSign();
1567           Factor = ConstantFP::get(CF->getContext(), F);
1568           if (!Duplicates.insert(Factor).second)
1569             continue;
1570           unsigned Occ = ++FactorOccurrences[Factor];
1571           if (Occ > MaxOcc) {
1572             MaxOcc = Occ;
1573             MaxOccVal = Factor;
1574           }
1575         }
1576       }
1577     }
1578   }
1579 
1580   // If any factor occurred more than one time, we can pull it out.
1581   if (MaxOcc > 1) {
1582     LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal
1583                       << '\n');
1584     ++NumFactor;
1585 
1586     // Create a new instruction that uses the MaxOccVal twice.  If we don't do
1587     // this, we could otherwise run into situations where removing a factor
1588     // from an expression will drop a use of maxocc, and this can cause
1589     // RemoveFactorFromExpression on successive values to behave differently.
1590     Instruction *DummyInst =
1591         I->getType()->isIntOrIntVectorTy()
1592             ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1593             : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1594 
1595     SmallVector<WeakTrackingVH, 4> NewMulOps;
1596     for (unsigned i = 0; i != Ops.size(); ++i) {
1597       // Only try to remove factors from expressions we're allowed to.
1598       BinaryOperator *BOp =
1599           isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1600       if (!BOp)
1601         continue;
1602 
1603       if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1604         // The factorized operand may occur several times.  Convert them all in
1605         // one fell swoop.
1606         for (unsigned j = Ops.size(); j != i;) {
1607           --j;
1608           if (Ops[j].Op == Ops[i].Op) {
1609             NewMulOps.push_back(V);
1610             Ops.erase(Ops.begin()+j);
1611           }
1612         }
1613         --i;
1614       }
1615     }
1616 
1617     // No need for extra uses anymore.
1618     DummyInst->deleteValue();
1619 
1620     unsigned NumAddedValues = NewMulOps.size();
1621     Value *V = EmitAddTreeOfValues(I, NewMulOps);
1622 
1623     // Now that we have inserted the add tree, optimize it. This allows us to
1624     // handle cases that require multiple factoring steps, such as this:
1625     // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
1626     assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1627     (void)NumAddedValues;
1628     if (Instruction *VI = dyn_cast<Instruction>(V))
1629       RedoInsts.insert(VI);
1630 
1631     // Create the multiply.
1632     Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I);
1633 
1634     // Rerun associate on the multiply in case the inner expression turned into
1635     // a multiply.  We want to make sure that we keep things in canonical form.
1636     RedoInsts.insert(V2);
1637 
1638     // If every add operand included the factor (e.g. "A*B + A*C"), then the
1639     // entire result expression is just the multiply "A*(B+C)".
1640     if (Ops.empty())
1641       return V2;
1642 
1643     // Otherwise, we had some input that didn't have the factor, such as
1644     // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
1645     // things being added by this operation.
1646     Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1647   }
1648 
1649   return nullptr;
1650 }
1651 
1652 /// Build up a vector of value/power pairs factoring a product.
1653 ///
1654 /// Given a series of multiplication operands, build a vector of factors and
1655 /// the powers each is raised to when forming the final product. Sort them in
1656 /// the order of descending power.
1657 ///
1658 ///      (x*x)          -> [(x, 2)]
1659 ///     ((x*x)*x)       -> [(x, 3)]
1660 ///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1661 ///
1662 /// \returns Whether any factors have a power greater than one.
1663 static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1664                                    SmallVectorImpl<Factor> &Factors) {
1665   // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1666   // Compute the sum of powers of simplifiable factors.
1667   unsigned FactorPowerSum = 0;
1668   for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1669     Value *Op = Ops[Idx-1].Op;
1670 
1671     // Count the number of occurrences of this value.
1672     unsigned Count = 1;
1673     for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1674       ++Count;
1675     // Track for simplification all factors which occur 2 or more times.
1676     if (Count > 1)
1677       FactorPowerSum += Count;
1678   }
1679 
1680   // We can only simplify factors if the sum of the powers of our simplifiable
1681   // factors is 4 or higher. When that is the case, we will *always* have
1682   // a simplification. This is an important invariant to prevent cyclicly
1683   // trying to simplify already minimal formations.
1684   if (FactorPowerSum < 4)
1685     return false;
1686 
1687   // Now gather the simplifiable factors, removing them from Ops.
1688   FactorPowerSum = 0;
1689   for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1690     Value *Op = Ops[Idx-1].Op;
1691 
1692     // Count the number of occurrences of this value.
1693     unsigned Count = 1;
1694     for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1695       ++Count;
1696     if (Count == 1)
1697       continue;
1698     // Move an even number of occurrences to Factors.
1699     Count &= ~1U;
1700     Idx -= Count;
1701     FactorPowerSum += Count;
1702     Factors.push_back(Factor(Op, Count));
1703     Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1704   }
1705 
1706   // None of the adjustments above should have reduced the sum of factor powers
1707   // below our mininum of '4'.
1708   assert(FactorPowerSum >= 4);
1709 
1710   llvm::stable_sort(Factors, [](const Factor &LHS, const Factor &RHS) {
1711     return LHS.Power > RHS.Power;
1712   });
1713   return true;
1714 }
1715 
1716 /// Build a tree of multiplies, computing the product of Ops.
1717 static Value *buildMultiplyTree(IRBuilder<> &Builder,
1718                                 SmallVectorImpl<Value*> &Ops) {
1719   if (Ops.size() == 1)
1720     return Ops.back();
1721 
1722   Value *LHS = Ops.pop_back_val();
1723   do {
1724     if (LHS->getType()->isIntOrIntVectorTy())
1725       LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1726     else
1727       LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
1728   } while (!Ops.empty());
1729 
1730   return LHS;
1731 }
1732 
1733 /// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1734 ///
1735 /// Given a vector of values raised to various powers, where no two values are
1736 /// equal and the powers are sorted in decreasing order, compute the minimal
1737 /// DAG of multiplies to compute the final product, and return that product
1738 /// value.
1739 Value *
1740 ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1741                                          SmallVectorImpl<Factor> &Factors) {
1742   assert(Factors[0].Power);
1743   SmallVector<Value *, 4> OuterProduct;
1744   for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1745        Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1746     if (Factors[Idx].Power != Factors[LastIdx].Power) {
1747       LastIdx = Idx;
1748       continue;
1749     }
1750 
1751     // We want to multiply across all the factors with the same power so that
1752     // we can raise them to that power as a single entity. Build a mini tree
1753     // for that.
1754     SmallVector<Value *, 4> InnerProduct;
1755     InnerProduct.push_back(Factors[LastIdx].Base);
1756     do {
1757       InnerProduct.push_back(Factors[Idx].Base);
1758       ++Idx;
1759     } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1760 
1761     // Reset the base value of the first factor to the new expression tree.
1762     // We'll remove all the factors with the same power in a second pass.
1763     Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1764     if (Instruction *MI = dyn_cast<Instruction>(M))
1765       RedoInsts.insert(MI);
1766 
1767     LastIdx = Idx;
1768   }
1769   // Unique factors with equal powers -- we've folded them into the first one's
1770   // base.
1771   Factors.erase(std::unique(Factors.begin(), Factors.end(),
1772                             [](const Factor &LHS, const Factor &RHS) {
1773                               return LHS.Power == RHS.Power;
1774                             }),
1775                 Factors.end());
1776 
1777   // Iteratively collect the base of each factor with an add power into the
1778   // outer product, and halve each power in preparation for squaring the
1779   // expression.
1780   for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1781     if (Factors[Idx].Power & 1)
1782       OuterProduct.push_back(Factors[Idx].Base);
1783     Factors[Idx].Power >>= 1;
1784   }
1785   if (Factors[0].Power) {
1786     Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1787     OuterProduct.push_back(SquareRoot);
1788     OuterProduct.push_back(SquareRoot);
1789   }
1790   if (OuterProduct.size() == 1)
1791     return OuterProduct.front();
1792 
1793   Value *V = buildMultiplyTree(Builder, OuterProduct);
1794   return V;
1795 }
1796 
1797 Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
1798                                     SmallVectorImpl<ValueEntry> &Ops) {
1799   // We can only optimize the multiplies when there is a chain of more than
1800   // three, such that a balanced tree might require fewer total multiplies.
1801   if (Ops.size() < 4)
1802     return nullptr;
1803 
1804   // Try to turn linear trees of multiplies without other uses of the
1805   // intermediate stages into minimal multiply DAGs with perfect sub-expression
1806   // re-use.
1807   SmallVector<Factor, 4> Factors;
1808   if (!collectMultiplyFactors(Ops, Factors))
1809     return nullptr; // All distinct factors, so nothing left for us to do.
1810 
1811   IRBuilder<> Builder(I);
1812   // The reassociate transformation for FP operations is performed only
1813   // if unsafe algebra is permitted by FastMathFlags. Propagate those flags
1814   // to the newly generated operations.
1815   if (auto FPI = dyn_cast<FPMathOperator>(I))
1816     Builder.setFastMathFlags(FPI->getFastMathFlags());
1817 
1818   Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1819   if (Ops.empty())
1820     return V;
1821 
1822   ValueEntry NewEntry = ValueEntry(getRank(V), V);
1823   Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
1824   return nullptr;
1825 }
1826 
1827 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
1828                                            SmallVectorImpl<ValueEntry> &Ops) {
1829   // Now that we have the linearized expression tree, try to optimize it.
1830   // Start by folding any constants that we found.
1831   Constant *Cst = nullptr;
1832   unsigned Opcode = I->getOpcode();
1833   while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1834     Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1835     Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1836   }
1837   // If there was nothing but constants then we are done.
1838   if (Ops.empty())
1839     return Cst;
1840 
1841   // Put the combined constant back at the end of the operand list, except if
1842   // there is no point.  For example, an add of 0 gets dropped here, while a
1843   // multiplication by zero turns the whole expression into zero.
1844   if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1845     if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1846       return Cst;
1847     Ops.push_back(ValueEntry(0, Cst));
1848   }
1849 
1850   if (Ops.size() == 1) return Ops[0].Op;
1851 
1852   // Handle destructive annihilation due to identities between elements in the
1853   // argument list here.
1854   unsigned NumOps = Ops.size();
1855   switch (Opcode) {
1856   default: break;
1857   case Instruction::And:
1858   case Instruction::Or:
1859     if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1860       return Result;
1861     break;
1862 
1863   case Instruction::Xor:
1864     if (Value *Result = OptimizeXor(I, Ops))
1865       return Result;
1866     break;
1867 
1868   case Instruction::Add:
1869   case Instruction::FAdd:
1870     if (Value *Result = OptimizeAdd(I, Ops))
1871       return Result;
1872     break;
1873 
1874   case Instruction::Mul:
1875   case Instruction::FMul:
1876     if (Value *Result = OptimizeMul(I, Ops))
1877       return Result;
1878     break;
1879   }
1880 
1881   if (Ops.size() != NumOps)
1882     return OptimizeExpression(I, Ops);
1883   return nullptr;
1884 }
1885 
1886 // Remove dead instructions and if any operands are trivially dead add them to
1887 // Insts so they will be removed as well.
1888 void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I,
1889                                                 OrderedSet &Insts) {
1890   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1891   SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end());
1892   ValueRankMap.erase(I);
1893   Insts.remove(I);
1894   RedoInsts.remove(I);
1895   I->eraseFromParent();
1896   for (auto Op : Ops)
1897     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1898       if (OpInst->use_empty())
1899         Insts.insert(OpInst);
1900 }
1901 
1902 /// Zap the given instruction, adding interesting operands to the work list.
1903 void ReassociatePass::EraseInst(Instruction *I) {
1904   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1905   LLVM_DEBUG(dbgs() << "Erasing dead inst: "; I->dump());
1906 
1907   SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1908   // Erase the dead instruction.
1909   ValueRankMap.erase(I);
1910   RedoInsts.remove(I);
1911   I->eraseFromParent();
1912   // Optimize its operands.
1913   SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
1914   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1915     if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1916       // If this is a node in an expression tree, climb to the expression root
1917       // and add that since that's where optimization actually happens.
1918       unsigned Opcode = Op->getOpcode();
1919       while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
1920              Visited.insert(Op).second)
1921         Op = Op->user_back();
1922 
1923       // The instruction we're going to push may be coming from a
1924       // dead block, and Reassociate skips the processing of unreachable
1925       // blocks because it's a waste of time and also because it can
1926       // lead to infinite loop due to LLVM's non-standard definition
1927       // of dominance.
1928       if (ValueRankMap.find(Op) != ValueRankMap.end())
1929         RedoInsts.insert(Op);
1930     }
1931 
1932   MadeChange = true;
1933 }
1934 
1935 // Canonicalize expressions of the following form:
1936 //  x + (-Constant * y) -> x - (Constant * y)
1937 //  x - (-Constant * y) -> x + (Constant * y)
1938 Instruction *ReassociatePass::canonicalizeNegConstExpr(Instruction *I) {
1939   if (!I->hasOneUse() || I->getType()->isVectorTy())
1940     return nullptr;
1941 
1942   // Must be a fmul or fdiv instruction.
1943   unsigned Opcode = I->getOpcode();
1944   if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv)
1945     return nullptr;
1946 
1947   auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
1948   auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
1949 
1950   // Both operands are constant, let it get constant folded away.
1951   if (C0 && C1)
1952     return nullptr;
1953 
1954   ConstantFP *CF = C0 ? C0 : C1;
1955 
1956   // Must have one constant operand.
1957   if (!CF)
1958     return nullptr;
1959 
1960   // Must be a negative ConstantFP.
1961   if (!CF->isNegative())
1962     return nullptr;
1963 
1964   // User must be a binary operator with one or more uses.
1965   Instruction *User = I->user_back();
1966   if (!isa<BinaryOperator>(User) || User->use_empty())
1967     return nullptr;
1968 
1969   unsigned UserOpcode = User->getOpcode();
1970   if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub)
1971     return nullptr;
1972 
1973   // Subtraction is not commutative. Explicitly, the following transform is
1974   // not valid: (-Constant * y) - x  -> x + (Constant * y)
1975   if (!User->isCommutative() && User->getOperand(1) != I)
1976     return nullptr;
1977 
1978   // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the
1979   // resulting subtract will be broken up later.  This can get us into an
1980   // infinite loop during reassociation.
1981   if (UserOpcode == Instruction::FAdd && ShouldBreakUpSubtract(User))
1982     return nullptr;
1983 
1984   // Change the sign of the constant.
1985   APFloat Val = CF->getValueAPF();
1986   Val.changeSign();
1987   I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val));
1988 
1989   // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
1990   // ((-Const*y) + x) -> (x + (-Const*y)).
1991   if (User->getOperand(0) == I && User->isCommutative())
1992     cast<BinaryOperator>(User)->swapOperands();
1993 
1994   Value *Op0 = User->getOperand(0);
1995   Value *Op1 = User->getOperand(1);
1996   BinaryOperator *NI;
1997   switch (UserOpcode) {
1998   default:
1999     llvm_unreachable("Unexpected Opcode!");
2000   case Instruction::FAdd:
2001     NI = BinaryOperator::CreateFSub(Op0, Op1);
2002     NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
2003     break;
2004   case Instruction::FSub:
2005     NI = BinaryOperator::CreateFAdd(Op0, Op1);
2006     NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
2007     break;
2008   }
2009 
2010   NI->insertBefore(User);
2011   NI->setName(User->getName());
2012   User->replaceAllUsesWith(NI);
2013   NI->setDebugLoc(I->getDebugLoc());
2014   RedoInsts.insert(I);
2015   MadeChange = true;
2016   return NI;
2017 }
2018 
2019 /// Inspect and optimize the given instruction. Note that erasing
2020 /// instructions is not allowed.
2021 void ReassociatePass::OptimizeInst(Instruction *I) {
2022   // Only consider operations that we understand.
2023   if (!isa<BinaryOperator>(I))
2024     return;
2025 
2026   if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
2027     // If an operand of this shift is a reassociable multiply, or if the shift
2028     // is used by a reassociable multiply or add, turn into a multiply.
2029     if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
2030         (I->hasOneUse() &&
2031          (isReassociableOp(I->user_back(), Instruction::Mul) ||
2032           isReassociableOp(I->user_back(), Instruction::Add)))) {
2033       Instruction *NI = ConvertShiftToMul(I);
2034       RedoInsts.insert(I);
2035       MadeChange = true;
2036       I = NI;
2037     }
2038 
2039   // Canonicalize negative constants out of expressions.
2040   if (Instruction *Res = canonicalizeNegConstExpr(I))
2041     I = Res;
2042 
2043   // Commute binary operators, to canonicalize the order of their operands.
2044   // This can potentially expose more CSE opportunities, and makes writing other
2045   // transformations simpler.
2046   if (I->isCommutative())
2047     canonicalizeOperands(I);
2048 
2049   // Don't optimize floating-point instructions unless they are 'fast'.
2050   if (I->getType()->isFPOrFPVectorTy() && !I->isFast())
2051     return;
2052 
2053   // Do not reassociate boolean (i1) expressions.  We want to preserve the
2054   // original order of evaluation for short-circuited comparisons that
2055   // SimplifyCFG has folded to AND/OR expressions.  If the expression
2056   // is not further optimized, it is likely to be transformed back to a
2057   // short-circuited form for code gen, and the source order may have been
2058   // optimized for the most likely conditions.
2059   if (I->getType()->isIntegerTy(1))
2060     return;
2061 
2062   // If this is a subtract instruction which is not already in negate form,
2063   // see if we can convert it to X+-Y.
2064   if (I->getOpcode() == Instruction::Sub) {
2065     if (ShouldBreakUpSubtract(I)) {
2066       Instruction *NI = BreakUpSubtract(I, RedoInsts);
2067       RedoInsts.insert(I);
2068       MadeChange = true;
2069       I = NI;
2070     } else if (match(I, m_Neg(m_Value()))) {
2071       // Otherwise, this is a negation.  See if the operand is a multiply tree
2072       // and if this is not an inner node of a multiply tree.
2073       if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2074           (!I->hasOneUse() ||
2075            !isReassociableOp(I->user_back(), Instruction::Mul))) {
2076         Instruction *NI = LowerNegateToMultiply(I);
2077         // If the negate was simplified, revisit the users to see if we can
2078         // reassociate further.
2079         for (User *U : NI->users()) {
2080           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2081             RedoInsts.insert(Tmp);
2082         }
2083         RedoInsts.insert(I);
2084         MadeChange = true;
2085         I = NI;
2086       }
2087     }
2088   } else if (I->getOpcode() == Instruction::FSub) {
2089     if (ShouldBreakUpSubtract(I)) {
2090       Instruction *NI = BreakUpSubtract(I, RedoInsts);
2091       RedoInsts.insert(I);
2092       MadeChange = true;
2093       I = NI;
2094     } else if (match(I, m_FNeg(m_Value()))) {
2095       // Otherwise, this is a negation.  See if the operand is a multiply tree
2096       // and if this is not an inner node of a multiply tree.
2097       if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
2098           (!I->hasOneUse() ||
2099            !isReassociableOp(I->user_back(), Instruction::FMul))) {
2100         // If the negate was simplified, revisit the users to see if we can
2101         // reassociate further.
2102         Instruction *NI = LowerNegateToMultiply(I);
2103         for (User *U : NI->users()) {
2104           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2105             RedoInsts.insert(Tmp);
2106         }
2107         RedoInsts.insert(I);
2108         MadeChange = true;
2109         I = NI;
2110       }
2111     }
2112   }
2113 
2114   // If this instruction is an associative binary operator, process it.
2115   if (!I->isAssociative()) return;
2116   BinaryOperator *BO = cast<BinaryOperator>(I);
2117 
2118   // If this is an interior node of a reassociable tree, ignore it until we
2119   // get to the root of the tree, to avoid N^2 analysis.
2120   unsigned Opcode = BO->getOpcode();
2121   if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2122     // During the initial run we will get to the root of the tree.
2123     // But if we get here while we are redoing instructions, there is no
2124     // guarantee that the root will be visited. So Redo later
2125     if (BO->user_back() != BO &&
2126         BO->getParent() == BO->user_back()->getParent())
2127       RedoInsts.insert(BO->user_back());
2128     return;
2129   }
2130 
2131   // If this is an add tree that is used by a sub instruction, ignore it
2132   // until we process the subtract.
2133   if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
2134       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
2135     return;
2136   if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2137       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2138     return;
2139 
2140   ReassociateExpression(BO);
2141 }
2142 
2143 void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
2144   // First, walk the expression tree, linearizing the tree, collecting the
2145   // operand information.
2146   SmallVector<RepeatedValue, 8> Tree;
2147   MadeChange |= LinearizeExprTree(I, Tree);
2148   SmallVector<ValueEntry, 8> Ops;
2149   Ops.reserve(Tree.size());
2150   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
2151     RepeatedValue E = Tree[i];
2152     Ops.append(E.second.getZExtValue(),
2153                ValueEntry(getRank(E.first), E.first));
2154   }
2155 
2156   LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2157 
2158   // Now that we have linearized the tree to a list and have gathered all of
2159   // the operands and their ranks, sort the operands by their rank.  Use a
2160   // stable_sort so that values with equal ranks will have their relative
2161   // positions maintained (and so the compiler is deterministic).  Note that
2162   // this sorts so that the highest ranking values end up at the beginning of
2163   // the vector.
2164   llvm::stable_sort(Ops);
2165 
2166   // Now that we have the expression tree in a convenient
2167   // sorted form, optimize it globally if possible.
2168   if (Value *V = OptimizeExpression(I, Ops)) {
2169     if (V == I)
2170       // Self-referential expression in unreachable code.
2171       return;
2172     // This expression tree simplified to something that isn't a tree,
2173     // eliminate it.
2174     LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
2175     I->replaceAllUsesWith(V);
2176     if (Instruction *VI = dyn_cast<Instruction>(V))
2177       if (I->getDebugLoc())
2178         VI->setDebugLoc(I->getDebugLoc());
2179     RedoInsts.insert(I);
2180     ++NumAnnihil;
2181     return;
2182   }
2183 
2184   // We want to sink immediates as deeply as possible except in the case where
2185   // this is a multiply tree used only by an add, and the immediate is a -1.
2186   // In this case we reassociate to put the negation on the outside so that we
2187   // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
2188   if (I->hasOneUse()) {
2189     if (I->getOpcode() == Instruction::Mul &&
2190         cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2191         isa<ConstantInt>(Ops.back().Op) &&
2192         cast<ConstantInt>(Ops.back().Op)->isMinusOne()) {
2193       ValueEntry Tmp = Ops.pop_back_val();
2194       Ops.insert(Ops.begin(), Tmp);
2195     } else if (I->getOpcode() == Instruction::FMul &&
2196                cast<Instruction>(I->user_back())->getOpcode() ==
2197                    Instruction::FAdd &&
2198                isa<ConstantFP>(Ops.back().Op) &&
2199                cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2200       ValueEntry Tmp = Ops.pop_back_val();
2201       Ops.insert(Ops.begin(), Tmp);
2202     }
2203   }
2204 
2205   LLVM_DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
2206 
2207   if (Ops.size() == 1) {
2208     if (Ops[0].Op == I)
2209       // Self-referential expression in unreachable code.
2210       return;
2211 
2212     // This expression tree simplified to something that isn't a tree,
2213     // eliminate it.
2214     I->replaceAllUsesWith(Ops[0].Op);
2215     if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2216       OI->setDebugLoc(I->getDebugLoc());
2217     RedoInsts.insert(I);
2218     return;
2219   }
2220 
2221   if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) {
2222     // Find the pair with the highest count in the pairmap and move it to the
2223     // back of the list so that it can later be CSE'd.
2224     // example:
2225     //   a*b*c*d*e
2226     // if c*e is the most "popular" pair, we can express this as
2227     //   (((c*e)*d)*b)*a
2228     unsigned Max = 1;
2229     unsigned BestRank = 0;
2230     std::pair<unsigned, unsigned> BestPair;
2231     unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin;
2232     for (unsigned i = 0; i < Ops.size() - 1; ++i)
2233       for (unsigned j = i + 1; j < Ops.size(); ++j) {
2234         unsigned Score = 0;
2235         Value *Op0 = Ops[i].Op;
2236         Value *Op1 = Ops[j].Op;
2237         if (std::less<Value *>()(Op1, Op0))
2238           std::swap(Op0, Op1);
2239         auto it = PairMap[Idx].find({Op0, Op1});
2240         if (it != PairMap[Idx].end()) {
2241           // Functions like BreakUpSubtract() can erase the Values we're using
2242           // as keys and create new Values after we built the PairMap. There's a
2243           // small chance that the new nodes can have the same address as
2244           // something already in the table. We shouldn't accumulate the stored
2245           // score in that case as it refers to the wrong Value.
2246           if (it->second.isValid())
2247             Score += it->second.Score;
2248         }
2249 
2250         unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank);
2251         if (Score > Max || (Score == Max && MaxRank < BestRank)) {
2252           BestPair = {i, j};
2253           Max = Score;
2254           BestRank = MaxRank;
2255         }
2256       }
2257     if (Max > 1) {
2258       auto Op0 = Ops[BestPair.first];
2259       auto Op1 = Ops[BestPair.second];
2260       Ops.erase(&Ops[BestPair.second]);
2261       Ops.erase(&Ops[BestPair.first]);
2262       Ops.push_back(Op0);
2263       Ops.push_back(Op1);
2264     }
2265   }
2266   // Now that we ordered and optimized the expressions, splat them back into
2267   // the expression tree, removing any unneeded nodes.
2268   RewriteExprTree(I, Ops);
2269 }
2270 
2271 void
2272 ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) {
2273   // Make a "pairmap" of how often each operand pair occurs.
2274   for (BasicBlock *BI : RPOT) {
2275     for (Instruction &I : *BI) {
2276       if (!I.isAssociative())
2277         continue;
2278 
2279       // Ignore nodes that aren't at the root of trees.
2280       if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode())
2281         continue;
2282 
2283       // Collect all operands in a single reassociable expression.
2284       // Since Reassociate has already been run once, we can assume things
2285       // are already canonical according to Reassociation's regime.
2286       SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) };
2287       SmallVector<Value *, 8> Ops;
2288       while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) {
2289         Value *Op = Worklist.pop_back_val();
2290         Instruction *OpI = dyn_cast<Instruction>(Op);
2291         if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) {
2292           Ops.push_back(Op);
2293           continue;
2294         }
2295         // Be paranoid about self-referencing expressions in unreachable code.
2296         if (OpI->getOperand(0) != OpI)
2297           Worklist.push_back(OpI->getOperand(0));
2298         if (OpI->getOperand(1) != OpI)
2299           Worklist.push_back(OpI->getOperand(1));
2300       }
2301       // Skip extremely long expressions.
2302       if (Ops.size() > GlobalReassociateLimit)
2303         continue;
2304 
2305       // Add all pairwise combinations of operands to the pair map.
2306       unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin;
2307       SmallSet<std::pair<Value *, Value*>, 32> Visited;
2308       for (unsigned i = 0; i < Ops.size() - 1; ++i) {
2309         for (unsigned j = i + 1; j < Ops.size(); ++j) {
2310           // Canonicalize operand orderings.
2311           Value *Op0 = Ops[i];
2312           Value *Op1 = Ops[j];
2313           if (std::less<Value *>()(Op1, Op0))
2314             std::swap(Op0, Op1);
2315           if (!Visited.insert({Op0, Op1}).second)
2316             continue;
2317           auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, {Op0, Op1, 1}});
2318           if (!res.second) {
2319             // If either key value has been erased then we've got the same
2320             // address by coincidence. That can't happen here because nothing is
2321             // erasing values but it can happen by the time we're querying the
2322             // map.
2323             assert(res.first->second.isValid() && "WeakVH invalidated");
2324             ++res.first->second.Score;
2325           }
2326         }
2327       }
2328     }
2329   }
2330 }
2331 
2332 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
2333   // Get the functions basic blocks in Reverse Post Order. This order is used by
2334   // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic
2335   // blocks (it has been seen that the analysis in this pass could hang when
2336   // analysing dead basic blocks).
2337   ReversePostOrderTraversal<Function *> RPOT(&F);
2338 
2339   // Calculate the rank map for F.
2340   BuildRankMap(F, RPOT);
2341 
2342   // Build the pair map before running reassociate.
2343   // Technically this would be more accurate if we did it after one round
2344   // of reassociation, but in practice it doesn't seem to help much on
2345   // real-world code, so don't waste the compile time running reassociate
2346   // twice.
2347   // If a user wants, they could expicitly run reassociate twice in their
2348   // pass pipeline for further potential gains.
2349   // It might also be possible to update the pair map during runtime, but the
2350   // overhead of that may be large if there's many reassociable chains.
2351   BuildPairMap(RPOT);
2352 
2353   MadeChange = false;
2354 
2355   // Traverse the same blocks that were analysed by BuildRankMap.
2356   for (BasicBlock *BI : RPOT) {
2357     assert(RankMap.count(&*BI) && "BB should be ranked.");
2358     // Optimize every instruction in the basic block.
2359     for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;)
2360       if (isInstructionTriviallyDead(&*II)) {
2361         EraseInst(&*II++);
2362       } else {
2363         OptimizeInst(&*II);
2364         assert(II->getParent() == &*BI && "Moved to a different block!");
2365         ++II;
2366       }
2367 
2368     // Make a copy of all the instructions to be redone so we can remove dead
2369     // instructions.
2370     OrderedSet ToRedo(RedoInsts);
2371     // Iterate over all instructions to be reevaluated and remove trivially dead
2372     // instructions. If any operand of the trivially dead instruction becomes
2373     // dead mark it for deletion as well. Continue this process until all
2374     // trivially dead instructions have been removed.
2375     while (!ToRedo.empty()) {
2376       Instruction *I = ToRedo.pop_back_val();
2377       if (isInstructionTriviallyDead(I)) {
2378         RecursivelyEraseDeadInsts(I, ToRedo);
2379         MadeChange = true;
2380       }
2381     }
2382 
2383     // Now that we have removed dead instructions, we can reoptimize the
2384     // remaining instructions.
2385     while (!RedoInsts.empty()) {
2386       Instruction *I = RedoInsts.front();
2387       RedoInsts.erase(RedoInsts.begin());
2388       if (isInstructionTriviallyDead(I))
2389         EraseInst(I);
2390       else
2391         OptimizeInst(I);
2392     }
2393   }
2394 
2395   // We are done with the rank map and pair map.
2396   RankMap.clear();
2397   ValueRankMap.clear();
2398   for (auto &Entry : PairMap)
2399     Entry.clear();
2400 
2401   if (MadeChange) {
2402     PreservedAnalyses PA;
2403     PA.preserveSet<CFGAnalyses>();
2404     PA.preserve<GlobalsAA>();
2405     return PA;
2406   }
2407 
2408   return PreservedAnalyses::all();
2409 }
2410 
2411 namespace {
2412 
2413   class ReassociateLegacyPass : public FunctionPass {
2414     ReassociatePass Impl;
2415 
2416   public:
2417     static char ID; // Pass identification, replacement for typeid
2418 
2419     ReassociateLegacyPass() : FunctionPass(ID) {
2420       initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
2421     }
2422 
2423     bool runOnFunction(Function &F) override {
2424       if (skipFunction(F))
2425         return false;
2426 
2427       FunctionAnalysisManager DummyFAM;
2428       auto PA = Impl.run(F, DummyFAM);
2429       return !PA.areAllPreserved();
2430     }
2431 
2432     void getAnalysisUsage(AnalysisUsage &AU) const override {
2433       AU.setPreservesCFG();
2434       AU.addPreserved<GlobalsAAWrapperPass>();
2435     }
2436   };
2437 
2438 } // end anonymous namespace
2439 
2440 char ReassociateLegacyPass::ID = 0;
2441 
2442 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
2443                 "Reassociate expressions", false, false)
2444 
2445 // Public interface to the Reassociate pass
2446 FunctionPass *llvm::createReassociatePass() {
2447   return new ReassociateLegacyPass();
2448 }
2449