1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass reassociates commutative expressions in an order that is designed 10 // to promote better constant propagation, GCSE, LICM, PRE, etc. 11 // 12 // For example: 4 + (x + 5) -> x + (4 + 5) 13 // 14 // In the implementation of this algorithm, constants are assigned rank = 0, 15 // function arguments are rank = 1, and other values are assigned ranks 16 // corresponding to the reverse post order traversal of current function 17 // (starting at 2), which effectively gives values in deep loops higher rank 18 // than values not in loops. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "llvm/Transforms/Scalar/Reassociate.h" 23 #include "llvm/ADT/APFloat.h" 24 #include "llvm/ADT/APInt.h" 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/GlobalsModRef.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/IRBuilder.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Operator.h" 47 #include "llvm/IR/PassManager.h" 48 #include "llvm/IR/PatternMatch.h" 49 #include "llvm/IR/Type.h" 50 #include "llvm/IR/User.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/IR/ValueHandle.h" 53 #include "llvm/Pass.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Transforms/Scalar.h" 59 #include <algorithm> 60 #include <cassert> 61 #include <utility> 62 63 using namespace llvm; 64 using namespace reassociate; 65 using namespace PatternMatch; 66 67 #define DEBUG_TYPE "reassociate" 68 69 STATISTIC(NumChanged, "Number of insts reassociated"); 70 STATISTIC(NumAnnihil, "Number of expr tree annihilated"); 71 STATISTIC(NumFactor , "Number of multiplies factored"); 72 73 #ifndef NDEBUG 74 /// Print out the expression identified in the Ops list. 75 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) { 76 Module *M = I->getModule(); 77 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " " 78 << *Ops[0].Op->getType() << '\t'; 79 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 80 dbgs() << "[ "; 81 Ops[i].Op->printAsOperand(dbgs(), false, M); 82 dbgs() << ", #" << Ops[i].Rank << "] "; 83 } 84 } 85 #endif 86 87 /// Utility class representing a non-constant Xor-operand. We classify 88 /// non-constant Xor-Operands into two categories: 89 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0 90 /// C2) 91 /// C2.1) The operand is in the form of "X | C", where C is a non-zero 92 /// constant. 93 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this 94 /// operand as "E | 0" 95 class llvm::reassociate::XorOpnd { 96 public: 97 XorOpnd(Value *V); 98 99 bool isInvalid() const { return SymbolicPart == nullptr; } 100 bool isOrExpr() const { return isOr; } 101 Value *getValue() const { return OrigVal; } 102 Value *getSymbolicPart() const { return SymbolicPart; } 103 unsigned getSymbolicRank() const { return SymbolicRank; } 104 const APInt &getConstPart() const { return ConstPart; } 105 106 void Invalidate() { SymbolicPart = OrigVal = nullptr; } 107 void setSymbolicRank(unsigned R) { SymbolicRank = R; } 108 109 private: 110 Value *OrigVal; 111 Value *SymbolicPart; 112 APInt ConstPart; 113 unsigned SymbolicRank; 114 bool isOr; 115 }; 116 117 XorOpnd::XorOpnd(Value *V) { 118 assert(!isa<ConstantInt>(V) && "No ConstantInt"); 119 OrigVal = V; 120 Instruction *I = dyn_cast<Instruction>(V); 121 SymbolicRank = 0; 122 123 if (I && (I->getOpcode() == Instruction::Or || 124 I->getOpcode() == Instruction::And)) { 125 Value *V0 = I->getOperand(0); 126 Value *V1 = I->getOperand(1); 127 const APInt *C; 128 if (match(V0, m_APInt(C))) 129 std::swap(V0, V1); 130 131 if (match(V1, m_APInt(C))) { 132 ConstPart = *C; 133 SymbolicPart = V0; 134 isOr = (I->getOpcode() == Instruction::Or); 135 return; 136 } 137 } 138 139 // view the operand as "V | 0" 140 SymbolicPart = V; 141 ConstPart = APInt::getNullValue(V->getType()->getScalarSizeInBits()); 142 isOr = true; 143 } 144 145 /// Return true if V is an instruction of the specified opcode and if it 146 /// only has one use. 147 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) { 148 auto *I = dyn_cast<Instruction>(V); 149 if (I && I->hasOneUse() && I->getOpcode() == Opcode) 150 if (!isa<FPMathOperator>(I) || I->isFast()) 151 return cast<BinaryOperator>(I); 152 return nullptr; 153 } 154 155 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1, 156 unsigned Opcode2) { 157 auto *I = dyn_cast<Instruction>(V); 158 if (I && I->hasOneUse() && 159 (I->getOpcode() == Opcode1 || I->getOpcode() == Opcode2)) 160 if (!isa<FPMathOperator>(I) || I->isFast()) 161 return cast<BinaryOperator>(I); 162 return nullptr; 163 } 164 165 void ReassociatePass::BuildRankMap(Function &F, 166 ReversePostOrderTraversal<Function*> &RPOT) { 167 unsigned Rank = 2; 168 169 // Assign distinct ranks to function arguments. 170 for (auto &Arg : F.args()) { 171 ValueRankMap[&Arg] = ++Rank; 172 LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank 173 << "\n"); 174 } 175 176 // Traverse basic blocks in ReversePostOrder 177 for (BasicBlock *BB : RPOT) { 178 unsigned BBRank = RankMap[BB] = ++Rank << 16; 179 180 // Walk the basic block, adding precomputed ranks for any instructions that 181 // we cannot move. This ensures that the ranks for these instructions are 182 // all different in the block. 183 for (Instruction &I : *BB) 184 if (mayBeMemoryDependent(I)) 185 ValueRankMap[&I] = ++BBRank; 186 } 187 } 188 189 unsigned ReassociatePass::getRank(Value *V) { 190 Instruction *I = dyn_cast<Instruction>(V); 191 if (!I) { 192 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument. 193 return 0; // Otherwise it's a global or constant, rank 0. 194 } 195 196 if (unsigned Rank = ValueRankMap[I]) 197 return Rank; // Rank already known? 198 199 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that 200 // we can reassociate expressions for code motion! Since we do not recurse 201 // for PHI nodes, we cannot have infinite recursion here, because there 202 // cannot be loops in the value graph that do not go through PHI nodes. 203 unsigned Rank = 0, MaxRank = RankMap[I->getParent()]; 204 for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i) 205 Rank = std::max(Rank, getRank(I->getOperand(i))); 206 207 // If this is a 'not' or 'neg' instruction, do not count it for rank. This 208 // assures us that X and ~X will have the same rank. 209 if (!match(I, m_Not(m_Value())) && !match(I, m_Neg(m_Value())) && 210 !match(I, m_FNeg(m_Value()))) 211 ++Rank; 212 213 LLVM_DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank 214 << "\n"); 215 216 return ValueRankMap[I] = Rank; 217 } 218 219 // Canonicalize constants to RHS. Otherwise, sort the operands by rank. 220 void ReassociatePass::canonicalizeOperands(Instruction *I) { 221 assert(isa<BinaryOperator>(I) && "Expected binary operator."); 222 assert(I->isCommutative() && "Expected commutative operator."); 223 224 Value *LHS = I->getOperand(0); 225 Value *RHS = I->getOperand(1); 226 if (LHS == RHS || isa<Constant>(RHS)) 227 return; 228 if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS)) 229 cast<BinaryOperator>(I)->swapOperands(); 230 } 231 232 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name, 233 Instruction *InsertBefore, Value *FlagsOp) { 234 if (S1->getType()->isIntOrIntVectorTy()) 235 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore); 236 else { 237 BinaryOperator *Res = 238 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore); 239 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 240 return Res; 241 } 242 } 243 244 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name, 245 Instruction *InsertBefore, Value *FlagsOp) { 246 if (S1->getType()->isIntOrIntVectorTy()) 247 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore); 248 else { 249 BinaryOperator *Res = 250 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore); 251 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 252 return Res; 253 } 254 } 255 256 static BinaryOperator *CreateNeg(Value *S1, const Twine &Name, 257 Instruction *InsertBefore, Value *FlagsOp) { 258 if (S1->getType()->isIntOrIntVectorTy()) 259 return BinaryOperator::CreateNeg(S1, Name, InsertBefore); 260 else { 261 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore); 262 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 263 return Res; 264 } 265 } 266 267 /// Replace 0-X with X*-1. 268 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) { 269 Type *Ty = Neg->getType(); 270 Constant *NegOne = Ty->isIntOrIntVectorTy() ? 271 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0); 272 273 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg); 274 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op. 275 Res->takeName(Neg); 276 Neg->replaceAllUsesWith(Res); 277 Res->setDebugLoc(Neg->getDebugLoc()); 278 return Res; 279 } 280 281 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael 282 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for 283 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic. 284 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every 285 /// even x in Bitwidth-bit arithmetic. 286 static unsigned CarmichaelShift(unsigned Bitwidth) { 287 if (Bitwidth < 3) 288 return Bitwidth - 1; 289 return Bitwidth - 2; 290 } 291 292 /// Add the extra weight 'RHS' to the existing weight 'LHS', 293 /// reducing the combined weight using any special properties of the operation. 294 /// The existing weight LHS represents the computation X op X op ... op X where 295 /// X occurs LHS times. The combined weight represents X op X op ... op X with 296 /// X occurring LHS + RHS times. If op is "Xor" for example then the combined 297 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even; 298 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second. 299 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) { 300 // If we were working with infinite precision arithmetic then the combined 301 // weight would be LHS + RHS. But we are using finite precision arithmetic, 302 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct 303 // for nilpotent operations and addition, but not for idempotent operations 304 // and multiplication), so it is important to correctly reduce the combined 305 // weight back into range if wrapping would be wrong. 306 307 // If RHS is zero then the weight didn't change. 308 if (RHS.isMinValue()) 309 return; 310 // If LHS is zero then the combined weight is RHS. 311 if (LHS.isMinValue()) { 312 LHS = RHS; 313 return; 314 } 315 // From this point on we know that neither LHS nor RHS is zero. 316 317 if (Instruction::isIdempotent(Opcode)) { 318 // Idempotent means X op X === X, so any non-zero weight is equivalent to a 319 // weight of 1. Keeping weights at zero or one also means that wrapping is 320 // not a problem. 321 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 322 return; // Return a weight of 1. 323 } 324 if (Instruction::isNilpotent(Opcode)) { 325 // Nilpotent means X op X === 0, so reduce weights modulo 2. 326 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 327 LHS = 0; // 1 + 1 === 0 modulo 2. 328 return; 329 } 330 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) { 331 // TODO: Reduce the weight by exploiting nsw/nuw? 332 LHS += RHS; 333 return; 334 } 335 336 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) && 337 "Unknown associative operation!"); 338 unsigned Bitwidth = LHS.getBitWidth(); 339 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth 340 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth 341 // bit number x, since either x is odd in which case x^CM = 1, or x is even in 342 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples 343 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth) 344 // which by a happy accident means that they can always be represented using 345 // Bitwidth bits. 346 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than 347 // the Carmichael number). 348 if (Bitwidth > 3) { 349 /// CM - The value of Carmichael's lambda function. 350 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth)); 351 // Any weight W >= Threshold can be replaced with W - CM. 352 APInt Threshold = CM + Bitwidth; 353 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!"); 354 // For Bitwidth 4 or more the following sum does not overflow. 355 LHS += RHS; 356 while (LHS.uge(Threshold)) 357 LHS -= CM; 358 } else { 359 // To avoid problems with overflow do everything the same as above but using 360 // a larger type. 361 unsigned CM = 1U << CarmichaelShift(Bitwidth); 362 unsigned Threshold = CM + Bitwidth; 363 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold && 364 "Weights not reduced!"); 365 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue(); 366 while (Total >= Threshold) 367 Total -= CM; 368 LHS = Total; 369 } 370 } 371 372 using RepeatedValue = std::pair<Value*, APInt>; 373 374 /// Given an associative binary expression, return the leaf 375 /// nodes in Ops along with their weights (how many times the leaf occurs). The 376 /// original expression is the same as 377 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times 378 /// op 379 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times 380 /// op 381 /// ... 382 /// op 383 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times 384 /// 385 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct. 386 /// 387 /// This routine may modify the function, in which case it returns 'true'. The 388 /// changes it makes may well be destructive, changing the value computed by 'I' 389 /// to something completely different. Thus if the routine returns 'true' then 390 /// you MUST either replace I with a new expression computed from the Ops array, 391 /// or use RewriteExprTree to put the values back in. 392 /// 393 /// A leaf node is either not a binary operation of the same kind as the root 394 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different 395 /// opcode), or is the same kind of binary operator but has a use which either 396 /// does not belong to the expression, or does belong to the expression but is 397 /// a leaf node. Every leaf node has at least one use that is a non-leaf node 398 /// of the expression, while for non-leaf nodes (except for the root 'I') every 399 /// use is a non-leaf node of the expression. 400 /// 401 /// For example: 402 /// expression graph node names 403 /// 404 /// + | I 405 /// / \ | 406 /// + + | A, B 407 /// / \ / \ | 408 /// * + * | C, D, E 409 /// / \ / \ / \ | 410 /// + * | F, G 411 /// 412 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in 413 /// that order) (C, 1), (E, 1), (F, 2), (G, 2). 414 /// 415 /// The expression is maximal: if some instruction is a binary operator of the 416 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression, 417 /// then the instruction also belongs to the expression, is not a leaf node of 418 /// it, and its operands also belong to the expression (but may be leaf nodes). 419 /// 420 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in 421 /// order to ensure that every non-root node in the expression has *exactly one* 422 /// use by a non-leaf node of the expression. This destruction means that the 423 /// caller MUST either replace 'I' with a new expression or use something like 424 /// RewriteExprTree to put the values back in if the routine indicates that it 425 /// made a change by returning 'true'. 426 /// 427 /// In the above example either the right operand of A or the left operand of B 428 /// will be replaced by undef. If it is B's operand then this gives: 429 /// 430 /// + | I 431 /// / \ | 432 /// + + | A, B - operand of B replaced with undef 433 /// / \ \ | 434 /// * + * | C, D, E 435 /// / \ / \ / \ | 436 /// + * | F, G 437 /// 438 /// Note that such undef operands can only be reached by passing through 'I'. 439 /// For example, if you visit operands recursively starting from a leaf node 440 /// then you will never see such an undef operand unless you get back to 'I', 441 /// which requires passing through a phi node. 442 /// 443 /// Note that this routine may also mutate binary operators of the wrong type 444 /// that have all uses inside the expression (i.e. only used by non-leaf nodes 445 /// of the expression) if it can turn them into binary operators of the right 446 /// type and thus make the expression bigger. 447 static bool LinearizeExprTree(BinaryOperator *I, 448 SmallVectorImpl<RepeatedValue> &Ops) { 449 LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I << '\n'); 450 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits(); 451 unsigned Opcode = I->getOpcode(); 452 assert(I->isAssociative() && I->isCommutative() && 453 "Expected an associative and commutative operation!"); 454 455 // Visit all operands of the expression, keeping track of their weight (the 456 // number of paths from the expression root to the operand, or if you like 457 // the number of times that operand occurs in the linearized expression). 458 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1 459 // while A has weight two. 460 461 // Worklist of non-leaf nodes (their operands are in the expression too) along 462 // with their weights, representing a certain number of paths to the operator. 463 // If an operator occurs in the worklist multiple times then we found multiple 464 // ways to get to it. 465 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight) 466 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1))); 467 bool Changed = false; 468 469 // Leaves of the expression are values that either aren't the right kind of 470 // operation (eg: a constant, or a multiply in an add tree), or are, but have 471 // some uses that are not inside the expression. For example, in I = X + X, 472 // X = A + B, the value X has two uses (by I) that are in the expression. If 473 // X has any other uses, for example in a return instruction, then we consider 474 // X to be a leaf, and won't analyze it further. When we first visit a value, 475 // if it has more than one use then at first we conservatively consider it to 476 // be a leaf. Later, as the expression is explored, we may discover some more 477 // uses of the value from inside the expression. If all uses turn out to be 478 // from within the expression (and the value is a binary operator of the right 479 // kind) then the value is no longer considered to be a leaf, and its operands 480 // are explored. 481 482 // Leaves - Keeps track of the set of putative leaves as well as the number of 483 // paths to each leaf seen so far. 484 using LeafMap = DenseMap<Value *, APInt>; 485 LeafMap Leaves; // Leaf -> Total weight so far. 486 SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order. 487 488 #ifndef NDEBUG 489 SmallPtrSet<Value *, 8> Visited; // For sanity checking the iteration scheme. 490 #endif 491 while (!Worklist.empty()) { 492 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val(); 493 I = P.first; // We examine the operands of this binary operator. 494 495 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands. 496 Value *Op = I->getOperand(OpIdx); 497 APInt Weight = P.second; // Number of paths to this operand. 498 LLVM_DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n"); 499 assert(!Op->use_empty() && "No uses, so how did we get to it?!"); 500 501 // If this is a binary operation of the right kind with only one use then 502 // add its operands to the expression. 503 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 504 assert(Visited.insert(Op).second && "Not first visit!"); 505 LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n"); 506 Worklist.push_back(std::make_pair(BO, Weight)); 507 continue; 508 } 509 510 // Appears to be a leaf. Is the operand already in the set of leaves? 511 LeafMap::iterator It = Leaves.find(Op); 512 if (It == Leaves.end()) { 513 // Not in the leaf map. Must be the first time we saw this operand. 514 assert(Visited.insert(Op).second && "Not first visit!"); 515 if (!Op->hasOneUse()) { 516 // This value has uses not accounted for by the expression, so it is 517 // not safe to modify. Mark it as being a leaf. 518 LLVM_DEBUG(dbgs() 519 << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n"); 520 LeafOrder.push_back(Op); 521 Leaves[Op] = Weight; 522 continue; 523 } 524 // No uses outside the expression, try morphing it. 525 } else { 526 // Already in the leaf map. 527 assert(It != Leaves.end() && Visited.count(Op) && 528 "In leaf map but not visited!"); 529 530 // Update the number of paths to the leaf. 531 IncorporateWeight(It->second, Weight, Opcode); 532 533 #if 0 // TODO: Re-enable once PR13021 is fixed. 534 // The leaf already has one use from inside the expression. As we want 535 // exactly one such use, drop this new use of the leaf. 536 assert(!Op->hasOneUse() && "Only one use, but we got here twice!"); 537 I->setOperand(OpIdx, UndefValue::get(I->getType())); 538 Changed = true; 539 540 // If the leaf is a binary operation of the right kind and we now see 541 // that its multiple original uses were in fact all by nodes belonging 542 // to the expression, then no longer consider it to be a leaf and add 543 // its operands to the expression. 544 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 545 LLVM_DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n"); 546 Worklist.push_back(std::make_pair(BO, It->second)); 547 Leaves.erase(It); 548 continue; 549 } 550 #endif 551 552 // If we still have uses that are not accounted for by the expression 553 // then it is not safe to modify the value. 554 if (!Op->hasOneUse()) 555 continue; 556 557 // No uses outside the expression, try morphing it. 558 Weight = It->second; 559 Leaves.erase(It); // Since the value may be morphed below. 560 } 561 562 // At this point we have a value which, first of all, is not a binary 563 // expression of the right kind, and secondly, is only used inside the 564 // expression. This means that it can safely be modified. See if we 565 // can usefully morph it into an expression of the right kind. 566 assert((!isa<Instruction>(Op) || 567 cast<Instruction>(Op)->getOpcode() != Opcode 568 || (isa<FPMathOperator>(Op) && 569 !cast<Instruction>(Op)->isFast())) && 570 "Should have been handled above!"); 571 assert(Op->hasOneUse() && "Has uses outside the expression tree!"); 572 573 // If this is a multiply expression, turn any internal negations into 574 // multiplies by -1 so they can be reassociated. 575 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) 576 if ((Opcode == Instruction::Mul && match(BO, m_Neg(m_Value()))) || 577 (Opcode == Instruction::FMul && match(BO, m_FNeg(m_Value())))) { 578 LLVM_DEBUG(dbgs() 579 << "MORPH LEAF: " << *Op << " (" << Weight << ") TO "); 580 BO = LowerNegateToMultiply(BO); 581 LLVM_DEBUG(dbgs() << *BO << '\n'); 582 Worklist.push_back(std::make_pair(BO, Weight)); 583 Changed = true; 584 continue; 585 } 586 587 // Failed to morph into an expression of the right type. This really is 588 // a leaf. 589 LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n"); 590 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?"); 591 LeafOrder.push_back(Op); 592 Leaves[Op] = Weight; 593 } 594 } 595 596 // The leaves, repeated according to their weights, represent the linearized 597 // form of the expression. 598 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) { 599 Value *V = LeafOrder[i]; 600 LeafMap::iterator It = Leaves.find(V); 601 if (It == Leaves.end()) 602 // Node initially thought to be a leaf wasn't. 603 continue; 604 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!"); 605 APInt Weight = It->second; 606 if (Weight.isMinValue()) 607 // Leaf already output or weight reduction eliminated it. 608 continue; 609 // Ensure the leaf is only output once. 610 It->second = 0; 611 Ops.push_back(std::make_pair(V, Weight)); 612 } 613 614 // For nilpotent operations or addition there may be no operands, for example 615 // because the expression was "X xor X" or consisted of 2^Bitwidth additions: 616 // in both cases the weight reduces to 0 causing the value to be skipped. 617 if (Ops.empty()) { 618 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType()); 619 assert(Identity && "Associative operation without identity!"); 620 Ops.emplace_back(Identity, APInt(Bitwidth, 1)); 621 } 622 623 return Changed; 624 } 625 626 /// Now that the operands for this expression tree are 627 /// linearized and optimized, emit them in-order. 628 void ReassociatePass::RewriteExprTree(BinaryOperator *I, 629 SmallVectorImpl<ValueEntry> &Ops) { 630 assert(Ops.size() > 1 && "Single values should be used directly!"); 631 632 // Since our optimizations should never increase the number of operations, the 633 // new expression can usually be written reusing the existing binary operators 634 // from the original expression tree, without creating any new instructions, 635 // though the rewritten expression may have a completely different topology. 636 // We take care to not change anything if the new expression will be the same 637 // as the original. If more than trivial changes (like commuting operands) 638 // were made then we are obliged to clear out any optional subclass data like 639 // nsw flags. 640 641 /// NodesToRewrite - Nodes from the original expression available for writing 642 /// the new expression into. 643 SmallVector<BinaryOperator*, 8> NodesToRewrite; 644 unsigned Opcode = I->getOpcode(); 645 BinaryOperator *Op = I; 646 647 /// NotRewritable - The operands being written will be the leaves of the new 648 /// expression and must not be used as inner nodes (via NodesToRewrite) by 649 /// mistake. Inner nodes are always reassociable, and usually leaves are not 650 /// (if they were they would have been incorporated into the expression and so 651 /// would not be leaves), so most of the time there is no danger of this. But 652 /// in rare cases a leaf may become reassociable if an optimization kills uses 653 /// of it, or it may momentarily become reassociable during rewriting (below) 654 /// due it being removed as an operand of one of its uses. Ensure that misuse 655 /// of leaf nodes as inner nodes cannot occur by remembering all of the future 656 /// leaves and refusing to reuse any of them as inner nodes. 657 SmallPtrSet<Value*, 8> NotRewritable; 658 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 659 NotRewritable.insert(Ops[i].Op); 660 661 // ExpressionChanged - Non-null if the rewritten expression differs from the 662 // original in some non-trivial way, requiring the clearing of optional flags. 663 // Flags are cleared from the operator in ExpressionChanged up to I inclusive. 664 BinaryOperator *ExpressionChanged = nullptr; 665 for (unsigned i = 0; ; ++i) { 666 // The last operation (which comes earliest in the IR) is special as both 667 // operands will come from Ops, rather than just one with the other being 668 // a subexpression. 669 if (i+2 == Ops.size()) { 670 Value *NewLHS = Ops[i].Op; 671 Value *NewRHS = Ops[i+1].Op; 672 Value *OldLHS = Op->getOperand(0); 673 Value *OldRHS = Op->getOperand(1); 674 675 if (NewLHS == OldLHS && NewRHS == OldRHS) 676 // Nothing changed, leave it alone. 677 break; 678 679 if (NewLHS == OldRHS && NewRHS == OldLHS) { 680 // The order of the operands was reversed. Swap them. 681 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 682 Op->swapOperands(); 683 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 684 MadeChange = true; 685 ++NumChanged; 686 break; 687 } 688 689 // The new operation differs non-trivially from the original. Overwrite 690 // the old operands with the new ones. 691 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 692 if (NewLHS != OldLHS) { 693 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode); 694 if (BO && !NotRewritable.count(BO)) 695 NodesToRewrite.push_back(BO); 696 Op->setOperand(0, NewLHS); 697 } 698 if (NewRHS != OldRHS) { 699 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode); 700 if (BO && !NotRewritable.count(BO)) 701 NodesToRewrite.push_back(BO); 702 Op->setOperand(1, NewRHS); 703 } 704 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 705 706 ExpressionChanged = Op; 707 MadeChange = true; 708 ++NumChanged; 709 710 break; 711 } 712 713 // Not the last operation. The left-hand side will be a sub-expression 714 // while the right-hand side will be the current element of Ops. 715 Value *NewRHS = Ops[i].Op; 716 if (NewRHS != Op->getOperand(1)) { 717 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 718 if (NewRHS == Op->getOperand(0)) { 719 // The new right-hand side was already present as the left operand. If 720 // we are lucky then swapping the operands will sort out both of them. 721 Op->swapOperands(); 722 } else { 723 // Overwrite with the new right-hand side. 724 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode); 725 if (BO && !NotRewritable.count(BO)) 726 NodesToRewrite.push_back(BO); 727 Op->setOperand(1, NewRHS); 728 ExpressionChanged = Op; 729 } 730 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 731 MadeChange = true; 732 ++NumChanged; 733 } 734 735 // Now deal with the left-hand side. If this is already an operation node 736 // from the original expression then just rewrite the rest of the expression 737 // into it. 738 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode); 739 if (BO && !NotRewritable.count(BO)) { 740 Op = BO; 741 continue; 742 } 743 744 // Otherwise, grab a spare node from the original expression and use that as 745 // the left-hand side. If there are no nodes left then the optimizers made 746 // an expression with more nodes than the original! This usually means that 747 // they did something stupid but it might mean that the problem was just too 748 // hard (finding the mimimal number of multiplications needed to realize a 749 // multiplication expression is NP-complete). Whatever the reason, smart or 750 // stupid, create a new node if there are none left. 751 BinaryOperator *NewOp; 752 if (NodesToRewrite.empty()) { 753 Constant *Undef = UndefValue::get(I->getType()); 754 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode), 755 Undef, Undef, "", I); 756 if (NewOp->getType()->isFPOrFPVectorTy()) 757 NewOp->setFastMathFlags(I->getFastMathFlags()); 758 } else { 759 NewOp = NodesToRewrite.pop_back_val(); 760 } 761 762 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 763 Op->setOperand(0, NewOp); 764 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 765 ExpressionChanged = Op; 766 MadeChange = true; 767 ++NumChanged; 768 Op = NewOp; 769 } 770 771 // If the expression changed non-trivially then clear out all subclass data 772 // starting from the operator specified in ExpressionChanged, and compactify 773 // the operators to just before the expression root to guarantee that the 774 // expression tree is dominated by all of Ops. 775 if (ExpressionChanged) 776 do { 777 // Preserve FastMathFlags. 778 if (isa<FPMathOperator>(I)) { 779 FastMathFlags Flags = I->getFastMathFlags(); 780 ExpressionChanged->clearSubclassOptionalData(); 781 ExpressionChanged->setFastMathFlags(Flags); 782 } else 783 ExpressionChanged->clearSubclassOptionalData(); 784 785 if (ExpressionChanged == I) 786 break; 787 788 // Discard any debug info related to the expressions that has changed (we 789 // can leave debug infor related to the root, since the result of the 790 // expression tree should be the same even after reassociation). 791 replaceDbgUsesWithUndef(ExpressionChanged); 792 793 ExpressionChanged->moveBefore(I); 794 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin()); 795 } while (true); 796 797 // Throw away any left over nodes from the original expression. 798 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i) 799 RedoInsts.insert(NodesToRewrite[i]); 800 } 801 802 /// Insert instructions before the instruction pointed to by BI, 803 /// that computes the negative version of the value specified. The negative 804 /// version of the value is returned, and BI is left pointing at the instruction 805 /// that should be processed next by the reassociation pass. 806 /// Also add intermediate instructions to the redo list that are modified while 807 /// pushing the negates through adds. These will be revisited to see if 808 /// additional opportunities have been exposed. 809 static Value *NegateValue(Value *V, Instruction *BI, 810 ReassociatePass::OrderedSet &ToRedo) { 811 if (auto *C = dyn_cast<Constant>(V)) 812 return C->getType()->isFPOrFPVectorTy() ? ConstantExpr::getFNeg(C) : 813 ConstantExpr::getNeg(C); 814 815 // We are trying to expose opportunity for reassociation. One of the things 816 // that we want to do to achieve this is to push a negation as deep into an 817 // expression chain as possible, to expose the add instructions. In practice, 818 // this means that we turn this: 819 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D 820 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate 821 // the constants. We assume that instcombine will clean up the mess later if 822 // we introduce tons of unnecessary negation instructions. 823 // 824 if (BinaryOperator *I = 825 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) { 826 // Push the negates through the add. 827 I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo)); 828 I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo)); 829 if (I->getOpcode() == Instruction::Add) { 830 I->setHasNoUnsignedWrap(false); 831 I->setHasNoSignedWrap(false); 832 } 833 834 // We must move the add instruction here, because the neg instructions do 835 // not dominate the old add instruction in general. By moving it, we are 836 // assured that the neg instructions we just inserted dominate the 837 // instruction we are about to insert after them. 838 // 839 I->moveBefore(BI); 840 I->setName(I->getName()+".neg"); 841 842 // Add the intermediate negates to the redo list as processing them later 843 // could expose more reassociating opportunities. 844 ToRedo.insert(I); 845 return I; 846 } 847 848 // Okay, we need to materialize a negated version of V with an instruction. 849 // Scan the use lists of V to see if we have one already. 850 for (User *U : V->users()) { 851 if (!match(U, m_Neg(m_Value())) && !match(U, m_FNeg(m_Value()))) 852 continue; 853 854 // We found one! Now we have to make sure that the definition dominates 855 // this use. We do this by moving it to the entry block (if it is a 856 // non-instruction value) or right after the definition. These negates will 857 // be zapped by reassociate later, so we don't need much finesse here. 858 BinaryOperator *TheNeg = cast<BinaryOperator>(U); 859 860 // Verify that the negate is in this function, V might be a constant expr. 861 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent()) 862 continue; 863 864 BasicBlock::iterator InsertPt; 865 if (Instruction *InstInput = dyn_cast<Instruction>(V)) { 866 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) { 867 InsertPt = II->getNormalDest()->begin(); 868 } else { 869 InsertPt = ++InstInput->getIterator(); 870 } 871 while (isa<PHINode>(InsertPt)) ++InsertPt; 872 } else { 873 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin(); 874 } 875 TheNeg->moveBefore(&*InsertPt); 876 if (TheNeg->getOpcode() == Instruction::Sub) { 877 TheNeg->setHasNoUnsignedWrap(false); 878 TheNeg->setHasNoSignedWrap(false); 879 } else { 880 TheNeg->andIRFlags(BI); 881 } 882 ToRedo.insert(TheNeg); 883 return TheNeg; 884 } 885 886 // Insert a 'neg' instruction that subtracts the value from zero to get the 887 // negation. 888 BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI); 889 ToRedo.insert(NewNeg); 890 return NewNeg; 891 } 892 893 /// Return true if we should break up this subtract of X-Y into (X + -Y). 894 static bool ShouldBreakUpSubtract(Instruction *Sub) { 895 // If this is a negation, we can't split it up! 896 if (match(Sub, m_Neg(m_Value())) || match(Sub, m_FNeg(m_Value()))) 897 return false; 898 899 // Don't breakup X - undef. 900 if (isa<UndefValue>(Sub->getOperand(1))) 901 return false; 902 903 // Don't bother to break this up unless either the LHS is an associable add or 904 // subtract or if this is only used by one. 905 Value *V0 = Sub->getOperand(0); 906 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) || 907 isReassociableOp(V0, Instruction::Sub, Instruction::FSub)) 908 return true; 909 Value *V1 = Sub->getOperand(1); 910 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) || 911 isReassociableOp(V1, Instruction::Sub, Instruction::FSub)) 912 return true; 913 Value *VB = Sub->user_back(); 914 if (Sub->hasOneUse() && 915 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) || 916 isReassociableOp(VB, Instruction::Sub, Instruction::FSub))) 917 return true; 918 919 return false; 920 } 921 922 /// If we have (X-Y), and if either X is an add, or if this is only used by an 923 /// add, transform this into (X+(0-Y)) to promote better reassociation. 924 static BinaryOperator *BreakUpSubtract(Instruction *Sub, 925 ReassociatePass::OrderedSet &ToRedo) { 926 // Convert a subtract into an add and a neg instruction. This allows sub 927 // instructions to be commuted with other add instructions. 928 // 929 // Calculate the negative value of Operand 1 of the sub instruction, 930 // and set it as the RHS of the add instruction we just made. 931 Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo); 932 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub); 933 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op. 934 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op. 935 New->takeName(Sub); 936 937 // Everyone now refers to the add instruction. 938 Sub->replaceAllUsesWith(New); 939 New->setDebugLoc(Sub->getDebugLoc()); 940 941 LLVM_DEBUG(dbgs() << "Negated: " << *New << '\n'); 942 return New; 943 } 944 945 /// If this is a shift of a reassociable multiply or is used by one, change 946 /// this into a multiply by a constant to assist with further reassociation. 947 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) { 948 Constant *MulCst = ConstantInt::get(Shl->getType(), 1); 949 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1))); 950 951 BinaryOperator *Mul = 952 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl); 953 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op. 954 Mul->takeName(Shl); 955 956 // Everyone now refers to the mul instruction. 957 Shl->replaceAllUsesWith(Mul); 958 Mul->setDebugLoc(Shl->getDebugLoc()); 959 960 // We can safely preserve the nuw flag in all cases. It's also safe to turn a 961 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special 962 // handling. 963 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap(); 964 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap(); 965 if (NSW && NUW) 966 Mul->setHasNoSignedWrap(true); 967 Mul->setHasNoUnsignedWrap(NUW); 968 return Mul; 969 } 970 971 /// Scan backwards and forwards among values with the same rank as element i 972 /// to see if X exists. If X does not exist, return i. This is useful when 973 /// scanning for 'x' when we see '-x' because they both get the same rank. 974 static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops, 975 unsigned i, Value *X) { 976 unsigned XRank = Ops[i].Rank; 977 unsigned e = Ops.size(); 978 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) { 979 if (Ops[j].Op == X) 980 return j; 981 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 982 if (Instruction *I2 = dyn_cast<Instruction>(X)) 983 if (I1->isIdenticalTo(I2)) 984 return j; 985 } 986 // Scan backwards. 987 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) { 988 if (Ops[j].Op == X) 989 return j; 990 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 991 if (Instruction *I2 = dyn_cast<Instruction>(X)) 992 if (I1->isIdenticalTo(I2)) 993 return j; 994 } 995 return i; 996 } 997 998 /// Emit a tree of add instructions, summing Ops together 999 /// and returning the result. Insert the tree before I. 1000 static Value *EmitAddTreeOfValues(Instruction *I, 1001 SmallVectorImpl<WeakTrackingVH> &Ops) { 1002 if (Ops.size() == 1) return Ops.back(); 1003 1004 Value *V1 = Ops.back(); 1005 Ops.pop_back(); 1006 Value *V2 = EmitAddTreeOfValues(I, Ops); 1007 return CreateAdd(V2, V1, "reass.add", I, I); 1008 } 1009 1010 /// If V is an expression tree that is a multiplication sequence, 1011 /// and if this sequence contains a multiply by Factor, 1012 /// remove Factor from the tree and return the new tree. 1013 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) { 1014 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1015 if (!BO) 1016 return nullptr; 1017 1018 SmallVector<RepeatedValue, 8> Tree; 1019 MadeChange |= LinearizeExprTree(BO, Tree); 1020 SmallVector<ValueEntry, 8> Factors; 1021 Factors.reserve(Tree.size()); 1022 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 1023 RepeatedValue E = Tree[i]; 1024 Factors.append(E.second.getZExtValue(), 1025 ValueEntry(getRank(E.first), E.first)); 1026 } 1027 1028 bool FoundFactor = false; 1029 bool NeedsNegate = false; 1030 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1031 if (Factors[i].Op == Factor) { 1032 FoundFactor = true; 1033 Factors.erase(Factors.begin()+i); 1034 break; 1035 } 1036 1037 // If this is a negative version of this factor, remove it. 1038 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) { 1039 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op)) 1040 if (FC1->getValue() == -FC2->getValue()) { 1041 FoundFactor = NeedsNegate = true; 1042 Factors.erase(Factors.begin()+i); 1043 break; 1044 } 1045 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) { 1046 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) { 1047 const APFloat &F1 = FC1->getValueAPF(); 1048 APFloat F2(FC2->getValueAPF()); 1049 F2.changeSign(); 1050 if (F1.compare(F2) == APFloat::cmpEqual) { 1051 FoundFactor = NeedsNegate = true; 1052 Factors.erase(Factors.begin() + i); 1053 break; 1054 } 1055 } 1056 } 1057 } 1058 1059 if (!FoundFactor) { 1060 // Make sure to restore the operands to the expression tree. 1061 RewriteExprTree(BO, Factors); 1062 return nullptr; 1063 } 1064 1065 BasicBlock::iterator InsertPt = ++BO->getIterator(); 1066 1067 // If this was just a single multiply, remove the multiply and return the only 1068 // remaining operand. 1069 if (Factors.size() == 1) { 1070 RedoInsts.insert(BO); 1071 V = Factors[0].Op; 1072 } else { 1073 RewriteExprTree(BO, Factors); 1074 V = BO; 1075 } 1076 1077 if (NeedsNegate) 1078 V = CreateNeg(V, "neg", &*InsertPt, BO); 1079 1080 return V; 1081 } 1082 1083 /// If V is a single-use multiply, recursively add its operands as factors, 1084 /// otherwise add V to the list of factors. 1085 /// 1086 /// Ops is the top-level list of add operands we're trying to factor. 1087 static void FindSingleUseMultiplyFactors(Value *V, 1088 SmallVectorImpl<Value*> &Factors) { 1089 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1090 if (!BO) { 1091 Factors.push_back(V); 1092 return; 1093 } 1094 1095 // Otherwise, add the LHS and RHS to the list of factors. 1096 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors); 1097 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors); 1098 } 1099 1100 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction. 1101 /// This optimizes based on identities. If it can be reduced to a single Value, 1102 /// it is returned, otherwise the Ops list is mutated as necessary. 1103 static Value *OptimizeAndOrXor(unsigned Opcode, 1104 SmallVectorImpl<ValueEntry> &Ops) { 1105 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs. 1106 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1. 1107 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1108 // First, check for X and ~X in the operand list. 1109 assert(i < Ops.size()); 1110 Value *X; 1111 if (match(Ops[i].Op, m_Not(m_Value(X)))) { // Cannot occur for ^. 1112 unsigned FoundX = FindInOperandList(Ops, i, X); 1113 if (FoundX != i) { 1114 if (Opcode == Instruction::And) // ...&X&~X = 0 1115 return Constant::getNullValue(X->getType()); 1116 1117 if (Opcode == Instruction::Or) // ...|X|~X = -1 1118 return Constant::getAllOnesValue(X->getType()); 1119 } 1120 } 1121 1122 // Next, check for duplicate pairs of values, which we assume are next to 1123 // each other, due to our sorting criteria. 1124 assert(i < Ops.size()); 1125 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) { 1126 if (Opcode == Instruction::And || Opcode == Instruction::Or) { 1127 // Drop duplicate values for And and Or. 1128 Ops.erase(Ops.begin()+i); 1129 --i; --e; 1130 ++NumAnnihil; 1131 continue; 1132 } 1133 1134 // Drop pairs of values for Xor. 1135 assert(Opcode == Instruction::Xor); 1136 if (e == 2) 1137 return Constant::getNullValue(Ops[0].Op->getType()); 1138 1139 // Y ^ X^X -> Y 1140 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1141 i -= 1; e -= 2; 1142 ++NumAnnihil; 1143 } 1144 } 1145 return nullptr; 1146 } 1147 1148 /// Helper function of CombineXorOpnd(). It creates a bitwise-and 1149 /// instruction with the given two operands, and return the resulting 1150 /// instruction. There are two special cases: 1) if the constant operand is 0, 1151 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will 1152 /// be returned. 1153 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd, 1154 const APInt &ConstOpnd) { 1155 if (ConstOpnd.isNullValue()) 1156 return nullptr; 1157 1158 if (ConstOpnd.isAllOnesValue()) 1159 return Opnd; 1160 1161 Instruction *I = BinaryOperator::CreateAnd( 1162 Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra", 1163 InsertBefore); 1164 I->setDebugLoc(InsertBefore->getDebugLoc()); 1165 return I; 1166 } 1167 1168 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd" 1169 // into "R ^ C", where C would be 0, and R is a symbolic value. 1170 // 1171 // If it was successful, true is returned, and the "R" and "C" is returned 1172 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned, 1173 // and both "Res" and "ConstOpnd" remain unchanged. 1174 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1175 APInt &ConstOpnd, Value *&Res) { 1176 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2 1177 // = ((x | c1) ^ c1) ^ (c1 ^ c2) 1178 // = (x & ~c1) ^ (c1 ^ c2) 1179 // It is useful only when c1 == c2. 1180 if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isNullValue()) 1181 return false; 1182 1183 if (!Opnd1->getValue()->hasOneUse()) 1184 return false; 1185 1186 const APInt &C1 = Opnd1->getConstPart(); 1187 if (C1 != ConstOpnd) 1188 return false; 1189 1190 Value *X = Opnd1->getSymbolicPart(); 1191 Res = createAndInstr(I, X, ~C1); 1192 // ConstOpnd was C2, now C1 ^ C2. 1193 ConstOpnd ^= C1; 1194 1195 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1196 RedoInsts.insert(T); 1197 return true; 1198 } 1199 1200 // Helper function of OptimizeXor(). It tries to simplify 1201 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a 1202 // symbolic value. 1203 // 1204 // If it was successful, true is returned, and the "R" and "C" is returned 1205 // via "Res" and "ConstOpnd", respectively (If the entire expression is 1206 // evaluated to a constant, the Res is set to NULL); otherwise, false is 1207 // returned, and both "Res" and "ConstOpnd" remain unchanged. 1208 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1209 XorOpnd *Opnd2, APInt &ConstOpnd, 1210 Value *&Res) { 1211 Value *X = Opnd1->getSymbolicPart(); 1212 if (X != Opnd2->getSymbolicPart()) 1213 return false; 1214 1215 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.) 1216 int DeadInstNum = 1; 1217 if (Opnd1->getValue()->hasOneUse()) 1218 DeadInstNum++; 1219 if (Opnd2->getValue()->hasOneUse()) 1220 DeadInstNum++; 1221 1222 // Xor-Rule 2: 1223 // (x | c1) ^ (x & c2) 1224 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1 1225 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1 1226 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3 1227 // 1228 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) { 1229 if (Opnd2->isOrExpr()) 1230 std::swap(Opnd1, Opnd2); 1231 1232 const APInt &C1 = Opnd1->getConstPart(); 1233 const APInt &C2 = Opnd2->getConstPart(); 1234 APInt C3((~C1) ^ C2); 1235 1236 // Do not increase code size! 1237 if (!C3.isNullValue() && !C3.isAllOnesValue()) { 1238 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2; 1239 if (NewInstNum > DeadInstNum) 1240 return false; 1241 } 1242 1243 Res = createAndInstr(I, X, C3); 1244 ConstOpnd ^= C1; 1245 } else if (Opnd1->isOrExpr()) { 1246 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2 1247 // 1248 const APInt &C1 = Opnd1->getConstPart(); 1249 const APInt &C2 = Opnd2->getConstPart(); 1250 APInt C3 = C1 ^ C2; 1251 1252 // Do not increase code size 1253 if (!C3.isNullValue() && !C3.isAllOnesValue()) { 1254 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2; 1255 if (NewInstNum > DeadInstNum) 1256 return false; 1257 } 1258 1259 Res = createAndInstr(I, X, C3); 1260 ConstOpnd ^= C3; 1261 } else { 1262 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2)) 1263 // 1264 const APInt &C1 = Opnd1->getConstPart(); 1265 const APInt &C2 = Opnd2->getConstPart(); 1266 APInt C3 = C1 ^ C2; 1267 Res = createAndInstr(I, X, C3); 1268 } 1269 1270 // Put the original operands in the Redo list; hope they will be deleted 1271 // as dead code. 1272 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1273 RedoInsts.insert(T); 1274 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue())) 1275 RedoInsts.insert(T); 1276 1277 return true; 1278 } 1279 1280 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced 1281 /// to a single Value, it is returned, otherwise the Ops list is mutated as 1282 /// necessary. 1283 Value *ReassociatePass::OptimizeXor(Instruction *I, 1284 SmallVectorImpl<ValueEntry> &Ops) { 1285 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops)) 1286 return V; 1287 1288 if (Ops.size() == 1) 1289 return nullptr; 1290 1291 SmallVector<XorOpnd, 8> Opnds; 1292 SmallVector<XorOpnd*, 8> OpndPtrs; 1293 Type *Ty = Ops[0].Op->getType(); 1294 APInt ConstOpnd(Ty->getScalarSizeInBits(), 0); 1295 1296 // Step 1: Convert ValueEntry to XorOpnd 1297 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1298 Value *V = Ops[i].Op; 1299 const APInt *C; 1300 // TODO: Support non-splat vectors. 1301 if (match(V, m_APInt(C))) { 1302 ConstOpnd ^= *C; 1303 } else { 1304 XorOpnd O(V); 1305 O.setSymbolicRank(getRank(O.getSymbolicPart())); 1306 Opnds.push_back(O); 1307 } 1308 } 1309 1310 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds". 1311 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate 1312 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop 1313 // with the previous loop --- the iterator of the "Opnds" may be invalidated 1314 // when new elements are added to the vector. 1315 for (unsigned i = 0, e = Opnds.size(); i != e; ++i) 1316 OpndPtrs.push_back(&Opnds[i]); 1317 1318 // Step 2: Sort the Xor-Operands in a way such that the operands containing 1319 // the same symbolic value cluster together. For instance, the input operand 1320 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into: 1321 // ("x | 123", "x & 789", "y & 456"). 1322 // 1323 // The purpose is twofold: 1324 // 1) Cluster together the operands sharing the same symbolic-value. 1325 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which 1326 // could potentially shorten crital path, and expose more loop-invariants. 1327 // Note that values' rank are basically defined in RPO order (FIXME). 1328 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier 1329 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2", 1330 // "z" in the order of X-Y-Z is better than any other orders. 1331 llvm::stable_sort(OpndPtrs, [](XorOpnd *LHS, XorOpnd *RHS) { 1332 return LHS->getSymbolicRank() < RHS->getSymbolicRank(); 1333 }); 1334 1335 // Step 3: Combine adjacent operands 1336 XorOpnd *PrevOpnd = nullptr; 1337 bool Changed = false; 1338 for (unsigned i = 0, e = Opnds.size(); i < e; i++) { 1339 XorOpnd *CurrOpnd = OpndPtrs[i]; 1340 // The combined value 1341 Value *CV; 1342 1343 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd" 1344 if (!ConstOpnd.isNullValue() && 1345 CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) { 1346 Changed = true; 1347 if (CV) 1348 *CurrOpnd = XorOpnd(CV); 1349 else { 1350 CurrOpnd->Invalidate(); 1351 continue; 1352 } 1353 } 1354 1355 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) { 1356 PrevOpnd = CurrOpnd; 1357 continue; 1358 } 1359 1360 // step 3.2: When previous and current operands share the same symbolic 1361 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd" 1362 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) { 1363 // Remove previous operand 1364 PrevOpnd->Invalidate(); 1365 if (CV) { 1366 *CurrOpnd = XorOpnd(CV); 1367 PrevOpnd = CurrOpnd; 1368 } else { 1369 CurrOpnd->Invalidate(); 1370 PrevOpnd = nullptr; 1371 } 1372 Changed = true; 1373 } 1374 } 1375 1376 // Step 4: Reassemble the Ops 1377 if (Changed) { 1378 Ops.clear(); 1379 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) { 1380 XorOpnd &O = Opnds[i]; 1381 if (O.isInvalid()) 1382 continue; 1383 ValueEntry VE(getRank(O.getValue()), O.getValue()); 1384 Ops.push_back(VE); 1385 } 1386 if (!ConstOpnd.isNullValue()) { 1387 Value *C = ConstantInt::get(Ty, ConstOpnd); 1388 ValueEntry VE(getRank(C), C); 1389 Ops.push_back(VE); 1390 } 1391 unsigned Sz = Ops.size(); 1392 if (Sz == 1) 1393 return Ops.back().Op; 1394 if (Sz == 0) { 1395 assert(ConstOpnd.isNullValue()); 1396 return ConstantInt::get(Ty, ConstOpnd); 1397 } 1398 } 1399 1400 return nullptr; 1401 } 1402 1403 /// Optimize a series of operands to an 'add' instruction. This 1404 /// optimizes based on identities. If it can be reduced to a single Value, it 1405 /// is returned, otherwise the Ops list is mutated as necessary. 1406 Value *ReassociatePass::OptimizeAdd(Instruction *I, 1407 SmallVectorImpl<ValueEntry> &Ops) { 1408 // Scan the operand lists looking for X and -X pairs. If we find any, we 1409 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it, 1410 // scan for any 1411 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z. 1412 1413 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1414 Value *TheOp = Ops[i].Op; 1415 // Check to see if we've seen this operand before. If so, we factor all 1416 // instances of the operand together. Due to our sorting criteria, we know 1417 // that these need to be next to each other in the vector. 1418 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) { 1419 // Rescan the list, remove all instances of this operand from the expr. 1420 unsigned NumFound = 0; 1421 do { 1422 Ops.erase(Ops.begin()+i); 1423 ++NumFound; 1424 } while (i != Ops.size() && Ops[i].Op == TheOp); 1425 1426 LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp 1427 << '\n'); 1428 ++NumFactor; 1429 1430 // Insert a new multiply. 1431 Type *Ty = TheOp->getType(); 1432 Constant *C = Ty->isIntOrIntVectorTy() ? 1433 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound); 1434 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I); 1435 1436 // Now that we have inserted a multiply, optimize it. This allows us to 1437 // handle cases that require multiple factoring steps, such as this: 1438 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6 1439 RedoInsts.insert(Mul); 1440 1441 // If every add operand was a duplicate, return the multiply. 1442 if (Ops.empty()) 1443 return Mul; 1444 1445 // Otherwise, we had some input that didn't have the dupe, such as 1446 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of 1447 // things being added by this operation. 1448 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul)); 1449 1450 --i; 1451 e = Ops.size(); 1452 continue; 1453 } 1454 1455 // Check for X and -X or X and ~X in the operand list. 1456 Value *X; 1457 if (!match(TheOp, m_Neg(m_Value(X))) && !match(TheOp, m_Not(m_Value(X))) && 1458 !match(TheOp, m_FNeg(m_Value(X)))) 1459 continue; 1460 1461 unsigned FoundX = FindInOperandList(Ops, i, X); 1462 if (FoundX == i) 1463 continue; 1464 1465 // Remove X and -X from the operand list. 1466 if (Ops.size() == 2 && 1467 (match(TheOp, m_Neg(m_Value())) || match(TheOp, m_FNeg(m_Value())))) 1468 return Constant::getNullValue(X->getType()); 1469 1470 // Remove X and ~X from the operand list. 1471 if (Ops.size() == 2 && match(TheOp, m_Not(m_Value()))) 1472 return Constant::getAllOnesValue(X->getType()); 1473 1474 Ops.erase(Ops.begin()+i); 1475 if (i < FoundX) 1476 --FoundX; 1477 else 1478 --i; // Need to back up an extra one. 1479 Ops.erase(Ops.begin()+FoundX); 1480 ++NumAnnihil; 1481 --i; // Revisit element. 1482 e -= 2; // Removed two elements. 1483 1484 // if X and ~X we append -1 to the operand list. 1485 if (match(TheOp, m_Not(m_Value()))) { 1486 Value *V = Constant::getAllOnesValue(X->getType()); 1487 Ops.insert(Ops.end(), ValueEntry(getRank(V), V)); 1488 e += 1; 1489 } 1490 } 1491 1492 // Scan the operand list, checking to see if there are any common factors 1493 // between operands. Consider something like A*A+A*B*C+D. We would like to 1494 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies. 1495 // To efficiently find this, we count the number of times a factor occurs 1496 // for any ADD operands that are MULs. 1497 DenseMap<Value*, unsigned> FactorOccurrences; 1498 1499 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4) 1500 // where they are actually the same multiply. 1501 unsigned MaxOcc = 0; 1502 Value *MaxOccVal = nullptr; 1503 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1504 BinaryOperator *BOp = 1505 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1506 if (!BOp) 1507 continue; 1508 1509 // Compute all of the factors of this added value. 1510 SmallVector<Value*, 8> Factors; 1511 FindSingleUseMultiplyFactors(BOp, Factors); 1512 assert(Factors.size() > 1 && "Bad linearize!"); 1513 1514 // Add one to FactorOccurrences for each unique factor in this op. 1515 SmallPtrSet<Value*, 8> Duplicates; 1516 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1517 Value *Factor = Factors[i]; 1518 if (!Duplicates.insert(Factor).second) 1519 continue; 1520 1521 unsigned Occ = ++FactorOccurrences[Factor]; 1522 if (Occ > MaxOcc) { 1523 MaxOcc = Occ; 1524 MaxOccVal = Factor; 1525 } 1526 1527 // If Factor is a negative constant, add the negated value as a factor 1528 // because we can percolate the negate out. Watch for minint, which 1529 // cannot be positivified. 1530 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) { 1531 if (CI->isNegative() && !CI->isMinValue(true)) { 1532 Factor = ConstantInt::get(CI->getContext(), -CI->getValue()); 1533 if (!Duplicates.insert(Factor).second) 1534 continue; 1535 unsigned Occ = ++FactorOccurrences[Factor]; 1536 if (Occ > MaxOcc) { 1537 MaxOcc = Occ; 1538 MaxOccVal = Factor; 1539 } 1540 } 1541 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) { 1542 if (CF->isNegative()) { 1543 APFloat F(CF->getValueAPF()); 1544 F.changeSign(); 1545 Factor = ConstantFP::get(CF->getContext(), F); 1546 if (!Duplicates.insert(Factor).second) 1547 continue; 1548 unsigned Occ = ++FactorOccurrences[Factor]; 1549 if (Occ > MaxOcc) { 1550 MaxOcc = Occ; 1551 MaxOccVal = Factor; 1552 } 1553 } 1554 } 1555 } 1556 } 1557 1558 // If any factor occurred more than one time, we can pull it out. 1559 if (MaxOcc > 1) { 1560 LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal 1561 << '\n'); 1562 ++NumFactor; 1563 1564 // Create a new instruction that uses the MaxOccVal twice. If we don't do 1565 // this, we could otherwise run into situations where removing a factor 1566 // from an expression will drop a use of maxocc, and this can cause 1567 // RemoveFactorFromExpression on successive values to behave differently. 1568 Instruction *DummyInst = 1569 I->getType()->isIntOrIntVectorTy() 1570 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal) 1571 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal); 1572 1573 SmallVector<WeakTrackingVH, 4> NewMulOps; 1574 for (unsigned i = 0; i != Ops.size(); ++i) { 1575 // Only try to remove factors from expressions we're allowed to. 1576 BinaryOperator *BOp = 1577 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1578 if (!BOp) 1579 continue; 1580 1581 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) { 1582 // The factorized operand may occur several times. Convert them all in 1583 // one fell swoop. 1584 for (unsigned j = Ops.size(); j != i;) { 1585 --j; 1586 if (Ops[j].Op == Ops[i].Op) { 1587 NewMulOps.push_back(V); 1588 Ops.erase(Ops.begin()+j); 1589 } 1590 } 1591 --i; 1592 } 1593 } 1594 1595 // No need for extra uses anymore. 1596 DummyInst->deleteValue(); 1597 1598 unsigned NumAddedValues = NewMulOps.size(); 1599 Value *V = EmitAddTreeOfValues(I, NewMulOps); 1600 1601 // Now that we have inserted the add tree, optimize it. This allows us to 1602 // handle cases that require multiple factoring steps, such as this: 1603 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C)) 1604 assert(NumAddedValues > 1 && "Each occurrence should contribute a value"); 1605 (void)NumAddedValues; 1606 if (Instruction *VI = dyn_cast<Instruction>(V)) 1607 RedoInsts.insert(VI); 1608 1609 // Create the multiply. 1610 Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I); 1611 1612 // Rerun associate on the multiply in case the inner expression turned into 1613 // a multiply. We want to make sure that we keep things in canonical form. 1614 RedoInsts.insert(V2); 1615 1616 // If every add operand included the factor (e.g. "A*B + A*C"), then the 1617 // entire result expression is just the multiply "A*(B+C)". 1618 if (Ops.empty()) 1619 return V2; 1620 1621 // Otherwise, we had some input that didn't have the factor, such as 1622 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of 1623 // things being added by this operation. 1624 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2)); 1625 } 1626 1627 return nullptr; 1628 } 1629 1630 /// Build up a vector of value/power pairs factoring a product. 1631 /// 1632 /// Given a series of multiplication operands, build a vector of factors and 1633 /// the powers each is raised to when forming the final product. Sort them in 1634 /// the order of descending power. 1635 /// 1636 /// (x*x) -> [(x, 2)] 1637 /// ((x*x)*x) -> [(x, 3)] 1638 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)] 1639 /// 1640 /// \returns Whether any factors have a power greater than one. 1641 static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, 1642 SmallVectorImpl<Factor> &Factors) { 1643 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this. 1644 // Compute the sum of powers of simplifiable factors. 1645 unsigned FactorPowerSum = 0; 1646 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) { 1647 Value *Op = Ops[Idx-1].Op; 1648 1649 // Count the number of occurrences of this value. 1650 unsigned Count = 1; 1651 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx) 1652 ++Count; 1653 // Track for simplification all factors which occur 2 or more times. 1654 if (Count > 1) 1655 FactorPowerSum += Count; 1656 } 1657 1658 // We can only simplify factors if the sum of the powers of our simplifiable 1659 // factors is 4 or higher. When that is the case, we will *always* have 1660 // a simplification. This is an important invariant to prevent cyclicly 1661 // trying to simplify already minimal formations. 1662 if (FactorPowerSum < 4) 1663 return false; 1664 1665 // Now gather the simplifiable factors, removing them from Ops. 1666 FactorPowerSum = 0; 1667 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) { 1668 Value *Op = Ops[Idx-1].Op; 1669 1670 // Count the number of occurrences of this value. 1671 unsigned Count = 1; 1672 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx) 1673 ++Count; 1674 if (Count == 1) 1675 continue; 1676 // Move an even number of occurrences to Factors. 1677 Count &= ~1U; 1678 Idx -= Count; 1679 FactorPowerSum += Count; 1680 Factors.push_back(Factor(Op, Count)); 1681 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count); 1682 } 1683 1684 // None of the adjustments above should have reduced the sum of factor powers 1685 // below our mininum of '4'. 1686 assert(FactorPowerSum >= 4); 1687 1688 llvm::stable_sort(Factors, [](const Factor &LHS, const Factor &RHS) { 1689 return LHS.Power > RHS.Power; 1690 }); 1691 return true; 1692 } 1693 1694 /// Build a tree of multiplies, computing the product of Ops. 1695 static Value *buildMultiplyTree(IRBuilder<> &Builder, 1696 SmallVectorImpl<Value*> &Ops) { 1697 if (Ops.size() == 1) 1698 return Ops.back(); 1699 1700 Value *LHS = Ops.pop_back_val(); 1701 do { 1702 if (LHS->getType()->isIntOrIntVectorTy()) 1703 LHS = Builder.CreateMul(LHS, Ops.pop_back_val()); 1704 else 1705 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val()); 1706 } while (!Ops.empty()); 1707 1708 return LHS; 1709 } 1710 1711 /// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*... 1712 /// 1713 /// Given a vector of values raised to various powers, where no two values are 1714 /// equal and the powers are sorted in decreasing order, compute the minimal 1715 /// DAG of multiplies to compute the final product, and return that product 1716 /// value. 1717 Value * 1718 ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder, 1719 SmallVectorImpl<Factor> &Factors) { 1720 assert(Factors[0].Power); 1721 SmallVector<Value *, 4> OuterProduct; 1722 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size(); 1723 Idx < Size && Factors[Idx].Power > 0; ++Idx) { 1724 if (Factors[Idx].Power != Factors[LastIdx].Power) { 1725 LastIdx = Idx; 1726 continue; 1727 } 1728 1729 // We want to multiply across all the factors with the same power so that 1730 // we can raise them to that power as a single entity. Build a mini tree 1731 // for that. 1732 SmallVector<Value *, 4> InnerProduct; 1733 InnerProduct.push_back(Factors[LastIdx].Base); 1734 do { 1735 InnerProduct.push_back(Factors[Idx].Base); 1736 ++Idx; 1737 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power); 1738 1739 // Reset the base value of the first factor to the new expression tree. 1740 // We'll remove all the factors with the same power in a second pass. 1741 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct); 1742 if (Instruction *MI = dyn_cast<Instruction>(M)) 1743 RedoInsts.insert(MI); 1744 1745 LastIdx = Idx; 1746 } 1747 // Unique factors with equal powers -- we've folded them into the first one's 1748 // base. 1749 Factors.erase(std::unique(Factors.begin(), Factors.end(), 1750 [](const Factor &LHS, const Factor &RHS) { 1751 return LHS.Power == RHS.Power; 1752 }), 1753 Factors.end()); 1754 1755 // Iteratively collect the base of each factor with an add power into the 1756 // outer product, and halve each power in preparation for squaring the 1757 // expression. 1758 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) { 1759 if (Factors[Idx].Power & 1) 1760 OuterProduct.push_back(Factors[Idx].Base); 1761 Factors[Idx].Power >>= 1; 1762 } 1763 if (Factors[0].Power) { 1764 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors); 1765 OuterProduct.push_back(SquareRoot); 1766 OuterProduct.push_back(SquareRoot); 1767 } 1768 if (OuterProduct.size() == 1) 1769 return OuterProduct.front(); 1770 1771 Value *V = buildMultiplyTree(Builder, OuterProduct); 1772 return V; 1773 } 1774 1775 Value *ReassociatePass::OptimizeMul(BinaryOperator *I, 1776 SmallVectorImpl<ValueEntry> &Ops) { 1777 // We can only optimize the multiplies when there is a chain of more than 1778 // three, such that a balanced tree might require fewer total multiplies. 1779 if (Ops.size() < 4) 1780 return nullptr; 1781 1782 // Try to turn linear trees of multiplies without other uses of the 1783 // intermediate stages into minimal multiply DAGs with perfect sub-expression 1784 // re-use. 1785 SmallVector<Factor, 4> Factors; 1786 if (!collectMultiplyFactors(Ops, Factors)) 1787 return nullptr; // All distinct factors, so nothing left for us to do. 1788 1789 IRBuilder<> Builder(I); 1790 // The reassociate transformation for FP operations is performed only 1791 // if unsafe algebra is permitted by FastMathFlags. Propagate those flags 1792 // to the newly generated operations. 1793 if (auto FPI = dyn_cast<FPMathOperator>(I)) 1794 Builder.setFastMathFlags(FPI->getFastMathFlags()); 1795 1796 Value *V = buildMinimalMultiplyDAG(Builder, Factors); 1797 if (Ops.empty()) 1798 return V; 1799 1800 ValueEntry NewEntry = ValueEntry(getRank(V), V); 1801 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry); 1802 return nullptr; 1803 } 1804 1805 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I, 1806 SmallVectorImpl<ValueEntry> &Ops) { 1807 // Now that we have the linearized expression tree, try to optimize it. 1808 // Start by folding any constants that we found. 1809 Constant *Cst = nullptr; 1810 unsigned Opcode = I->getOpcode(); 1811 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) { 1812 Constant *C = cast<Constant>(Ops.pop_back_val().Op); 1813 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C; 1814 } 1815 // If there was nothing but constants then we are done. 1816 if (Ops.empty()) 1817 return Cst; 1818 1819 // Put the combined constant back at the end of the operand list, except if 1820 // there is no point. For example, an add of 0 gets dropped here, while a 1821 // multiplication by zero turns the whole expression into zero. 1822 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) { 1823 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType())) 1824 return Cst; 1825 Ops.push_back(ValueEntry(0, Cst)); 1826 } 1827 1828 if (Ops.size() == 1) return Ops[0].Op; 1829 1830 // Handle destructive annihilation due to identities between elements in the 1831 // argument list here. 1832 unsigned NumOps = Ops.size(); 1833 switch (Opcode) { 1834 default: break; 1835 case Instruction::And: 1836 case Instruction::Or: 1837 if (Value *Result = OptimizeAndOrXor(Opcode, Ops)) 1838 return Result; 1839 break; 1840 1841 case Instruction::Xor: 1842 if (Value *Result = OptimizeXor(I, Ops)) 1843 return Result; 1844 break; 1845 1846 case Instruction::Add: 1847 case Instruction::FAdd: 1848 if (Value *Result = OptimizeAdd(I, Ops)) 1849 return Result; 1850 break; 1851 1852 case Instruction::Mul: 1853 case Instruction::FMul: 1854 if (Value *Result = OptimizeMul(I, Ops)) 1855 return Result; 1856 break; 1857 } 1858 1859 if (Ops.size() != NumOps) 1860 return OptimizeExpression(I, Ops); 1861 return nullptr; 1862 } 1863 1864 // Remove dead instructions and if any operands are trivially dead add them to 1865 // Insts so they will be removed as well. 1866 void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I, 1867 OrderedSet &Insts) { 1868 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1869 SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end()); 1870 ValueRankMap.erase(I); 1871 Insts.remove(I); 1872 RedoInsts.remove(I); 1873 I->eraseFromParent(); 1874 for (auto Op : Ops) 1875 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1876 if (OpInst->use_empty()) 1877 Insts.insert(OpInst); 1878 } 1879 1880 /// Zap the given instruction, adding interesting operands to the work list. 1881 void ReassociatePass::EraseInst(Instruction *I) { 1882 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1883 LLVM_DEBUG(dbgs() << "Erasing dead inst: "; I->dump()); 1884 1885 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 1886 // Erase the dead instruction. 1887 ValueRankMap.erase(I); 1888 RedoInsts.remove(I); 1889 I->eraseFromParent(); 1890 // Optimize its operands. 1891 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes. 1892 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1893 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) { 1894 // If this is a node in an expression tree, climb to the expression root 1895 // and add that since that's where optimization actually happens. 1896 unsigned Opcode = Op->getOpcode(); 1897 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode && 1898 Visited.insert(Op).second) 1899 Op = Op->user_back(); 1900 1901 // The instruction we're going to push may be coming from a 1902 // dead block, and Reassociate skips the processing of unreachable 1903 // blocks because it's a waste of time and also because it can 1904 // lead to infinite loop due to LLVM's non-standard definition 1905 // of dominance. 1906 if (ValueRankMap.find(Op) != ValueRankMap.end()) 1907 RedoInsts.insert(Op); 1908 } 1909 1910 MadeChange = true; 1911 } 1912 1913 // Canonicalize expressions of the following form: 1914 // x + (-Constant * y) -> x - (Constant * y) 1915 // x - (-Constant * y) -> x + (Constant * y) 1916 Instruction *ReassociatePass::canonicalizeNegConstExpr(Instruction *I) { 1917 if (!I->hasOneUse() || I->getType()->isVectorTy()) 1918 return nullptr; 1919 1920 // Must be a fmul or fdiv instruction. 1921 unsigned Opcode = I->getOpcode(); 1922 if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv) 1923 return nullptr; 1924 1925 auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0)); 1926 auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1)); 1927 1928 // Both operands are constant, let it get constant folded away. 1929 if (C0 && C1) 1930 return nullptr; 1931 1932 ConstantFP *CF = C0 ? C0 : C1; 1933 1934 // Must have one constant operand. 1935 if (!CF) 1936 return nullptr; 1937 1938 // Must be a negative ConstantFP. 1939 if (!CF->isNegative()) 1940 return nullptr; 1941 1942 // User must be a binary operator with one or more uses. 1943 Instruction *User = I->user_back(); 1944 if (!isa<BinaryOperator>(User) || User->use_empty()) 1945 return nullptr; 1946 1947 unsigned UserOpcode = User->getOpcode(); 1948 if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub) 1949 return nullptr; 1950 1951 // Subtraction is not commutative. Explicitly, the following transform is 1952 // not valid: (-Constant * y) - x -> x + (Constant * y) 1953 if (!User->isCommutative() && User->getOperand(1) != I) 1954 return nullptr; 1955 1956 // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the 1957 // resulting subtract will be broken up later. This can get us into an 1958 // infinite loop during reassociation. 1959 if (UserOpcode == Instruction::FAdd && ShouldBreakUpSubtract(User)) 1960 return nullptr; 1961 1962 // Change the sign of the constant. 1963 APFloat Val = CF->getValueAPF(); 1964 Val.changeSign(); 1965 I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val)); 1966 1967 // Canonicalize I to RHS to simplify the next bit of logic. E.g., 1968 // ((-Const*y) + x) -> (x + (-Const*y)). 1969 if (User->getOperand(0) == I && User->isCommutative()) 1970 cast<BinaryOperator>(User)->swapOperands(); 1971 1972 Value *Op0 = User->getOperand(0); 1973 Value *Op1 = User->getOperand(1); 1974 BinaryOperator *NI; 1975 switch (UserOpcode) { 1976 default: 1977 llvm_unreachable("Unexpected Opcode!"); 1978 case Instruction::FAdd: 1979 NI = BinaryOperator::CreateFSub(Op0, Op1); 1980 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags()); 1981 break; 1982 case Instruction::FSub: 1983 NI = BinaryOperator::CreateFAdd(Op0, Op1); 1984 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags()); 1985 break; 1986 } 1987 1988 NI->insertBefore(User); 1989 NI->setName(User->getName()); 1990 User->replaceAllUsesWith(NI); 1991 NI->setDebugLoc(I->getDebugLoc()); 1992 RedoInsts.insert(I); 1993 MadeChange = true; 1994 return NI; 1995 } 1996 1997 /// Inspect and optimize the given instruction. Note that erasing 1998 /// instructions is not allowed. 1999 void ReassociatePass::OptimizeInst(Instruction *I) { 2000 // Only consider operations that we understand. 2001 if (!isa<BinaryOperator>(I)) 2002 return; 2003 2004 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1))) 2005 // If an operand of this shift is a reassociable multiply, or if the shift 2006 // is used by a reassociable multiply or add, turn into a multiply. 2007 if (isReassociableOp(I->getOperand(0), Instruction::Mul) || 2008 (I->hasOneUse() && 2009 (isReassociableOp(I->user_back(), Instruction::Mul) || 2010 isReassociableOp(I->user_back(), Instruction::Add)))) { 2011 Instruction *NI = ConvertShiftToMul(I); 2012 RedoInsts.insert(I); 2013 MadeChange = true; 2014 I = NI; 2015 } 2016 2017 // Canonicalize negative constants out of expressions. 2018 if (Instruction *Res = canonicalizeNegConstExpr(I)) 2019 I = Res; 2020 2021 // Commute binary operators, to canonicalize the order of their operands. 2022 // This can potentially expose more CSE opportunities, and makes writing other 2023 // transformations simpler. 2024 if (I->isCommutative()) 2025 canonicalizeOperands(I); 2026 2027 // Don't optimize floating-point instructions unless they are 'fast'. 2028 if (I->getType()->isFPOrFPVectorTy() && !I->isFast()) 2029 return; 2030 2031 // Do not reassociate boolean (i1) expressions. We want to preserve the 2032 // original order of evaluation for short-circuited comparisons that 2033 // SimplifyCFG has folded to AND/OR expressions. If the expression 2034 // is not further optimized, it is likely to be transformed back to a 2035 // short-circuited form for code gen, and the source order may have been 2036 // optimized for the most likely conditions. 2037 if (I->getType()->isIntegerTy(1)) 2038 return; 2039 2040 // If this is a subtract instruction which is not already in negate form, 2041 // see if we can convert it to X+-Y. 2042 if (I->getOpcode() == Instruction::Sub) { 2043 if (ShouldBreakUpSubtract(I)) { 2044 Instruction *NI = BreakUpSubtract(I, RedoInsts); 2045 RedoInsts.insert(I); 2046 MadeChange = true; 2047 I = NI; 2048 } else if (match(I, m_Neg(m_Value()))) { 2049 // Otherwise, this is a negation. See if the operand is a multiply tree 2050 // and if this is not an inner node of a multiply tree. 2051 if (isReassociableOp(I->getOperand(1), Instruction::Mul) && 2052 (!I->hasOneUse() || 2053 !isReassociableOp(I->user_back(), Instruction::Mul))) { 2054 Instruction *NI = LowerNegateToMultiply(I); 2055 // If the negate was simplified, revisit the users to see if we can 2056 // reassociate further. 2057 for (User *U : NI->users()) { 2058 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U)) 2059 RedoInsts.insert(Tmp); 2060 } 2061 RedoInsts.insert(I); 2062 MadeChange = true; 2063 I = NI; 2064 } 2065 } 2066 } else if (I->getOpcode() == Instruction::FSub) { 2067 if (ShouldBreakUpSubtract(I)) { 2068 Instruction *NI = BreakUpSubtract(I, RedoInsts); 2069 RedoInsts.insert(I); 2070 MadeChange = true; 2071 I = NI; 2072 } else if (match(I, m_FNeg(m_Value()))) { 2073 // Otherwise, this is a negation. See if the operand is a multiply tree 2074 // and if this is not an inner node of a multiply tree. 2075 if (isReassociableOp(I->getOperand(1), Instruction::FMul) && 2076 (!I->hasOneUse() || 2077 !isReassociableOp(I->user_back(), Instruction::FMul))) { 2078 // If the negate was simplified, revisit the users to see if we can 2079 // reassociate further. 2080 Instruction *NI = LowerNegateToMultiply(I); 2081 for (User *U : NI->users()) { 2082 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U)) 2083 RedoInsts.insert(Tmp); 2084 } 2085 RedoInsts.insert(I); 2086 MadeChange = true; 2087 I = NI; 2088 } 2089 } 2090 } 2091 2092 // If this instruction is an associative binary operator, process it. 2093 if (!I->isAssociative()) return; 2094 BinaryOperator *BO = cast<BinaryOperator>(I); 2095 2096 // If this is an interior node of a reassociable tree, ignore it until we 2097 // get to the root of the tree, to avoid N^2 analysis. 2098 unsigned Opcode = BO->getOpcode(); 2099 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) { 2100 // During the initial run we will get to the root of the tree. 2101 // But if we get here while we are redoing instructions, there is no 2102 // guarantee that the root will be visited. So Redo later 2103 if (BO->user_back() != BO && 2104 BO->getParent() == BO->user_back()->getParent()) 2105 RedoInsts.insert(BO->user_back()); 2106 return; 2107 } 2108 2109 // If this is an add tree that is used by a sub instruction, ignore it 2110 // until we process the subtract. 2111 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add && 2112 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub) 2113 return; 2114 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd && 2115 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub) 2116 return; 2117 2118 ReassociateExpression(BO); 2119 } 2120 2121 void ReassociatePass::ReassociateExpression(BinaryOperator *I) { 2122 // First, walk the expression tree, linearizing the tree, collecting the 2123 // operand information. 2124 SmallVector<RepeatedValue, 8> Tree; 2125 MadeChange |= LinearizeExprTree(I, Tree); 2126 SmallVector<ValueEntry, 8> Ops; 2127 Ops.reserve(Tree.size()); 2128 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 2129 RepeatedValue E = Tree[i]; 2130 Ops.append(E.second.getZExtValue(), 2131 ValueEntry(getRank(E.first), E.first)); 2132 } 2133 2134 LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2135 2136 // Now that we have linearized the tree to a list and have gathered all of 2137 // the operands and their ranks, sort the operands by their rank. Use a 2138 // stable_sort so that values with equal ranks will have their relative 2139 // positions maintained (and so the compiler is deterministic). Note that 2140 // this sorts so that the highest ranking values end up at the beginning of 2141 // the vector. 2142 llvm::stable_sort(Ops); 2143 2144 // Now that we have the expression tree in a convenient 2145 // sorted form, optimize it globally if possible. 2146 if (Value *V = OptimizeExpression(I, Ops)) { 2147 if (V == I) 2148 // Self-referential expression in unreachable code. 2149 return; 2150 // This expression tree simplified to something that isn't a tree, 2151 // eliminate it. 2152 LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n'); 2153 I->replaceAllUsesWith(V); 2154 if (Instruction *VI = dyn_cast<Instruction>(V)) 2155 if (I->getDebugLoc()) 2156 VI->setDebugLoc(I->getDebugLoc()); 2157 RedoInsts.insert(I); 2158 ++NumAnnihil; 2159 return; 2160 } 2161 2162 // We want to sink immediates as deeply as possible except in the case where 2163 // this is a multiply tree used only by an add, and the immediate is a -1. 2164 // In this case we reassociate to put the negation on the outside so that we 2165 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y 2166 if (I->hasOneUse()) { 2167 if (I->getOpcode() == Instruction::Mul && 2168 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add && 2169 isa<ConstantInt>(Ops.back().Op) && 2170 cast<ConstantInt>(Ops.back().Op)->isMinusOne()) { 2171 ValueEntry Tmp = Ops.pop_back_val(); 2172 Ops.insert(Ops.begin(), Tmp); 2173 } else if (I->getOpcode() == Instruction::FMul && 2174 cast<Instruction>(I->user_back())->getOpcode() == 2175 Instruction::FAdd && 2176 isa<ConstantFP>(Ops.back().Op) && 2177 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) { 2178 ValueEntry Tmp = Ops.pop_back_val(); 2179 Ops.insert(Ops.begin(), Tmp); 2180 } 2181 } 2182 2183 LLVM_DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2184 2185 if (Ops.size() == 1) { 2186 if (Ops[0].Op == I) 2187 // Self-referential expression in unreachable code. 2188 return; 2189 2190 // This expression tree simplified to something that isn't a tree, 2191 // eliminate it. 2192 I->replaceAllUsesWith(Ops[0].Op); 2193 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op)) 2194 OI->setDebugLoc(I->getDebugLoc()); 2195 RedoInsts.insert(I); 2196 return; 2197 } 2198 2199 if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) { 2200 // Find the pair with the highest count in the pairmap and move it to the 2201 // back of the list so that it can later be CSE'd. 2202 // example: 2203 // a*b*c*d*e 2204 // if c*e is the most "popular" pair, we can express this as 2205 // (((c*e)*d)*b)*a 2206 unsigned Max = 1; 2207 unsigned BestRank = 0; 2208 std::pair<unsigned, unsigned> BestPair; 2209 unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin; 2210 for (unsigned i = 0; i < Ops.size() - 1; ++i) 2211 for (unsigned j = i + 1; j < Ops.size(); ++j) { 2212 unsigned Score = 0; 2213 Value *Op0 = Ops[i].Op; 2214 Value *Op1 = Ops[j].Op; 2215 if (std::less<Value *>()(Op1, Op0)) 2216 std::swap(Op0, Op1); 2217 auto it = PairMap[Idx].find({Op0, Op1}); 2218 if (it != PairMap[Idx].end()) { 2219 // Functions like BreakUpSubtract() can erase the Values we're using 2220 // as keys and create new Values after we built the PairMap. There's a 2221 // small chance that the new nodes can have the same address as 2222 // something already in the table. We shouldn't accumulate the stored 2223 // score in that case as it refers to the wrong Value. 2224 if (it->second.isValid()) 2225 Score += it->second.Score; 2226 } 2227 2228 unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank); 2229 if (Score > Max || (Score == Max && MaxRank < BestRank)) { 2230 BestPair = {i, j}; 2231 Max = Score; 2232 BestRank = MaxRank; 2233 } 2234 } 2235 if (Max > 1) { 2236 auto Op0 = Ops[BestPair.first]; 2237 auto Op1 = Ops[BestPair.second]; 2238 Ops.erase(&Ops[BestPair.second]); 2239 Ops.erase(&Ops[BestPair.first]); 2240 Ops.push_back(Op0); 2241 Ops.push_back(Op1); 2242 } 2243 } 2244 // Now that we ordered and optimized the expressions, splat them back into 2245 // the expression tree, removing any unneeded nodes. 2246 RewriteExprTree(I, Ops); 2247 } 2248 2249 void 2250 ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) { 2251 // Make a "pairmap" of how often each operand pair occurs. 2252 for (BasicBlock *BI : RPOT) { 2253 for (Instruction &I : *BI) { 2254 if (!I.isAssociative()) 2255 continue; 2256 2257 // Ignore nodes that aren't at the root of trees. 2258 if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode()) 2259 continue; 2260 2261 // Collect all operands in a single reassociable expression. 2262 // Since Reassociate has already been run once, we can assume things 2263 // are already canonical according to Reassociation's regime. 2264 SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) }; 2265 SmallVector<Value *, 8> Ops; 2266 while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) { 2267 Value *Op = Worklist.pop_back_val(); 2268 Instruction *OpI = dyn_cast<Instruction>(Op); 2269 if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) { 2270 Ops.push_back(Op); 2271 continue; 2272 } 2273 // Be paranoid about self-referencing expressions in unreachable code. 2274 if (OpI->getOperand(0) != OpI) 2275 Worklist.push_back(OpI->getOperand(0)); 2276 if (OpI->getOperand(1) != OpI) 2277 Worklist.push_back(OpI->getOperand(1)); 2278 } 2279 // Skip extremely long expressions. 2280 if (Ops.size() > GlobalReassociateLimit) 2281 continue; 2282 2283 // Add all pairwise combinations of operands to the pair map. 2284 unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin; 2285 SmallSet<std::pair<Value *, Value*>, 32> Visited; 2286 for (unsigned i = 0; i < Ops.size() - 1; ++i) { 2287 for (unsigned j = i + 1; j < Ops.size(); ++j) { 2288 // Canonicalize operand orderings. 2289 Value *Op0 = Ops[i]; 2290 Value *Op1 = Ops[j]; 2291 if (std::less<Value *>()(Op1, Op0)) 2292 std::swap(Op0, Op1); 2293 if (!Visited.insert({Op0, Op1}).second) 2294 continue; 2295 auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, {Op0, Op1, 1}}); 2296 if (!res.second) { 2297 // If either key value has been erased then we've got the same 2298 // address by coincidence. That can't happen here because nothing is 2299 // erasing values but it can happen by the time we're querying the 2300 // map. 2301 assert(res.first->second.isValid() && "WeakVH invalidated"); 2302 ++res.first->second.Score; 2303 } 2304 } 2305 } 2306 } 2307 } 2308 } 2309 2310 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) { 2311 // Get the functions basic blocks in Reverse Post Order. This order is used by 2312 // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic 2313 // blocks (it has been seen that the analysis in this pass could hang when 2314 // analysing dead basic blocks). 2315 ReversePostOrderTraversal<Function *> RPOT(&F); 2316 2317 // Calculate the rank map for F. 2318 BuildRankMap(F, RPOT); 2319 2320 // Build the pair map before running reassociate. 2321 // Technically this would be more accurate if we did it after one round 2322 // of reassociation, but in practice it doesn't seem to help much on 2323 // real-world code, so don't waste the compile time running reassociate 2324 // twice. 2325 // If a user wants, they could expicitly run reassociate twice in their 2326 // pass pipeline for further potential gains. 2327 // It might also be possible to update the pair map during runtime, but the 2328 // overhead of that may be large if there's many reassociable chains. 2329 BuildPairMap(RPOT); 2330 2331 MadeChange = false; 2332 2333 // Traverse the same blocks that were analysed by BuildRankMap. 2334 for (BasicBlock *BI : RPOT) { 2335 assert(RankMap.count(&*BI) && "BB should be ranked."); 2336 // Optimize every instruction in the basic block. 2337 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;) 2338 if (isInstructionTriviallyDead(&*II)) { 2339 EraseInst(&*II++); 2340 } else { 2341 OptimizeInst(&*II); 2342 assert(II->getParent() == &*BI && "Moved to a different block!"); 2343 ++II; 2344 } 2345 2346 // Make a copy of all the instructions to be redone so we can remove dead 2347 // instructions. 2348 OrderedSet ToRedo(RedoInsts); 2349 // Iterate over all instructions to be reevaluated and remove trivially dead 2350 // instructions. If any operand of the trivially dead instruction becomes 2351 // dead mark it for deletion as well. Continue this process until all 2352 // trivially dead instructions have been removed. 2353 while (!ToRedo.empty()) { 2354 Instruction *I = ToRedo.pop_back_val(); 2355 if (isInstructionTriviallyDead(I)) { 2356 RecursivelyEraseDeadInsts(I, ToRedo); 2357 MadeChange = true; 2358 } 2359 } 2360 2361 // Now that we have removed dead instructions, we can reoptimize the 2362 // remaining instructions. 2363 while (!RedoInsts.empty()) { 2364 Instruction *I = RedoInsts.front(); 2365 RedoInsts.erase(RedoInsts.begin()); 2366 if (isInstructionTriviallyDead(I)) 2367 EraseInst(I); 2368 else 2369 OptimizeInst(I); 2370 } 2371 } 2372 2373 // We are done with the rank map and pair map. 2374 RankMap.clear(); 2375 ValueRankMap.clear(); 2376 for (auto &Entry : PairMap) 2377 Entry.clear(); 2378 2379 if (MadeChange) { 2380 PreservedAnalyses PA; 2381 PA.preserveSet<CFGAnalyses>(); 2382 PA.preserve<GlobalsAA>(); 2383 return PA; 2384 } 2385 2386 return PreservedAnalyses::all(); 2387 } 2388 2389 namespace { 2390 2391 class ReassociateLegacyPass : public FunctionPass { 2392 ReassociatePass Impl; 2393 2394 public: 2395 static char ID; // Pass identification, replacement for typeid 2396 2397 ReassociateLegacyPass() : FunctionPass(ID) { 2398 initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry()); 2399 } 2400 2401 bool runOnFunction(Function &F) override { 2402 if (skipFunction(F)) 2403 return false; 2404 2405 FunctionAnalysisManager DummyFAM; 2406 auto PA = Impl.run(F, DummyFAM); 2407 return !PA.areAllPreserved(); 2408 } 2409 2410 void getAnalysisUsage(AnalysisUsage &AU) const override { 2411 AU.setPreservesCFG(); 2412 AU.addPreserved<GlobalsAAWrapperPass>(); 2413 } 2414 }; 2415 2416 } // end anonymous namespace 2417 2418 char ReassociateLegacyPass::ID = 0; 2419 2420 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate", 2421 "Reassociate expressions", false, false) 2422 2423 // Public interface to the Reassociate pass 2424 FunctionPass *llvm::createReassociatePass() { 2425 return new ReassociateLegacyPass(); 2426 } 2427