1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass reassociates commutative expressions in an order that is designed 11 // to promote better constant propagation, GCSE, LICM, PRE, etc. 12 // 13 // For example: 4 + (x + 5) -> x + (4 + 5) 14 // 15 // In the implementation of this algorithm, constants are assigned rank = 0, 16 // function arguments are rank = 1, and other values are assigned ranks 17 // corresponding to the reverse post order traversal of current function 18 // (starting at 2), which effectively gives values in deep loops higher rank 19 // than values not in loops. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/Transforms/Scalar/Reassociate.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/PostOrderIterator.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/Analysis/GlobalsModRef.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/PatternMatch.h" 39 #include "llvm/IR/ValueHandle.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Scalar.h" 44 #include "llvm/Transforms/Utils/Local.h" 45 #include <algorithm> 46 using namespace llvm; 47 using namespace reassociate; 48 49 #define DEBUG_TYPE "reassociate" 50 51 STATISTIC(NumChanged, "Number of insts reassociated"); 52 STATISTIC(NumAnnihil, "Number of expr tree annihilated"); 53 STATISTIC(NumFactor , "Number of multiplies factored"); 54 55 #ifndef NDEBUG 56 /// Print out the expression identified in the Ops list. 57 /// 58 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) { 59 Module *M = I->getModule(); 60 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " " 61 << *Ops[0].Op->getType() << '\t'; 62 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 63 dbgs() << "[ "; 64 Ops[i].Op->printAsOperand(dbgs(), false, M); 65 dbgs() << ", #" << Ops[i].Rank << "] "; 66 } 67 } 68 #endif 69 70 /// Utility class representing a non-constant Xor-operand. We classify 71 /// non-constant Xor-Operands into two categories: 72 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0 73 /// C2) 74 /// C2.1) The operand is in the form of "X | C", where C is a non-zero 75 /// constant. 76 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this 77 /// operand as "E | 0" 78 class llvm::reassociate::XorOpnd { 79 public: 80 XorOpnd(Value *V); 81 82 bool isInvalid() const { return SymbolicPart == nullptr; } 83 bool isOrExpr() const { return isOr; } 84 Value *getValue() const { return OrigVal; } 85 Value *getSymbolicPart() const { return SymbolicPart; } 86 unsigned getSymbolicRank() const { return SymbolicRank; } 87 const APInt &getConstPart() const { return ConstPart; } 88 89 void Invalidate() { SymbolicPart = OrigVal = nullptr; } 90 void setSymbolicRank(unsigned R) { SymbolicRank = R; } 91 92 private: 93 Value *OrigVal; 94 Value *SymbolicPart; 95 APInt ConstPart; 96 unsigned SymbolicRank; 97 bool isOr; 98 }; 99 100 XorOpnd::XorOpnd(Value *V) { 101 assert(!isa<ConstantInt>(V) && "No ConstantInt"); 102 OrigVal = V; 103 Instruction *I = dyn_cast<Instruction>(V); 104 SymbolicRank = 0; 105 106 if (I && (I->getOpcode() == Instruction::Or || 107 I->getOpcode() == Instruction::And)) { 108 Value *V0 = I->getOperand(0); 109 Value *V1 = I->getOperand(1); 110 const APInt *C; 111 if (match(V0, PatternMatch::m_APInt(C))) 112 std::swap(V0, V1); 113 114 if (match(V1, PatternMatch::m_APInt(C))) { 115 ConstPart = *C; 116 SymbolicPart = V0; 117 isOr = (I->getOpcode() == Instruction::Or); 118 return; 119 } 120 } 121 122 // view the operand as "V | 0" 123 SymbolicPart = V; 124 ConstPart = APInt::getNullValue(V->getType()->getScalarSizeInBits()); 125 isOr = true; 126 } 127 128 /// Return true if V is an instruction of the specified opcode and if it 129 /// only has one use. 130 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) { 131 if (V->hasOneUse() && isa<Instruction>(V) && 132 cast<Instruction>(V)->getOpcode() == Opcode && 133 (!isa<FPMathOperator>(V) || 134 cast<Instruction>(V)->hasUnsafeAlgebra())) 135 return cast<BinaryOperator>(V); 136 return nullptr; 137 } 138 139 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1, 140 unsigned Opcode2) { 141 if (V->hasOneUse() && isa<Instruction>(V) && 142 (cast<Instruction>(V)->getOpcode() == Opcode1 || 143 cast<Instruction>(V)->getOpcode() == Opcode2) && 144 (!isa<FPMathOperator>(V) || 145 cast<Instruction>(V)->hasUnsafeAlgebra())) 146 return cast<BinaryOperator>(V); 147 return nullptr; 148 } 149 150 void ReassociatePass::BuildRankMap(Function &F, 151 ReversePostOrderTraversal<Function*> &RPOT) { 152 unsigned Rank = 2; 153 154 // Assign distinct ranks to function arguments. 155 for (auto &Arg : F.args()) { 156 ValueRankMap[&Arg] = ++Rank; 157 DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank 158 << "\n"); 159 } 160 161 // Traverse basic blocks in ReversePostOrder 162 for (BasicBlock *BB : RPOT) { 163 unsigned BBRank = RankMap[BB] = ++Rank << 16; 164 165 // Walk the basic block, adding precomputed ranks for any instructions that 166 // we cannot move. This ensures that the ranks for these instructions are 167 // all different in the block. 168 for (Instruction &I : *BB) 169 if (mayBeMemoryDependent(I)) 170 ValueRankMap[&I] = ++BBRank; 171 } 172 } 173 174 unsigned ReassociatePass::getRank(Value *V) { 175 Instruction *I = dyn_cast<Instruction>(V); 176 if (!I) { 177 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument. 178 return 0; // Otherwise it's a global or constant, rank 0. 179 } 180 181 if (unsigned Rank = ValueRankMap[I]) 182 return Rank; // Rank already known? 183 184 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that 185 // we can reassociate expressions for code motion! Since we do not recurse 186 // for PHI nodes, we cannot have infinite recursion here, because there 187 // cannot be loops in the value graph that do not go through PHI nodes. 188 unsigned Rank = 0, MaxRank = RankMap[I->getParent()]; 189 for (unsigned i = 0, e = I->getNumOperands(); 190 i != e && Rank != MaxRank; ++i) 191 Rank = std::max(Rank, getRank(I->getOperand(i))); 192 193 // If this is a not or neg instruction, do not count it for rank. This 194 // assures us that X and ~X will have the same rank. 195 if (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) && 196 !BinaryOperator::isFNeg(I)) 197 ++Rank; 198 199 DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n"); 200 201 return ValueRankMap[I] = Rank; 202 } 203 204 // Canonicalize constants to RHS. Otherwise, sort the operands by rank. 205 void ReassociatePass::canonicalizeOperands(Instruction *I) { 206 assert(isa<BinaryOperator>(I) && "Expected binary operator."); 207 assert(I->isCommutative() && "Expected commutative operator."); 208 209 Value *LHS = I->getOperand(0); 210 Value *RHS = I->getOperand(1); 211 if (LHS == RHS || isa<Constant>(RHS)) 212 return; 213 if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS)) 214 cast<BinaryOperator>(I)->swapOperands(); 215 } 216 217 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name, 218 Instruction *InsertBefore, Value *FlagsOp) { 219 if (S1->getType()->isIntOrIntVectorTy()) 220 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore); 221 else { 222 BinaryOperator *Res = 223 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore); 224 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 225 return Res; 226 } 227 } 228 229 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name, 230 Instruction *InsertBefore, Value *FlagsOp) { 231 if (S1->getType()->isIntOrIntVectorTy()) 232 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore); 233 else { 234 BinaryOperator *Res = 235 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore); 236 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 237 return Res; 238 } 239 } 240 241 static BinaryOperator *CreateNeg(Value *S1, const Twine &Name, 242 Instruction *InsertBefore, Value *FlagsOp) { 243 if (S1->getType()->isIntOrIntVectorTy()) 244 return BinaryOperator::CreateNeg(S1, Name, InsertBefore); 245 else { 246 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore); 247 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 248 return Res; 249 } 250 } 251 252 /// Replace 0-X with X*-1. 253 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) { 254 Type *Ty = Neg->getType(); 255 Constant *NegOne = Ty->isIntOrIntVectorTy() ? 256 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0); 257 258 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg); 259 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op. 260 Res->takeName(Neg); 261 Neg->replaceAllUsesWith(Res); 262 Res->setDebugLoc(Neg->getDebugLoc()); 263 return Res; 264 } 265 266 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael 267 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for 268 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic. 269 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every 270 /// even x in Bitwidth-bit arithmetic. 271 static unsigned CarmichaelShift(unsigned Bitwidth) { 272 if (Bitwidth < 3) 273 return Bitwidth - 1; 274 return Bitwidth - 2; 275 } 276 277 /// Add the extra weight 'RHS' to the existing weight 'LHS', 278 /// reducing the combined weight using any special properties of the operation. 279 /// The existing weight LHS represents the computation X op X op ... op X where 280 /// X occurs LHS times. The combined weight represents X op X op ... op X with 281 /// X occurring LHS + RHS times. If op is "Xor" for example then the combined 282 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even; 283 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second. 284 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) { 285 // If we were working with infinite precision arithmetic then the combined 286 // weight would be LHS + RHS. But we are using finite precision arithmetic, 287 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct 288 // for nilpotent operations and addition, but not for idempotent operations 289 // and multiplication), so it is important to correctly reduce the combined 290 // weight back into range if wrapping would be wrong. 291 292 // If RHS is zero then the weight didn't change. 293 if (RHS.isMinValue()) 294 return; 295 // If LHS is zero then the combined weight is RHS. 296 if (LHS.isMinValue()) { 297 LHS = RHS; 298 return; 299 } 300 // From this point on we know that neither LHS nor RHS is zero. 301 302 if (Instruction::isIdempotent(Opcode)) { 303 // Idempotent means X op X === X, so any non-zero weight is equivalent to a 304 // weight of 1. Keeping weights at zero or one also means that wrapping is 305 // not a problem. 306 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 307 return; // Return a weight of 1. 308 } 309 if (Instruction::isNilpotent(Opcode)) { 310 // Nilpotent means X op X === 0, so reduce weights modulo 2. 311 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 312 LHS = 0; // 1 + 1 === 0 modulo 2. 313 return; 314 } 315 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) { 316 // TODO: Reduce the weight by exploiting nsw/nuw? 317 LHS += RHS; 318 return; 319 } 320 321 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) && 322 "Unknown associative operation!"); 323 unsigned Bitwidth = LHS.getBitWidth(); 324 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth 325 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth 326 // bit number x, since either x is odd in which case x^CM = 1, or x is even in 327 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples 328 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth) 329 // which by a happy accident means that they can always be represented using 330 // Bitwidth bits. 331 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than 332 // the Carmichael number). 333 if (Bitwidth > 3) { 334 /// CM - The value of Carmichael's lambda function. 335 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth)); 336 // Any weight W >= Threshold can be replaced with W - CM. 337 APInt Threshold = CM + Bitwidth; 338 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!"); 339 // For Bitwidth 4 or more the following sum does not overflow. 340 LHS += RHS; 341 while (LHS.uge(Threshold)) 342 LHS -= CM; 343 } else { 344 // To avoid problems with overflow do everything the same as above but using 345 // a larger type. 346 unsigned CM = 1U << CarmichaelShift(Bitwidth); 347 unsigned Threshold = CM + Bitwidth; 348 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold && 349 "Weights not reduced!"); 350 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue(); 351 while (Total >= Threshold) 352 Total -= CM; 353 LHS = Total; 354 } 355 } 356 357 typedef std::pair<Value*, APInt> RepeatedValue; 358 359 /// Given an associative binary expression, return the leaf 360 /// nodes in Ops along with their weights (how many times the leaf occurs). The 361 /// original expression is the same as 362 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times 363 /// op 364 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times 365 /// op 366 /// ... 367 /// op 368 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times 369 /// 370 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct. 371 /// 372 /// This routine may modify the function, in which case it returns 'true'. The 373 /// changes it makes may well be destructive, changing the value computed by 'I' 374 /// to something completely different. Thus if the routine returns 'true' then 375 /// you MUST either replace I with a new expression computed from the Ops array, 376 /// or use RewriteExprTree to put the values back in. 377 /// 378 /// A leaf node is either not a binary operation of the same kind as the root 379 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different 380 /// opcode), or is the same kind of binary operator but has a use which either 381 /// does not belong to the expression, or does belong to the expression but is 382 /// a leaf node. Every leaf node has at least one use that is a non-leaf node 383 /// of the expression, while for non-leaf nodes (except for the root 'I') every 384 /// use is a non-leaf node of the expression. 385 /// 386 /// For example: 387 /// expression graph node names 388 /// 389 /// + | I 390 /// / \ | 391 /// + + | A, B 392 /// / \ / \ | 393 /// * + * | C, D, E 394 /// / \ / \ / \ | 395 /// + * | F, G 396 /// 397 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in 398 /// that order) (C, 1), (E, 1), (F, 2), (G, 2). 399 /// 400 /// The expression is maximal: if some instruction is a binary operator of the 401 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression, 402 /// then the instruction also belongs to the expression, is not a leaf node of 403 /// it, and its operands also belong to the expression (but may be leaf nodes). 404 /// 405 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in 406 /// order to ensure that every non-root node in the expression has *exactly one* 407 /// use by a non-leaf node of the expression. This destruction means that the 408 /// caller MUST either replace 'I' with a new expression or use something like 409 /// RewriteExprTree to put the values back in if the routine indicates that it 410 /// made a change by returning 'true'. 411 /// 412 /// In the above example either the right operand of A or the left operand of B 413 /// will be replaced by undef. If it is B's operand then this gives: 414 /// 415 /// + | I 416 /// / \ | 417 /// + + | A, B - operand of B replaced with undef 418 /// / \ \ | 419 /// * + * | C, D, E 420 /// / \ / \ / \ | 421 /// + * | F, G 422 /// 423 /// Note that such undef operands can only be reached by passing through 'I'. 424 /// For example, if you visit operands recursively starting from a leaf node 425 /// then you will never see such an undef operand unless you get back to 'I', 426 /// which requires passing through a phi node. 427 /// 428 /// Note that this routine may also mutate binary operators of the wrong type 429 /// that have all uses inside the expression (i.e. only used by non-leaf nodes 430 /// of the expression) if it can turn them into binary operators of the right 431 /// type and thus make the expression bigger. 432 433 static bool LinearizeExprTree(BinaryOperator *I, 434 SmallVectorImpl<RepeatedValue> &Ops) { 435 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n'); 436 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits(); 437 unsigned Opcode = I->getOpcode(); 438 assert(I->isAssociative() && I->isCommutative() && 439 "Expected an associative and commutative operation!"); 440 441 // Visit all operands of the expression, keeping track of their weight (the 442 // number of paths from the expression root to the operand, or if you like 443 // the number of times that operand occurs in the linearized expression). 444 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1 445 // while A has weight two. 446 447 // Worklist of non-leaf nodes (their operands are in the expression too) along 448 // with their weights, representing a certain number of paths to the operator. 449 // If an operator occurs in the worklist multiple times then we found multiple 450 // ways to get to it. 451 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight) 452 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1))); 453 bool Changed = false; 454 455 // Leaves of the expression are values that either aren't the right kind of 456 // operation (eg: a constant, or a multiply in an add tree), or are, but have 457 // some uses that are not inside the expression. For example, in I = X + X, 458 // X = A + B, the value X has two uses (by I) that are in the expression. If 459 // X has any other uses, for example in a return instruction, then we consider 460 // X to be a leaf, and won't analyze it further. When we first visit a value, 461 // if it has more than one use then at first we conservatively consider it to 462 // be a leaf. Later, as the expression is explored, we may discover some more 463 // uses of the value from inside the expression. If all uses turn out to be 464 // from within the expression (and the value is a binary operator of the right 465 // kind) then the value is no longer considered to be a leaf, and its operands 466 // are explored. 467 468 // Leaves - Keeps track of the set of putative leaves as well as the number of 469 // paths to each leaf seen so far. 470 typedef DenseMap<Value*, APInt> LeafMap; 471 LeafMap Leaves; // Leaf -> Total weight so far. 472 SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order. 473 474 #ifndef NDEBUG 475 SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme. 476 #endif 477 while (!Worklist.empty()) { 478 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val(); 479 I = P.first; // We examine the operands of this binary operator. 480 481 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands. 482 Value *Op = I->getOperand(OpIdx); 483 APInt Weight = P.second; // Number of paths to this operand. 484 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n"); 485 assert(!Op->use_empty() && "No uses, so how did we get to it?!"); 486 487 // If this is a binary operation of the right kind with only one use then 488 // add its operands to the expression. 489 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 490 assert(Visited.insert(Op).second && "Not first visit!"); 491 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n"); 492 Worklist.push_back(std::make_pair(BO, Weight)); 493 continue; 494 } 495 496 // Appears to be a leaf. Is the operand already in the set of leaves? 497 LeafMap::iterator It = Leaves.find(Op); 498 if (It == Leaves.end()) { 499 // Not in the leaf map. Must be the first time we saw this operand. 500 assert(Visited.insert(Op).second && "Not first visit!"); 501 if (!Op->hasOneUse()) { 502 // This value has uses not accounted for by the expression, so it is 503 // not safe to modify. Mark it as being a leaf. 504 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n"); 505 LeafOrder.push_back(Op); 506 Leaves[Op] = Weight; 507 continue; 508 } 509 // No uses outside the expression, try morphing it. 510 } else { 511 // Already in the leaf map. 512 assert(It != Leaves.end() && Visited.count(Op) && 513 "In leaf map but not visited!"); 514 515 // Update the number of paths to the leaf. 516 IncorporateWeight(It->second, Weight, Opcode); 517 518 #if 0 // TODO: Re-enable once PR13021 is fixed. 519 // The leaf already has one use from inside the expression. As we want 520 // exactly one such use, drop this new use of the leaf. 521 assert(!Op->hasOneUse() && "Only one use, but we got here twice!"); 522 I->setOperand(OpIdx, UndefValue::get(I->getType())); 523 Changed = true; 524 525 // If the leaf is a binary operation of the right kind and we now see 526 // that its multiple original uses were in fact all by nodes belonging 527 // to the expression, then no longer consider it to be a leaf and add 528 // its operands to the expression. 529 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 530 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n"); 531 Worklist.push_back(std::make_pair(BO, It->second)); 532 Leaves.erase(It); 533 continue; 534 } 535 #endif 536 537 // If we still have uses that are not accounted for by the expression 538 // then it is not safe to modify the value. 539 if (!Op->hasOneUse()) 540 continue; 541 542 // No uses outside the expression, try morphing it. 543 Weight = It->second; 544 Leaves.erase(It); // Since the value may be morphed below. 545 } 546 547 // At this point we have a value which, first of all, is not a binary 548 // expression of the right kind, and secondly, is only used inside the 549 // expression. This means that it can safely be modified. See if we 550 // can usefully morph it into an expression of the right kind. 551 assert((!isa<Instruction>(Op) || 552 cast<Instruction>(Op)->getOpcode() != Opcode 553 || (isa<FPMathOperator>(Op) && 554 !cast<Instruction>(Op)->hasUnsafeAlgebra())) && 555 "Should have been handled above!"); 556 assert(Op->hasOneUse() && "Has uses outside the expression tree!"); 557 558 // If this is a multiply expression, turn any internal negations into 559 // multiplies by -1 so they can be reassociated. 560 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) 561 if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) || 562 (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) { 563 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO "); 564 BO = LowerNegateToMultiply(BO); 565 DEBUG(dbgs() << *BO << '\n'); 566 Worklist.push_back(std::make_pair(BO, Weight)); 567 Changed = true; 568 continue; 569 } 570 571 // Failed to morph into an expression of the right type. This really is 572 // a leaf. 573 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n"); 574 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?"); 575 LeafOrder.push_back(Op); 576 Leaves[Op] = Weight; 577 } 578 } 579 580 // The leaves, repeated according to their weights, represent the linearized 581 // form of the expression. 582 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) { 583 Value *V = LeafOrder[i]; 584 LeafMap::iterator It = Leaves.find(V); 585 if (It == Leaves.end()) 586 // Node initially thought to be a leaf wasn't. 587 continue; 588 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!"); 589 APInt Weight = It->second; 590 if (Weight.isMinValue()) 591 // Leaf already output or weight reduction eliminated it. 592 continue; 593 // Ensure the leaf is only output once. 594 It->second = 0; 595 Ops.push_back(std::make_pair(V, Weight)); 596 } 597 598 // For nilpotent operations or addition there may be no operands, for example 599 // because the expression was "X xor X" or consisted of 2^Bitwidth additions: 600 // in both cases the weight reduces to 0 causing the value to be skipped. 601 if (Ops.empty()) { 602 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType()); 603 assert(Identity && "Associative operation without identity!"); 604 Ops.emplace_back(Identity, APInt(Bitwidth, 1)); 605 } 606 607 return Changed; 608 } 609 610 /// Now that the operands for this expression tree are 611 /// linearized and optimized, emit them in-order. 612 void ReassociatePass::RewriteExprTree(BinaryOperator *I, 613 SmallVectorImpl<ValueEntry> &Ops) { 614 assert(Ops.size() > 1 && "Single values should be used directly!"); 615 616 // Since our optimizations should never increase the number of operations, the 617 // new expression can usually be written reusing the existing binary operators 618 // from the original expression tree, without creating any new instructions, 619 // though the rewritten expression may have a completely different topology. 620 // We take care to not change anything if the new expression will be the same 621 // as the original. If more than trivial changes (like commuting operands) 622 // were made then we are obliged to clear out any optional subclass data like 623 // nsw flags. 624 625 /// NodesToRewrite - Nodes from the original expression available for writing 626 /// the new expression into. 627 SmallVector<BinaryOperator*, 8> NodesToRewrite; 628 unsigned Opcode = I->getOpcode(); 629 BinaryOperator *Op = I; 630 631 /// NotRewritable - The operands being written will be the leaves of the new 632 /// expression and must not be used as inner nodes (via NodesToRewrite) by 633 /// mistake. Inner nodes are always reassociable, and usually leaves are not 634 /// (if they were they would have been incorporated into the expression and so 635 /// would not be leaves), so most of the time there is no danger of this. But 636 /// in rare cases a leaf may become reassociable if an optimization kills uses 637 /// of it, or it may momentarily become reassociable during rewriting (below) 638 /// due it being removed as an operand of one of its uses. Ensure that misuse 639 /// of leaf nodes as inner nodes cannot occur by remembering all of the future 640 /// leaves and refusing to reuse any of them as inner nodes. 641 SmallPtrSet<Value*, 8> NotRewritable; 642 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 643 NotRewritable.insert(Ops[i].Op); 644 645 // ExpressionChanged - Non-null if the rewritten expression differs from the 646 // original in some non-trivial way, requiring the clearing of optional flags. 647 // Flags are cleared from the operator in ExpressionChanged up to I inclusive. 648 BinaryOperator *ExpressionChanged = nullptr; 649 for (unsigned i = 0; ; ++i) { 650 // The last operation (which comes earliest in the IR) is special as both 651 // operands will come from Ops, rather than just one with the other being 652 // a subexpression. 653 if (i+2 == Ops.size()) { 654 Value *NewLHS = Ops[i].Op; 655 Value *NewRHS = Ops[i+1].Op; 656 Value *OldLHS = Op->getOperand(0); 657 Value *OldRHS = Op->getOperand(1); 658 659 if (NewLHS == OldLHS && NewRHS == OldRHS) 660 // Nothing changed, leave it alone. 661 break; 662 663 if (NewLHS == OldRHS && NewRHS == OldLHS) { 664 // The order of the operands was reversed. Swap them. 665 DEBUG(dbgs() << "RA: " << *Op << '\n'); 666 Op->swapOperands(); 667 DEBUG(dbgs() << "TO: " << *Op << '\n'); 668 MadeChange = true; 669 ++NumChanged; 670 break; 671 } 672 673 // The new operation differs non-trivially from the original. Overwrite 674 // the old operands with the new ones. 675 DEBUG(dbgs() << "RA: " << *Op << '\n'); 676 if (NewLHS != OldLHS) { 677 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode); 678 if (BO && !NotRewritable.count(BO)) 679 NodesToRewrite.push_back(BO); 680 Op->setOperand(0, NewLHS); 681 } 682 if (NewRHS != OldRHS) { 683 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode); 684 if (BO && !NotRewritable.count(BO)) 685 NodesToRewrite.push_back(BO); 686 Op->setOperand(1, NewRHS); 687 } 688 DEBUG(dbgs() << "TO: " << *Op << '\n'); 689 690 ExpressionChanged = Op; 691 MadeChange = true; 692 ++NumChanged; 693 694 break; 695 } 696 697 // Not the last operation. The left-hand side will be a sub-expression 698 // while the right-hand side will be the current element of Ops. 699 Value *NewRHS = Ops[i].Op; 700 if (NewRHS != Op->getOperand(1)) { 701 DEBUG(dbgs() << "RA: " << *Op << '\n'); 702 if (NewRHS == Op->getOperand(0)) { 703 // The new right-hand side was already present as the left operand. If 704 // we are lucky then swapping the operands will sort out both of them. 705 Op->swapOperands(); 706 } else { 707 // Overwrite with the new right-hand side. 708 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode); 709 if (BO && !NotRewritable.count(BO)) 710 NodesToRewrite.push_back(BO); 711 Op->setOperand(1, NewRHS); 712 ExpressionChanged = Op; 713 } 714 DEBUG(dbgs() << "TO: " << *Op << '\n'); 715 MadeChange = true; 716 ++NumChanged; 717 } 718 719 // Now deal with the left-hand side. If this is already an operation node 720 // from the original expression then just rewrite the rest of the expression 721 // into it. 722 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode); 723 if (BO && !NotRewritable.count(BO)) { 724 Op = BO; 725 continue; 726 } 727 728 // Otherwise, grab a spare node from the original expression and use that as 729 // the left-hand side. If there are no nodes left then the optimizers made 730 // an expression with more nodes than the original! This usually means that 731 // they did something stupid but it might mean that the problem was just too 732 // hard (finding the mimimal number of multiplications needed to realize a 733 // multiplication expression is NP-complete). Whatever the reason, smart or 734 // stupid, create a new node if there are none left. 735 BinaryOperator *NewOp; 736 if (NodesToRewrite.empty()) { 737 Constant *Undef = UndefValue::get(I->getType()); 738 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode), 739 Undef, Undef, "", I); 740 if (NewOp->getType()->isFPOrFPVectorTy()) 741 NewOp->setFastMathFlags(I->getFastMathFlags()); 742 } else { 743 NewOp = NodesToRewrite.pop_back_val(); 744 } 745 746 DEBUG(dbgs() << "RA: " << *Op << '\n'); 747 Op->setOperand(0, NewOp); 748 DEBUG(dbgs() << "TO: " << *Op << '\n'); 749 ExpressionChanged = Op; 750 MadeChange = true; 751 ++NumChanged; 752 Op = NewOp; 753 } 754 755 // If the expression changed non-trivially then clear out all subclass data 756 // starting from the operator specified in ExpressionChanged, and compactify 757 // the operators to just before the expression root to guarantee that the 758 // expression tree is dominated by all of Ops. 759 if (ExpressionChanged) 760 do { 761 // Preserve FastMathFlags. 762 if (isa<FPMathOperator>(I)) { 763 FastMathFlags Flags = I->getFastMathFlags(); 764 ExpressionChanged->clearSubclassOptionalData(); 765 ExpressionChanged->setFastMathFlags(Flags); 766 } else 767 ExpressionChanged->clearSubclassOptionalData(); 768 769 if (ExpressionChanged == I) 770 break; 771 ExpressionChanged->moveBefore(I); 772 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin()); 773 } while (1); 774 775 // Throw away any left over nodes from the original expression. 776 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i) 777 RedoInsts.insert(NodesToRewrite[i]); 778 } 779 780 /// Insert instructions before the instruction pointed to by BI, 781 /// that computes the negative version of the value specified. The negative 782 /// version of the value is returned, and BI is left pointing at the instruction 783 /// that should be processed next by the reassociation pass. 784 /// Also add intermediate instructions to the redo list that are modified while 785 /// pushing the negates through adds. These will be revisited to see if 786 /// additional opportunities have been exposed. 787 static Value *NegateValue(Value *V, Instruction *BI, 788 SetVector<AssertingVH<Instruction>> &ToRedo) { 789 if (Constant *C = dyn_cast<Constant>(V)) { 790 if (C->getType()->isFPOrFPVectorTy()) { 791 return ConstantExpr::getFNeg(C); 792 } 793 return ConstantExpr::getNeg(C); 794 } 795 796 797 // We are trying to expose opportunity for reassociation. One of the things 798 // that we want to do to achieve this is to push a negation as deep into an 799 // expression chain as possible, to expose the add instructions. In practice, 800 // this means that we turn this: 801 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D 802 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate 803 // the constants. We assume that instcombine will clean up the mess later if 804 // we introduce tons of unnecessary negation instructions. 805 // 806 if (BinaryOperator *I = 807 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) { 808 // Push the negates through the add. 809 I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo)); 810 I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo)); 811 if (I->getOpcode() == Instruction::Add) { 812 I->setHasNoUnsignedWrap(false); 813 I->setHasNoSignedWrap(false); 814 } 815 816 // We must move the add instruction here, because the neg instructions do 817 // not dominate the old add instruction in general. By moving it, we are 818 // assured that the neg instructions we just inserted dominate the 819 // instruction we are about to insert after them. 820 // 821 I->moveBefore(BI); 822 I->setName(I->getName()+".neg"); 823 824 // Add the intermediate negates to the redo list as processing them later 825 // could expose more reassociating opportunities. 826 ToRedo.insert(I); 827 return I; 828 } 829 830 // Okay, we need to materialize a negated version of V with an instruction. 831 // Scan the use lists of V to see if we have one already. 832 for (User *U : V->users()) { 833 if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U)) 834 continue; 835 836 // We found one! Now we have to make sure that the definition dominates 837 // this use. We do this by moving it to the entry block (if it is a 838 // non-instruction value) or right after the definition. These negates will 839 // be zapped by reassociate later, so we don't need much finesse here. 840 BinaryOperator *TheNeg = cast<BinaryOperator>(U); 841 842 // Verify that the negate is in this function, V might be a constant expr. 843 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent()) 844 continue; 845 846 BasicBlock::iterator InsertPt; 847 if (Instruction *InstInput = dyn_cast<Instruction>(V)) { 848 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) { 849 InsertPt = II->getNormalDest()->begin(); 850 } else { 851 InsertPt = ++InstInput->getIterator(); 852 } 853 while (isa<PHINode>(InsertPt)) ++InsertPt; 854 } else { 855 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin(); 856 } 857 TheNeg->moveBefore(&*InsertPt); 858 if (TheNeg->getOpcode() == Instruction::Sub) { 859 TheNeg->setHasNoUnsignedWrap(false); 860 TheNeg->setHasNoSignedWrap(false); 861 } else { 862 TheNeg->andIRFlags(BI); 863 } 864 ToRedo.insert(TheNeg); 865 return TheNeg; 866 } 867 868 // Insert a 'neg' instruction that subtracts the value from zero to get the 869 // negation. 870 BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI); 871 ToRedo.insert(NewNeg); 872 return NewNeg; 873 } 874 875 /// Return true if we should break up this subtract of X-Y into (X + -Y). 876 static bool ShouldBreakUpSubtract(Instruction *Sub) { 877 // If this is a negation, we can't split it up! 878 if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub)) 879 return false; 880 881 // Don't breakup X - undef. 882 if (isa<UndefValue>(Sub->getOperand(1))) 883 return false; 884 885 // Don't bother to break this up unless either the LHS is an associable add or 886 // subtract or if this is only used by one. 887 Value *V0 = Sub->getOperand(0); 888 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) || 889 isReassociableOp(V0, Instruction::Sub, Instruction::FSub)) 890 return true; 891 Value *V1 = Sub->getOperand(1); 892 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) || 893 isReassociableOp(V1, Instruction::Sub, Instruction::FSub)) 894 return true; 895 Value *VB = Sub->user_back(); 896 if (Sub->hasOneUse() && 897 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) || 898 isReassociableOp(VB, Instruction::Sub, Instruction::FSub))) 899 return true; 900 901 return false; 902 } 903 904 /// If we have (X-Y), and if either X is an add, or if this is only used by an 905 /// add, transform this into (X+(0-Y)) to promote better reassociation. 906 static BinaryOperator * 907 BreakUpSubtract(Instruction *Sub, SetVector<AssertingVH<Instruction>> &ToRedo) { 908 // Convert a subtract into an add and a neg instruction. This allows sub 909 // instructions to be commuted with other add instructions. 910 // 911 // Calculate the negative value of Operand 1 of the sub instruction, 912 // and set it as the RHS of the add instruction we just made. 913 // 914 Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo); 915 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub); 916 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op. 917 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op. 918 New->takeName(Sub); 919 920 // Everyone now refers to the add instruction. 921 Sub->replaceAllUsesWith(New); 922 New->setDebugLoc(Sub->getDebugLoc()); 923 924 DEBUG(dbgs() << "Negated: " << *New << '\n'); 925 return New; 926 } 927 928 /// If this is a shift of a reassociable multiply or is used by one, change 929 /// this into a multiply by a constant to assist with further reassociation. 930 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) { 931 Constant *MulCst = ConstantInt::get(Shl->getType(), 1); 932 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1))); 933 934 BinaryOperator *Mul = 935 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl); 936 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op. 937 Mul->takeName(Shl); 938 939 // Everyone now refers to the mul instruction. 940 Shl->replaceAllUsesWith(Mul); 941 Mul->setDebugLoc(Shl->getDebugLoc()); 942 943 // We can safely preserve the nuw flag in all cases. It's also safe to turn a 944 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special 945 // handling. 946 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap(); 947 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap(); 948 if (NSW && NUW) 949 Mul->setHasNoSignedWrap(true); 950 Mul->setHasNoUnsignedWrap(NUW); 951 return Mul; 952 } 953 954 /// Scan backwards and forwards among values with the same rank as element i 955 /// to see if X exists. If X does not exist, return i. This is useful when 956 /// scanning for 'x' when we see '-x' because they both get the same rank. 957 static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops, 958 unsigned i, Value *X) { 959 unsigned XRank = Ops[i].Rank; 960 unsigned e = Ops.size(); 961 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) { 962 if (Ops[j].Op == X) 963 return j; 964 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 965 if (Instruction *I2 = dyn_cast<Instruction>(X)) 966 if (I1->isIdenticalTo(I2)) 967 return j; 968 } 969 // Scan backwards. 970 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) { 971 if (Ops[j].Op == X) 972 return j; 973 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 974 if (Instruction *I2 = dyn_cast<Instruction>(X)) 975 if (I1->isIdenticalTo(I2)) 976 return j; 977 } 978 return i; 979 } 980 981 /// Emit a tree of add instructions, summing Ops together 982 /// and returning the result. Insert the tree before I. 983 static Value *EmitAddTreeOfValues(Instruction *I, 984 SmallVectorImpl<WeakTrackingVH> &Ops) { 985 if (Ops.size() == 1) return Ops.back(); 986 987 Value *V1 = Ops.back(); 988 Ops.pop_back(); 989 Value *V2 = EmitAddTreeOfValues(I, Ops); 990 return CreateAdd(V2, V1, "tmp", I, I); 991 } 992 993 /// If V is an expression tree that is a multiplication sequence, 994 /// and if this sequence contains a multiply by Factor, 995 /// remove Factor from the tree and return the new tree. 996 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) { 997 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 998 if (!BO) 999 return nullptr; 1000 1001 SmallVector<RepeatedValue, 8> Tree; 1002 MadeChange |= LinearizeExprTree(BO, Tree); 1003 SmallVector<ValueEntry, 8> Factors; 1004 Factors.reserve(Tree.size()); 1005 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 1006 RepeatedValue E = Tree[i]; 1007 Factors.append(E.second.getZExtValue(), 1008 ValueEntry(getRank(E.first), E.first)); 1009 } 1010 1011 bool FoundFactor = false; 1012 bool NeedsNegate = false; 1013 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1014 if (Factors[i].Op == Factor) { 1015 FoundFactor = true; 1016 Factors.erase(Factors.begin()+i); 1017 break; 1018 } 1019 1020 // If this is a negative version of this factor, remove it. 1021 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) { 1022 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op)) 1023 if (FC1->getValue() == -FC2->getValue()) { 1024 FoundFactor = NeedsNegate = true; 1025 Factors.erase(Factors.begin()+i); 1026 break; 1027 } 1028 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) { 1029 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) { 1030 const APFloat &F1 = FC1->getValueAPF(); 1031 APFloat F2(FC2->getValueAPF()); 1032 F2.changeSign(); 1033 if (F1.compare(F2) == APFloat::cmpEqual) { 1034 FoundFactor = NeedsNegate = true; 1035 Factors.erase(Factors.begin() + i); 1036 break; 1037 } 1038 } 1039 } 1040 } 1041 1042 if (!FoundFactor) { 1043 // Make sure to restore the operands to the expression tree. 1044 RewriteExprTree(BO, Factors); 1045 return nullptr; 1046 } 1047 1048 BasicBlock::iterator InsertPt = ++BO->getIterator(); 1049 1050 // If this was just a single multiply, remove the multiply and return the only 1051 // remaining operand. 1052 if (Factors.size() == 1) { 1053 RedoInsts.insert(BO); 1054 V = Factors[0].Op; 1055 } else { 1056 RewriteExprTree(BO, Factors); 1057 V = BO; 1058 } 1059 1060 if (NeedsNegate) 1061 V = CreateNeg(V, "neg", &*InsertPt, BO); 1062 1063 return V; 1064 } 1065 1066 /// If V is a single-use multiply, recursively add its operands as factors, 1067 /// otherwise add V to the list of factors. 1068 /// 1069 /// Ops is the top-level list of add operands we're trying to factor. 1070 static void FindSingleUseMultiplyFactors(Value *V, 1071 SmallVectorImpl<Value*> &Factors) { 1072 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1073 if (!BO) { 1074 Factors.push_back(V); 1075 return; 1076 } 1077 1078 // Otherwise, add the LHS and RHS to the list of factors. 1079 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors); 1080 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors); 1081 } 1082 1083 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction. 1084 /// This optimizes based on identities. If it can be reduced to a single Value, 1085 /// it is returned, otherwise the Ops list is mutated as necessary. 1086 static Value *OptimizeAndOrXor(unsigned Opcode, 1087 SmallVectorImpl<ValueEntry> &Ops) { 1088 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs. 1089 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1. 1090 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1091 // First, check for X and ~X in the operand list. 1092 assert(i < Ops.size()); 1093 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^. 1094 Value *X = BinaryOperator::getNotArgument(Ops[i].Op); 1095 unsigned FoundX = FindInOperandList(Ops, i, X); 1096 if (FoundX != i) { 1097 if (Opcode == Instruction::And) // ...&X&~X = 0 1098 return Constant::getNullValue(X->getType()); 1099 1100 if (Opcode == Instruction::Or) // ...|X|~X = -1 1101 return Constant::getAllOnesValue(X->getType()); 1102 } 1103 } 1104 1105 // Next, check for duplicate pairs of values, which we assume are next to 1106 // each other, due to our sorting criteria. 1107 assert(i < Ops.size()); 1108 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) { 1109 if (Opcode == Instruction::And || Opcode == Instruction::Or) { 1110 // Drop duplicate values for And and Or. 1111 Ops.erase(Ops.begin()+i); 1112 --i; --e; 1113 ++NumAnnihil; 1114 continue; 1115 } 1116 1117 // Drop pairs of values for Xor. 1118 assert(Opcode == Instruction::Xor); 1119 if (e == 2) 1120 return Constant::getNullValue(Ops[0].Op->getType()); 1121 1122 // Y ^ X^X -> Y 1123 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1124 i -= 1; e -= 2; 1125 ++NumAnnihil; 1126 } 1127 } 1128 return nullptr; 1129 } 1130 1131 /// Helper function of CombineXorOpnd(). It creates a bitwise-and 1132 /// instruction with the given two operands, and return the resulting 1133 /// instruction. There are two special cases: 1) if the constant operand is 0, 1134 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will 1135 /// be returned. 1136 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd, 1137 const APInt &ConstOpnd) { 1138 if (ConstOpnd.isNullValue()) 1139 return nullptr; 1140 1141 if (ConstOpnd.isAllOnesValue()) 1142 return Opnd; 1143 1144 Instruction *I = BinaryOperator::CreateAnd( 1145 Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra", 1146 InsertBefore); 1147 I->setDebugLoc(InsertBefore->getDebugLoc()); 1148 return I; 1149 } 1150 1151 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd" 1152 // into "R ^ C", where C would be 0, and R is a symbolic value. 1153 // 1154 // If it was successful, true is returned, and the "R" and "C" is returned 1155 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned, 1156 // and both "Res" and "ConstOpnd" remain unchanged. 1157 // 1158 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1159 APInt &ConstOpnd, Value *&Res) { 1160 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2 1161 // = ((x | c1) ^ c1) ^ (c1 ^ c2) 1162 // = (x & ~c1) ^ (c1 ^ c2) 1163 // It is useful only when c1 == c2. 1164 if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isNullValue()) 1165 return false; 1166 1167 if (!Opnd1->getValue()->hasOneUse()) 1168 return false; 1169 1170 const APInt &C1 = Opnd1->getConstPart(); 1171 if (C1 != ConstOpnd) 1172 return false; 1173 1174 Value *X = Opnd1->getSymbolicPart(); 1175 Res = createAndInstr(I, X, ~C1); 1176 // ConstOpnd was C2, now C1 ^ C2. 1177 ConstOpnd ^= C1; 1178 1179 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1180 RedoInsts.insert(T); 1181 return true; 1182 } 1183 1184 1185 // Helper function of OptimizeXor(). It tries to simplify 1186 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a 1187 // symbolic value. 1188 // 1189 // If it was successful, true is returned, and the "R" and "C" is returned 1190 // via "Res" and "ConstOpnd", respectively (If the entire expression is 1191 // evaluated to a constant, the Res is set to NULL); otherwise, false is 1192 // returned, and both "Res" and "ConstOpnd" remain unchanged. 1193 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1194 XorOpnd *Opnd2, APInt &ConstOpnd, 1195 Value *&Res) { 1196 Value *X = Opnd1->getSymbolicPart(); 1197 if (X != Opnd2->getSymbolicPart()) 1198 return false; 1199 1200 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.) 1201 int DeadInstNum = 1; 1202 if (Opnd1->getValue()->hasOneUse()) 1203 DeadInstNum++; 1204 if (Opnd2->getValue()->hasOneUse()) 1205 DeadInstNum++; 1206 1207 // Xor-Rule 2: 1208 // (x | c1) ^ (x & c2) 1209 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1 1210 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1 1211 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3 1212 // 1213 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) { 1214 if (Opnd2->isOrExpr()) 1215 std::swap(Opnd1, Opnd2); 1216 1217 const APInt &C1 = Opnd1->getConstPart(); 1218 const APInt &C2 = Opnd2->getConstPart(); 1219 APInt C3((~C1) ^ C2); 1220 1221 // Do not increase code size! 1222 if (!C3.isNullValue() && !C3.isAllOnesValue()) { 1223 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2; 1224 if (NewInstNum > DeadInstNum) 1225 return false; 1226 } 1227 1228 Res = createAndInstr(I, X, C3); 1229 ConstOpnd ^= C1; 1230 1231 } else if (Opnd1->isOrExpr()) { 1232 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2 1233 // 1234 const APInt &C1 = Opnd1->getConstPart(); 1235 const APInt &C2 = Opnd2->getConstPart(); 1236 APInt C3 = C1 ^ C2; 1237 1238 // Do not increase code size 1239 if (!C3.isNullValue() && !C3.isAllOnesValue()) { 1240 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2; 1241 if (NewInstNum > DeadInstNum) 1242 return false; 1243 } 1244 1245 Res = createAndInstr(I, X, C3); 1246 ConstOpnd ^= C3; 1247 } else { 1248 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2)) 1249 // 1250 const APInt &C1 = Opnd1->getConstPart(); 1251 const APInt &C2 = Opnd2->getConstPart(); 1252 APInt C3 = C1 ^ C2; 1253 Res = createAndInstr(I, X, C3); 1254 } 1255 1256 // Put the original operands in the Redo list; hope they will be deleted 1257 // as dead code. 1258 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1259 RedoInsts.insert(T); 1260 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue())) 1261 RedoInsts.insert(T); 1262 1263 return true; 1264 } 1265 1266 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced 1267 /// to a single Value, it is returned, otherwise the Ops list is mutated as 1268 /// necessary. 1269 Value *ReassociatePass::OptimizeXor(Instruction *I, 1270 SmallVectorImpl<ValueEntry> &Ops) { 1271 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops)) 1272 return V; 1273 1274 if (Ops.size() == 1) 1275 return nullptr; 1276 1277 SmallVector<XorOpnd, 8> Opnds; 1278 SmallVector<XorOpnd*, 8> OpndPtrs; 1279 Type *Ty = Ops[0].Op->getType(); 1280 APInt ConstOpnd(Ty->getScalarSizeInBits(), 0); 1281 1282 // Step 1: Convert ValueEntry to XorOpnd 1283 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1284 Value *V = Ops[i].Op; 1285 const APInt *C; 1286 // TODO: Support non-splat vectors. 1287 if (match(V, PatternMatch::m_APInt(C))) { 1288 ConstOpnd ^= *C; 1289 } else { 1290 XorOpnd O(V); 1291 O.setSymbolicRank(getRank(O.getSymbolicPart())); 1292 Opnds.push_back(O); 1293 } 1294 } 1295 1296 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds". 1297 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate 1298 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop 1299 // with the previous loop --- the iterator of the "Opnds" may be invalidated 1300 // when new elements are added to the vector. 1301 for (unsigned i = 0, e = Opnds.size(); i != e; ++i) 1302 OpndPtrs.push_back(&Opnds[i]); 1303 1304 // Step 2: Sort the Xor-Operands in a way such that the operands containing 1305 // the same symbolic value cluster together. For instance, the input operand 1306 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into: 1307 // ("x | 123", "x & 789", "y & 456"). 1308 // 1309 // The purpose is twofold: 1310 // 1) Cluster together the operands sharing the same symbolic-value. 1311 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which 1312 // could potentially shorten crital path, and expose more loop-invariants. 1313 // Note that values' rank are basically defined in RPO order (FIXME). 1314 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier 1315 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2", 1316 // "z" in the order of X-Y-Z is better than any other orders. 1317 std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), 1318 [](XorOpnd *LHS, XorOpnd *RHS) { 1319 return LHS->getSymbolicRank() < RHS->getSymbolicRank(); 1320 }); 1321 1322 // Step 3: Combine adjacent operands 1323 XorOpnd *PrevOpnd = nullptr; 1324 bool Changed = false; 1325 for (unsigned i = 0, e = Opnds.size(); i < e; i++) { 1326 XorOpnd *CurrOpnd = OpndPtrs[i]; 1327 // The combined value 1328 Value *CV; 1329 1330 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd" 1331 if (!ConstOpnd.isNullValue() && 1332 CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) { 1333 Changed = true; 1334 if (CV) 1335 *CurrOpnd = XorOpnd(CV); 1336 else { 1337 CurrOpnd->Invalidate(); 1338 continue; 1339 } 1340 } 1341 1342 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) { 1343 PrevOpnd = CurrOpnd; 1344 continue; 1345 } 1346 1347 // step 3.2: When previous and current operands share the same symbolic 1348 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd" 1349 // 1350 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) { 1351 // Remove previous operand 1352 PrevOpnd->Invalidate(); 1353 if (CV) { 1354 *CurrOpnd = XorOpnd(CV); 1355 PrevOpnd = CurrOpnd; 1356 } else { 1357 CurrOpnd->Invalidate(); 1358 PrevOpnd = nullptr; 1359 } 1360 Changed = true; 1361 } 1362 } 1363 1364 // Step 4: Reassemble the Ops 1365 if (Changed) { 1366 Ops.clear(); 1367 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) { 1368 XorOpnd &O = Opnds[i]; 1369 if (O.isInvalid()) 1370 continue; 1371 ValueEntry VE(getRank(O.getValue()), O.getValue()); 1372 Ops.push_back(VE); 1373 } 1374 if (!ConstOpnd.isNullValue()) { 1375 Value *C = ConstantInt::get(Ty, ConstOpnd); 1376 ValueEntry VE(getRank(C), C); 1377 Ops.push_back(VE); 1378 } 1379 unsigned Sz = Ops.size(); 1380 if (Sz == 1) 1381 return Ops.back().Op; 1382 if (Sz == 0) { 1383 assert(ConstOpnd.isNullValue()); 1384 return ConstantInt::get(Ty, ConstOpnd); 1385 } 1386 } 1387 1388 return nullptr; 1389 } 1390 1391 /// Optimize a series of operands to an 'add' instruction. This 1392 /// optimizes based on identities. If it can be reduced to a single Value, it 1393 /// is returned, otherwise the Ops list is mutated as necessary. 1394 Value *ReassociatePass::OptimizeAdd(Instruction *I, 1395 SmallVectorImpl<ValueEntry> &Ops) { 1396 // Scan the operand lists looking for X and -X pairs. If we find any, we 1397 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it, 1398 // scan for any 1399 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z. 1400 1401 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1402 Value *TheOp = Ops[i].Op; 1403 // Check to see if we've seen this operand before. If so, we factor all 1404 // instances of the operand together. Due to our sorting criteria, we know 1405 // that these need to be next to each other in the vector. 1406 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) { 1407 // Rescan the list, remove all instances of this operand from the expr. 1408 unsigned NumFound = 0; 1409 do { 1410 Ops.erase(Ops.begin()+i); 1411 ++NumFound; 1412 } while (i != Ops.size() && Ops[i].Op == TheOp); 1413 1414 DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n'); 1415 ++NumFactor; 1416 1417 // Insert a new multiply. 1418 Type *Ty = TheOp->getType(); 1419 Constant *C = Ty->isIntOrIntVectorTy() ? 1420 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound); 1421 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I); 1422 1423 // Now that we have inserted a multiply, optimize it. This allows us to 1424 // handle cases that require multiple factoring steps, such as this: 1425 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6 1426 RedoInsts.insert(Mul); 1427 1428 // If every add operand was a duplicate, return the multiply. 1429 if (Ops.empty()) 1430 return Mul; 1431 1432 // Otherwise, we had some input that didn't have the dupe, such as 1433 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of 1434 // things being added by this operation. 1435 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul)); 1436 1437 --i; 1438 e = Ops.size(); 1439 continue; 1440 } 1441 1442 // Check for X and -X or X and ~X in the operand list. 1443 if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) && 1444 !BinaryOperator::isNot(TheOp)) 1445 continue; 1446 1447 Value *X = nullptr; 1448 if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)) 1449 X = BinaryOperator::getNegArgument(TheOp); 1450 else if (BinaryOperator::isNot(TheOp)) 1451 X = BinaryOperator::getNotArgument(TheOp); 1452 1453 unsigned FoundX = FindInOperandList(Ops, i, X); 1454 if (FoundX == i) 1455 continue; 1456 1457 // Remove X and -X from the operand list. 1458 if (Ops.size() == 2 && 1459 (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))) 1460 return Constant::getNullValue(X->getType()); 1461 1462 // Remove X and ~X from the operand list. 1463 if (Ops.size() == 2 && BinaryOperator::isNot(TheOp)) 1464 return Constant::getAllOnesValue(X->getType()); 1465 1466 Ops.erase(Ops.begin()+i); 1467 if (i < FoundX) 1468 --FoundX; 1469 else 1470 --i; // Need to back up an extra one. 1471 Ops.erase(Ops.begin()+FoundX); 1472 ++NumAnnihil; 1473 --i; // Revisit element. 1474 e -= 2; // Removed two elements. 1475 1476 // if X and ~X we append -1 to the operand list. 1477 if (BinaryOperator::isNot(TheOp)) { 1478 Value *V = Constant::getAllOnesValue(X->getType()); 1479 Ops.insert(Ops.end(), ValueEntry(getRank(V), V)); 1480 e += 1; 1481 } 1482 } 1483 1484 // Scan the operand list, checking to see if there are any common factors 1485 // between operands. Consider something like A*A+A*B*C+D. We would like to 1486 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies. 1487 // To efficiently find this, we count the number of times a factor occurs 1488 // for any ADD operands that are MULs. 1489 DenseMap<Value*, unsigned> FactorOccurrences; 1490 1491 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4) 1492 // where they are actually the same multiply. 1493 unsigned MaxOcc = 0; 1494 Value *MaxOccVal = nullptr; 1495 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1496 BinaryOperator *BOp = 1497 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1498 if (!BOp) 1499 continue; 1500 1501 // Compute all of the factors of this added value. 1502 SmallVector<Value*, 8> Factors; 1503 FindSingleUseMultiplyFactors(BOp, Factors); 1504 assert(Factors.size() > 1 && "Bad linearize!"); 1505 1506 // Add one to FactorOccurrences for each unique factor in this op. 1507 SmallPtrSet<Value*, 8> Duplicates; 1508 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1509 Value *Factor = Factors[i]; 1510 if (!Duplicates.insert(Factor).second) 1511 continue; 1512 1513 unsigned Occ = ++FactorOccurrences[Factor]; 1514 if (Occ > MaxOcc) { 1515 MaxOcc = Occ; 1516 MaxOccVal = Factor; 1517 } 1518 1519 // If Factor is a negative constant, add the negated value as a factor 1520 // because we can percolate the negate out. Watch for minint, which 1521 // cannot be positivified. 1522 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) { 1523 if (CI->isNegative() && !CI->isMinValue(true)) { 1524 Factor = ConstantInt::get(CI->getContext(), -CI->getValue()); 1525 if (!Duplicates.insert(Factor).second) 1526 continue; 1527 unsigned Occ = ++FactorOccurrences[Factor]; 1528 if (Occ > MaxOcc) { 1529 MaxOcc = Occ; 1530 MaxOccVal = Factor; 1531 } 1532 } 1533 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) { 1534 if (CF->isNegative()) { 1535 APFloat F(CF->getValueAPF()); 1536 F.changeSign(); 1537 Factor = ConstantFP::get(CF->getContext(), F); 1538 if (!Duplicates.insert(Factor).second) 1539 continue; 1540 unsigned Occ = ++FactorOccurrences[Factor]; 1541 if (Occ > MaxOcc) { 1542 MaxOcc = Occ; 1543 MaxOccVal = Factor; 1544 } 1545 } 1546 } 1547 } 1548 } 1549 1550 // If any factor occurred more than one time, we can pull it out. 1551 if (MaxOcc > 1) { 1552 DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n'); 1553 ++NumFactor; 1554 1555 // Create a new instruction that uses the MaxOccVal twice. If we don't do 1556 // this, we could otherwise run into situations where removing a factor 1557 // from an expression will drop a use of maxocc, and this can cause 1558 // RemoveFactorFromExpression on successive values to behave differently. 1559 Instruction *DummyInst = 1560 I->getType()->isIntOrIntVectorTy() 1561 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal) 1562 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal); 1563 1564 SmallVector<WeakTrackingVH, 4> NewMulOps; 1565 for (unsigned i = 0; i != Ops.size(); ++i) { 1566 // Only try to remove factors from expressions we're allowed to. 1567 BinaryOperator *BOp = 1568 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1569 if (!BOp) 1570 continue; 1571 1572 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) { 1573 // The factorized operand may occur several times. Convert them all in 1574 // one fell swoop. 1575 for (unsigned j = Ops.size(); j != i;) { 1576 --j; 1577 if (Ops[j].Op == Ops[i].Op) { 1578 NewMulOps.push_back(V); 1579 Ops.erase(Ops.begin()+j); 1580 } 1581 } 1582 --i; 1583 } 1584 } 1585 1586 // No need for extra uses anymore. 1587 DummyInst->deleteValue(); 1588 1589 unsigned NumAddedValues = NewMulOps.size(); 1590 Value *V = EmitAddTreeOfValues(I, NewMulOps); 1591 1592 // Now that we have inserted the add tree, optimize it. This allows us to 1593 // handle cases that require multiple factoring steps, such as this: 1594 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C)) 1595 assert(NumAddedValues > 1 && "Each occurrence should contribute a value"); 1596 (void)NumAddedValues; 1597 if (Instruction *VI = dyn_cast<Instruction>(V)) 1598 RedoInsts.insert(VI); 1599 1600 // Create the multiply. 1601 Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I); 1602 1603 // Rerun associate on the multiply in case the inner expression turned into 1604 // a multiply. We want to make sure that we keep things in canonical form. 1605 RedoInsts.insert(V2); 1606 1607 // If every add operand included the factor (e.g. "A*B + A*C"), then the 1608 // entire result expression is just the multiply "A*(B+C)". 1609 if (Ops.empty()) 1610 return V2; 1611 1612 // Otherwise, we had some input that didn't have the factor, such as 1613 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of 1614 // things being added by this operation. 1615 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2)); 1616 } 1617 1618 return nullptr; 1619 } 1620 1621 /// \brief Build up a vector of value/power pairs factoring a product. 1622 /// 1623 /// Given a series of multiplication operands, build a vector of factors and 1624 /// the powers each is raised to when forming the final product. Sort them in 1625 /// the order of descending power. 1626 /// 1627 /// (x*x) -> [(x, 2)] 1628 /// ((x*x)*x) -> [(x, 3)] 1629 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)] 1630 /// 1631 /// \returns Whether any factors have a power greater than one. 1632 static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, 1633 SmallVectorImpl<Factor> &Factors) { 1634 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this. 1635 // Compute the sum of powers of simplifiable factors. 1636 unsigned FactorPowerSum = 0; 1637 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) { 1638 Value *Op = Ops[Idx-1].Op; 1639 1640 // Count the number of occurrences of this value. 1641 unsigned Count = 1; 1642 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx) 1643 ++Count; 1644 // Track for simplification all factors which occur 2 or more times. 1645 if (Count > 1) 1646 FactorPowerSum += Count; 1647 } 1648 1649 // We can only simplify factors if the sum of the powers of our simplifiable 1650 // factors is 4 or higher. When that is the case, we will *always* have 1651 // a simplification. This is an important invariant to prevent cyclicly 1652 // trying to simplify already minimal formations. 1653 if (FactorPowerSum < 4) 1654 return false; 1655 1656 // Now gather the simplifiable factors, removing them from Ops. 1657 FactorPowerSum = 0; 1658 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) { 1659 Value *Op = Ops[Idx-1].Op; 1660 1661 // Count the number of occurrences of this value. 1662 unsigned Count = 1; 1663 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx) 1664 ++Count; 1665 if (Count == 1) 1666 continue; 1667 // Move an even number of occurrences to Factors. 1668 Count &= ~1U; 1669 Idx -= Count; 1670 FactorPowerSum += Count; 1671 Factors.push_back(Factor(Op, Count)); 1672 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count); 1673 } 1674 1675 // None of the adjustments above should have reduced the sum of factor powers 1676 // below our mininum of '4'. 1677 assert(FactorPowerSum >= 4); 1678 1679 std::stable_sort(Factors.begin(), Factors.end(), 1680 [](const Factor &LHS, const Factor &RHS) { 1681 return LHS.Power > RHS.Power; 1682 }); 1683 return true; 1684 } 1685 1686 /// \brief Build a tree of multiplies, computing the product of Ops. 1687 static Value *buildMultiplyTree(IRBuilder<> &Builder, 1688 SmallVectorImpl<Value*> &Ops) { 1689 if (Ops.size() == 1) 1690 return Ops.back(); 1691 1692 Value *LHS = Ops.pop_back_val(); 1693 do { 1694 if (LHS->getType()->isIntOrIntVectorTy()) 1695 LHS = Builder.CreateMul(LHS, Ops.pop_back_val()); 1696 else 1697 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val()); 1698 } while (!Ops.empty()); 1699 1700 return LHS; 1701 } 1702 1703 /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*... 1704 /// 1705 /// Given a vector of values raised to various powers, where no two values are 1706 /// equal and the powers are sorted in decreasing order, compute the minimal 1707 /// DAG of multiplies to compute the final product, and return that product 1708 /// value. 1709 Value * 1710 ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder, 1711 SmallVectorImpl<Factor> &Factors) { 1712 assert(Factors[0].Power); 1713 SmallVector<Value *, 4> OuterProduct; 1714 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size(); 1715 Idx < Size && Factors[Idx].Power > 0; ++Idx) { 1716 if (Factors[Idx].Power != Factors[LastIdx].Power) { 1717 LastIdx = Idx; 1718 continue; 1719 } 1720 1721 // We want to multiply across all the factors with the same power so that 1722 // we can raise them to that power as a single entity. Build a mini tree 1723 // for that. 1724 SmallVector<Value *, 4> InnerProduct; 1725 InnerProduct.push_back(Factors[LastIdx].Base); 1726 do { 1727 InnerProduct.push_back(Factors[Idx].Base); 1728 ++Idx; 1729 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power); 1730 1731 // Reset the base value of the first factor to the new expression tree. 1732 // We'll remove all the factors with the same power in a second pass. 1733 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct); 1734 if (Instruction *MI = dyn_cast<Instruction>(M)) 1735 RedoInsts.insert(MI); 1736 1737 LastIdx = Idx; 1738 } 1739 // Unique factors with equal powers -- we've folded them into the first one's 1740 // base. 1741 Factors.erase(std::unique(Factors.begin(), Factors.end(), 1742 [](const Factor &LHS, const Factor &RHS) { 1743 return LHS.Power == RHS.Power; 1744 }), 1745 Factors.end()); 1746 1747 // Iteratively collect the base of each factor with an add power into the 1748 // outer product, and halve each power in preparation for squaring the 1749 // expression. 1750 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) { 1751 if (Factors[Idx].Power & 1) 1752 OuterProduct.push_back(Factors[Idx].Base); 1753 Factors[Idx].Power >>= 1; 1754 } 1755 if (Factors[0].Power) { 1756 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors); 1757 OuterProduct.push_back(SquareRoot); 1758 OuterProduct.push_back(SquareRoot); 1759 } 1760 if (OuterProduct.size() == 1) 1761 return OuterProduct.front(); 1762 1763 Value *V = buildMultiplyTree(Builder, OuterProduct); 1764 return V; 1765 } 1766 1767 Value *ReassociatePass::OptimizeMul(BinaryOperator *I, 1768 SmallVectorImpl<ValueEntry> &Ops) { 1769 // We can only optimize the multiplies when there is a chain of more than 1770 // three, such that a balanced tree might require fewer total multiplies. 1771 if (Ops.size() < 4) 1772 return nullptr; 1773 1774 // Try to turn linear trees of multiplies without other uses of the 1775 // intermediate stages into minimal multiply DAGs with perfect sub-expression 1776 // re-use. 1777 SmallVector<Factor, 4> Factors; 1778 if (!collectMultiplyFactors(Ops, Factors)) 1779 return nullptr; // All distinct factors, so nothing left for us to do. 1780 1781 IRBuilder<> Builder(I); 1782 // The reassociate transformation for FP operations is performed only 1783 // if unsafe algebra is permitted by FastMathFlags. Propagate those flags 1784 // to the newly generated operations. 1785 if (auto FPI = dyn_cast<FPMathOperator>(I)) 1786 Builder.setFastMathFlags(FPI->getFastMathFlags()); 1787 1788 Value *V = buildMinimalMultiplyDAG(Builder, Factors); 1789 if (Ops.empty()) 1790 return V; 1791 1792 ValueEntry NewEntry = ValueEntry(getRank(V), V); 1793 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry); 1794 return nullptr; 1795 } 1796 1797 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I, 1798 SmallVectorImpl<ValueEntry> &Ops) { 1799 // Now that we have the linearized expression tree, try to optimize it. 1800 // Start by folding any constants that we found. 1801 Constant *Cst = nullptr; 1802 unsigned Opcode = I->getOpcode(); 1803 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) { 1804 Constant *C = cast<Constant>(Ops.pop_back_val().Op); 1805 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C; 1806 } 1807 // If there was nothing but constants then we are done. 1808 if (Ops.empty()) 1809 return Cst; 1810 1811 // Put the combined constant back at the end of the operand list, except if 1812 // there is no point. For example, an add of 0 gets dropped here, while a 1813 // multiplication by zero turns the whole expression into zero. 1814 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) { 1815 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType())) 1816 return Cst; 1817 Ops.push_back(ValueEntry(0, Cst)); 1818 } 1819 1820 if (Ops.size() == 1) return Ops[0].Op; 1821 1822 // Handle destructive annihilation due to identities between elements in the 1823 // argument list here. 1824 unsigned NumOps = Ops.size(); 1825 switch (Opcode) { 1826 default: break; 1827 case Instruction::And: 1828 case Instruction::Or: 1829 if (Value *Result = OptimizeAndOrXor(Opcode, Ops)) 1830 return Result; 1831 break; 1832 1833 case Instruction::Xor: 1834 if (Value *Result = OptimizeXor(I, Ops)) 1835 return Result; 1836 break; 1837 1838 case Instruction::Add: 1839 case Instruction::FAdd: 1840 if (Value *Result = OptimizeAdd(I, Ops)) 1841 return Result; 1842 break; 1843 1844 case Instruction::Mul: 1845 case Instruction::FMul: 1846 if (Value *Result = OptimizeMul(I, Ops)) 1847 return Result; 1848 break; 1849 } 1850 1851 if (Ops.size() != NumOps) 1852 return OptimizeExpression(I, Ops); 1853 return nullptr; 1854 } 1855 1856 // Remove dead instructions and if any operands are trivially dead add them to 1857 // Insts so they will be removed as well. 1858 void ReassociatePass::RecursivelyEraseDeadInsts( 1859 Instruction *I, SetVector<AssertingVH<Instruction>> &Insts) { 1860 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1861 SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end()); 1862 ValueRankMap.erase(I); 1863 Insts.remove(I); 1864 RedoInsts.remove(I); 1865 I->eraseFromParent(); 1866 for (auto Op : Ops) 1867 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1868 if (OpInst->use_empty()) 1869 Insts.insert(OpInst); 1870 } 1871 1872 /// Zap the given instruction, adding interesting operands to the work list. 1873 void ReassociatePass::EraseInst(Instruction *I) { 1874 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1875 DEBUG(dbgs() << "Erasing dead inst: "; I->dump()); 1876 1877 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 1878 // Erase the dead instruction. 1879 ValueRankMap.erase(I); 1880 RedoInsts.remove(I); 1881 I->eraseFromParent(); 1882 // Optimize its operands. 1883 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes. 1884 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1885 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) { 1886 // If this is a node in an expression tree, climb to the expression root 1887 // and add that since that's where optimization actually happens. 1888 unsigned Opcode = Op->getOpcode(); 1889 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode && 1890 Visited.insert(Op).second) 1891 Op = Op->user_back(); 1892 RedoInsts.insert(Op); 1893 } 1894 1895 MadeChange = true; 1896 } 1897 1898 // Canonicalize expressions of the following form: 1899 // x + (-Constant * y) -> x - (Constant * y) 1900 // x - (-Constant * y) -> x + (Constant * y) 1901 Instruction *ReassociatePass::canonicalizeNegConstExpr(Instruction *I) { 1902 if (!I->hasOneUse() || I->getType()->isVectorTy()) 1903 return nullptr; 1904 1905 // Must be a fmul or fdiv instruction. 1906 unsigned Opcode = I->getOpcode(); 1907 if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv) 1908 return nullptr; 1909 1910 auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0)); 1911 auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1)); 1912 1913 // Both operands are constant, let it get constant folded away. 1914 if (C0 && C1) 1915 return nullptr; 1916 1917 ConstantFP *CF = C0 ? C0 : C1; 1918 1919 // Must have one constant operand. 1920 if (!CF) 1921 return nullptr; 1922 1923 // Must be a negative ConstantFP. 1924 if (!CF->isNegative()) 1925 return nullptr; 1926 1927 // User must be a binary operator with one or more uses. 1928 Instruction *User = I->user_back(); 1929 if (!isa<BinaryOperator>(User) || User->use_empty()) 1930 return nullptr; 1931 1932 unsigned UserOpcode = User->getOpcode(); 1933 if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub) 1934 return nullptr; 1935 1936 // Subtraction is not commutative. Explicitly, the following transform is 1937 // not valid: (-Constant * y) - x -> x + (Constant * y) 1938 if (!User->isCommutative() && User->getOperand(1) != I) 1939 return nullptr; 1940 1941 // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the 1942 // resulting subtract will be broken up later. This can get us into an 1943 // infinite loop during reassociation. 1944 if (UserOpcode == Instruction::FAdd && ShouldBreakUpSubtract(User)) 1945 return nullptr; 1946 1947 // Change the sign of the constant. 1948 APFloat Val = CF->getValueAPF(); 1949 Val.changeSign(); 1950 I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val)); 1951 1952 // Canonicalize I to RHS to simplify the next bit of logic. E.g., 1953 // ((-Const*y) + x) -> (x + (-Const*y)). 1954 if (User->getOperand(0) == I && User->isCommutative()) 1955 cast<BinaryOperator>(User)->swapOperands(); 1956 1957 Value *Op0 = User->getOperand(0); 1958 Value *Op1 = User->getOperand(1); 1959 BinaryOperator *NI; 1960 switch (UserOpcode) { 1961 default: 1962 llvm_unreachable("Unexpected Opcode!"); 1963 case Instruction::FAdd: 1964 NI = BinaryOperator::CreateFSub(Op0, Op1); 1965 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags()); 1966 break; 1967 case Instruction::FSub: 1968 NI = BinaryOperator::CreateFAdd(Op0, Op1); 1969 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags()); 1970 break; 1971 } 1972 1973 NI->insertBefore(User); 1974 NI->setName(User->getName()); 1975 User->replaceAllUsesWith(NI); 1976 NI->setDebugLoc(I->getDebugLoc()); 1977 RedoInsts.insert(I); 1978 MadeChange = true; 1979 return NI; 1980 } 1981 1982 /// Inspect and optimize the given instruction. Note that erasing 1983 /// instructions is not allowed. 1984 void ReassociatePass::OptimizeInst(Instruction *I) { 1985 // Only consider operations that we understand. 1986 if (!isa<BinaryOperator>(I)) 1987 return; 1988 1989 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1))) 1990 // If an operand of this shift is a reassociable multiply, or if the shift 1991 // is used by a reassociable multiply or add, turn into a multiply. 1992 if (isReassociableOp(I->getOperand(0), Instruction::Mul) || 1993 (I->hasOneUse() && 1994 (isReassociableOp(I->user_back(), Instruction::Mul) || 1995 isReassociableOp(I->user_back(), Instruction::Add)))) { 1996 Instruction *NI = ConvertShiftToMul(I); 1997 RedoInsts.insert(I); 1998 MadeChange = true; 1999 I = NI; 2000 } 2001 2002 // Canonicalize negative constants out of expressions. 2003 if (Instruction *Res = canonicalizeNegConstExpr(I)) 2004 I = Res; 2005 2006 // Commute binary operators, to canonicalize the order of their operands. 2007 // This can potentially expose more CSE opportunities, and makes writing other 2008 // transformations simpler. 2009 if (I->isCommutative()) 2010 canonicalizeOperands(I); 2011 2012 // Don't optimize floating point instructions that don't have unsafe algebra. 2013 if (I->getType()->isFPOrFPVectorTy() && !I->hasUnsafeAlgebra()) 2014 return; 2015 2016 // Do not reassociate boolean (i1) expressions. We want to preserve the 2017 // original order of evaluation for short-circuited comparisons that 2018 // SimplifyCFG has folded to AND/OR expressions. If the expression 2019 // is not further optimized, it is likely to be transformed back to a 2020 // short-circuited form for code gen, and the source order may have been 2021 // optimized for the most likely conditions. 2022 if (I->getType()->isIntegerTy(1)) 2023 return; 2024 2025 // If this is a subtract instruction which is not already in negate form, 2026 // see if we can convert it to X+-Y. 2027 if (I->getOpcode() == Instruction::Sub) { 2028 if (ShouldBreakUpSubtract(I)) { 2029 Instruction *NI = BreakUpSubtract(I, RedoInsts); 2030 RedoInsts.insert(I); 2031 MadeChange = true; 2032 I = NI; 2033 } else if (BinaryOperator::isNeg(I)) { 2034 // Otherwise, this is a negation. See if the operand is a multiply tree 2035 // and if this is not an inner node of a multiply tree. 2036 if (isReassociableOp(I->getOperand(1), Instruction::Mul) && 2037 (!I->hasOneUse() || 2038 !isReassociableOp(I->user_back(), Instruction::Mul))) { 2039 Instruction *NI = LowerNegateToMultiply(I); 2040 // If the negate was simplified, revisit the users to see if we can 2041 // reassociate further. 2042 for (User *U : NI->users()) { 2043 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U)) 2044 RedoInsts.insert(Tmp); 2045 } 2046 RedoInsts.insert(I); 2047 MadeChange = true; 2048 I = NI; 2049 } 2050 } 2051 } else if (I->getOpcode() == Instruction::FSub) { 2052 if (ShouldBreakUpSubtract(I)) { 2053 Instruction *NI = BreakUpSubtract(I, RedoInsts); 2054 RedoInsts.insert(I); 2055 MadeChange = true; 2056 I = NI; 2057 } else if (BinaryOperator::isFNeg(I)) { 2058 // Otherwise, this is a negation. See if the operand is a multiply tree 2059 // and if this is not an inner node of a multiply tree. 2060 if (isReassociableOp(I->getOperand(1), Instruction::FMul) && 2061 (!I->hasOneUse() || 2062 !isReassociableOp(I->user_back(), Instruction::FMul))) { 2063 // If the negate was simplified, revisit the users to see if we can 2064 // reassociate further. 2065 Instruction *NI = LowerNegateToMultiply(I); 2066 for (User *U : NI->users()) { 2067 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U)) 2068 RedoInsts.insert(Tmp); 2069 } 2070 RedoInsts.insert(I); 2071 MadeChange = true; 2072 I = NI; 2073 } 2074 } 2075 } 2076 2077 // If this instruction is an associative binary operator, process it. 2078 if (!I->isAssociative()) return; 2079 BinaryOperator *BO = cast<BinaryOperator>(I); 2080 2081 // If this is an interior node of a reassociable tree, ignore it until we 2082 // get to the root of the tree, to avoid N^2 analysis. 2083 unsigned Opcode = BO->getOpcode(); 2084 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) { 2085 // During the initial run we will get to the root of the tree. 2086 // But if we get here while we are redoing instructions, there is no 2087 // guarantee that the root will be visited. So Redo later 2088 if (BO->user_back() != BO && 2089 BO->getParent() == BO->user_back()->getParent()) 2090 RedoInsts.insert(BO->user_back()); 2091 return; 2092 } 2093 2094 // If this is an add tree that is used by a sub instruction, ignore it 2095 // until we process the subtract. 2096 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add && 2097 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub) 2098 return; 2099 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd && 2100 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub) 2101 return; 2102 2103 ReassociateExpression(BO); 2104 } 2105 2106 void ReassociatePass::ReassociateExpression(BinaryOperator *I) { 2107 // First, walk the expression tree, linearizing the tree, collecting the 2108 // operand information. 2109 SmallVector<RepeatedValue, 8> Tree; 2110 MadeChange |= LinearizeExprTree(I, Tree); 2111 SmallVector<ValueEntry, 8> Ops; 2112 Ops.reserve(Tree.size()); 2113 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 2114 RepeatedValue E = Tree[i]; 2115 Ops.append(E.second.getZExtValue(), 2116 ValueEntry(getRank(E.first), E.first)); 2117 } 2118 2119 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2120 2121 // Now that we have linearized the tree to a list and have gathered all of 2122 // the operands and their ranks, sort the operands by their rank. Use a 2123 // stable_sort so that values with equal ranks will have their relative 2124 // positions maintained (and so the compiler is deterministic). Note that 2125 // this sorts so that the highest ranking values end up at the beginning of 2126 // the vector. 2127 std::stable_sort(Ops.begin(), Ops.end()); 2128 2129 // Now that we have the expression tree in a convenient 2130 // sorted form, optimize it globally if possible. 2131 if (Value *V = OptimizeExpression(I, Ops)) { 2132 if (V == I) 2133 // Self-referential expression in unreachable code. 2134 return; 2135 // This expression tree simplified to something that isn't a tree, 2136 // eliminate it. 2137 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n'); 2138 I->replaceAllUsesWith(V); 2139 if (Instruction *VI = dyn_cast<Instruction>(V)) 2140 if (I->getDebugLoc()) 2141 VI->setDebugLoc(I->getDebugLoc()); 2142 RedoInsts.insert(I); 2143 ++NumAnnihil; 2144 return; 2145 } 2146 2147 // We want to sink immediates as deeply as possible except in the case where 2148 // this is a multiply tree used only by an add, and the immediate is a -1. 2149 // In this case we reassociate to put the negation on the outside so that we 2150 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y 2151 if (I->hasOneUse()) { 2152 if (I->getOpcode() == Instruction::Mul && 2153 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add && 2154 isa<ConstantInt>(Ops.back().Op) && 2155 cast<ConstantInt>(Ops.back().Op)->isMinusOne()) { 2156 ValueEntry Tmp = Ops.pop_back_val(); 2157 Ops.insert(Ops.begin(), Tmp); 2158 } else if (I->getOpcode() == Instruction::FMul && 2159 cast<Instruction>(I->user_back())->getOpcode() == 2160 Instruction::FAdd && 2161 isa<ConstantFP>(Ops.back().Op) && 2162 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) { 2163 ValueEntry Tmp = Ops.pop_back_val(); 2164 Ops.insert(Ops.begin(), Tmp); 2165 } 2166 } 2167 2168 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2169 2170 if (Ops.size() == 1) { 2171 if (Ops[0].Op == I) 2172 // Self-referential expression in unreachable code. 2173 return; 2174 2175 // This expression tree simplified to something that isn't a tree, 2176 // eliminate it. 2177 I->replaceAllUsesWith(Ops[0].Op); 2178 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op)) 2179 OI->setDebugLoc(I->getDebugLoc()); 2180 RedoInsts.insert(I); 2181 return; 2182 } 2183 2184 // Now that we ordered and optimized the expressions, splat them back into 2185 // the expression tree, removing any unneeded nodes. 2186 RewriteExprTree(I, Ops); 2187 } 2188 2189 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) { 2190 // Get the functions basic blocks in Reverse Post Order. This order is used by 2191 // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic 2192 // blocks (it has been seen that the analysis in this pass could hang when 2193 // analysing dead basic blocks). 2194 ReversePostOrderTraversal<Function *> RPOT(&F); 2195 2196 // Calculate the rank map for F. 2197 BuildRankMap(F, RPOT); 2198 2199 MadeChange = false; 2200 // Traverse the same blocks that was analysed by BuildRankMap. 2201 for (BasicBlock *BI : RPOT) { 2202 assert(RankMap.count(&*BI) && "BB should be ranked."); 2203 // Optimize every instruction in the basic block. 2204 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;) 2205 if (isInstructionTriviallyDead(&*II)) { 2206 EraseInst(&*II++); 2207 } else { 2208 OptimizeInst(&*II); 2209 assert(II->getParent() == &*BI && "Moved to a different block!"); 2210 ++II; 2211 } 2212 2213 // Make a copy of all the instructions to be redone so we can remove dead 2214 // instructions. 2215 SetVector<AssertingVH<Instruction>> ToRedo(RedoInsts); 2216 // Iterate over all instructions to be reevaluated and remove trivially dead 2217 // instructions. If any operand of the trivially dead instruction becomes 2218 // dead mark it for deletion as well. Continue this process until all 2219 // trivially dead instructions have been removed. 2220 while (!ToRedo.empty()) { 2221 Instruction *I = ToRedo.pop_back_val(); 2222 if (isInstructionTriviallyDead(I)) { 2223 RecursivelyEraseDeadInsts(I, ToRedo); 2224 MadeChange = true; 2225 } 2226 } 2227 2228 // Now that we have removed dead instructions, we can reoptimize the 2229 // remaining instructions. 2230 while (!RedoInsts.empty()) { 2231 Instruction *I = RedoInsts.pop_back_val(); 2232 if (isInstructionTriviallyDead(I)) 2233 EraseInst(I); 2234 else 2235 OptimizeInst(I); 2236 } 2237 } 2238 2239 // We are done with the rank map. 2240 RankMap.clear(); 2241 ValueRankMap.clear(); 2242 2243 if (MadeChange) { 2244 PreservedAnalyses PA; 2245 PA.preserveSet<CFGAnalyses>(); 2246 PA.preserve<GlobalsAA>(); 2247 return PA; 2248 } 2249 2250 return PreservedAnalyses::all(); 2251 } 2252 2253 namespace { 2254 class ReassociateLegacyPass : public FunctionPass { 2255 ReassociatePass Impl; 2256 public: 2257 static char ID; // Pass identification, replacement for typeid 2258 ReassociateLegacyPass() : FunctionPass(ID) { 2259 initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry()); 2260 } 2261 2262 bool runOnFunction(Function &F) override { 2263 if (skipFunction(F)) 2264 return false; 2265 2266 FunctionAnalysisManager DummyFAM; 2267 auto PA = Impl.run(F, DummyFAM); 2268 return !PA.areAllPreserved(); 2269 } 2270 2271 void getAnalysisUsage(AnalysisUsage &AU) const override { 2272 AU.setPreservesCFG(); 2273 AU.addPreserved<GlobalsAAWrapperPass>(); 2274 } 2275 }; 2276 } 2277 2278 char ReassociateLegacyPass::ID = 0; 2279 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate", 2280 "Reassociate expressions", false, false) 2281 2282 // Public interface to the Reassociate pass 2283 FunctionPass *llvm::createReassociatePass() { 2284 return new ReassociateLegacyPass(); 2285 } 2286