1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass reassociates commutative expressions in an order that is designed 10 // to promote better constant propagation, GCSE, LICM, PRE, etc. 11 // 12 // For example: 4 + (x + 5) -> x + (4 + 5) 13 // 14 // In the implementation of this algorithm, constants are assigned rank = 0, 15 // function arguments are rank = 1, and other values are assigned ranks 16 // corresponding to the reverse post order traversal of current function 17 // (starting at 2), which effectively gives values in deep loops higher rank 18 // than values not in loops. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "llvm/Transforms/Scalar/Reassociate.h" 23 #include "llvm/ADT/APFloat.h" 24 #include "llvm/ADT/APInt.h" 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/GlobalsModRef.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/IRBuilder.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Operator.h" 47 #include "llvm/IR/PassManager.h" 48 #include "llvm/IR/PatternMatch.h" 49 #include "llvm/IR/Type.h" 50 #include "llvm/IR/User.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/IR/ValueHandle.h" 53 #include "llvm/Pass.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Transforms/Scalar.h" 59 #include <algorithm> 60 #include <cassert> 61 #include <utility> 62 63 using namespace llvm; 64 using namespace reassociate; 65 using namespace PatternMatch; 66 67 #define DEBUG_TYPE "reassociate" 68 69 STATISTIC(NumChanged, "Number of insts reassociated"); 70 STATISTIC(NumAnnihil, "Number of expr tree annihilated"); 71 STATISTIC(NumFactor , "Number of multiplies factored"); 72 73 #ifndef NDEBUG 74 /// Print out the expression identified in the Ops list. 75 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) { 76 Module *M = I->getModule(); 77 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " " 78 << *Ops[0].Op->getType() << '\t'; 79 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 80 dbgs() << "[ "; 81 Ops[i].Op->printAsOperand(dbgs(), false, M); 82 dbgs() << ", #" << Ops[i].Rank << "] "; 83 } 84 } 85 #endif 86 87 /// Utility class representing a non-constant Xor-operand. We classify 88 /// non-constant Xor-Operands into two categories: 89 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0 90 /// C2) 91 /// C2.1) The operand is in the form of "X | C", where C is a non-zero 92 /// constant. 93 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this 94 /// operand as "E | 0" 95 class llvm::reassociate::XorOpnd { 96 public: 97 XorOpnd(Value *V); 98 99 bool isInvalid() const { return SymbolicPart == nullptr; } 100 bool isOrExpr() const { return isOr; } 101 Value *getValue() const { return OrigVal; } 102 Value *getSymbolicPart() const { return SymbolicPart; } 103 unsigned getSymbolicRank() const { return SymbolicRank; } 104 const APInt &getConstPart() const { return ConstPart; } 105 106 void Invalidate() { SymbolicPart = OrigVal = nullptr; } 107 void setSymbolicRank(unsigned R) { SymbolicRank = R; } 108 109 private: 110 Value *OrigVal; 111 Value *SymbolicPart; 112 APInt ConstPart; 113 unsigned SymbolicRank; 114 bool isOr; 115 }; 116 117 XorOpnd::XorOpnd(Value *V) { 118 assert(!isa<ConstantInt>(V) && "No ConstantInt"); 119 OrigVal = V; 120 Instruction *I = dyn_cast<Instruction>(V); 121 SymbolicRank = 0; 122 123 if (I && (I->getOpcode() == Instruction::Or || 124 I->getOpcode() == Instruction::And)) { 125 Value *V0 = I->getOperand(0); 126 Value *V1 = I->getOperand(1); 127 const APInt *C; 128 if (match(V0, m_APInt(C))) 129 std::swap(V0, V1); 130 131 if (match(V1, m_APInt(C))) { 132 ConstPart = *C; 133 SymbolicPart = V0; 134 isOr = (I->getOpcode() == Instruction::Or); 135 return; 136 } 137 } 138 139 // view the operand as "V | 0" 140 SymbolicPart = V; 141 ConstPart = APInt::getNullValue(V->getType()->getScalarSizeInBits()); 142 isOr = true; 143 } 144 145 /// Return true if V is an instruction of the specified opcode and if it 146 /// only has one use. 147 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) { 148 auto *I = dyn_cast<Instruction>(V); 149 if (I && I->hasOneUse() && I->getOpcode() == Opcode) 150 if (!isa<FPMathOperator>(I) || I->isFast()) 151 return cast<BinaryOperator>(I); 152 return nullptr; 153 } 154 155 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1, 156 unsigned Opcode2) { 157 auto *I = dyn_cast<Instruction>(V); 158 if (I && I->hasOneUse() && 159 (I->getOpcode() == Opcode1 || I->getOpcode() == Opcode2)) 160 if (!isa<FPMathOperator>(I) || I->isFast()) 161 return cast<BinaryOperator>(I); 162 return nullptr; 163 } 164 165 void ReassociatePass::BuildRankMap(Function &F, 166 ReversePostOrderTraversal<Function*> &RPOT) { 167 unsigned Rank = 2; 168 169 // Assign distinct ranks to function arguments. 170 for (auto &Arg : F.args()) { 171 ValueRankMap[&Arg] = ++Rank; 172 LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank 173 << "\n"); 174 } 175 176 // Traverse basic blocks in ReversePostOrder 177 for (BasicBlock *BB : RPOT) { 178 unsigned BBRank = RankMap[BB] = ++Rank << 16; 179 180 // Walk the basic block, adding precomputed ranks for any instructions that 181 // we cannot move. This ensures that the ranks for these instructions are 182 // all different in the block. 183 for (Instruction &I : *BB) 184 if (mayBeMemoryDependent(I)) 185 ValueRankMap[&I] = ++BBRank; 186 } 187 } 188 189 unsigned ReassociatePass::getRank(Value *V) { 190 Instruction *I = dyn_cast<Instruction>(V); 191 if (!I) { 192 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument. 193 return 0; // Otherwise it's a global or constant, rank 0. 194 } 195 196 if (unsigned Rank = ValueRankMap[I]) 197 return Rank; // Rank already known? 198 199 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that 200 // we can reassociate expressions for code motion! Since we do not recurse 201 // for PHI nodes, we cannot have infinite recursion here, because there 202 // cannot be loops in the value graph that do not go through PHI nodes. 203 unsigned Rank = 0, MaxRank = RankMap[I->getParent()]; 204 for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i) 205 Rank = std::max(Rank, getRank(I->getOperand(i))); 206 207 // If this is a 'not' or 'neg' instruction, do not count it for rank. This 208 // assures us that X and ~X will have the same rank. 209 if (!match(I, m_Not(m_Value())) && !match(I, m_Neg(m_Value())) && 210 !match(I, m_FNeg(m_Value()))) 211 ++Rank; 212 213 LLVM_DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank 214 << "\n"); 215 216 return ValueRankMap[I] = Rank; 217 } 218 219 // Canonicalize constants to RHS. Otherwise, sort the operands by rank. 220 void ReassociatePass::canonicalizeOperands(Instruction *I) { 221 assert(isa<BinaryOperator>(I) && "Expected binary operator."); 222 assert(I->isCommutative() && "Expected commutative operator."); 223 224 Value *LHS = I->getOperand(0); 225 Value *RHS = I->getOperand(1); 226 if (LHS == RHS || isa<Constant>(RHS)) 227 return; 228 if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS)) 229 cast<BinaryOperator>(I)->swapOperands(); 230 } 231 232 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name, 233 Instruction *InsertBefore, Value *FlagsOp) { 234 if (S1->getType()->isIntOrIntVectorTy()) 235 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore); 236 else { 237 BinaryOperator *Res = 238 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore); 239 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 240 return Res; 241 } 242 } 243 244 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name, 245 Instruction *InsertBefore, Value *FlagsOp) { 246 if (S1->getType()->isIntOrIntVectorTy()) 247 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore); 248 else { 249 BinaryOperator *Res = 250 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore); 251 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 252 return Res; 253 } 254 } 255 256 static BinaryOperator *CreateNeg(Value *S1, const Twine &Name, 257 Instruction *InsertBefore, Value *FlagsOp) { 258 if (S1->getType()->isIntOrIntVectorTy()) 259 return BinaryOperator::CreateNeg(S1, Name, InsertBefore); 260 else { 261 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore); 262 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 263 return Res; 264 } 265 } 266 267 /// Replace 0-X with X*-1. 268 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) { 269 Type *Ty = Neg->getType(); 270 Constant *NegOne = Ty->isIntOrIntVectorTy() ? 271 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0); 272 273 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg); 274 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op. 275 Res->takeName(Neg); 276 Neg->replaceAllUsesWith(Res); 277 Res->setDebugLoc(Neg->getDebugLoc()); 278 return Res; 279 } 280 281 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael 282 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for 283 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic. 284 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every 285 /// even x in Bitwidth-bit arithmetic. 286 static unsigned CarmichaelShift(unsigned Bitwidth) { 287 if (Bitwidth < 3) 288 return Bitwidth - 1; 289 return Bitwidth - 2; 290 } 291 292 /// Add the extra weight 'RHS' to the existing weight 'LHS', 293 /// reducing the combined weight using any special properties of the operation. 294 /// The existing weight LHS represents the computation X op X op ... op X where 295 /// X occurs LHS times. The combined weight represents X op X op ... op X with 296 /// X occurring LHS + RHS times. If op is "Xor" for example then the combined 297 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even; 298 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second. 299 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) { 300 // If we were working with infinite precision arithmetic then the combined 301 // weight would be LHS + RHS. But we are using finite precision arithmetic, 302 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct 303 // for nilpotent operations and addition, but not for idempotent operations 304 // and multiplication), so it is important to correctly reduce the combined 305 // weight back into range if wrapping would be wrong. 306 307 // If RHS is zero then the weight didn't change. 308 if (RHS.isMinValue()) 309 return; 310 // If LHS is zero then the combined weight is RHS. 311 if (LHS.isMinValue()) { 312 LHS = RHS; 313 return; 314 } 315 // From this point on we know that neither LHS nor RHS is zero. 316 317 if (Instruction::isIdempotent(Opcode)) { 318 // Idempotent means X op X === X, so any non-zero weight is equivalent to a 319 // weight of 1. Keeping weights at zero or one also means that wrapping is 320 // not a problem. 321 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 322 return; // Return a weight of 1. 323 } 324 if (Instruction::isNilpotent(Opcode)) { 325 // Nilpotent means X op X === 0, so reduce weights modulo 2. 326 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 327 LHS = 0; // 1 + 1 === 0 modulo 2. 328 return; 329 } 330 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) { 331 // TODO: Reduce the weight by exploiting nsw/nuw? 332 LHS += RHS; 333 return; 334 } 335 336 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) && 337 "Unknown associative operation!"); 338 unsigned Bitwidth = LHS.getBitWidth(); 339 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth 340 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth 341 // bit number x, since either x is odd in which case x^CM = 1, or x is even in 342 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples 343 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth) 344 // which by a happy accident means that they can always be represented using 345 // Bitwidth bits. 346 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than 347 // the Carmichael number). 348 if (Bitwidth > 3) { 349 /// CM - The value of Carmichael's lambda function. 350 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth)); 351 // Any weight W >= Threshold can be replaced with W - CM. 352 APInt Threshold = CM + Bitwidth; 353 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!"); 354 // For Bitwidth 4 or more the following sum does not overflow. 355 LHS += RHS; 356 while (LHS.uge(Threshold)) 357 LHS -= CM; 358 } else { 359 // To avoid problems with overflow do everything the same as above but using 360 // a larger type. 361 unsigned CM = 1U << CarmichaelShift(Bitwidth); 362 unsigned Threshold = CM + Bitwidth; 363 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold && 364 "Weights not reduced!"); 365 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue(); 366 while (Total >= Threshold) 367 Total -= CM; 368 LHS = Total; 369 } 370 } 371 372 using RepeatedValue = std::pair<Value*, APInt>; 373 374 /// Given an associative binary expression, return the leaf 375 /// nodes in Ops along with their weights (how many times the leaf occurs). The 376 /// original expression is the same as 377 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times 378 /// op 379 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times 380 /// op 381 /// ... 382 /// op 383 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times 384 /// 385 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct. 386 /// 387 /// This routine may modify the function, in which case it returns 'true'. The 388 /// changes it makes may well be destructive, changing the value computed by 'I' 389 /// to something completely different. Thus if the routine returns 'true' then 390 /// you MUST either replace I with a new expression computed from the Ops array, 391 /// or use RewriteExprTree to put the values back in. 392 /// 393 /// A leaf node is either not a binary operation of the same kind as the root 394 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different 395 /// opcode), or is the same kind of binary operator but has a use which either 396 /// does not belong to the expression, or does belong to the expression but is 397 /// a leaf node. Every leaf node has at least one use that is a non-leaf node 398 /// of the expression, while for non-leaf nodes (except for the root 'I') every 399 /// use is a non-leaf node of the expression. 400 /// 401 /// For example: 402 /// expression graph node names 403 /// 404 /// + | I 405 /// / \ | 406 /// + + | A, B 407 /// / \ / \ | 408 /// * + * | C, D, E 409 /// / \ / \ / \ | 410 /// + * | F, G 411 /// 412 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in 413 /// that order) (C, 1), (E, 1), (F, 2), (G, 2). 414 /// 415 /// The expression is maximal: if some instruction is a binary operator of the 416 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression, 417 /// then the instruction also belongs to the expression, is not a leaf node of 418 /// it, and its operands also belong to the expression (but may be leaf nodes). 419 /// 420 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in 421 /// order to ensure that every non-root node in the expression has *exactly one* 422 /// use by a non-leaf node of the expression. This destruction means that the 423 /// caller MUST either replace 'I' with a new expression or use something like 424 /// RewriteExprTree to put the values back in if the routine indicates that it 425 /// made a change by returning 'true'. 426 /// 427 /// In the above example either the right operand of A or the left operand of B 428 /// will be replaced by undef. If it is B's operand then this gives: 429 /// 430 /// + | I 431 /// / \ | 432 /// + + | A, B - operand of B replaced with undef 433 /// / \ \ | 434 /// * + * | C, D, E 435 /// / \ / \ / \ | 436 /// + * | F, G 437 /// 438 /// Note that such undef operands can only be reached by passing through 'I'. 439 /// For example, if you visit operands recursively starting from a leaf node 440 /// then you will never see such an undef operand unless you get back to 'I', 441 /// which requires passing through a phi node. 442 /// 443 /// Note that this routine may also mutate binary operators of the wrong type 444 /// that have all uses inside the expression (i.e. only used by non-leaf nodes 445 /// of the expression) if it can turn them into binary operators of the right 446 /// type and thus make the expression bigger. 447 static bool LinearizeExprTree(BinaryOperator *I, 448 SmallVectorImpl<RepeatedValue> &Ops) { 449 LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I << '\n'); 450 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits(); 451 unsigned Opcode = I->getOpcode(); 452 assert(I->isAssociative() && I->isCommutative() && 453 "Expected an associative and commutative operation!"); 454 455 // Visit all operands of the expression, keeping track of their weight (the 456 // number of paths from the expression root to the operand, or if you like 457 // the number of times that operand occurs in the linearized expression). 458 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1 459 // while A has weight two. 460 461 // Worklist of non-leaf nodes (their operands are in the expression too) along 462 // with their weights, representing a certain number of paths to the operator. 463 // If an operator occurs in the worklist multiple times then we found multiple 464 // ways to get to it. 465 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight) 466 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1))); 467 bool Changed = false; 468 469 // Leaves of the expression are values that either aren't the right kind of 470 // operation (eg: a constant, or a multiply in an add tree), or are, but have 471 // some uses that are not inside the expression. For example, in I = X + X, 472 // X = A + B, the value X has two uses (by I) that are in the expression. If 473 // X has any other uses, for example in a return instruction, then we consider 474 // X to be a leaf, and won't analyze it further. When we first visit a value, 475 // if it has more than one use then at first we conservatively consider it to 476 // be a leaf. Later, as the expression is explored, we may discover some more 477 // uses of the value from inside the expression. If all uses turn out to be 478 // from within the expression (and the value is a binary operator of the right 479 // kind) then the value is no longer considered to be a leaf, and its operands 480 // are explored. 481 482 // Leaves - Keeps track of the set of putative leaves as well as the number of 483 // paths to each leaf seen so far. 484 using LeafMap = DenseMap<Value *, APInt>; 485 LeafMap Leaves; // Leaf -> Total weight so far. 486 SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order. 487 488 #ifndef NDEBUG 489 SmallPtrSet<Value *, 8> Visited; // For sanity checking the iteration scheme. 490 #endif 491 while (!Worklist.empty()) { 492 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val(); 493 I = P.first; // We examine the operands of this binary operator. 494 495 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands. 496 Value *Op = I->getOperand(OpIdx); 497 APInt Weight = P.second; // Number of paths to this operand. 498 LLVM_DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n"); 499 assert(!Op->use_empty() && "No uses, so how did we get to it?!"); 500 501 // If this is a binary operation of the right kind with only one use then 502 // add its operands to the expression. 503 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 504 assert(Visited.insert(Op).second && "Not first visit!"); 505 LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n"); 506 Worklist.push_back(std::make_pair(BO, Weight)); 507 continue; 508 } 509 510 // Appears to be a leaf. Is the operand already in the set of leaves? 511 LeafMap::iterator It = Leaves.find(Op); 512 if (It == Leaves.end()) { 513 // Not in the leaf map. Must be the first time we saw this operand. 514 assert(Visited.insert(Op).second && "Not first visit!"); 515 if (!Op->hasOneUse()) { 516 // This value has uses not accounted for by the expression, so it is 517 // not safe to modify. Mark it as being a leaf. 518 LLVM_DEBUG(dbgs() 519 << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n"); 520 LeafOrder.push_back(Op); 521 Leaves[Op] = Weight; 522 continue; 523 } 524 // No uses outside the expression, try morphing it. 525 } else { 526 // Already in the leaf map. 527 assert(It != Leaves.end() && Visited.count(Op) && 528 "In leaf map but not visited!"); 529 530 // Update the number of paths to the leaf. 531 IncorporateWeight(It->second, Weight, Opcode); 532 533 #if 0 // TODO: Re-enable once PR13021 is fixed. 534 // The leaf already has one use from inside the expression. As we want 535 // exactly one such use, drop this new use of the leaf. 536 assert(!Op->hasOneUse() && "Only one use, but we got here twice!"); 537 I->setOperand(OpIdx, UndefValue::get(I->getType())); 538 Changed = true; 539 540 // If the leaf is a binary operation of the right kind and we now see 541 // that its multiple original uses were in fact all by nodes belonging 542 // to the expression, then no longer consider it to be a leaf and add 543 // its operands to the expression. 544 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 545 LLVM_DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n"); 546 Worklist.push_back(std::make_pair(BO, It->second)); 547 Leaves.erase(It); 548 continue; 549 } 550 #endif 551 552 // If we still have uses that are not accounted for by the expression 553 // then it is not safe to modify the value. 554 if (!Op->hasOneUse()) 555 continue; 556 557 // No uses outside the expression, try morphing it. 558 Weight = It->second; 559 Leaves.erase(It); // Since the value may be morphed below. 560 } 561 562 // At this point we have a value which, first of all, is not a binary 563 // expression of the right kind, and secondly, is only used inside the 564 // expression. This means that it can safely be modified. See if we 565 // can usefully morph it into an expression of the right kind. 566 assert((!isa<Instruction>(Op) || 567 cast<Instruction>(Op)->getOpcode() != Opcode 568 || (isa<FPMathOperator>(Op) && 569 !cast<Instruction>(Op)->isFast())) && 570 "Should have been handled above!"); 571 assert(Op->hasOneUse() && "Has uses outside the expression tree!"); 572 573 // If this is a multiply expression, turn any internal negations into 574 // multiplies by -1 so they can be reassociated. 575 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) 576 if ((Opcode == Instruction::Mul && match(BO, m_Neg(m_Value()))) || 577 (Opcode == Instruction::FMul && match(BO, m_FNeg(m_Value())))) { 578 LLVM_DEBUG(dbgs() 579 << "MORPH LEAF: " << *Op << " (" << Weight << ") TO "); 580 BO = LowerNegateToMultiply(BO); 581 LLVM_DEBUG(dbgs() << *BO << '\n'); 582 Worklist.push_back(std::make_pair(BO, Weight)); 583 Changed = true; 584 continue; 585 } 586 587 // Failed to morph into an expression of the right type. This really is 588 // a leaf. 589 LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n"); 590 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?"); 591 LeafOrder.push_back(Op); 592 Leaves[Op] = Weight; 593 } 594 } 595 596 // The leaves, repeated according to their weights, represent the linearized 597 // form of the expression. 598 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) { 599 Value *V = LeafOrder[i]; 600 LeafMap::iterator It = Leaves.find(V); 601 if (It == Leaves.end()) 602 // Node initially thought to be a leaf wasn't. 603 continue; 604 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!"); 605 APInt Weight = It->second; 606 if (Weight.isMinValue()) 607 // Leaf already output or weight reduction eliminated it. 608 continue; 609 // Ensure the leaf is only output once. 610 It->second = 0; 611 Ops.push_back(std::make_pair(V, Weight)); 612 } 613 614 // For nilpotent operations or addition there may be no operands, for example 615 // because the expression was "X xor X" or consisted of 2^Bitwidth additions: 616 // in both cases the weight reduces to 0 causing the value to be skipped. 617 if (Ops.empty()) { 618 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType()); 619 assert(Identity && "Associative operation without identity!"); 620 Ops.emplace_back(Identity, APInt(Bitwidth, 1)); 621 } 622 623 return Changed; 624 } 625 626 /// Now that the operands for this expression tree are 627 /// linearized and optimized, emit them in-order. 628 void ReassociatePass::RewriteExprTree(BinaryOperator *I, 629 SmallVectorImpl<ValueEntry> &Ops) { 630 assert(Ops.size() > 1 && "Single values should be used directly!"); 631 632 // Since our optimizations should never increase the number of operations, the 633 // new expression can usually be written reusing the existing binary operators 634 // from the original expression tree, without creating any new instructions, 635 // though the rewritten expression may have a completely different topology. 636 // We take care to not change anything if the new expression will be the same 637 // as the original. If more than trivial changes (like commuting operands) 638 // were made then we are obliged to clear out any optional subclass data like 639 // nsw flags. 640 641 /// NodesToRewrite - Nodes from the original expression available for writing 642 /// the new expression into. 643 SmallVector<BinaryOperator*, 8> NodesToRewrite; 644 unsigned Opcode = I->getOpcode(); 645 BinaryOperator *Op = I; 646 647 /// NotRewritable - The operands being written will be the leaves of the new 648 /// expression and must not be used as inner nodes (via NodesToRewrite) by 649 /// mistake. Inner nodes are always reassociable, and usually leaves are not 650 /// (if they were they would have been incorporated into the expression and so 651 /// would not be leaves), so most of the time there is no danger of this. But 652 /// in rare cases a leaf may become reassociable if an optimization kills uses 653 /// of it, or it may momentarily become reassociable during rewriting (below) 654 /// due it being removed as an operand of one of its uses. Ensure that misuse 655 /// of leaf nodes as inner nodes cannot occur by remembering all of the future 656 /// leaves and refusing to reuse any of them as inner nodes. 657 SmallPtrSet<Value*, 8> NotRewritable; 658 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 659 NotRewritable.insert(Ops[i].Op); 660 661 // ExpressionChanged - Non-null if the rewritten expression differs from the 662 // original in some non-trivial way, requiring the clearing of optional flags. 663 // Flags are cleared from the operator in ExpressionChanged up to I inclusive. 664 BinaryOperator *ExpressionChanged = nullptr; 665 for (unsigned i = 0; ; ++i) { 666 // The last operation (which comes earliest in the IR) is special as both 667 // operands will come from Ops, rather than just one with the other being 668 // a subexpression. 669 if (i+2 == Ops.size()) { 670 Value *NewLHS = Ops[i].Op; 671 Value *NewRHS = Ops[i+1].Op; 672 Value *OldLHS = Op->getOperand(0); 673 Value *OldRHS = Op->getOperand(1); 674 675 if (NewLHS == OldLHS && NewRHS == OldRHS) 676 // Nothing changed, leave it alone. 677 break; 678 679 if (NewLHS == OldRHS && NewRHS == OldLHS) { 680 // The order of the operands was reversed. Swap them. 681 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 682 Op->swapOperands(); 683 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 684 MadeChange = true; 685 ++NumChanged; 686 break; 687 } 688 689 // The new operation differs non-trivially from the original. Overwrite 690 // the old operands with the new ones. 691 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 692 if (NewLHS != OldLHS) { 693 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode); 694 if (BO && !NotRewritable.count(BO)) 695 NodesToRewrite.push_back(BO); 696 Op->setOperand(0, NewLHS); 697 } 698 if (NewRHS != OldRHS) { 699 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode); 700 if (BO && !NotRewritable.count(BO)) 701 NodesToRewrite.push_back(BO); 702 Op->setOperand(1, NewRHS); 703 } 704 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 705 706 ExpressionChanged = Op; 707 MadeChange = true; 708 ++NumChanged; 709 710 break; 711 } 712 713 // Not the last operation. The left-hand side will be a sub-expression 714 // while the right-hand side will be the current element of Ops. 715 Value *NewRHS = Ops[i].Op; 716 if (NewRHS != Op->getOperand(1)) { 717 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 718 if (NewRHS == Op->getOperand(0)) { 719 // The new right-hand side was already present as the left operand. If 720 // we are lucky then swapping the operands will sort out both of them. 721 Op->swapOperands(); 722 } else { 723 // Overwrite with the new right-hand side. 724 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode); 725 if (BO && !NotRewritable.count(BO)) 726 NodesToRewrite.push_back(BO); 727 Op->setOperand(1, NewRHS); 728 ExpressionChanged = Op; 729 } 730 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 731 MadeChange = true; 732 ++NumChanged; 733 } 734 735 // Now deal with the left-hand side. If this is already an operation node 736 // from the original expression then just rewrite the rest of the expression 737 // into it. 738 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode); 739 if (BO && !NotRewritable.count(BO)) { 740 Op = BO; 741 continue; 742 } 743 744 // Otherwise, grab a spare node from the original expression and use that as 745 // the left-hand side. If there are no nodes left then the optimizers made 746 // an expression with more nodes than the original! This usually means that 747 // they did something stupid but it might mean that the problem was just too 748 // hard (finding the mimimal number of multiplications needed to realize a 749 // multiplication expression is NP-complete). Whatever the reason, smart or 750 // stupid, create a new node if there are none left. 751 BinaryOperator *NewOp; 752 if (NodesToRewrite.empty()) { 753 Constant *Undef = UndefValue::get(I->getType()); 754 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode), 755 Undef, Undef, "", I); 756 if (NewOp->getType()->isFPOrFPVectorTy()) 757 NewOp->setFastMathFlags(I->getFastMathFlags()); 758 } else { 759 NewOp = NodesToRewrite.pop_back_val(); 760 } 761 762 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 763 Op->setOperand(0, NewOp); 764 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 765 ExpressionChanged = Op; 766 MadeChange = true; 767 ++NumChanged; 768 Op = NewOp; 769 } 770 771 // If the expression changed non-trivially then clear out all subclass data 772 // starting from the operator specified in ExpressionChanged, and compactify 773 // the operators to just before the expression root to guarantee that the 774 // expression tree is dominated by all of Ops. 775 if (ExpressionChanged) 776 do { 777 // Preserve FastMathFlags. 778 if (isa<FPMathOperator>(I)) { 779 FastMathFlags Flags = I->getFastMathFlags(); 780 ExpressionChanged->clearSubclassOptionalData(); 781 ExpressionChanged->setFastMathFlags(Flags); 782 } else 783 ExpressionChanged->clearSubclassOptionalData(); 784 785 if (ExpressionChanged == I) 786 break; 787 788 // Discard any debug info related to the expressions that has changed (we 789 // can leave debug infor related to the root, since the result of the 790 // expression tree should be the same even after reassociation). 791 replaceDbgUsesWithUndef(ExpressionChanged); 792 793 ExpressionChanged->moveBefore(I); 794 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin()); 795 } while (true); 796 797 // Throw away any left over nodes from the original expression. 798 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i) 799 RedoInsts.insert(NodesToRewrite[i]); 800 } 801 802 /// Insert instructions before the instruction pointed to by BI, 803 /// that computes the negative version of the value specified. The negative 804 /// version of the value is returned, and BI is left pointing at the instruction 805 /// that should be processed next by the reassociation pass. 806 /// Also add intermediate instructions to the redo list that are modified while 807 /// pushing the negates through adds. These will be revisited to see if 808 /// additional opportunities have been exposed. 809 static Value *NegateValue(Value *V, Instruction *BI, 810 ReassociatePass::OrderedSet &ToRedo) { 811 if (auto *C = dyn_cast<Constant>(V)) 812 return C->getType()->isFPOrFPVectorTy() ? ConstantExpr::getFNeg(C) : 813 ConstantExpr::getNeg(C); 814 815 // We are trying to expose opportunity for reassociation. One of the things 816 // that we want to do to achieve this is to push a negation as deep into an 817 // expression chain as possible, to expose the add instructions. In practice, 818 // this means that we turn this: 819 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D 820 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate 821 // the constants. We assume that instcombine will clean up the mess later if 822 // we introduce tons of unnecessary negation instructions. 823 // 824 if (BinaryOperator *I = 825 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) { 826 // Push the negates through the add. 827 I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo)); 828 I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo)); 829 if (I->getOpcode() == Instruction::Add) { 830 I->setHasNoUnsignedWrap(false); 831 I->setHasNoSignedWrap(false); 832 } 833 834 // We must move the add instruction here, because the neg instructions do 835 // not dominate the old add instruction in general. By moving it, we are 836 // assured that the neg instructions we just inserted dominate the 837 // instruction we are about to insert after them. 838 // 839 I->moveBefore(BI); 840 I->setName(I->getName()+".neg"); 841 842 // Add the intermediate negates to the redo list as processing them later 843 // could expose more reassociating opportunities. 844 ToRedo.insert(I); 845 return I; 846 } 847 848 // Okay, we need to materialize a negated version of V with an instruction. 849 // Scan the use lists of V to see if we have one already. 850 for (User *U : V->users()) { 851 if (!match(U, m_Neg(m_Value())) && !match(U, m_FNeg(m_Value()))) 852 continue; 853 854 // We found one! Now we have to make sure that the definition dominates 855 // this use. We do this by moving it to the entry block (if it is a 856 // non-instruction value) or right after the definition. These negates will 857 // be zapped by reassociate later, so we don't need much finesse here. 858 BinaryOperator *TheNeg = cast<BinaryOperator>(U); 859 860 // Verify that the negate is in this function, V might be a constant expr. 861 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent()) 862 continue; 863 864 bool FoundCatchSwitch = false; 865 866 BasicBlock::iterator InsertPt; 867 if (Instruction *InstInput = dyn_cast<Instruction>(V)) { 868 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) { 869 InsertPt = II->getNormalDest()->begin(); 870 } else { 871 InsertPt = ++InstInput->getIterator(); 872 } 873 874 const BasicBlock *BB = InsertPt->getParent(); 875 876 // Make sure we don't move anything before PHIs or exception 877 // handling pads. 878 while (InsertPt != BB->end() && (isa<PHINode>(InsertPt) || 879 InsertPt->isEHPad())) { 880 if (isa<CatchSwitchInst>(InsertPt)) 881 // A catchswitch cannot have anything in the block except 882 // itself and PHIs. We'll bail out below. 883 FoundCatchSwitch = true; 884 ++InsertPt; 885 } 886 } else { 887 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin(); 888 } 889 890 // We found a catchswitch in the block where we want to move the 891 // neg. We cannot move anything into that block. Bail and just 892 // create the neg before BI, as if we hadn't found an existing 893 // neg. 894 if (FoundCatchSwitch) 895 break; 896 897 TheNeg->moveBefore(&*InsertPt); 898 if (TheNeg->getOpcode() == Instruction::Sub) { 899 TheNeg->setHasNoUnsignedWrap(false); 900 TheNeg->setHasNoSignedWrap(false); 901 } else { 902 TheNeg->andIRFlags(BI); 903 } 904 ToRedo.insert(TheNeg); 905 return TheNeg; 906 } 907 908 // Insert a 'neg' instruction that subtracts the value from zero to get the 909 // negation. 910 BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI); 911 ToRedo.insert(NewNeg); 912 return NewNeg; 913 } 914 915 /// Return true if we should break up this subtract of X-Y into (X + -Y). 916 static bool ShouldBreakUpSubtract(Instruction *Sub) { 917 // If this is a negation, we can't split it up! 918 if (match(Sub, m_Neg(m_Value())) || match(Sub, m_FNeg(m_Value()))) 919 return false; 920 921 // Don't breakup X - undef. 922 if (isa<UndefValue>(Sub->getOperand(1))) 923 return false; 924 925 // Don't bother to break this up unless either the LHS is an associable add or 926 // subtract or if this is only used by one. 927 Value *V0 = Sub->getOperand(0); 928 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) || 929 isReassociableOp(V0, Instruction::Sub, Instruction::FSub)) 930 return true; 931 Value *V1 = Sub->getOperand(1); 932 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) || 933 isReassociableOp(V1, Instruction::Sub, Instruction::FSub)) 934 return true; 935 Value *VB = Sub->user_back(); 936 if (Sub->hasOneUse() && 937 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) || 938 isReassociableOp(VB, Instruction::Sub, Instruction::FSub))) 939 return true; 940 941 return false; 942 } 943 944 /// If we have (X-Y), and if either X is an add, or if this is only used by an 945 /// add, transform this into (X+(0-Y)) to promote better reassociation. 946 static BinaryOperator *BreakUpSubtract(Instruction *Sub, 947 ReassociatePass::OrderedSet &ToRedo) { 948 // Convert a subtract into an add and a neg instruction. This allows sub 949 // instructions to be commuted with other add instructions. 950 // 951 // Calculate the negative value of Operand 1 of the sub instruction, 952 // and set it as the RHS of the add instruction we just made. 953 Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo); 954 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub); 955 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op. 956 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op. 957 New->takeName(Sub); 958 959 // Everyone now refers to the add instruction. 960 Sub->replaceAllUsesWith(New); 961 New->setDebugLoc(Sub->getDebugLoc()); 962 963 LLVM_DEBUG(dbgs() << "Negated: " << *New << '\n'); 964 return New; 965 } 966 967 /// If this is a shift of a reassociable multiply or is used by one, change 968 /// this into a multiply by a constant to assist with further reassociation. 969 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) { 970 Constant *MulCst = ConstantInt::get(Shl->getType(), 1); 971 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1))); 972 973 BinaryOperator *Mul = 974 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl); 975 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op. 976 Mul->takeName(Shl); 977 978 // Everyone now refers to the mul instruction. 979 Shl->replaceAllUsesWith(Mul); 980 Mul->setDebugLoc(Shl->getDebugLoc()); 981 982 // We can safely preserve the nuw flag in all cases. It's also safe to turn a 983 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special 984 // handling. 985 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap(); 986 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap(); 987 if (NSW && NUW) 988 Mul->setHasNoSignedWrap(true); 989 Mul->setHasNoUnsignedWrap(NUW); 990 return Mul; 991 } 992 993 /// Scan backwards and forwards among values with the same rank as element i 994 /// to see if X exists. If X does not exist, return i. This is useful when 995 /// scanning for 'x' when we see '-x' because they both get the same rank. 996 static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops, 997 unsigned i, Value *X) { 998 unsigned XRank = Ops[i].Rank; 999 unsigned e = Ops.size(); 1000 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) { 1001 if (Ops[j].Op == X) 1002 return j; 1003 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 1004 if (Instruction *I2 = dyn_cast<Instruction>(X)) 1005 if (I1->isIdenticalTo(I2)) 1006 return j; 1007 } 1008 // Scan backwards. 1009 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) { 1010 if (Ops[j].Op == X) 1011 return j; 1012 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 1013 if (Instruction *I2 = dyn_cast<Instruction>(X)) 1014 if (I1->isIdenticalTo(I2)) 1015 return j; 1016 } 1017 return i; 1018 } 1019 1020 /// Emit a tree of add instructions, summing Ops together 1021 /// and returning the result. Insert the tree before I. 1022 static Value *EmitAddTreeOfValues(Instruction *I, 1023 SmallVectorImpl<WeakTrackingVH> &Ops) { 1024 if (Ops.size() == 1) return Ops.back(); 1025 1026 Value *V1 = Ops.back(); 1027 Ops.pop_back(); 1028 Value *V2 = EmitAddTreeOfValues(I, Ops); 1029 return CreateAdd(V2, V1, "reass.add", I, I); 1030 } 1031 1032 /// If V is an expression tree that is a multiplication sequence, 1033 /// and if this sequence contains a multiply by Factor, 1034 /// remove Factor from the tree and return the new tree. 1035 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) { 1036 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1037 if (!BO) 1038 return nullptr; 1039 1040 SmallVector<RepeatedValue, 8> Tree; 1041 MadeChange |= LinearizeExprTree(BO, Tree); 1042 SmallVector<ValueEntry, 8> Factors; 1043 Factors.reserve(Tree.size()); 1044 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 1045 RepeatedValue E = Tree[i]; 1046 Factors.append(E.second.getZExtValue(), 1047 ValueEntry(getRank(E.first), E.first)); 1048 } 1049 1050 bool FoundFactor = false; 1051 bool NeedsNegate = false; 1052 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1053 if (Factors[i].Op == Factor) { 1054 FoundFactor = true; 1055 Factors.erase(Factors.begin()+i); 1056 break; 1057 } 1058 1059 // If this is a negative version of this factor, remove it. 1060 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) { 1061 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op)) 1062 if (FC1->getValue() == -FC2->getValue()) { 1063 FoundFactor = NeedsNegate = true; 1064 Factors.erase(Factors.begin()+i); 1065 break; 1066 } 1067 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) { 1068 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) { 1069 const APFloat &F1 = FC1->getValueAPF(); 1070 APFloat F2(FC2->getValueAPF()); 1071 F2.changeSign(); 1072 if (F1.compare(F2) == APFloat::cmpEqual) { 1073 FoundFactor = NeedsNegate = true; 1074 Factors.erase(Factors.begin() + i); 1075 break; 1076 } 1077 } 1078 } 1079 } 1080 1081 if (!FoundFactor) { 1082 // Make sure to restore the operands to the expression tree. 1083 RewriteExprTree(BO, Factors); 1084 return nullptr; 1085 } 1086 1087 BasicBlock::iterator InsertPt = ++BO->getIterator(); 1088 1089 // If this was just a single multiply, remove the multiply and return the only 1090 // remaining operand. 1091 if (Factors.size() == 1) { 1092 RedoInsts.insert(BO); 1093 V = Factors[0].Op; 1094 } else { 1095 RewriteExprTree(BO, Factors); 1096 V = BO; 1097 } 1098 1099 if (NeedsNegate) 1100 V = CreateNeg(V, "neg", &*InsertPt, BO); 1101 1102 return V; 1103 } 1104 1105 /// If V is a single-use multiply, recursively add its operands as factors, 1106 /// otherwise add V to the list of factors. 1107 /// 1108 /// Ops is the top-level list of add operands we're trying to factor. 1109 static void FindSingleUseMultiplyFactors(Value *V, 1110 SmallVectorImpl<Value*> &Factors) { 1111 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1112 if (!BO) { 1113 Factors.push_back(V); 1114 return; 1115 } 1116 1117 // Otherwise, add the LHS and RHS to the list of factors. 1118 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors); 1119 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors); 1120 } 1121 1122 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction. 1123 /// This optimizes based on identities. If it can be reduced to a single Value, 1124 /// it is returned, otherwise the Ops list is mutated as necessary. 1125 static Value *OptimizeAndOrXor(unsigned Opcode, 1126 SmallVectorImpl<ValueEntry> &Ops) { 1127 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs. 1128 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1. 1129 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1130 // First, check for X and ~X in the operand list. 1131 assert(i < Ops.size()); 1132 Value *X; 1133 if (match(Ops[i].Op, m_Not(m_Value(X)))) { // Cannot occur for ^. 1134 unsigned FoundX = FindInOperandList(Ops, i, X); 1135 if (FoundX != i) { 1136 if (Opcode == Instruction::And) // ...&X&~X = 0 1137 return Constant::getNullValue(X->getType()); 1138 1139 if (Opcode == Instruction::Or) // ...|X|~X = -1 1140 return Constant::getAllOnesValue(X->getType()); 1141 } 1142 } 1143 1144 // Next, check for duplicate pairs of values, which we assume are next to 1145 // each other, due to our sorting criteria. 1146 assert(i < Ops.size()); 1147 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) { 1148 if (Opcode == Instruction::And || Opcode == Instruction::Or) { 1149 // Drop duplicate values for And and Or. 1150 Ops.erase(Ops.begin()+i); 1151 --i; --e; 1152 ++NumAnnihil; 1153 continue; 1154 } 1155 1156 // Drop pairs of values for Xor. 1157 assert(Opcode == Instruction::Xor); 1158 if (e == 2) 1159 return Constant::getNullValue(Ops[0].Op->getType()); 1160 1161 // Y ^ X^X -> Y 1162 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1163 i -= 1; e -= 2; 1164 ++NumAnnihil; 1165 } 1166 } 1167 return nullptr; 1168 } 1169 1170 /// Helper function of CombineXorOpnd(). It creates a bitwise-and 1171 /// instruction with the given two operands, and return the resulting 1172 /// instruction. There are two special cases: 1) if the constant operand is 0, 1173 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will 1174 /// be returned. 1175 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd, 1176 const APInt &ConstOpnd) { 1177 if (ConstOpnd.isNullValue()) 1178 return nullptr; 1179 1180 if (ConstOpnd.isAllOnesValue()) 1181 return Opnd; 1182 1183 Instruction *I = BinaryOperator::CreateAnd( 1184 Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra", 1185 InsertBefore); 1186 I->setDebugLoc(InsertBefore->getDebugLoc()); 1187 return I; 1188 } 1189 1190 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd" 1191 // into "R ^ C", where C would be 0, and R is a symbolic value. 1192 // 1193 // If it was successful, true is returned, and the "R" and "C" is returned 1194 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned, 1195 // and both "Res" and "ConstOpnd" remain unchanged. 1196 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1197 APInt &ConstOpnd, Value *&Res) { 1198 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2 1199 // = ((x | c1) ^ c1) ^ (c1 ^ c2) 1200 // = (x & ~c1) ^ (c1 ^ c2) 1201 // It is useful only when c1 == c2. 1202 if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isNullValue()) 1203 return false; 1204 1205 if (!Opnd1->getValue()->hasOneUse()) 1206 return false; 1207 1208 const APInt &C1 = Opnd1->getConstPart(); 1209 if (C1 != ConstOpnd) 1210 return false; 1211 1212 Value *X = Opnd1->getSymbolicPart(); 1213 Res = createAndInstr(I, X, ~C1); 1214 // ConstOpnd was C2, now C1 ^ C2. 1215 ConstOpnd ^= C1; 1216 1217 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1218 RedoInsts.insert(T); 1219 return true; 1220 } 1221 1222 // Helper function of OptimizeXor(). It tries to simplify 1223 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a 1224 // symbolic value. 1225 // 1226 // If it was successful, true is returned, and the "R" and "C" is returned 1227 // via "Res" and "ConstOpnd", respectively (If the entire expression is 1228 // evaluated to a constant, the Res is set to NULL); otherwise, false is 1229 // returned, and both "Res" and "ConstOpnd" remain unchanged. 1230 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1231 XorOpnd *Opnd2, APInt &ConstOpnd, 1232 Value *&Res) { 1233 Value *X = Opnd1->getSymbolicPart(); 1234 if (X != Opnd2->getSymbolicPart()) 1235 return false; 1236 1237 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.) 1238 int DeadInstNum = 1; 1239 if (Opnd1->getValue()->hasOneUse()) 1240 DeadInstNum++; 1241 if (Opnd2->getValue()->hasOneUse()) 1242 DeadInstNum++; 1243 1244 // Xor-Rule 2: 1245 // (x | c1) ^ (x & c2) 1246 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1 1247 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1 1248 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3 1249 // 1250 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) { 1251 if (Opnd2->isOrExpr()) 1252 std::swap(Opnd1, Opnd2); 1253 1254 const APInt &C1 = Opnd1->getConstPart(); 1255 const APInt &C2 = Opnd2->getConstPart(); 1256 APInt C3((~C1) ^ C2); 1257 1258 // Do not increase code size! 1259 if (!C3.isNullValue() && !C3.isAllOnesValue()) { 1260 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2; 1261 if (NewInstNum > DeadInstNum) 1262 return false; 1263 } 1264 1265 Res = createAndInstr(I, X, C3); 1266 ConstOpnd ^= C1; 1267 } else if (Opnd1->isOrExpr()) { 1268 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2 1269 // 1270 const APInt &C1 = Opnd1->getConstPart(); 1271 const APInt &C2 = Opnd2->getConstPart(); 1272 APInt C3 = C1 ^ C2; 1273 1274 // Do not increase code size 1275 if (!C3.isNullValue() && !C3.isAllOnesValue()) { 1276 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2; 1277 if (NewInstNum > DeadInstNum) 1278 return false; 1279 } 1280 1281 Res = createAndInstr(I, X, C3); 1282 ConstOpnd ^= C3; 1283 } else { 1284 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2)) 1285 // 1286 const APInt &C1 = Opnd1->getConstPart(); 1287 const APInt &C2 = Opnd2->getConstPart(); 1288 APInt C3 = C1 ^ C2; 1289 Res = createAndInstr(I, X, C3); 1290 } 1291 1292 // Put the original operands in the Redo list; hope they will be deleted 1293 // as dead code. 1294 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1295 RedoInsts.insert(T); 1296 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue())) 1297 RedoInsts.insert(T); 1298 1299 return true; 1300 } 1301 1302 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced 1303 /// to a single Value, it is returned, otherwise the Ops list is mutated as 1304 /// necessary. 1305 Value *ReassociatePass::OptimizeXor(Instruction *I, 1306 SmallVectorImpl<ValueEntry> &Ops) { 1307 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops)) 1308 return V; 1309 1310 if (Ops.size() == 1) 1311 return nullptr; 1312 1313 SmallVector<XorOpnd, 8> Opnds; 1314 SmallVector<XorOpnd*, 8> OpndPtrs; 1315 Type *Ty = Ops[0].Op->getType(); 1316 APInt ConstOpnd(Ty->getScalarSizeInBits(), 0); 1317 1318 // Step 1: Convert ValueEntry to XorOpnd 1319 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1320 Value *V = Ops[i].Op; 1321 const APInt *C; 1322 // TODO: Support non-splat vectors. 1323 if (match(V, m_APInt(C))) { 1324 ConstOpnd ^= *C; 1325 } else { 1326 XorOpnd O(V); 1327 O.setSymbolicRank(getRank(O.getSymbolicPart())); 1328 Opnds.push_back(O); 1329 } 1330 } 1331 1332 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds". 1333 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate 1334 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop 1335 // with the previous loop --- the iterator of the "Opnds" may be invalidated 1336 // when new elements are added to the vector. 1337 for (unsigned i = 0, e = Opnds.size(); i != e; ++i) 1338 OpndPtrs.push_back(&Opnds[i]); 1339 1340 // Step 2: Sort the Xor-Operands in a way such that the operands containing 1341 // the same symbolic value cluster together. For instance, the input operand 1342 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into: 1343 // ("x | 123", "x & 789", "y & 456"). 1344 // 1345 // The purpose is twofold: 1346 // 1) Cluster together the operands sharing the same symbolic-value. 1347 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which 1348 // could potentially shorten crital path, and expose more loop-invariants. 1349 // Note that values' rank are basically defined in RPO order (FIXME). 1350 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier 1351 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2", 1352 // "z" in the order of X-Y-Z is better than any other orders. 1353 llvm::stable_sort(OpndPtrs, [](XorOpnd *LHS, XorOpnd *RHS) { 1354 return LHS->getSymbolicRank() < RHS->getSymbolicRank(); 1355 }); 1356 1357 // Step 3: Combine adjacent operands 1358 XorOpnd *PrevOpnd = nullptr; 1359 bool Changed = false; 1360 for (unsigned i = 0, e = Opnds.size(); i < e; i++) { 1361 XorOpnd *CurrOpnd = OpndPtrs[i]; 1362 // The combined value 1363 Value *CV; 1364 1365 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd" 1366 if (!ConstOpnd.isNullValue() && 1367 CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) { 1368 Changed = true; 1369 if (CV) 1370 *CurrOpnd = XorOpnd(CV); 1371 else { 1372 CurrOpnd->Invalidate(); 1373 continue; 1374 } 1375 } 1376 1377 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) { 1378 PrevOpnd = CurrOpnd; 1379 continue; 1380 } 1381 1382 // step 3.2: When previous and current operands share the same symbolic 1383 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd" 1384 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) { 1385 // Remove previous operand 1386 PrevOpnd->Invalidate(); 1387 if (CV) { 1388 *CurrOpnd = XorOpnd(CV); 1389 PrevOpnd = CurrOpnd; 1390 } else { 1391 CurrOpnd->Invalidate(); 1392 PrevOpnd = nullptr; 1393 } 1394 Changed = true; 1395 } 1396 } 1397 1398 // Step 4: Reassemble the Ops 1399 if (Changed) { 1400 Ops.clear(); 1401 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) { 1402 XorOpnd &O = Opnds[i]; 1403 if (O.isInvalid()) 1404 continue; 1405 ValueEntry VE(getRank(O.getValue()), O.getValue()); 1406 Ops.push_back(VE); 1407 } 1408 if (!ConstOpnd.isNullValue()) { 1409 Value *C = ConstantInt::get(Ty, ConstOpnd); 1410 ValueEntry VE(getRank(C), C); 1411 Ops.push_back(VE); 1412 } 1413 unsigned Sz = Ops.size(); 1414 if (Sz == 1) 1415 return Ops.back().Op; 1416 if (Sz == 0) { 1417 assert(ConstOpnd.isNullValue()); 1418 return ConstantInt::get(Ty, ConstOpnd); 1419 } 1420 } 1421 1422 return nullptr; 1423 } 1424 1425 /// Optimize a series of operands to an 'add' instruction. This 1426 /// optimizes based on identities. If it can be reduced to a single Value, it 1427 /// is returned, otherwise the Ops list is mutated as necessary. 1428 Value *ReassociatePass::OptimizeAdd(Instruction *I, 1429 SmallVectorImpl<ValueEntry> &Ops) { 1430 // Scan the operand lists looking for X and -X pairs. If we find any, we 1431 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it, 1432 // scan for any 1433 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z. 1434 1435 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1436 Value *TheOp = Ops[i].Op; 1437 // Check to see if we've seen this operand before. If so, we factor all 1438 // instances of the operand together. Due to our sorting criteria, we know 1439 // that these need to be next to each other in the vector. 1440 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) { 1441 // Rescan the list, remove all instances of this operand from the expr. 1442 unsigned NumFound = 0; 1443 do { 1444 Ops.erase(Ops.begin()+i); 1445 ++NumFound; 1446 } while (i != Ops.size() && Ops[i].Op == TheOp); 1447 1448 LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp 1449 << '\n'); 1450 ++NumFactor; 1451 1452 // Insert a new multiply. 1453 Type *Ty = TheOp->getType(); 1454 Constant *C = Ty->isIntOrIntVectorTy() ? 1455 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound); 1456 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I); 1457 1458 // Now that we have inserted a multiply, optimize it. This allows us to 1459 // handle cases that require multiple factoring steps, such as this: 1460 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6 1461 RedoInsts.insert(Mul); 1462 1463 // If every add operand was a duplicate, return the multiply. 1464 if (Ops.empty()) 1465 return Mul; 1466 1467 // Otherwise, we had some input that didn't have the dupe, such as 1468 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of 1469 // things being added by this operation. 1470 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul)); 1471 1472 --i; 1473 e = Ops.size(); 1474 continue; 1475 } 1476 1477 // Check for X and -X or X and ~X in the operand list. 1478 Value *X; 1479 if (!match(TheOp, m_Neg(m_Value(X))) && !match(TheOp, m_Not(m_Value(X))) && 1480 !match(TheOp, m_FNeg(m_Value(X)))) 1481 continue; 1482 1483 unsigned FoundX = FindInOperandList(Ops, i, X); 1484 if (FoundX == i) 1485 continue; 1486 1487 // Remove X and -X from the operand list. 1488 if (Ops.size() == 2 && 1489 (match(TheOp, m_Neg(m_Value())) || match(TheOp, m_FNeg(m_Value())))) 1490 return Constant::getNullValue(X->getType()); 1491 1492 // Remove X and ~X from the operand list. 1493 if (Ops.size() == 2 && match(TheOp, m_Not(m_Value()))) 1494 return Constant::getAllOnesValue(X->getType()); 1495 1496 Ops.erase(Ops.begin()+i); 1497 if (i < FoundX) 1498 --FoundX; 1499 else 1500 --i; // Need to back up an extra one. 1501 Ops.erase(Ops.begin()+FoundX); 1502 ++NumAnnihil; 1503 --i; // Revisit element. 1504 e -= 2; // Removed two elements. 1505 1506 // if X and ~X we append -1 to the operand list. 1507 if (match(TheOp, m_Not(m_Value()))) { 1508 Value *V = Constant::getAllOnesValue(X->getType()); 1509 Ops.insert(Ops.end(), ValueEntry(getRank(V), V)); 1510 e += 1; 1511 } 1512 } 1513 1514 // Scan the operand list, checking to see if there are any common factors 1515 // between operands. Consider something like A*A+A*B*C+D. We would like to 1516 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies. 1517 // To efficiently find this, we count the number of times a factor occurs 1518 // for any ADD operands that are MULs. 1519 DenseMap<Value*, unsigned> FactorOccurrences; 1520 1521 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4) 1522 // where they are actually the same multiply. 1523 unsigned MaxOcc = 0; 1524 Value *MaxOccVal = nullptr; 1525 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1526 BinaryOperator *BOp = 1527 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1528 if (!BOp) 1529 continue; 1530 1531 // Compute all of the factors of this added value. 1532 SmallVector<Value*, 8> Factors; 1533 FindSingleUseMultiplyFactors(BOp, Factors); 1534 assert(Factors.size() > 1 && "Bad linearize!"); 1535 1536 // Add one to FactorOccurrences for each unique factor in this op. 1537 SmallPtrSet<Value*, 8> Duplicates; 1538 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1539 Value *Factor = Factors[i]; 1540 if (!Duplicates.insert(Factor).second) 1541 continue; 1542 1543 unsigned Occ = ++FactorOccurrences[Factor]; 1544 if (Occ > MaxOcc) { 1545 MaxOcc = Occ; 1546 MaxOccVal = Factor; 1547 } 1548 1549 // If Factor is a negative constant, add the negated value as a factor 1550 // because we can percolate the negate out. Watch for minint, which 1551 // cannot be positivified. 1552 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) { 1553 if (CI->isNegative() && !CI->isMinValue(true)) { 1554 Factor = ConstantInt::get(CI->getContext(), -CI->getValue()); 1555 if (!Duplicates.insert(Factor).second) 1556 continue; 1557 unsigned Occ = ++FactorOccurrences[Factor]; 1558 if (Occ > MaxOcc) { 1559 MaxOcc = Occ; 1560 MaxOccVal = Factor; 1561 } 1562 } 1563 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) { 1564 if (CF->isNegative()) { 1565 APFloat F(CF->getValueAPF()); 1566 F.changeSign(); 1567 Factor = ConstantFP::get(CF->getContext(), F); 1568 if (!Duplicates.insert(Factor).second) 1569 continue; 1570 unsigned Occ = ++FactorOccurrences[Factor]; 1571 if (Occ > MaxOcc) { 1572 MaxOcc = Occ; 1573 MaxOccVal = Factor; 1574 } 1575 } 1576 } 1577 } 1578 } 1579 1580 // If any factor occurred more than one time, we can pull it out. 1581 if (MaxOcc > 1) { 1582 LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal 1583 << '\n'); 1584 ++NumFactor; 1585 1586 // Create a new instruction that uses the MaxOccVal twice. If we don't do 1587 // this, we could otherwise run into situations where removing a factor 1588 // from an expression will drop a use of maxocc, and this can cause 1589 // RemoveFactorFromExpression on successive values to behave differently. 1590 Instruction *DummyInst = 1591 I->getType()->isIntOrIntVectorTy() 1592 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal) 1593 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal); 1594 1595 SmallVector<WeakTrackingVH, 4> NewMulOps; 1596 for (unsigned i = 0; i != Ops.size(); ++i) { 1597 // Only try to remove factors from expressions we're allowed to. 1598 BinaryOperator *BOp = 1599 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1600 if (!BOp) 1601 continue; 1602 1603 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) { 1604 // The factorized operand may occur several times. Convert them all in 1605 // one fell swoop. 1606 for (unsigned j = Ops.size(); j != i;) { 1607 --j; 1608 if (Ops[j].Op == Ops[i].Op) { 1609 NewMulOps.push_back(V); 1610 Ops.erase(Ops.begin()+j); 1611 } 1612 } 1613 --i; 1614 } 1615 } 1616 1617 // No need for extra uses anymore. 1618 DummyInst->deleteValue(); 1619 1620 unsigned NumAddedValues = NewMulOps.size(); 1621 Value *V = EmitAddTreeOfValues(I, NewMulOps); 1622 1623 // Now that we have inserted the add tree, optimize it. This allows us to 1624 // handle cases that require multiple factoring steps, such as this: 1625 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C)) 1626 assert(NumAddedValues > 1 && "Each occurrence should contribute a value"); 1627 (void)NumAddedValues; 1628 if (Instruction *VI = dyn_cast<Instruction>(V)) 1629 RedoInsts.insert(VI); 1630 1631 // Create the multiply. 1632 Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I); 1633 1634 // Rerun associate on the multiply in case the inner expression turned into 1635 // a multiply. We want to make sure that we keep things in canonical form. 1636 RedoInsts.insert(V2); 1637 1638 // If every add operand included the factor (e.g. "A*B + A*C"), then the 1639 // entire result expression is just the multiply "A*(B+C)". 1640 if (Ops.empty()) 1641 return V2; 1642 1643 // Otherwise, we had some input that didn't have the factor, such as 1644 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of 1645 // things being added by this operation. 1646 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2)); 1647 } 1648 1649 return nullptr; 1650 } 1651 1652 /// Build up a vector of value/power pairs factoring a product. 1653 /// 1654 /// Given a series of multiplication operands, build a vector of factors and 1655 /// the powers each is raised to when forming the final product. Sort them in 1656 /// the order of descending power. 1657 /// 1658 /// (x*x) -> [(x, 2)] 1659 /// ((x*x)*x) -> [(x, 3)] 1660 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)] 1661 /// 1662 /// \returns Whether any factors have a power greater than one. 1663 static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, 1664 SmallVectorImpl<Factor> &Factors) { 1665 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this. 1666 // Compute the sum of powers of simplifiable factors. 1667 unsigned FactorPowerSum = 0; 1668 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) { 1669 Value *Op = Ops[Idx-1].Op; 1670 1671 // Count the number of occurrences of this value. 1672 unsigned Count = 1; 1673 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx) 1674 ++Count; 1675 // Track for simplification all factors which occur 2 or more times. 1676 if (Count > 1) 1677 FactorPowerSum += Count; 1678 } 1679 1680 // We can only simplify factors if the sum of the powers of our simplifiable 1681 // factors is 4 or higher. When that is the case, we will *always* have 1682 // a simplification. This is an important invariant to prevent cyclicly 1683 // trying to simplify already minimal formations. 1684 if (FactorPowerSum < 4) 1685 return false; 1686 1687 // Now gather the simplifiable factors, removing them from Ops. 1688 FactorPowerSum = 0; 1689 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) { 1690 Value *Op = Ops[Idx-1].Op; 1691 1692 // Count the number of occurrences of this value. 1693 unsigned Count = 1; 1694 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx) 1695 ++Count; 1696 if (Count == 1) 1697 continue; 1698 // Move an even number of occurrences to Factors. 1699 Count &= ~1U; 1700 Idx -= Count; 1701 FactorPowerSum += Count; 1702 Factors.push_back(Factor(Op, Count)); 1703 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count); 1704 } 1705 1706 // None of the adjustments above should have reduced the sum of factor powers 1707 // below our mininum of '4'. 1708 assert(FactorPowerSum >= 4); 1709 1710 llvm::stable_sort(Factors, [](const Factor &LHS, const Factor &RHS) { 1711 return LHS.Power > RHS.Power; 1712 }); 1713 return true; 1714 } 1715 1716 /// Build a tree of multiplies, computing the product of Ops. 1717 static Value *buildMultiplyTree(IRBuilder<> &Builder, 1718 SmallVectorImpl<Value*> &Ops) { 1719 if (Ops.size() == 1) 1720 return Ops.back(); 1721 1722 Value *LHS = Ops.pop_back_val(); 1723 do { 1724 if (LHS->getType()->isIntOrIntVectorTy()) 1725 LHS = Builder.CreateMul(LHS, Ops.pop_back_val()); 1726 else 1727 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val()); 1728 } while (!Ops.empty()); 1729 1730 return LHS; 1731 } 1732 1733 /// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*... 1734 /// 1735 /// Given a vector of values raised to various powers, where no two values are 1736 /// equal and the powers are sorted in decreasing order, compute the minimal 1737 /// DAG of multiplies to compute the final product, and return that product 1738 /// value. 1739 Value * 1740 ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder, 1741 SmallVectorImpl<Factor> &Factors) { 1742 assert(Factors[0].Power); 1743 SmallVector<Value *, 4> OuterProduct; 1744 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size(); 1745 Idx < Size && Factors[Idx].Power > 0; ++Idx) { 1746 if (Factors[Idx].Power != Factors[LastIdx].Power) { 1747 LastIdx = Idx; 1748 continue; 1749 } 1750 1751 // We want to multiply across all the factors with the same power so that 1752 // we can raise them to that power as a single entity. Build a mini tree 1753 // for that. 1754 SmallVector<Value *, 4> InnerProduct; 1755 InnerProduct.push_back(Factors[LastIdx].Base); 1756 do { 1757 InnerProduct.push_back(Factors[Idx].Base); 1758 ++Idx; 1759 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power); 1760 1761 // Reset the base value of the first factor to the new expression tree. 1762 // We'll remove all the factors with the same power in a second pass. 1763 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct); 1764 if (Instruction *MI = dyn_cast<Instruction>(M)) 1765 RedoInsts.insert(MI); 1766 1767 LastIdx = Idx; 1768 } 1769 // Unique factors with equal powers -- we've folded them into the first one's 1770 // base. 1771 Factors.erase(std::unique(Factors.begin(), Factors.end(), 1772 [](const Factor &LHS, const Factor &RHS) { 1773 return LHS.Power == RHS.Power; 1774 }), 1775 Factors.end()); 1776 1777 // Iteratively collect the base of each factor with an add power into the 1778 // outer product, and halve each power in preparation for squaring the 1779 // expression. 1780 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) { 1781 if (Factors[Idx].Power & 1) 1782 OuterProduct.push_back(Factors[Idx].Base); 1783 Factors[Idx].Power >>= 1; 1784 } 1785 if (Factors[0].Power) { 1786 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors); 1787 OuterProduct.push_back(SquareRoot); 1788 OuterProduct.push_back(SquareRoot); 1789 } 1790 if (OuterProduct.size() == 1) 1791 return OuterProduct.front(); 1792 1793 Value *V = buildMultiplyTree(Builder, OuterProduct); 1794 return V; 1795 } 1796 1797 Value *ReassociatePass::OptimizeMul(BinaryOperator *I, 1798 SmallVectorImpl<ValueEntry> &Ops) { 1799 // We can only optimize the multiplies when there is a chain of more than 1800 // three, such that a balanced tree might require fewer total multiplies. 1801 if (Ops.size() < 4) 1802 return nullptr; 1803 1804 // Try to turn linear trees of multiplies without other uses of the 1805 // intermediate stages into minimal multiply DAGs with perfect sub-expression 1806 // re-use. 1807 SmallVector<Factor, 4> Factors; 1808 if (!collectMultiplyFactors(Ops, Factors)) 1809 return nullptr; // All distinct factors, so nothing left for us to do. 1810 1811 IRBuilder<> Builder(I); 1812 // The reassociate transformation for FP operations is performed only 1813 // if unsafe algebra is permitted by FastMathFlags. Propagate those flags 1814 // to the newly generated operations. 1815 if (auto FPI = dyn_cast<FPMathOperator>(I)) 1816 Builder.setFastMathFlags(FPI->getFastMathFlags()); 1817 1818 Value *V = buildMinimalMultiplyDAG(Builder, Factors); 1819 if (Ops.empty()) 1820 return V; 1821 1822 ValueEntry NewEntry = ValueEntry(getRank(V), V); 1823 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry); 1824 return nullptr; 1825 } 1826 1827 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I, 1828 SmallVectorImpl<ValueEntry> &Ops) { 1829 // Now that we have the linearized expression tree, try to optimize it. 1830 // Start by folding any constants that we found. 1831 Constant *Cst = nullptr; 1832 unsigned Opcode = I->getOpcode(); 1833 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) { 1834 Constant *C = cast<Constant>(Ops.pop_back_val().Op); 1835 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C; 1836 } 1837 // If there was nothing but constants then we are done. 1838 if (Ops.empty()) 1839 return Cst; 1840 1841 // Put the combined constant back at the end of the operand list, except if 1842 // there is no point. For example, an add of 0 gets dropped here, while a 1843 // multiplication by zero turns the whole expression into zero. 1844 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) { 1845 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType())) 1846 return Cst; 1847 Ops.push_back(ValueEntry(0, Cst)); 1848 } 1849 1850 if (Ops.size() == 1) return Ops[0].Op; 1851 1852 // Handle destructive annihilation due to identities between elements in the 1853 // argument list here. 1854 unsigned NumOps = Ops.size(); 1855 switch (Opcode) { 1856 default: break; 1857 case Instruction::And: 1858 case Instruction::Or: 1859 if (Value *Result = OptimizeAndOrXor(Opcode, Ops)) 1860 return Result; 1861 break; 1862 1863 case Instruction::Xor: 1864 if (Value *Result = OptimizeXor(I, Ops)) 1865 return Result; 1866 break; 1867 1868 case Instruction::Add: 1869 case Instruction::FAdd: 1870 if (Value *Result = OptimizeAdd(I, Ops)) 1871 return Result; 1872 break; 1873 1874 case Instruction::Mul: 1875 case Instruction::FMul: 1876 if (Value *Result = OptimizeMul(I, Ops)) 1877 return Result; 1878 break; 1879 } 1880 1881 if (Ops.size() != NumOps) 1882 return OptimizeExpression(I, Ops); 1883 return nullptr; 1884 } 1885 1886 // Remove dead instructions and if any operands are trivially dead add them to 1887 // Insts so they will be removed as well. 1888 void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I, 1889 OrderedSet &Insts) { 1890 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1891 SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end()); 1892 ValueRankMap.erase(I); 1893 Insts.remove(I); 1894 RedoInsts.remove(I); 1895 I->eraseFromParent(); 1896 for (auto Op : Ops) 1897 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1898 if (OpInst->use_empty()) 1899 Insts.insert(OpInst); 1900 } 1901 1902 /// Zap the given instruction, adding interesting operands to the work list. 1903 void ReassociatePass::EraseInst(Instruction *I) { 1904 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1905 LLVM_DEBUG(dbgs() << "Erasing dead inst: "; I->dump()); 1906 1907 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 1908 // Erase the dead instruction. 1909 ValueRankMap.erase(I); 1910 RedoInsts.remove(I); 1911 I->eraseFromParent(); 1912 // Optimize its operands. 1913 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes. 1914 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1915 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) { 1916 // If this is a node in an expression tree, climb to the expression root 1917 // and add that since that's where optimization actually happens. 1918 unsigned Opcode = Op->getOpcode(); 1919 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode && 1920 Visited.insert(Op).second) 1921 Op = Op->user_back(); 1922 1923 // The instruction we're going to push may be coming from a 1924 // dead block, and Reassociate skips the processing of unreachable 1925 // blocks because it's a waste of time and also because it can 1926 // lead to infinite loop due to LLVM's non-standard definition 1927 // of dominance. 1928 if (ValueRankMap.find(Op) != ValueRankMap.end()) 1929 RedoInsts.insert(Op); 1930 } 1931 1932 MadeChange = true; 1933 } 1934 1935 // Canonicalize expressions of the following form: 1936 // x + (-Constant * y) -> x - (Constant * y) 1937 // x - (-Constant * y) -> x + (Constant * y) 1938 Instruction *ReassociatePass::canonicalizeNegConstExpr(Instruction *I) { 1939 if (!I->hasOneUse() || I->getType()->isVectorTy()) 1940 return nullptr; 1941 1942 // Must be a fmul or fdiv instruction. 1943 unsigned Opcode = I->getOpcode(); 1944 if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv) 1945 return nullptr; 1946 1947 auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0)); 1948 auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1)); 1949 1950 // Both operands are constant, let it get constant folded away. 1951 if (C0 && C1) 1952 return nullptr; 1953 1954 ConstantFP *CF = C0 ? C0 : C1; 1955 1956 // Must have one constant operand. 1957 if (!CF) 1958 return nullptr; 1959 1960 // Must be a negative ConstantFP. 1961 if (!CF->isNegative()) 1962 return nullptr; 1963 1964 // User must be a binary operator with one or more uses. 1965 Instruction *User = I->user_back(); 1966 if (!isa<BinaryOperator>(User) || User->use_empty()) 1967 return nullptr; 1968 1969 unsigned UserOpcode = User->getOpcode(); 1970 if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub) 1971 return nullptr; 1972 1973 // Subtraction is not commutative. Explicitly, the following transform is 1974 // not valid: (-Constant * y) - x -> x + (Constant * y) 1975 if (!User->isCommutative() && User->getOperand(1) != I) 1976 return nullptr; 1977 1978 // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the 1979 // resulting subtract will be broken up later. This can get us into an 1980 // infinite loop during reassociation. 1981 if (UserOpcode == Instruction::FAdd && ShouldBreakUpSubtract(User)) 1982 return nullptr; 1983 1984 // Change the sign of the constant. 1985 APFloat Val = CF->getValueAPF(); 1986 Val.changeSign(); 1987 I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val)); 1988 1989 // Canonicalize I to RHS to simplify the next bit of logic. E.g., 1990 // ((-Const*y) + x) -> (x + (-Const*y)). 1991 if (User->getOperand(0) == I && User->isCommutative()) 1992 cast<BinaryOperator>(User)->swapOperands(); 1993 1994 Value *Op0 = User->getOperand(0); 1995 Value *Op1 = User->getOperand(1); 1996 BinaryOperator *NI; 1997 switch (UserOpcode) { 1998 default: 1999 llvm_unreachable("Unexpected Opcode!"); 2000 case Instruction::FAdd: 2001 NI = BinaryOperator::CreateFSub(Op0, Op1); 2002 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags()); 2003 break; 2004 case Instruction::FSub: 2005 NI = BinaryOperator::CreateFAdd(Op0, Op1); 2006 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags()); 2007 break; 2008 } 2009 2010 NI->insertBefore(User); 2011 NI->setName(User->getName()); 2012 User->replaceAllUsesWith(NI); 2013 NI->setDebugLoc(I->getDebugLoc()); 2014 RedoInsts.insert(I); 2015 MadeChange = true; 2016 return NI; 2017 } 2018 2019 /// Inspect and optimize the given instruction. Note that erasing 2020 /// instructions is not allowed. 2021 void ReassociatePass::OptimizeInst(Instruction *I) { 2022 // Only consider operations that we understand. 2023 if (!isa<BinaryOperator>(I)) 2024 return; 2025 2026 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1))) 2027 // If an operand of this shift is a reassociable multiply, or if the shift 2028 // is used by a reassociable multiply or add, turn into a multiply. 2029 if (isReassociableOp(I->getOperand(0), Instruction::Mul) || 2030 (I->hasOneUse() && 2031 (isReassociableOp(I->user_back(), Instruction::Mul) || 2032 isReassociableOp(I->user_back(), Instruction::Add)))) { 2033 Instruction *NI = ConvertShiftToMul(I); 2034 RedoInsts.insert(I); 2035 MadeChange = true; 2036 I = NI; 2037 } 2038 2039 // Canonicalize negative constants out of expressions. 2040 if (Instruction *Res = canonicalizeNegConstExpr(I)) 2041 I = Res; 2042 2043 // Commute binary operators, to canonicalize the order of their operands. 2044 // This can potentially expose more CSE opportunities, and makes writing other 2045 // transformations simpler. 2046 if (I->isCommutative()) 2047 canonicalizeOperands(I); 2048 2049 // Don't optimize floating-point instructions unless they are 'fast'. 2050 if (I->getType()->isFPOrFPVectorTy() && !I->isFast()) 2051 return; 2052 2053 // Do not reassociate boolean (i1) expressions. We want to preserve the 2054 // original order of evaluation for short-circuited comparisons that 2055 // SimplifyCFG has folded to AND/OR expressions. If the expression 2056 // is not further optimized, it is likely to be transformed back to a 2057 // short-circuited form for code gen, and the source order may have been 2058 // optimized for the most likely conditions. 2059 if (I->getType()->isIntegerTy(1)) 2060 return; 2061 2062 // If this is a subtract instruction which is not already in negate form, 2063 // see if we can convert it to X+-Y. 2064 if (I->getOpcode() == Instruction::Sub) { 2065 if (ShouldBreakUpSubtract(I)) { 2066 Instruction *NI = BreakUpSubtract(I, RedoInsts); 2067 RedoInsts.insert(I); 2068 MadeChange = true; 2069 I = NI; 2070 } else if (match(I, m_Neg(m_Value()))) { 2071 // Otherwise, this is a negation. See if the operand is a multiply tree 2072 // and if this is not an inner node of a multiply tree. 2073 if (isReassociableOp(I->getOperand(1), Instruction::Mul) && 2074 (!I->hasOneUse() || 2075 !isReassociableOp(I->user_back(), Instruction::Mul))) { 2076 Instruction *NI = LowerNegateToMultiply(I); 2077 // If the negate was simplified, revisit the users to see if we can 2078 // reassociate further. 2079 for (User *U : NI->users()) { 2080 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U)) 2081 RedoInsts.insert(Tmp); 2082 } 2083 RedoInsts.insert(I); 2084 MadeChange = true; 2085 I = NI; 2086 } 2087 } 2088 } else if (I->getOpcode() == Instruction::FSub) { 2089 if (ShouldBreakUpSubtract(I)) { 2090 Instruction *NI = BreakUpSubtract(I, RedoInsts); 2091 RedoInsts.insert(I); 2092 MadeChange = true; 2093 I = NI; 2094 } else if (match(I, m_FNeg(m_Value()))) { 2095 // Otherwise, this is a negation. See if the operand is a multiply tree 2096 // and if this is not an inner node of a multiply tree. 2097 if (isReassociableOp(I->getOperand(1), Instruction::FMul) && 2098 (!I->hasOneUse() || 2099 !isReassociableOp(I->user_back(), Instruction::FMul))) { 2100 // If the negate was simplified, revisit the users to see if we can 2101 // reassociate further. 2102 Instruction *NI = LowerNegateToMultiply(I); 2103 for (User *U : NI->users()) { 2104 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U)) 2105 RedoInsts.insert(Tmp); 2106 } 2107 RedoInsts.insert(I); 2108 MadeChange = true; 2109 I = NI; 2110 } 2111 } 2112 } 2113 2114 // If this instruction is an associative binary operator, process it. 2115 if (!I->isAssociative()) return; 2116 BinaryOperator *BO = cast<BinaryOperator>(I); 2117 2118 // If this is an interior node of a reassociable tree, ignore it until we 2119 // get to the root of the tree, to avoid N^2 analysis. 2120 unsigned Opcode = BO->getOpcode(); 2121 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) { 2122 // During the initial run we will get to the root of the tree. 2123 // But if we get here while we are redoing instructions, there is no 2124 // guarantee that the root will be visited. So Redo later 2125 if (BO->user_back() != BO && 2126 BO->getParent() == BO->user_back()->getParent()) 2127 RedoInsts.insert(BO->user_back()); 2128 return; 2129 } 2130 2131 // If this is an add tree that is used by a sub instruction, ignore it 2132 // until we process the subtract. 2133 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add && 2134 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub) 2135 return; 2136 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd && 2137 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub) 2138 return; 2139 2140 ReassociateExpression(BO); 2141 } 2142 2143 void ReassociatePass::ReassociateExpression(BinaryOperator *I) { 2144 // First, walk the expression tree, linearizing the tree, collecting the 2145 // operand information. 2146 SmallVector<RepeatedValue, 8> Tree; 2147 MadeChange |= LinearizeExprTree(I, Tree); 2148 SmallVector<ValueEntry, 8> Ops; 2149 Ops.reserve(Tree.size()); 2150 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 2151 RepeatedValue E = Tree[i]; 2152 Ops.append(E.second.getZExtValue(), 2153 ValueEntry(getRank(E.first), E.first)); 2154 } 2155 2156 LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2157 2158 // Now that we have linearized the tree to a list and have gathered all of 2159 // the operands and their ranks, sort the operands by their rank. Use a 2160 // stable_sort so that values with equal ranks will have their relative 2161 // positions maintained (and so the compiler is deterministic). Note that 2162 // this sorts so that the highest ranking values end up at the beginning of 2163 // the vector. 2164 llvm::stable_sort(Ops); 2165 2166 // Now that we have the expression tree in a convenient 2167 // sorted form, optimize it globally if possible. 2168 if (Value *V = OptimizeExpression(I, Ops)) { 2169 if (V == I) 2170 // Self-referential expression in unreachable code. 2171 return; 2172 // This expression tree simplified to something that isn't a tree, 2173 // eliminate it. 2174 LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n'); 2175 I->replaceAllUsesWith(V); 2176 if (Instruction *VI = dyn_cast<Instruction>(V)) 2177 if (I->getDebugLoc()) 2178 VI->setDebugLoc(I->getDebugLoc()); 2179 RedoInsts.insert(I); 2180 ++NumAnnihil; 2181 return; 2182 } 2183 2184 // We want to sink immediates as deeply as possible except in the case where 2185 // this is a multiply tree used only by an add, and the immediate is a -1. 2186 // In this case we reassociate to put the negation on the outside so that we 2187 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y 2188 if (I->hasOneUse()) { 2189 if (I->getOpcode() == Instruction::Mul && 2190 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add && 2191 isa<ConstantInt>(Ops.back().Op) && 2192 cast<ConstantInt>(Ops.back().Op)->isMinusOne()) { 2193 ValueEntry Tmp = Ops.pop_back_val(); 2194 Ops.insert(Ops.begin(), Tmp); 2195 } else if (I->getOpcode() == Instruction::FMul && 2196 cast<Instruction>(I->user_back())->getOpcode() == 2197 Instruction::FAdd && 2198 isa<ConstantFP>(Ops.back().Op) && 2199 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) { 2200 ValueEntry Tmp = Ops.pop_back_val(); 2201 Ops.insert(Ops.begin(), Tmp); 2202 } 2203 } 2204 2205 LLVM_DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2206 2207 if (Ops.size() == 1) { 2208 if (Ops[0].Op == I) 2209 // Self-referential expression in unreachable code. 2210 return; 2211 2212 // This expression tree simplified to something that isn't a tree, 2213 // eliminate it. 2214 I->replaceAllUsesWith(Ops[0].Op); 2215 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op)) 2216 OI->setDebugLoc(I->getDebugLoc()); 2217 RedoInsts.insert(I); 2218 return; 2219 } 2220 2221 if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) { 2222 // Find the pair with the highest count in the pairmap and move it to the 2223 // back of the list so that it can later be CSE'd. 2224 // example: 2225 // a*b*c*d*e 2226 // if c*e is the most "popular" pair, we can express this as 2227 // (((c*e)*d)*b)*a 2228 unsigned Max = 1; 2229 unsigned BestRank = 0; 2230 std::pair<unsigned, unsigned> BestPair; 2231 unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin; 2232 for (unsigned i = 0; i < Ops.size() - 1; ++i) 2233 for (unsigned j = i + 1; j < Ops.size(); ++j) { 2234 unsigned Score = 0; 2235 Value *Op0 = Ops[i].Op; 2236 Value *Op1 = Ops[j].Op; 2237 if (std::less<Value *>()(Op1, Op0)) 2238 std::swap(Op0, Op1); 2239 auto it = PairMap[Idx].find({Op0, Op1}); 2240 if (it != PairMap[Idx].end()) { 2241 // Functions like BreakUpSubtract() can erase the Values we're using 2242 // as keys and create new Values after we built the PairMap. There's a 2243 // small chance that the new nodes can have the same address as 2244 // something already in the table. We shouldn't accumulate the stored 2245 // score in that case as it refers to the wrong Value. 2246 if (it->second.isValid()) 2247 Score += it->second.Score; 2248 } 2249 2250 unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank); 2251 if (Score > Max || (Score == Max && MaxRank < BestRank)) { 2252 BestPair = {i, j}; 2253 Max = Score; 2254 BestRank = MaxRank; 2255 } 2256 } 2257 if (Max > 1) { 2258 auto Op0 = Ops[BestPair.first]; 2259 auto Op1 = Ops[BestPair.second]; 2260 Ops.erase(&Ops[BestPair.second]); 2261 Ops.erase(&Ops[BestPair.first]); 2262 Ops.push_back(Op0); 2263 Ops.push_back(Op1); 2264 } 2265 } 2266 // Now that we ordered and optimized the expressions, splat them back into 2267 // the expression tree, removing any unneeded nodes. 2268 RewriteExprTree(I, Ops); 2269 } 2270 2271 void 2272 ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) { 2273 // Make a "pairmap" of how often each operand pair occurs. 2274 for (BasicBlock *BI : RPOT) { 2275 for (Instruction &I : *BI) { 2276 if (!I.isAssociative()) 2277 continue; 2278 2279 // Ignore nodes that aren't at the root of trees. 2280 if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode()) 2281 continue; 2282 2283 // Collect all operands in a single reassociable expression. 2284 // Since Reassociate has already been run once, we can assume things 2285 // are already canonical according to Reassociation's regime. 2286 SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) }; 2287 SmallVector<Value *, 8> Ops; 2288 while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) { 2289 Value *Op = Worklist.pop_back_val(); 2290 Instruction *OpI = dyn_cast<Instruction>(Op); 2291 if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) { 2292 Ops.push_back(Op); 2293 continue; 2294 } 2295 // Be paranoid about self-referencing expressions in unreachable code. 2296 if (OpI->getOperand(0) != OpI) 2297 Worklist.push_back(OpI->getOperand(0)); 2298 if (OpI->getOperand(1) != OpI) 2299 Worklist.push_back(OpI->getOperand(1)); 2300 } 2301 // Skip extremely long expressions. 2302 if (Ops.size() > GlobalReassociateLimit) 2303 continue; 2304 2305 // Add all pairwise combinations of operands to the pair map. 2306 unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin; 2307 SmallSet<std::pair<Value *, Value*>, 32> Visited; 2308 for (unsigned i = 0; i < Ops.size() - 1; ++i) { 2309 for (unsigned j = i + 1; j < Ops.size(); ++j) { 2310 // Canonicalize operand orderings. 2311 Value *Op0 = Ops[i]; 2312 Value *Op1 = Ops[j]; 2313 if (std::less<Value *>()(Op1, Op0)) 2314 std::swap(Op0, Op1); 2315 if (!Visited.insert({Op0, Op1}).second) 2316 continue; 2317 auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, {Op0, Op1, 1}}); 2318 if (!res.second) { 2319 // If either key value has been erased then we've got the same 2320 // address by coincidence. That can't happen here because nothing is 2321 // erasing values but it can happen by the time we're querying the 2322 // map. 2323 assert(res.first->second.isValid() && "WeakVH invalidated"); 2324 ++res.first->second.Score; 2325 } 2326 } 2327 } 2328 } 2329 } 2330 } 2331 2332 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) { 2333 // Get the functions basic blocks in Reverse Post Order. This order is used by 2334 // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic 2335 // blocks (it has been seen that the analysis in this pass could hang when 2336 // analysing dead basic blocks). 2337 ReversePostOrderTraversal<Function *> RPOT(&F); 2338 2339 // Calculate the rank map for F. 2340 BuildRankMap(F, RPOT); 2341 2342 // Build the pair map before running reassociate. 2343 // Technically this would be more accurate if we did it after one round 2344 // of reassociation, but in practice it doesn't seem to help much on 2345 // real-world code, so don't waste the compile time running reassociate 2346 // twice. 2347 // If a user wants, they could expicitly run reassociate twice in their 2348 // pass pipeline for further potential gains. 2349 // It might also be possible to update the pair map during runtime, but the 2350 // overhead of that may be large if there's many reassociable chains. 2351 BuildPairMap(RPOT); 2352 2353 MadeChange = false; 2354 2355 // Traverse the same blocks that were analysed by BuildRankMap. 2356 for (BasicBlock *BI : RPOT) { 2357 assert(RankMap.count(&*BI) && "BB should be ranked."); 2358 // Optimize every instruction in the basic block. 2359 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;) 2360 if (isInstructionTriviallyDead(&*II)) { 2361 EraseInst(&*II++); 2362 } else { 2363 OptimizeInst(&*II); 2364 assert(II->getParent() == &*BI && "Moved to a different block!"); 2365 ++II; 2366 } 2367 2368 // Make a copy of all the instructions to be redone so we can remove dead 2369 // instructions. 2370 OrderedSet ToRedo(RedoInsts); 2371 // Iterate over all instructions to be reevaluated and remove trivially dead 2372 // instructions. If any operand of the trivially dead instruction becomes 2373 // dead mark it for deletion as well. Continue this process until all 2374 // trivially dead instructions have been removed. 2375 while (!ToRedo.empty()) { 2376 Instruction *I = ToRedo.pop_back_val(); 2377 if (isInstructionTriviallyDead(I)) { 2378 RecursivelyEraseDeadInsts(I, ToRedo); 2379 MadeChange = true; 2380 } 2381 } 2382 2383 // Now that we have removed dead instructions, we can reoptimize the 2384 // remaining instructions. 2385 while (!RedoInsts.empty()) { 2386 Instruction *I = RedoInsts.front(); 2387 RedoInsts.erase(RedoInsts.begin()); 2388 if (isInstructionTriviallyDead(I)) 2389 EraseInst(I); 2390 else 2391 OptimizeInst(I); 2392 } 2393 } 2394 2395 // We are done with the rank map and pair map. 2396 RankMap.clear(); 2397 ValueRankMap.clear(); 2398 for (auto &Entry : PairMap) 2399 Entry.clear(); 2400 2401 if (MadeChange) { 2402 PreservedAnalyses PA; 2403 PA.preserveSet<CFGAnalyses>(); 2404 PA.preserve<GlobalsAA>(); 2405 return PA; 2406 } 2407 2408 return PreservedAnalyses::all(); 2409 } 2410 2411 namespace { 2412 2413 class ReassociateLegacyPass : public FunctionPass { 2414 ReassociatePass Impl; 2415 2416 public: 2417 static char ID; // Pass identification, replacement for typeid 2418 2419 ReassociateLegacyPass() : FunctionPass(ID) { 2420 initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry()); 2421 } 2422 2423 bool runOnFunction(Function &F) override { 2424 if (skipFunction(F)) 2425 return false; 2426 2427 FunctionAnalysisManager DummyFAM; 2428 auto PA = Impl.run(F, DummyFAM); 2429 return !PA.areAllPreserved(); 2430 } 2431 2432 void getAnalysisUsage(AnalysisUsage &AU) const override { 2433 AU.setPreservesCFG(); 2434 AU.addPreserved<GlobalsAAWrapperPass>(); 2435 } 2436 }; 2437 2438 } // end anonymous namespace 2439 2440 char ReassociateLegacyPass::ID = 0; 2441 2442 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate", 2443 "Reassociate expressions", false, false) 2444 2445 // Public interface to the Reassociate pass 2446 FunctionPass *llvm::createReassociatePass() { 2447 return new ReassociateLegacyPass(); 2448 } 2449