1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass reassociates commutative expressions in an order that is designed
10 // to promote better constant propagation, GCSE, LICM, PRE, etc.
11 //
12 // For example: 4 + (x + 5) -> x + (4 + 5)
13 //
14 // In the implementation of this algorithm, constants are assigned rank = 0,
15 // function arguments are rank = 1, and other values are assigned ranks
16 // corresponding to the reverse post order traversal of current function
17 // (starting at 2), which effectively gives values in deep loops higher rank
18 // than values not in loops.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "llvm/Transforms/Scalar/Reassociate.h"
23 #include "llvm/ADT/APFloat.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/PostOrderIterator.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Analysis/BasicAliasAnalysis.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/GlobalsModRef.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Operator.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/IR/PatternMatch.h"
48 #include "llvm/IR/Type.h"
49 #include "llvm/IR/User.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/IR/ValueHandle.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Transforms/Scalar.h"
58 #include "llvm/Transforms/Utils/Local.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <utility>
62 
63 using namespace llvm;
64 using namespace reassociate;
65 using namespace PatternMatch;
66 
67 #define DEBUG_TYPE "reassociate"
68 
69 STATISTIC(NumChanged, "Number of insts reassociated");
70 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
71 STATISTIC(NumFactor , "Number of multiplies factored");
72 
73 #ifndef NDEBUG
74 /// Print out the expression identified in the Ops list.
75 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
76   Module *M = I->getModule();
77   dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
78        << *Ops[0].Op->getType() << '\t';
79   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
80     dbgs() << "[ ";
81     Ops[i].Op->printAsOperand(dbgs(), false, M);
82     dbgs() << ", #" << Ops[i].Rank << "] ";
83   }
84 }
85 #endif
86 
87 /// Utility class representing a non-constant Xor-operand. We classify
88 /// non-constant Xor-Operands into two categories:
89 ///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
90 ///  C2)
91 ///    C2.1) The operand is in the form of "X | C", where C is a non-zero
92 ///          constant.
93 ///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
94 ///          operand as "E | 0"
95 class llvm::reassociate::XorOpnd {
96 public:
97   XorOpnd(Value *V);
98 
99   bool isInvalid() const { return SymbolicPart == nullptr; }
100   bool isOrExpr() const { return isOr; }
101   Value *getValue() const { return OrigVal; }
102   Value *getSymbolicPart() const { return SymbolicPart; }
103   unsigned getSymbolicRank() const { return SymbolicRank; }
104   const APInt &getConstPart() const { return ConstPart; }
105 
106   void Invalidate() { SymbolicPart = OrigVal = nullptr; }
107   void setSymbolicRank(unsigned R) { SymbolicRank = R; }
108 
109 private:
110   Value *OrigVal;
111   Value *SymbolicPart;
112   APInt ConstPart;
113   unsigned SymbolicRank;
114   bool isOr;
115 };
116 
117 XorOpnd::XorOpnd(Value *V) {
118   assert(!isa<ConstantInt>(V) && "No ConstantInt");
119   OrigVal = V;
120   Instruction *I = dyn_cast<Instruction>(V);
121   SymbolicRank = 0;
122 
123   if (I && (I->getOpcode() == Instruction::Or ||
124             I->getOpcode() == Instruction::And)) {
125     Value *V0 = I->getOperand(0);
126     Value *V1 = I->getOperand(1);
127     const APInt *C;
128     if (match(V0, m_APInt(C)))
129       std::swap(V0, V1);
130 
131     if (match(V1, m_APInt(C))) {
132       ConstPart = *C;
133       SymbolicPart = V0;
134       isOr = (I->getOpcode() == Instruction::Or);
135       return;
136     }
137   }
138 
139   // view the operand as "V | 0"
140   SymbolicPart = V;
141   ConstPart = APInt::getZero(V->getType()->getScalarSizeInBits());
142   isOr = true;
143 }
144 
145 /// Return true if V is an instruction of the specified opcode and if it
146 /// only has one use.
147 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
148   auto *I = dyn_cast<Instruction>(V);
149   if (I && I->hasOneUse() && I->getOpcode() == Opcode)
150     if (!isa<FPMathOperator>(I) || I->isFast())
151       return cast<BinaryOperator>(I);
152   return nullptr;
153 }
154 
155 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
156                                         unsigned Opcode2) {
157   auto *I = dyn_cast<Instruction>(V);
158   if (I && I->hasOneUse() &&
159       (I->getOpcode() == Opcode1 || I->getOpcode() == Opcode2))
160     if (!isa<FPMathOperator>(I) || I->isFast())
161       return cast<BinaryOperator>(I);
162   return nullptr;
163 }
164 
165 void ReassociatePass::BuildRankMap(Function &F,
166                                    ReversePostOrderTraversal<Function*> &RPOT) {
167   unsigned Rank = 2;
168 
169   // Assign distinct ranks to function arguments.
170   for (auto &Arg : F.args()) {
171     ValueRankMap[&Arg] = ++Rank;
172     LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank
173                       << "\n");
174   }
175 
176   // Traverse basic blocks in ReversePostOrder.
177   for (BasicBlock *BB : RPOT) {
178     unsigned BBRank = RankMap[BB] = ++Rank << 16;
179 
180     // Walk the basic block, adding precomputed ranks for any instructions that
181     // we cannot move.  This ensures that the ranks for these instructions are
182     // all different in the block.
183     for (Instruction &I : *BB)
184       if (mayHaveNonDefUseDependency(I))
185         ValueRankMap[&I] = ++BBRank;
186   }
187 }
188 
189 unsigned ReassociatePass::getRank(Value *V) {
190   Instruction *I = dyn_cast<Instruction>(V);
191   if (!I) {
192     if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
193     return 0;  // Otherwise it's a global or constant, rank 0.
194   }
195 
196   if (unsigned Rank = ValueRankMap[I])
197     return Rank;    // Rank already known?
198 
199   // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
200   // we can reassociate expressions for code motion!  Since we do not recurse
201   // for PHI nodes, we cannot have infinite recursion here, because there
202   // cannot be loops in the value graph that do not go through PHI nodes.
203   unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
204   for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i)
205     Rank = std::max(Rank, getRank(I->getOperand(i)));
206 
207   // If this is a 'not' or 'neg' instruction, do not count it for rank. This
208   // assures us that X and ~X will have the same rank.
209   if (!match(I, m_Not(m_Value())) && !match(I, m_Neg(m_Value())) &&
210       !match(I, m_FNeg(m_Value())))
211     ++Rank;
212 
213   LLVM_DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank
214                     << "\n");
215 
216   return ValueRankMap[I] = Rank;
217 }
218 
219 // Canonicalize constants to RHS.  Otherwise, sort the operands by rank.
220 void ReassociatePass::canonicalizeOperands(Instruction *I) {
221   assert(isa<BinaryOperator>(I) && "Expected binary operator.");
222   assert(I->isCommutative() && "Expected commutative operator.");
223 
224   Value *LHS = I->getOperand(0);
225   Value *RHS = I->getOperand(1);
226   if (LHS == RHS || isa<Constant>(RHS))
227     return;
228   if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS))
229     cast<BinaryOperator>(I)->swapOperands();
230 }
231 
232 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
233                                  Instruction *InsertBefore, Value *FlagsOp) {
234   if (S1->getType()->isIntOrIntVectorTy())
235     return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
236   else {
237     BinaryOperator *Res =
238         BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
239     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
240     return Res;
241   }
242 }
243 
244 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
245                                  Instruction *InsertBefore, Value *FlagsOp) {
246   if (S1->getType()->isIntOrIntVectorTy())
247     return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
248   else {
249     BinaryOperator *Res =
250       BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
251     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
252     return Res;
253   }
254 }
255 
256 static Instruction *CreateNeg(Value *S1, const Twine &Name,
257                               Instruction *InsertBefore, Value *FlagsOp) {
258   if (S1->getType()->isIntOrIntVectorTy())
259     return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
260 
261   if (auto *FMFSource = dyn_cast<Instruction>(FlagsOp))
262     return UnaryOperator::CreateFNegFMF(S1, FMFSource, Name, InsertBefore);
263 
264   return UnaryOperator::CreateFNeg(S1, Name, InsertBefore);
265 }
266 
267 /// Replace 0-X with X*-1.
268 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
269   assert((isa<UnaryOperator>(Neg) || isa<BinaryOperator>(Neg)) &&
270          "Expected a Negate!");
271   // FIXME: It's not safe to lower a unary FNeg into a FMul by -1.0.
272   unsigned OpNo = isa<BinaryOperator>(Neg) ? 1 : 0;
273   Type *Ty = Neg->getType();
274   Constant *NegOne = Ty->isIntOrIntVectorTy() ?
275     ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
276 
277   BinaryOperator *Res = CreateMul(Neg->getOperand(OpNo), NegOne, "", Neg, Neg);
278   Neg->setOperand(OpNo, Constant::getNullValue(Ty)); // Drop use of op.
279   Res->takeName(Neg);
280   Neg->replaceAllUsesWith(Res);
281   Res->setDebugLoc(Neg->getDebugLoc());
282   return Res;
283 }
284 
285 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
286 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
287 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
288 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
289 /// even x in Bitwidth-bit arithmetic.
290 static unsigned CarmichaelShift(unsigned Bitwidth) {
291   if (Bitwidth < 3)
292     return Bitwidth - 1;
293   return Bitwidth - 2;
294 }
295 
296 /// Add the extra weight 'RHS' to the existing weight 'LHS',
297 /// reducing the combined weight using any special properties of the operation.
298 /// The existing weight LHS represents the computation X op X op ... op X where
299 /// X occurs LHS times.  The combined weight represents  X op X op ... op X with
300 /// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
301 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
302 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
303 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
304   // If we were working with infinite precision arithmetic then the combined
305   // weight would be LHS + RHS.  But we are using finite precision arithmetic,
306   // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
307   // for nilpotent operations and addition, but not for idempotent operations
308   // and multiplication), so it is important to correctly reduce the combined
309   // weight back into range if wrapping would be wrong.
310 
311   // If RHS is zero then the weight didn't change.
312   if (RHS.isMinValue())
313     return;
314   // If LHS is zero then the combined weight is RHS.
315   if (LHS.isMinValue()) {
316     LHS = RHS;
317     return;
318   }
319   // From this point on we know that neither LHS nor RHS is zero.
320 
321   if (Instruction::isIdempotent(Opcode)) {
322     // Idempotent means X op X === X, so any non-zero weight is equivalent to a
323     // weight of 1.  Keeping weights at zero or one also means that wrapping is
324     // not a problem.
325     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
326     return; // Return a weight of 1.
327   }
328   if (Instruction::isNilpotent(Opcode)) {
329     // Nilpotent means X op X === 0, so reduce weights modulo 2.
330     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
331     LHS = 0; // 1 + 1 === 0 modulo 2.
332     return;
333   }
334   if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
335     // TODO: Reduce the weight by exploiting nsw/nuw?
336     LHS += RHS;
337     return;
338   }
339 
340   assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
341          "Unknown associative operation!");
342   unsigned Bitwidth = LHS.getBitWidth();
343   // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
344   // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
345   // bit number x, since either x is odd in which case x^CM = 1, or x is even in
346   // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
347   // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
348   // which by a happy accident means that they can always be represented using
349   // Bitwidth bits.
350   // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
351   // the Carmichael number).
352   if (Bitwidth > 3) {
353     /// CM - The value of Carmichael's lambda function.
354     APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
355     // Any weight W >= Threshold can be replaced with W - CM.
356     APInt Threshold = CM + Bitwidth;
357     assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
358     // For Bitwidth 4 or more the following sum does not overflow.
359     LHS += RHS;
360     while (LHS.uge(Threshold))
361       LHS -= CM;
362   } else {
363     // To avoid problems with overflow do everything the same as above but using
364     // a larger type.
365     unsigned CM = 1U << CarmichaelShift(Bitwidth);
366     unsigned Threshold = CM + Bitwidth;
367     assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
368            "Weights not reduced!");
369     unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
370     while (Total >= Threshold)
371       Total -= CM;
372     LHS = Total;
373   }
374 }
375 
376 using RepeatedValue = std::pair<Value*, APInt>;
377 
378 /// Given an associative binary expression, return the leaf
379 /// nodes in Ops along with their weights (how many times the leaf occurs).  The
380 /// original expression is the same as
381 ///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
382 /// op
383 ///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
384 /// op
385 ///   ...
386 /// op
387 ///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
388 ///
389 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
390 ///
391 /// This routine may modify the function, in which case it returns 'true'.  The
392 /// changes it makes may well be destructive, changing the value computed by 'I'
393 /// to something completely different.  Thus if the routine returns 'true' then
394 /// you MUST either replace I with a new expression computed from the Ops array,
395 /// or use RewriteExprTree to put the values back in.
396 ///
397 /// A leaf node is either not a binary operation of the same kind as the root
398 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
399 /// opcode), or is the same kind of binary operator but has a use which either
400 /// does not belong to the expression, or does belong to the expression but is
401 /// a leaf node.  Every leaf node has at least one use that is a non-leaf node
402 /// of the expression, while for non-leaf nodes (except for the root 'I') every
403 /// use is a non-leaf node of the expression.
404 ///
405 /// For example:
406 ///           expression graph        node names
407 ///
408 ///                     +        |        I
409 ///                    / \       |
410 ///                   +   +      |      A,  B
411 ///                  / \ / \     |
412 ///                 *   +   *    |    C,  D,  E
413 ///                / \ / \ / \   |
414 ///                   +   *      |      F,  G
415 ///
416 /// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
417 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
418 ///
419 /// The expression is maximal: if some instruction is a binary operator of the
420 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
421 /// then the instruction also belongs to the expression, is not a leaf node of
422 /// it, and its operands also belong to the expression (but may be leaf nodes).
423 ///
424 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
425 /// order to ensure that every non-root node in the expression has *exactly one*
426 /// use by a non-leaf node of the expression.  This destruction means that the
427 /// caller MUST either replace 'I' with a new expression or use something like
428 /// RewriteExprTree to put the values back in if the routine indicates that it
429 /// made a change by returning 'true'.
430 ///
431 /// In the above example either the right operand of A or the left operand of B
432 /// will be replaced by undef.  If it is B's operand then this gives:
433 ///
434 ///                     +        |        I
435 ///                    / \       |
436 ///                   +   +      |      A,  B - operand of B replaced with undef
437 ///                  / \   \     |
438 ///                 *   +   *    |    C,  D,  E
439 ///                / \ / \ / \   |
440 ///                   +   *      |      F,  G
441 ///
442 /// Note that such undef operands can only be reached by passing through 'I'.
443 /// For example, if you visit operands recursively starting from a leaf node
444 /// then you will never see such an undef operand unless you get back to 'I',
445 /// which requires passing through a phi node.
446 ///
447 /// Note that this routine may also mutate binary operators of the wrong type
448 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
449 /// of the expression) if it can turn them into binary operators of the right
450 /// type and thus make the expression bigger.
451 static bool LinearizeExprTree(Instruction *I,
452                               SmallVectorImpl<RepeatedValue> &Ops,
453                               ReassociatePass::OrderedSet &ToRedo) {
454   assert((isa<UnaryOperator>(I) || isa<BinaryOperator>(I)) &&
455          "Expected a UnaryOperator or BinaryOperator!");
456   LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
457   unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
458   unsigned Opcode = I->getOpcode();
459   assert(I->isAssociative() && I->isCommutative() &&
460          "Expected an associative and commutative operation!");
461 
462   // Visit all operands of the expression, keeping track of their weight (the
463   // number of paths from the expression root to the operand, or if you like
464   // the number of times that operand occurs in the linearized expression).
465   // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
466   // while A has weight two.
467 
468   // Worklist of non-leaf nodes (their operands are in the expression too) along
469   // with their weights, representing a certain number of paths to the operator.
470   // If an operator occurs in the worklist multiple times then we found multiple
471   // ways to get to it.
472   SmallVector<std::pair<Instruction*, APInt>, 8> Worklist; // (Op, Weight)
473   Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
474   bool Changed = false;
475 
476   // Leaves of the expression are values that either aren't the right kind of
477   // operation (eg: a constant, or a multiply in an add tree), or are, but have
478   // some uses that are not inside the expression.  For example, in I = X + X,
479   // X = A + B, the value X has two uses (by I) that are in the expression.  If
480   // X has any other uses, for example in a return instruction, then we consider
481   // X to be a leaf, and won't analyze it further.  When we first visit a value,
482   // if it has more than one use then at first we conservatively consider it to
483   // be a leaf.  Later, as the expression is explored, we may discover some more
484   // uses of the value from inside the expression.  If all uses turn out to be
485   // from within the expression (and the value is a binary operator of the right
486   // kind) then the value is no longer considered to be a leaf, and its operands
487   // are explored.
488 
489   // Leaves - Keeps track of the set of putative leaves as well as the number of
490   // paths to each leaf seen so far.
491   using LeafMap = DenseMap<Value *, APInt>;
492   LeafMap Leaves; // Leaf -> Total weight so far.
493   SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order.
494 
495 #ifndef NDEBUG
496   SmallPtrSet<Value *, 8> Visited; // For checking the iteration scheme.
497 #endif
498   while (!Worklist.empty()) {
499     std::pair<Instruction*, APInt> P = Worklist.pop_back_val();
500     I = P.first; // We examine the operands of this binary operator.
501 
502     for (unsigned OpIdx = 0; OpIdx < I->getNumOperands(); ++OpIdx) { // Visit operands.
503       Value *Op = I->getOperand(OpIdx);
504       APInt Weight = P.second; // Number of paths to this operand.
505       LLVM_DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
506       assert(!Op->use_empty() && "No uses, so how did we get to it?!");
507 
508       // If this is a binary operation of the right kind with only one use then
509       // add its operands to the expression.
510       if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
511         assert(Visited.insert(Op).second && "Not first visit!");
512         LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
513         Worklist.push_back(std::make_pair(BO, Weight));
514         continue;
515       }
516 
517       // Appears to be a leaf.  Is the operand already in the set of leaves?
518       LeafMap::iterator It = Leaves.find(Op);
519       if (It == Leaves.end()) {
520         // Not in the leaf map.  Must be the first time we saw this operand.
521         assert(Visited.insert(Op).second && "Not first visit!");
522         if (!Op->hasOneUse()) {
523           // This value has uses not accounted for by the expression, so it is
524           // not safe to modify.  Mark it as being a leaf.
525           LLVM_DEBUG(dbgs()
526                      << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
527           LeafOrder.push_back(Op);
528           Leaves[Op] = Weight;
529           continue;
530         }
531         // No uses outside the expression, try morphing it.
532       } else {
533         // Already in the leaf map.
534         assert(It != Leaves.end() && Visited.count(Op) &&
535                "In leaf map but not visited!");
536 
537         // Update the number of paths to the leaf.
538         IncorporateWeight(It->second, Weight, Opcode);
539 
540 #if 0   // TODO: Re-enable once PR13021 is fixed.
541         // The leaf already has one use from inside the expression.  As we want
542         // exactly one such use, drop this new use of the leaf.
543         assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
544         I->setOperand(OpIdx, UndefValue::get(I->getType()));
545         Changed = true;
546 
547         // If the leaf is a binary operation of the right kind and we now see
548         // that its multiple original uses were in fact all by nodes belonging
549         // to the expression, then no longer consider it to be a leaf and add
550         // its operands to the expression.
551         if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
552           LLVM_DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
553           Worklist.push_back(std::make_pair(BO, It->second));
554           Leaves.erase(It);
555           continue;
556         }
557 #endif
558 
559         // If we still have uses that are not accounted for by the expression
560         // then it is not safe to modify the value.
561         if (!Op->hasOneUse())
562           continue;
563 
564         // No uses outside the expression, try morphing it.
565         Weight = It->second;
566         Leaves.erase(It); // Since the value may be morphed below.
567       }
568 
569       // At this point we have a value which, first of all, is not a binary
570       // expression of the right kind, and secondly, is only used inside the
571       // expression.  This means that it can safely be modified.  See if we
572       // can usefully morph it into an expression of the right kind.
573       assert((!isa<Instruction>(Op) ||
574               cast<Instruction>(Op)->getOpcode() != Opcode
575               || (isa<FPMathOperator>(Op) &&
576                   !cast<Instruction>(Op)->isFast())) &&
577              "Should have been handled above!");
578       assert(Op->hasOneUse() && "Has uses outside the expression tree!");
579 
580       // If this is a multiply expression, turn any internal negations into
581       // multiplies by -1 so they can be reassociated.  Add any users of the
582       // newly created multiplication by -1 to the redo list, so any
583       // reassociation opportunities that are exposed will be reassociated
584       // further.
585       Instruction *Neg;
586       if (((Opcode == Instruction::Mul && match(Op, m_Neg(m_Value()))) ||
587            (Opcode == Instruction::FMul && match(Op, m_FNeg(m_Value())))) &&
588            match(Op, m_Instruction(Neg))) {
589         LLVM_DEBUG(dbgs()
590                    << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
591         Instruction *Mul = LowerNegateToMultiply(Neg);
592         LLVM_DEBUG(dbgs() << *Mul << '\n');
593         Worklist.push_back(std::make_pair(Mul, Weight));
594         for (User *U : Mul->users()) {
595           if (BinaryOperator *UserBO = dyn_cast<BinaryOperator>(U))
596             ToRedo.insert(UserBO);
597         }
598         ToRedo.insert(Neg);
599         Changed = true;
600         continue;
601       }
602 
603       // Failed to morph into an expression of the right type.  This really is
604       // a leaf.
605       LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
606       assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
607       LeafOrder.push_back(Op);
608       Leaves[Op] = Weight;
609     }
610   }
611 
612   // The leaves, repeated according to their weights, represent the linearized
613   // form of the expression.
614   for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
615     Value *V = LeafOrder[i];
616     LeafMap::iterator It = Leaves.find(V);
617     if (It == Leaves.end())
618       // Node initially thought to be a leaf wasn't.
619       continue;
620     assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
621     APInt Weight = It->second;
622     if (Weight.isMinValue())
623       // Leaf already output or weight reduction eliminated it.
624       continue;
625     // Ensure the leaf is only output once.
626     It->second = 0;
627     Ops.push_back(std::make_pair(V, Weight));
628   }
629 
630   // For nilpotent operations or addition there may be no operands, for example
631   // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
632   // in both cases the weight reduces to 0 causing the value to be skipped.
633   if (Ops.empty()) {
634     Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
635     assert(Identity && "Associative operation without identity!");
636     Ops.emplace_back(Identity, APInt(Bitwidth, 1));
637   }
638 
639   return Changed;
640 }
641 
642 /// Now that the operands for this expression tree are
643 /// linearized and optimized, emit them in-order.
644 void ReassociatePass::RewriteExprTree(BinaryOperator *I,
645                                       SmallVectorImpl<ValueEntry> &Ops) {
646   assert(Ops.size() > 1 && "Single values should be used directly!");
647 
648   // Since our optimizations should never increase the number of operations, the
649   // new expression can usually be written reusing the existing binary operators
650   // from the original expression tree, without creating any new instructions,
651   // though the rewritten expression may have a completely different topology.
652   // We take care to not change anything if the new expression will be the same
653   // as the original.  If more than trivial changes (like commuting operands)
654   // were made then we are obliged to clear out any optional subclass data like
655   // nsw flags.
656 
657   /// NodesToRewrite - Nodes from the original expression available for writing
658   /// the new expression into.
659   SmallVector<BinaryOperator*, 8> NodesToRewrite;
660   unsigned Opcode = I->getOpcode();
661   BinaryOperator *Op = I;
662 
663   /// NotRewritable - The operands being written will be the leaves of the new
664   /// expression and must not be used as inner nodes (via NodesToRewrite) by
665   /// mistake.  Inner nodes are always reassociable, and usually leaves are not
666   /// (if they were they would have been incorporated into the expression and so
667   /// would not be leaves), so most of the time there is no danger of this.  But
668   /// in rare cases a leaf may become reassociable if an optimization kills uses
669   /// of it, or it may momentarily become reassociable during rewriting (below)
670   /// due it being removed as an operand of one of its uses.  Ensure that misuse
671   /// of leaf nodes as inner nodes cannot occur by remembering all of the future
672   /// leaves and refusing to reuse any of them as inner nodes.
673   SmallPtrSet<Value*, 8> NotRewritable;
674   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
675     NotRewritable.insert(Ops[i].Op);
676 
677   // ExpressionChanged - Non-null if the rewritten expression differs from the
678   // original in some non-trivial way, requiring the clearing of optional flags.
679   // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
680   BinaryOperator *ExpressionChanged = nullptr;
681   for (unsigned i = 0; ; ++i) {
682     // The last operation (which comes earliest in the IR) is special as both
683     // operands will come from Ops, rather than just one with the other being
684     // a subexpression.
685     if (i+2 == Ops.size()) {
686       Value *NewLHS = Ops[i].Op;
687       Value *NewRHS = Ops[i+1].Op;
688       Value *OldLHS = Op->getOperand(0);
689       Value *OldRHS = Op->getOperand(1);
690 
691       if (NewLHS == OldLHS && NewRHS == OldRHS)
692         // Nothing changed, leave it alone.
693         break;
694 
695       if (NewLHS == OldRHS && NewRHS == OldLHS) {
696         // The order of the operands was reversed.  Swap them.
697         LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
698         Op->swapOperands();
699         LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
700         MadeChange = true;
701         ++NumChanged;
702         break;
703       }
704 
705       // The new operation differs non-trivially from the original. Overwrite
706       // the old operands with the new ones.
707       LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
708       if (NewLHS != OldLHS) {
709         BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
710         if (BO && !NotRewritable.count(BO))
711           NodesToRewrite.push_back(BO);
712         Op->setOperand(0, NewLHS);
713       }
714       if (NewRHS != OldRHS) {
715         BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
716         if (BO && !NotRewritable.count(BO))
717           NodesToRewrite.push_back(BO);
718         Op->setOperand(1, NewRHS);
719       }
720       LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
721 
722       ExpressionChanged = Op;
723       MadeChange = true;
724       ++NumChanged;
725 
726       break;
727     }
728 
729     // Not the last operation.  The left-hand side will be a sub-expression
730     // while the right-hand side will be the current element of Ops.
731     Value *NewRHS = Ops[i].Op;
732     if (NewRHS != Op->getOperand(1)) {
733       LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
734       if (NewRHS == Op->getOperand(0)) {
735         // The new right-hand side was already present as the left operand.  If
736         // we are lucky then swapping the operands will sort out both of them.
737         Op->swapOperands();
738       } else {
739         // Overwrite with the new right-hand side.
740         BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
741         if (BO && !NotRewritable.count(BO))
742           NodesToRewrite.push_back(BO);
743         Op->setOperand(1, NewRHS);
744         ExpressionChanged = Op;
745       }
746       LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
747       MadeChange = true;
748       ++NumChanged;
749     }
750 
751     // Now deal with the left-hand side.  If this is already an operation node
752     // from the original expression then just rewrite the rest of the expression
753     // into it.
754     BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
755     if (BO && !NotRewritable.count(BO)) {
756       Op = BO;
757       continue;
758     }
759 
760     // Otherwise, grab a spare node from the original expression and use that as
761     // the left-hand side.  If there are no nodes left then the optimizers made
762     // an expression with more nodes than the original!  This usually means that
763     // they did something stupid but it might mean that the problem was just too
764     // hard (finding the mimimal number of multiplications needed to realize a
765     // multiplication expression is NP-complete).  Whatever the reason, smart or
766     // stupid, create a new node if there are none left.
767     BinaryOperator *NewOp;
768     if (NodesToRewrite.empty()) {
769       Constant *Undef = UndefValue::get(I->getType());
770       NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
771                                      Undef, Undef, "", I);
772       if (NewOp->getType()->isFPOrFPVectorTy())
773         NewOp->setFastMathFlags(I->getFastMathFlags());
774     } else {
775       NewOp = NodesToRewrite.pop_back_val();
776     }
777 
778     LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
779     Op->setOperand(0, NewOp);
780     LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
781     ExpressionChanged = Op;
782     MadeChange = true;
783     ++NumChanged;
784     Op = NewOp;
785   }
786 
787   // If the expression changed non-trivially then clear out all subclass data
788   // starting from the operator specified in ExpressionChanged, and compactify
789   // the operators to just before the expression root to guarantee that the
790   // expression tree is dominated by all of Ops.
791   if (ExpressionChanged)
792     do {
793       // Preserve FastMathFlags.
794       if (isa<FPMathOperator>(I)) {
795         FastMathFlags Flags = I->getFastMathFlags();
796         ExpressionChanged->clearSubclassOptionalData();
797         ExpressionChanged->setFastMathFlags(Flags);
798       } else
799         ExpressionChanged->clearSubclassOptionalData();
800 
801       if (ExpressionChanged == I)
802         break;
803 
804       // Discard any debug info related to the expressions that has changed (we
805       // can leave debug infor related to the root, since the result of the
806       // expression tree should be the same even after reassociation).
807       replaceDbgUsesWithUndef(ExpressionChanged);
808 
809       ExpressionChanged->moveBefore(I);
810       ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
811     } while (true);
812 
813   // Throw away any left over nodes from the original expression.
814   for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
815     RedoInsts.insert(NodesToRewrite[i]);
816 }
817 
818 /// Insert instructions before the instruction pointed to by BI,
819 /// that computes the negative version of the value specified.  The negative
820 /// version of the value is returned, and BI is left pointing at the instruction
821 /// that should be processed next by the reassociation pass.
822 /// Also add intermediate instructions to the redo list that are modified while
823 /// pushing the negates through adds.  These will be revisited to see if
824 /// additional opportunities have been exposed.
825 static Value *NegateValue(Value *V, Instruction *BI,
826                           ReassociatePass::OrderedSet &ToRedo) {
827   if (auto *C = dyn_cast<Constant>(V))
828     return C->getType()->isFPOrFPVectorTy() ? ConstantExpr::getFNeg(C) :
829                                               ConstantExpr::getNeg(C);
830 
831   // We are trying to expose opportunity for reassociation.  One of the things
832   // that we want to do to achieve this is to push a negation as deep into an
833   // expression chain as possible, to expose the add instructions.  In practice,
834   // this means that we turn this:
835   //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
836   // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
837   // the constants.  We assume that instcombine will clean up the mess later if
838   // we introduce tons of unnecessary negation instructions.
839   //
840   if (BinaryOperator *I =
841           isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
842     // Push the negates through the add.
843     I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
844     I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
845     if (I->getOpcode() == Instruction::Add) {
846       I->setHasNoUnsignedWrap(false);
847       I->setHasNoSignedWrap(false);
848     }
849 
850     // We must move the add instruction here, because the neg instructions do
851     // not dominate the old add instruction in general.  By moving it, we are
852     // assured that the neg instructions we just inserted dominate the
853     // instruction we are about to insert after them.
854     //
855     I->moveBefore(BI);
856     I->setName(I->getName()+".neg");
857 
858     // Add the intermediate negates to the redo list as processing them later
859     // could expose more reassociating opportunities.
860     ToRedo.insert(I);
861     return I;
862   }
863 
864   // Okay, we need to materialize a negated version of V with an instruction.
865   // Scan the use lists of V to see if we have one already.
866   for (User *U : V->users()) {
867     if (!match(U, m_Neg(m_Value())) && !match(U, m_FNeg(m_Value())))
868       continue;
869 
870     // We found one!  Now we have to make sure that the definition dominates
871     // this use.  We do this by moving it to the entry block (if it is a
872     // non-instruction value) or right after the definition.  These negates will
873     // be zapped by reassociate later, so we don't need much finesse here.
874     Instruction *TheNeg = cast<Instruction>(U);
875 
876     // Verify that the negate is in this function, V might be a constant expr.
877     if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
878       continue;
879 
880     bool FoundCatchSwitch = false;
881 
882     BasicBlock::iterator InsertPt;
883     if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
884       if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
885         InsertPt = II->getNormalDest()->begin();
886       } else {
887         InsertPt = ++InstInput->getIterator();
888       }
889 
890       const BasicBlock *BB = InsertPt->getParent();
891 
892       // Make sure we don't move anything before PHIs or exception
893       // handling pads.
894       while (InsertPt != BB->end() && (isa<PHINode>(InsertPt) ||
895                                        InsertPt->isEHPad())) {
896         if (isa<CatchSwitchInst>(InsertPt))
897           // A catchswitch cannot have anything in the block except
898           // itself and PHIs.  We'll bail out below.
899           FoundCatchSwitch = true;
900         ++InsertPt;
901       }
902     } else {
903       InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
904     }
905 
906     // We found a catchswitch in the block where we want to move the
907     // neg.  We cannot move anything into that block.  Bail and just
908     // create the neg before BI, as if we hadn't found an existing
909     // neg.
910     if (FoundCatchSwitch)
911       break;
912 
913     TheNeg->moveBefore(&*InsertPt);
914     if (TheNeg->getOpcode() == Instruction::Sub) {
915       TheNeg->setHasNoUnsignedWrap(false);
916       TheNeg->setHasNoSignedWrap(false);
917     } else {
918       TheNeg->andIRFlags(BI);
919     }
920     ToRedo.insert(TheNeg);
921     return TheNeg;
922   }
923 
924   // Insert a 'neg' instruction that subtracts the value from zero to get the
925   // negation.
926   Instruction *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
927   ToRedo.insert(NewNeg);
928   return NewNeg;
929 }
930 
931 // See if this `or` looks like an load widening reduction, i.e. that it
932 // consists of an `or`/`shl`/`zext`/`load` nodes only. Note that we don't
933 // ensure that the pattern is *really* a load widening reduction,
934 // we do not ensure that it can really be replaced with a widened load,
935 // only that it mostly looks like one.
936 static bool isLoadCombineCandidate(Instruction *Or) {
937   SmallVector<Instruction *, 8> Worklist;
938   SmallSet<Instruction *, 8> Visited;
939 
940   auto Enqueue = [&](Value *V) {
941     auto *I = dyn_cast<Instruction>(V);
942     // Each node of an `or` reduction must be an instruction,
943     if (!I)
944       return false; // Node is certainly not part of an `or` load reduction.
945     // Only process instructions we have never processed before.
946     if (Visited.insert(I).second)
947       Worklist.emplace_back(I);
948     return true; // Will need to look at parent nodes.
949   };
950 
951   if (!Enqueue(Or))
952     return false; // Not an `or` reduction pattern.
953 
954   while (!Worklist.empty()) {
955     auto *I = Worklist.pop_back_val();
956 
957     // Okay, which instruction is this node?
958     switch (I->getOpcode()) {
959     case Instruction::Or:
960       // Got an `or` node. That's fine, just recurse into it's operands.
961       for (Value *Op : I->operands())
962         if (!Enqueue(Op))
963           return false; // Not an `or` reduction pattern.
964       continue;
965 
966     case Instruction::Shl:
967     case Instruction::ZExt:
968       // `shl`/`zext` nodes are fine, just recurse into their base operand.
969       if (!Enqueue(I->getOperand(0)))
970         return false; // Not an `or` reduction pattern.
971       continue;
972 
973     case Instruction::Load:
974       // Perfect, `load` node means we've reached an edge of the graph.
975       continue;
976 
977     default:        // Unknown node.
978       return false; // Not an `or` reduction pattern.
979     }
980   }
981 
982   return true;
983 }
984 
985 /// Return true if it may be profitable to convert this (X|Y) into (X+Y).
986 static bool shouldConvertOrWithNoCommonBitsToAdd(Instruction *Or) {
987   // Don't bother to convert this up unless either the LHS is an associable add
988   // or subtract or mul or if this is only used by one of the above.
989   // This is only a compile-time improvement, it is not needed for correctness!
990   auto isInteresting = [](Value *V) {
991     for (auto Op : {Instruction::Add, Instruction::Sub, Instruction::Mul,
992                     Instruction::Shl})
993       if (isReassociableOp(V, Op))
994         return true;
995     return false;
996   };
997 
998   if (any_of(Or->operands(), isInteresting))
999     return true;
1000 
1001   Value *VB = Or->user_back();
1002   if (Or->hasOneUse() && isInteresting(VB))
1003     return true;
1004 
1005   return false;
1006 }
1007 
1008 /// If we have (X|Y), and iff X and Y have no common bits set,
1009 /// transform this into (X+Y) to allow arithmetics reassociation.
1010 static BinaryOperator *convertOrWithNoCommonBitsToAdd(Instruction *Or) {
1011   // Convert an or into an add.
1012   BinaryOperator *New =
1013       CreateAdd(Or->getOperand(0), Or->getOperand(1), "", Or, Or);
1014   New->setHasNoSignedWrap();
1015   New->setHasNoUnsignedWrap();
1016   New->takeName(Or);
1017 
1018   // Everyone now refers to the add instruction.
1019   Or->replaceAllUsesWith(New);
1020   New->setDebugLoc(Or->getDebugLoc());
1021 
1022   LLVM_DEBUG(dbgs() << "Converted or into an add: " << *New << '\n');
1023   return New;
1024 }
1025 
1026 /// Return true if we should break up this subtract of X-Y into (X + -Y).
1027 static bool ShouldBreakUpSubtract(Instruction *Sub) {
1028   // If this is a negation, we can't split it up!
1029   if (match(Sub, m_Neg(m_Value())) || match(Sub, m_FNeg(m_Value())))
1030     return false;
1031 
1032   // Don't breakup X - undef.
1033   if (isa<UndefValue>(Sub->getOperand(1)))
1034     return false;
1035 
1036   // Don't bother to break this up unless either the LHS is an associable add or
1037   // subtract or if this is only used by one.
1038   Value *V0 = Sub->getOperand(0);
1039   if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
1040       isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
1041     return true;
1042   Value *V1 = Sub->getOperand(1);
1043   if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
1044       isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
1045     return true;
1046   Value *VB = Sub->user_back();
1047   if (Sub->hasOneUse() &&
1048       (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
1049        isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
1050     return true;
1051 
1052   return false;
1053 }
1054 
1055 /// If we have (X-Y), and if either X is an add, or if this is only used by an
1056 /// add, transform this into (X+(0-Y)) to promote better reassociation.
1057 static BinaryOperator *BreakUpSubtract(Instruction *Sub,
1058                                        ReassociatePass::OrderedSet &ToRedo) {
1059   // Convert a subtract into an add and a neg instruction. This allows sub
1060   // instructions to be commuted with other add instructions.
1061   //
1062   // Calculate the negative value of Operand 1 of the sub instruction,
1063   // and set it as the RHS of the add instruction we just made.
1064   Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
1065   BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
1066   Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
1067   Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
1068   New->takeName(Sub);
1069 
1070   // Everyone now refers to the add instruction.
1071   Sub->replaceAllUsesWith(New);
1072   New->setDebugLoc(Sub->getDebugLoc());
1073 
1074   LLVM_DEBUG(dbgs() << "Negated: " << *New << '\n');
1075   return New;
1076 }
1077 
1078 /// If this is a shift of a reassociable multiply or is used by one, change
1079 /// this into a multiply by a constant to assist with further reassociation.
1080 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
1081   Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
1082   auto *SA = cast<ConstantInt>(Shl->getOperand(1));
1083   MulCst = ConstantExpr::getShl(MulCst, SA);
1084 
1085   BinaryOperator *Mul =
1086     BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
1087   Shl->setOperand(0, PoisonValue::get(Shl->getType())); // Drop use of op.
1088   Mul->takeName(Shl);
1089 
1090   // Everyone now refers to the mul instruction.
1091   Shl->replaceAllUsesWith(Mul);
1092   Mul->setDebugLoc(Shl->getDebugLoc());
1093 
1094   // We can safely preserve the nuw flag in all cases.  It's also safe to turn a
1095   // nuw nsw shl into a nuw nsw mul.  However, nsw in isolation requires special
1096   // handling.  It can be preserved as long as we're not left shifting by
1097   // bitwidth - 1.
1098   bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
1099   bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
1100   unsigned BitWidth = Shl->getType()->getIntegerBitWidth();
1101   if (NSW && (NUW || SA->getValue().ult(BitWidth - 1)))
1102     Mul->setHasNoSignedWrap(true);
1103   Mul->setHasNoUnsignedWrap(NUW);
1104   return Mul;
1105 }
1106 
1107 /// Scan backwards and forwards among values with the same rank as element i
1108 /// to see if X exists.  If X does not exist, return i.  This is useful when
1109 /// scanning for 'x' when we see '-x' because they both get the same rank.
1110 static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops,
1111                                   unsigned i, Value *X) {
1112   unsigned XRank = Ops[i].Rank;
1113   unsigned e = Ops.size();
1114   for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
1115     if (Ops[j].Op == X)
1116       return j;
1117     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1118       if (Instruction *I2 = dyn_cast<Instruction>(X))
1119         if (I1->isIdenticalTo(I2))
1120           return j;
1121   }
1122   // Scan backwards.
1123   for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
1124     if (Ops[j].Op == X)
1125       return j;
1126     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1127       if (Instruction *I2 = dyn_cast<Instruction>(X))
1128         if (I1->isIdenticalTo(I2))
1129           return j;
1130   }
1131   return i;
1132 }
1133 
1134 /// Emit a tree of add instructions, summing Ops together
1135 /// and returning the result.  Insert the tree before I.
1136 static Value *EmitAddTreeOfValues(Instruction *I,
1137                                   SmallVectorImpl<WeakTrackingVH> &Ops) {
1138   if (Ops.size() == 1) return Ops.back();
1139 
1140   Value *V1 = Ops.pop_back_val();
1141   Value *V2 = EmitAddTreeOfValues(I, Ops);
1142   return CreateAdd(V2, V1, "reass.add", I, I);
1143 }
1144 
1145 /// If V is an expression tree that is a multiplication sequence,
1146 /// and if this sequence contains a multiply by Factor,
1147 /// remove Factor from the tree and return the new tree.
1148 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
1149   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1150   if (!BO)
1151     return nullptr;
1152 
1153   SmallVector<RepeatedValue, 8> Tree;
1154   MadeChange |= LinearizeExprTree(BO, Tree, RedoInsts);
1155   SmallVector<ValueEntry, 8> Factors;
1156   Factors.reserve(Tree.size());
1157   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1158     RepeatedValue E = Tree[i];
1159     Factors.append(E.second.getZExtValue(),
1160                    ValueEntry(getRank(E.first), E.first));
1161   }
1162 
1163   bool FoundFactor = false;
1164   bool NeedsNegate = false;
1165   for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1166     if (Factors[i].Op == Factor) {
1167       FoundFactor = true;
1168       Factors.erase(Factors.begin()+i);
1169       break;
1170     }
1171 
1172     // If this is a negative version of this factor, remove it.
1173     if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
1174       if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1175         if (FC1->getValue() == -FC2->getValue()) {
1176           FoundFactor = NeedsNegate = true;
1177           Factors.erase(Factors.begin()+i);
1178           break;
1179         }
1180     } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1181       if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
1182         const APFloat &F1 = FC1->getValueAPF();
1183         APFloat F2(FC2->getValueAPF());
1184         F2.changeSign();
1185         if (F1 == F2) {
1186           FoundFactor = NeedsNegate = true;
1187           Factors.erase(Factors.begin() + i);
1188           break;
1189         }
1190       }
1191     }
1192   }
1193 
1194   if (!FoundFactor) {
1195     // Make sure to restore the operands to the expression tree.
1196     RewriteExprTree(BO, Factors);
1197     return nullptr;
1198   }
1199 
1200   BasicBlock::iterator InsertPt = ++BO->getIterator();
1201 
1202   // If this was just a single multiply, remove the multiply and return the only
1203   // remaining operand.
1204   if (Factors.size() == 1) {
1205     RedoInsts.insert(BO);
1206     V = Factors[0].Op;
1207   } else {
1208     RewriteExprTree(BO, Factors);
1209     V = BO;
1210   }
1211 
1212   if (NeedsNegate)
1213     V = CreateNeg(V, "neg", &*InsertPt, BO);
1214 
1215   return V;
1216 }
1217 
1218 /// If V is a single-use multiply, recursively add its operands as factors,
1219 /// otherwise add V to the list of factors.
1220 ///
1221 /// Ops is the top-level list of add operands we're trying to factor.
1222 static void FindSingleUseMultiplyFactors(Value *V,
1223                                          SmallVectorImpl<Value*> &Factors) {
1224   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1225   if (!BO) {
1226     Factors.push_back(V);
1227     return;
1228   }
1229 
1230   // Otherwise, add the LHS and RHS to the list of factors.
1231   FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
1232   FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
1233 }
1234 
1235 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1236 /// This optimizes based on identities.  If it can be reduced to a single Value,
1237 /// it is returned, otherwise the Ops list is mutated as necessary.
1238 static Value *OptimizeAndOrXor(unsigned Opcode,
1239                                SmallVectorImpl<ValueEntry> &Ops) {
1240   // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1241   // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1242   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1243     // First, check for X and ~X in the operand list.
1244     assert(i < Ops.size());
1245     Value *X;
1246     if (match(Ops[i].Op, m_Not(m_Value(X)))) {    // Cannot occur for ^.
1247       unsigned FoundX = FindInOperandList(Ops, i, X);
1248       if (FoundX != i) {
1249         if (Opcode == Instruction::And)   // ...&X&~X = 0
1250           return Constant::getNullValue(X->getType());
1251 
1252         if (Opcode == Instruction::Or)    // ...|X|~X = -1
1253           return Constant::getAllOnesValue(X->getType());
1254       }
1255     }
1256 
1257     // Next, check for duplicate pairs of values, which we assume are next to
1258     // each other, due to our sorting criteria.
1259     assert(i < Ops.size());
1260     if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1261       if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1262         // Drop duplicate values for And and Or.
1263         Ops.erase(Ops.begin()+i);
1264         --i; --e;
1265         ++NumAnnihil;
1266         continue;
1267       }
1268 
1269       // Drop pairs of values for Xor.
1270       assert(Opcode == Instruction::Xor);
1271       if (e == 2)
1272         return Constant::getNullValue(Ops[0].Op->getType());
1273 
1274       // Y ^ X^X -> Y
1275       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1276       i -= 1; e -= 2;
1277       ++NumAnnihil;
1278     }
1279   }
1280   return nullptr;
1281 }
1282 
1283 /// Helper function of CombineXorOpnd(). It creates a bitwise-and
1284 /// instruction with the given two operands, and return the resulting
1285 /// instruction. There are two special cases: 1) if the constant operand is 0,
1286 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1287 /// be returned.
1288 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1289                              const APInt &ConstOpnd) {
1290   if (ConstOpnd.isZero())
1291     return nullptr;
1292 
1293   if (ConstOpnd.isAllOnes())
1294     return Opnd;
1295 
1296   Instruction *I = BinaryOperator::CreateAnd(
1297       Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra",
1298       InsertBefore);
1299   I->setDebugLoc(InsertBefore->getDebugLoc());
1300   return I;
1301 }
1302 
1303 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1304 // into "R ^ C", where C would be 0, and R is a symbolic value.
1305 //
1306 // If it was successful, true is returned, and the "R" and "C" is returned
1307 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1308 // and both "Res" and "ConstOpnd" remain unchanged.
1309 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1310                                      APInt &ConstOpnd, Value *&Res) {
1311   // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1312   //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
1313   //                       = (x & ~c1) ^ (c1 ^ c2)
1314   // It is useful only when c1 == c2.
1315   if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isZero())
1316     return false;
1317 
1318   if (!Opnd1->getValue()->hasOneUse())
1319     return false;
1320 
1321   const APInt &C1 = Opnd1->getConstPart();
1322   if (C1 != ConstOpnd)
1323     return false;
1324 
1325   Value *X = Opnd1->getSymbolicPart();
1326   Res = createAndInstr(I, X, ~C1);
1327   // ConstOpnd was C2, now C1 ^ C2.
1328   ConstOpnd ^= C1;
1329 
1330   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1331     RedoInsts.insert(T);
1332   return true;
1333 }
1334 
1335 // Helper function of OptimizeXor(). It tries to simplify
1336 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1337 // symbolic value.
1338 //
1339 // If it was successful, true is returned, and the "R" and "C" is returned
1340 // via "Res" and "ConstOpnd", respectively (If the entire expression is
1341 // evaluated to a constant, the Res is set to NULL); otherwise, false is
1342 // returned, and both "Res" and "ConstOpnd" remain unchanged.
1343 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1344                                      XorOpnd *Opnd2, APInt &ConstOpnd,
1345                                      Value *&Res) {
1346   Value *X = Opnd1->getSymbolicPart();
1347   if (X != Opnd2->getSymbolicPart())
1348     return false;
1349 
1350   // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1351   int DeadInstNum = 1;
1352   if (Opnd1->getValue()->hasOneUse())
1353     DeadInstNum++;
1354   if (Opnd2->getValue()->hasOneUse())
1355     DeadInstNum++;
1356 
1357   // Xor-Rule 2:
1358   //  (x | c1) ^ (x & c2)
1359   //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1360   //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
1361   //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
1362   //
1363   if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1364     if (Opnd2->isOrExpr())
1365       std::swap(Opnd1, Opnd2);
1366 
1367     const APInt &C1 = Opnd1->getConstPart();
1368     const APInt &C2 = Opnd2->getConstPart();
1369     APInt C3((~C1) ^ C2);
1370 
1371     // Do not increase code size!
1372     if (!C3.isZero() && !C3.isAllOnes()) {
1373       int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1374       if (NewInstNum > DeadInstNum)
1375         return false;
1376     }
1377 
1378     Res = createAndInstr(I, X, C3);
1379     ConstOpnd ^= C1;
1380   } else if (Opnd1->isOrExpr()) {
1381     // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1382     //
1383     const APInt &C1 = Opnd1->getConstPart();
1384     const APInt &C2 = Opnd2->getConstPart();
1385     APInt C3 = C1 ^ C2;
1386 
1387     // Do not increase code size
1388     if (!C3.isZero() && !C3.isAllOnes()) {
1389       int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1390       if (NewInstNum > DeadInstNum)
1391         return false;
1392     }
1393 
1394     Res = createAndInstr(I, X, C3);
1395     ConstOpnd ^= C3;
1396   } else {
1397     // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1398     //
1399     const APInt &C1 = Opnd1->getConstPart();
1400     const APInt &C2 = Opnd2->getConstPart();
1401     APInt C3 = C1 ^ C2;
1402     Res = createAndInstr(I, X, C3);
1403   }
1404 
1405   // Put the original operands in the Redo list; hope they will be deleted
1406   // as dead code.
1407   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1408     RedoInsts.insert(T);
1409   if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1410     RedoInsts.insert(T);
1411 
1412   return true;
1413 }
1414 
1415 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1416 /// to a single Value, it is returned, otherwise the Ops list is mutated as
1417 /// necessary.
1418 Value *ReassociatePass::OptimizeXor(Instruction *I,
1419                                     SmallVectorImpl<ValueEntry> &Ops) {
1420   if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1421     return V;
1422 
1423   if (Ops.size() == 1)
1424     return nullptr;
1425 
1426   SmallVector<XorOpnd, 8> Opnds;
1427   SmallVector<XorOpnd*, 8> OpndPtrs;
1428   Type *Ty = Ops[0].Op->getType();
1429   APInt ConstOpnd(Ty->getScalarSizeInBits(), 0);
1430 
1431   // Step 1: Convert ValueEntry to XorOpnd
1432   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1433     Value *V = Ops[i].Op;
1434     const APInt *C;
1435     // TODO: Support non-splat vectors.
1436     if (match(V, m_APInt(C))) {
1437       ConstOpnd ^= *C;
1438     } else {
1439       XorOpnd O(V);
1440       O.setSymbolicRank(getRank(O.getSymbolicPart()));
1441       Opnds.push_back(O);
1442     }
1443   }
1444 
1445   // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1446   //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1447   //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1448   //  with the previous loop --- the iterator of the "Opnds" may be invalidated
1449   //  when new elements are added to the vector.
1450   for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1451     OpndPtrs.push_back(&Opnds[i]);
1452 
1453   // Step 2: Sort the Xor-Operands in a way such that the operands containing
1454   //  the same symbolic value cluster together. For instance, the input operand
1455   //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1456   //  ("x | 123", "x & 789", "y & 456").
1457   //
1458   //  The purpose is twofold:
1459   //  1) Cluster together the operands sharing the same symbolic-value.
1460   //  2) Operand having smaller symbolic-value-rank is permuted earlier, which
1461   //     could potentially shorten crital path, and expose more loop-invariants.
1462   //     Note that values' rank are basically defined in RPO order (FIXME).
1463   //     So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
1464   //     than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
1465   //     "z" in the order of X-Y-Z is better than any other orders.
1466   llvm::stable_sort(OpndPtrs, [](XorOpnd *LHS, XorOpnd *RHS) {
1467     return LHS->getSymbolicRank() < RHS->getSymbolicRank();
1468   });
1469 
1470   // Step 3: Combine adjacent operands
1471   XorOpnd *PrevOpnd = nullptr;
1472   bool Changed = false;
1473   for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
1474     XorOpnd *CurrOpnd = OpndPtrs[i];
1475     // The combined value
1476     Value *CV;
1477 
1478     // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1479     if (!ConstOpnd.isZero() && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1480       Changed = true;
1481       if (CV)
1482         *CurrOpnd = XorOpnd(CV);
1483       else {
1484         CurrOpnd->Invalidate();
1485         continue;
1486       }
1487     }
1488 
1489     if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1490       PrevOpnd = CurrOpnd;
1491       continue;
1492     }
1493 
1494     // step 3.2: When previous and current operands share the same symbolic
1495     //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1496     if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1497       // Remove previous operand
1498       PrevOpnd->Invalidate();
1499       if (CV) {
1500         *CurrOpnd = XorOpnd(CV);
1501         PrevOpnd = CurrOpnd;
1502       } else {
1503         CurrOpnd->Invalidate();
1504         PrevOpnd = nullptr;
1505       }
1506       Changed = true;
1507     }
1508   }
1509 
1510   // Step 4: Reassemble the Ops
1511   if (Changed) {
1512     Ops.clear();
1513     for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1514       XorOpnd &O = Opnds[i];
1515       if (O.isInvalid())
1516         continue;
1517       ValueEntry VE(getRank(O.getValue()), O.getValue());
1518       Ops.push_back(VE);
1519     }
1520     if (!ConstOpnd.isZero()) {
1521       Value *C = ConstantInt::get(Ty, ConstOpnd);
1522       ValueEntry VE(getRank(C), C);
1523       Ops.push_back(VE);
1524     }
1525     unsigned Sz = Ops.size();
1526     if (Sz == 1)
1527       return Ops.back().Op;
1528     if (Sz == 0) {
1529       assert(ConstOpnd.isZero());
1530       return ConstantInt::get(Ty, ConstOpnd);
1531     }
1532   }
1533 
1534   return nullptr;
1535 }
1536 
1537 /// Optimize a series of operands to an 'add' instruction.  This
1538 /// optimizes based on identities.  If it can be reduced to a single Value, it
1539 /// is returned, otherwise the Ops list is mutated as necessary.
1540 Value *ReassociatePass::OptimizeAdd(Instruction *I,
1541                                     SmallVectorImpl<ValueEntry> &Ops) {
1542   // Scan the operand lists looking for X and -X pairs.  If we find any, we
1543   // can simplify expressions like X+-X == 0 and X+~X ==-1.  While we're at it,
1544   // scan for any
1545   // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1546 
1547   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1548     Value *TheOp = Ops[i].Op;
1549     // Check to see if we've seen this operand before.  If so, we factor all
1550     // instances of the operand together.  Due to our sorting criteria, we know
1551     // that these need to be next to each other in the vector.
1552     if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1553       // Rescan the list, remove all instances of this operand from the expr.
1554       unsigned NumFound = 0;
1555       do {
1556         Ops.erase(Ops.begin()+i);
1557         ++NumFound;
1558       } while (i != Ops.size() && Ops[i].Op == TheOp);
1559 
1560       LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp
1561                         << '\n');
1562       ++NumFactor;
1563 
1564       // Insert a new multiply.
1565       Type *Ty = TheOp->getType();
1566       Constant *C = Ty->isIntOrIntVectorTy() ?
1567         ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
1568       Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
1569 
1570       // Now that we have inserted a multiply, optimize it. This allows us to
1571       // handle cases that require multiple factoring steps, such as this:
1572       // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1573       RedoInsts.insert(Mul);
1574 
1575       // If every add operand was a duplicate, return the multiply.
1576       if (Ops.empty())
1577         return Mul;
1578 
1579       // Otherwise, we had some input that didn't have the dupe, such as
1580       // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
1581       // things being added by this operation.
1582       Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1583 
1584       --i;
1585       e = Ops.size();
1586       continue;
1587     }
1588 
1589     // Check for X and -X or X and ~X in the operand list.
1590     Value *X;
1591     if (!match(TheOp, m_Neg(m_Value(X))) && !match(TheOp, m_Not(m_Value(X))) &&
1592         !match(TheOp, m_FNeg(m_Value(X))))
1593       continue;
1594 
1595     unsigned FoundX = FindInOperandList(Ops, i, X);
1596     if (FoundX == i)
1597       continue;
1598 
1599     // Remove X and -X from the operand list.
1600     if (Ops.size() == 2 &&
1601         (match(TheOp, m_Neg(m_Value())) || match(TheOp, m_FNeg(m_Value()))))
1602       return Constant::getNullValue(X->getType());
1603 
1604     // Remove X and ~X from the operand list.
1605     if (Ops.size() == 2 && match(TheOp, m_Not(m_Value())))
1606       return Constant::getAllOnesValue(X->getType());
1607 
1608     Ops.erase(Ops.begin()+i);
1609     if (i < FoundX)
1610       --FoundX;
1611     else
1612       --i;   // Need to back up an extra one.
1613     Ops.erase(Ops.begin()+FoundX);
1614     ++NumAnnihil;
1615     --i;     // Revisit element.
1616     e -= 2;  // Removed two elements.
1617 
1618     // if X and ~X we append -1 to the operand list.
1619     if (match(TheOp, m_Not(m_Value()))) {
1620       Value *V = Constant::getAllOnesValue(X->getType());
1621       Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1622       e += 1;
1623     }
1624   }
1625 
1626   // Scan the operand list, checking to see if there are any common factors
1627   // between operands.  Consider something like A*A+A*B*C+D.  We would like to
1628   // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1629   // To efficiently find this, we count the number of times a factor occurs
1630   // for any ADD operands that are MULs.
1631   DenseMap<Value*, unsigned> FactorOccurrences;
1632 
1633   // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1634   // where they are actually the same multiply.
1635   unsigned MaxOcc = 0;
1636   Value *MaxOccVal = nullptr;
1637   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1638     BinaryOperator *BOp =
1639         isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1640     if (!BOp)
1641       continue;
1642 
1643     // Compute all of the factors of this added value.
1644     SmallVector<Value*, 8> Factors;
1645     FindSingleUseMultiplyFactors(BOp, Factors);
1646     assert(Factors.size() > 1 && "Bad linearize!");
1647 
1648     // Add one to FactorOccurrences for each unique factor in this op.
1649     SmallPtrSet<Value*, 8> Duplicates;
1650     for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1651       Value *Factor = Factors[i];
1652       if (!Duplicates.insert(Factor).second)
1653         continue;
1654 
1655       unsigned Occ = ++FactorOccurrences[Factor];
1656       if (Occ > MaxOcc) {
1657         MaxOcc = Occ;
1658         MaxOccVal = Factor;
1659       }
1660 
1661       // If Factor is a negative constant, add the negated value as a factor
1662       // because we can percolate the negate out.  Watch for minint, which
1663       // cannot be positivified.
1664       if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
1665         if (CI->isNegative() && !CI->isMinValue(true)) {
1666           Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1667           if (!Duplicates.insert(Factor).second)
1668             continue;
1669           unsigned Occ = ++FactorOccurrences[Factor];
1670           if (Occ > MaxOcc) {
1671             MaxOcc = Occ;
1672             MaxOccVal = Factor;
1673           }
1674         }
1675       } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1676         if (CF->isNegative()) {
1677           APFloat F(CF->getValueAPF());
1678           F.changeSign();
1679           Factor = ConstantFP::get(CF->getContext(), F);
1680           if (!Duplicates.insert(Factor).second)
1681             continue;
1682           unsigned Occ = ++FactorOccurrences[Factor];
1683           if (Occ > MaxOcc) {
1684             MaxOcc = Occ;
1685             MaxOccVal = Factor;
1686           }
1687         }
1688       }
1689     }
1690   }
1691 
1692   // If any factor occurred more than one time, we can pull it out.
1693   if (MaxOcc > 1) {
1694     LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal
1695                       << '\n');
1696     ++NumFactor;
1697 
1698     // Create a new instruction that uses the MaxOccVal twice.  If we don't do
1699     // this, we could otherwise run into situations where removing a factor
1700     // from an expression will drop a use of maxocc, and this can cause
1701     // RemoveFactorFromExpression on successive values to behave differently.
1702     Instruction *DummyInst =
1703         I->getType()->isIntOrIntVectorTy()
1704             ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1705             : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1706 
1707     SmallVector<WeakTrackingVH, 4> NewMulOps;
1708     for (unsigned i = 0; i != Ops.size(); ++i) {
1709       // Only try to remove factors from expressions we're allowed to.
1710       BinaryOperator *BOp =
1711           isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1712       if (!BOp)
1713         continue;
1714 
1715       if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1716         // The factorized operand may occur several times.  Convert them all in
1717         // one fell swoop.
1718         for (unsigned j = Ops.size(); j != i;) {
1719           --j;
1720           if (Ops[j].Op == Ops[i].Op) {
1721             NewMulOps.push_back(V);
1722             Ops.erase(Ops.begin()+j);
1723           }
1724         }
1725         --i;
1726       }
1727     }
1728 
1729     // No need for extra uses anymore.
1730     DummyInst->deleteValue();
1731 
1732     unsigned NumAddedValues = NewMulOps.size();
1733     Value *V = EmitAddTreeOfValues(I, NewMulOps);
1734 
1735     // Now that we have inserted the add tree, optimize it. This allows us to
1736     // handle cases that require multiple factoring steps, such as this:
1737     // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
1738     assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1739     (void)NumAddedValues;
1740     if (Instruction *VI = dyn_cast<Instruction>(V))
1741       RedoInsts.insert(VI);
1742 
1743     // Create the multiply.
1744     Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I);
1745 
1746     // Rerun associate on the multiply in case the inner expression turned into
1747     // a multiply.  We want to make sure that we keep things in canonical form.
1748     RedoInsts.insert(V2);
1749 
1750     // If every add operand included the factor (e.g. "A*B + A*C"), then the
1751     // entire result expression is just the multiply "A*(B+C)".
1752     if (Ops.empty())
1753       return V2;
1754 
1755     // Otherwise, we had some input that didn't have the factor, such as
1756     // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
1757     // things being added by this operation.
1758     Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1759   }
1760 
1761   return nullptr;
1762 }
1763 
1764 /// Build up a vector of value/power pairs factoring a product.
1765 ///
1766 /// Given a series of multiplication operands, build a vector of factors and
1767 /// the powers each is raised to when forming the final product. Sort them in
1768 /// the order of descending power.
1769 ///
1770 ///      (x*x)          -> [(x, 2)]
1771 ///     ((x*x)*x)       -> [(x, 3)]
1772 ///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1773 ///
1774 /// \returns Whether any factors have a power greater than one.
1775 static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1776                                    SmallVectorImpl<Factor> &Factors) {
1777   // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1778   // Compute the sum of powers of simplifiable factors.
1779   unsigned FactorPowerSum = 0;
1780   for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1781     Value *Op = Ops[Idx-1].Op;
1782 
1783     // Count the number of occurrences of this value.
1784     unsigned Count = 1;
1785     for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1786       ++Count;
1787     // Track for simplification all factors which occur 2 or more times.
1788     if (Count > 1)
1789       FactorPowerSum += Count;
1790   }
1791 
1792   // We can only simplify factors if the sum of the powers of our simplifiable
1793   // factors is 4 or higher. When that is the case, we will *always* have
1794   // a simplification. This is an important invariant to prevent cyclicly
1795   // trying to simplify already minimal formations.
1796   if (FactorPowerSum < 4)
1797     return false;
1798 
1799   // Now gather the simplifiable factors, removing them from Ops.
1800   FactorPowerSum = 0;
1801   for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1802     Value *Op = Ops[Idx-1].Op;
1803 
1804     // Count the number of occurrences of this value.
1805     unsigned Count = 1;
1806     for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1807       ++Count;
1808     if (Count == 1)
1809       continue;
1810     // Move an even number of occurrences to Factors.
1811     Count &= ~1U;
1812     Idx -= Count;
1813     FactorPowerSum += Count;
1814     Factors.push_back(Factor(Op, Count));
1815     Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1816   }
1817 
1818   // None of the adjustments above should have reduced the sum of factor powers
1819   // below our mininum of '4'.
1820   assert(FactorPowerSum >= 4);
1821 
1822   llvm::stable_sort(Factors, [](const Factor &LHS, const Factor &RHS) {
1823     return LHS.Power > RHS.Power;
1824   });
1825   return true;
1826 }
1827 
1828 /// Build a tree of multiplies, computing the product of Ops.
1829 static Value *buildMultiplyTree(IRBuilderBase &Builder,
1830                                 SmallVectorImpl<Value*> &Ops) {
1831   if (Ops.size() == 1)
1832     return Ops.back();
1833 
1834   Value *LHS = Ops.pop_back_val();
1835   do {
1836     if (LHS->getType()->isIntOrIntVectorTy())
1837       LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1838     else
1839       LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
1840   } while (!Ops.empty());
1841 
1842   return LHS;
1843 }
1844 
1845 /// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1846 ///
1847 /// Given a vector of values raised to various powers, where no two values are
1848 /// equal and the powers are sorted in decreasing order, compute the minimal
1849 /// DAG of multiplies to compute the final product, and return that product
1850 /// value.
1851 Value *
1852 ReassociatePass::buildMinimalMultiplyDAG(IRBuilderBase &Builder,
1853                                          SmallVectorImpl<Factor> &Factors) {
1854   assert(Factors[0].Power);
1855   SmallVector<Value *, 4> OuterProduct;
1856   for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1857        Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1858     if (Factors[Idx].Power != Factors[LastIdx].Power) {
1859       LastIdx = Idx;
1860       continue;
1861     }
1862 
1863     // We want to multiply across all the factors with the same power so that
1864     // we can raise them to that power as a single entity. Build a mini tree
1865     // for that.
1866     SmallVector<Value *, 4> InnerProduct;
1867     InnerProduct.push_back(Factors[LastIdx].Base);
1868     do {
1869       InnerProduct.push_back(Factors[Idx].Base);
1870       ++Idx;
1871     } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1872 
1873     // Reset the base value of the first factor to the new expression tree.
1874     // We'll remove all the factors with the same power in a second pass.
1875     Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1876     if (Instruction *MI = dyn_cast<Instruction>(M))
1877       RedoInsts.insert(MI);
1878 
1879     LastIdx = Idx;
1880   }
1881   // Unique factors with equal powers -- we've folded them into the first one's
1882   // base.
1883   Factors.erase(std::unique(Factors.begin(), Factors.end(),
1884                             [](const Factor &LHS, const Factor &RHS) {
1885                               return LHS.Power == RHS.Power;
1886                             }),
1887                 Factors.end());
1888 
1889   // Iteratively collect the base of each factor with an add power into the
1890   // outer product, and halve each power in preparation for squaring the
1891   // expression.
1892   for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1893     if (Factors[Idx].Power & 1)
1894       OuterProduct.push_back(Factors[Idx].Base);
1895     Factors[Idx].Power >>= 1;
1896   }
1897   if (Factors[0].Power) {
1898     Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1899     OuterProduct.push_back(SquareRoot);
1900     OuterProduct.push_back(SquareRoot);
1901   }
1902   if (OuterProduct.size() == 1)
1903     return OuterProduct.front();
1904 
1905   Value *V = buildMultiplyTree(Builder, OuterProduct);
1906   return V;
1907 }
1908 
1909 Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
1910                                     SmallVectorImpl<ValueEntry> &Ops) {
1911   // We can only optimize the multiplies when there is a chain of more than
1912   // three, such that a balanced tree might require fewer total multiplies.
1913   if (Ops.size() < 4)
1914     return nullptr;
1915 
1916   // Try to turn linear trees of multiplies without other uses of the
1917   // intermediate stages into minimal multiply DAGs with perfect sub-expression
1918   // re-use.
1919   SmallVector<Factor, 4> Factors;
1920   if (!collectMultiplyFactors(Ops, Factors))
1921     return nullptr; // All distinct factors, so nothing left for us to do.
1922 
1923   IRBuilder<> Builder(I);
1924   // The reassociate transformation for FP operations is performed only
1925   // if unsafe algebra is permitted by FastMathFlags. Propagate those flags
1926   // to the newly generated operations.
1927   if (auto FPI = dyn_cast<FPMathOperator>(I))
1928     Builder.setFastMathFlags(FPI->getFastMathFlags());
1929 
1930   Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1931   if (Ops.empty())
1932     return V;
1933 
1934   ValueEntry NewEntry = ValueEntry(getRank(V), V);
1935   Ops.insert(llvm::lower_bound(Ops, NewEntry), NewEntry);
1936   return nullptr;
1937 }
1938 
1939 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
1940                                            SmallVectorImpl<ValueEntry> &Ops) {
1941   // Now that we have the linearized expression tree, try to optimize it.
1942   // Start by folding any constants that we found.
1943   const DataLayout &DL = I->getModule()->getDataLayout();
1944   Constant *Cst = nullptr;
1945   unsigned Opcode = I->getOpcode();
1946   while (!Ops.empty()) {
1947     if (auto *C = dyn_cast<Constant>(Ops.back().Op)) {
1948       if (!Cst) {
1949         Ops.pop_back();
1950         Cst = C;
1951         continue;
1952       }
1953       if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, C, Cst, DL)) {
1954         Ops.pop_back();
1955         Cst = Res;
1956         continue;
1957       }
1958     }
1959     break;
1960   }
1961   // If there was nothing but constants then we are done.
1962   if (Ops.empty())
1963     return Cst;
1964 
1965   // Put the combined constant back at the end of the operand list, except if
1966   // there is no point.  For example, an add of 0 gets dropped here, while a
1967   // multiplication by zero turns the whole expression into zero.
1968   if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1969     if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1970       return Cst;
1971     Ops.push_back(ValueEntry(0, Cst));
1972   }
1973 
1974   if (Ops.size() == 1) return Ops[0].Op;
1975 
1976   // Handle destructive annihilation due to identities between elements in the
1977   // argument list here.
1978   unsigned NumOps = Ops.size();
1979   switch (Opcode) {
1980   default: break;
1981   case Instruction::And:
1982   case Instruction::Or:
1983     if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1984       return Result;
1985     break;
1986 
1987   case Instruction::Xor:
1988     if (Value *Result = OptimizeXor(I, Ops))
1989       return Result;
1990     break;
1991 
1992   case Instruction::Add:
1993   case Instruction::FAdd:
1994     if (Value *Result = OptimizeAdd(I, Ops))
1995       return Result;
1996     break;
1997 
1998   case Instruction::Mul:
1999   case Instruction::FMul:
2000     if (Value *Result = OptimizeMul(I, Ops))
2001       return Result;
2002     break;
2003   }
2004 
2005   if (Ops.size() != NumOps)
2006     return OptimizeExpression(I, Ops);
2007   return nullptr;
2008 }
2009 
2010 // Remove dead instructions and if any operands are trivially dead add them to
2011 // Insts so they will be removed as well.
2012 void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I,
2013                                                 OrderedSet &Insts) {
2014   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
2015   SmallVector<Value *, 4> Ops(I->operands());
2016   ValueRankMap.erase(I);
2017   Insts.remove(I);
2018   RedoInsts.remove(I);
2019   llvm::salvageDebugInfo(*I);
2020   I->eraseFromParent();
2021   for (auto Op : Ops)
2022     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
2023       if (OpInst->use_empty())
2024         Insts.insert(OpInst);
2025 }
2026 
2027 /// Zap the given instruction, adding interesting operands to the work list.
2028 void ReassociatePass::EraseInst(Instruction *I) {
2029   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
2030   LLVM_DEBUG(dbgs() << "Erasing dead inst: "; I->dump());
2031 
2032   SmallVector<Value *, 8> Ops(I->operands());
2033   // Erase the dead instruction.
2034   ValueRankMap.erase(I);
2035   RedoInsts.remove(I);
2036   llvm::salvageDebugInfo(*I);
2037   I->eraseFromParent();
2038   // Optimize its operands.
2039   SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
2040   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2041     if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
2042       // If this is a node in an expression tree, climb to the expression root
2043       // and add that since that's where optimization actually happens.
2044       unsigned Opcode = Op->getOpcode();
2045       while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
2046              Visited.insert(Op).second)
2047         Op = Op->user_back();
2048 
2049       // The instruction we're going to push may be coming from a
2050       // dead block, and Reassociate skips the processing of unreachable
2051       // blocks because it's a waste of time and also because it can
2052       // lead to infinite loop due to LLVM's non-standard definition
2053       // of dominance.
2054       if (ValueRankMap.find(Op) != ValueRankMap.end())
2055         RedoInsts.insert(Op);
2056     }
2057 
2058   MadeChange = true;
2059 }
2060 
2061 /// Recursively analyze an expression to build a list of instructions that have
2062 /// negative floating-point constant operands. The caller can then transform
2063 /// the list to create positive constants for better reassociation and CSE.
2064 static void getNegatibleInsts(Value *V,
2065                               SmallVectorImpl<Instruction *> &Candidates) {
2066   // Handle only one-use instructions. Combining negations does not justify
2067   // replicating instructions.
2068   Instruction *I;
2069   if (!match(V, m_OneUse(m_Instruction(I))))
2070     return;
2071 
2072   // Handle expressions of multiplications and divisions.
2073   // TODO: This could look through floating-point casts.
2074   const APFloat *C;
2075   switch (I->getOpcode()) {
2076     case Instruction::FMul:
2077       // Not expecting non-canonical code here. Bail out and wait.
2078       if (match(I->getOperand(0), m_Constant()))
2079         break;
2080 
2081       if (match(I->getOperand(1), m_APFloat(C)) && C->isNegative()) {
2082         Candidates.push_back(I);
2083         LLVM_DEBUG(dbgs() << "FMul with negative constant: " << *I << '\n');
2084       }
2085       getNegatibleInsts(I->getOperand(0), Candidates);
2086       getNegatibleInsts(I->getOperand(1), Candidates);
2087       break;
2088     case Instruction::FDiv:
2089       // Not expecting non-canonical code here. Bail out and wait.
2090       if (match(I->getOperand(0), m_Constant()) &&
2091           match(I->getOperand(1), m_Constant()))
2092         break;
2093 
2094       if ((match(I->getOperand(0), m_APFloat(C)) && C->isNegative()) ||
2095           (match(I->getOperand(1), m_APFloat(C)) && C->isNegative())) {
2096         Candidates.push_back(I);
2097         LLVM_DEBUG(dbgs() << "FDiv with negative constant: " << *I << '\n');
2098       }
2099       getNegatibleInsts(I->getOperand(0), Candidates);
2100       getNegatibleInsts(I->getOperand(1), Candidates);
2101       break;
2102     default:
2103       break;
2104   }
2105 }
2106 
2107 /// Given an fadd/fsub with an operand that is a one-use instruction
2108 /// (the fadd/fsub), try to change negative floating-point constants into
2109 /// positive constants to increase potential for reassociation and CSE.
2110 Instruction *ReassociatePass::canonicalizeNegFPConstantsForOp(Instruction *I,
2111                                                               Instruction *Op,
2112                                                               Value *OtherOp) {
2113   assert((I->getOpcode() == Instruction::FAdd ||
2114           I->getOpcode() == Instruction::FSub) && "Expected fadd/fsub");
2115 
2116   // Collect instructions with negative FP constants from the subtree that ends
2117   // in Op.
2118   SmallVector<Instruction *, 4> Candidates;
2119   getNegatibleInsts(Op, Candidates);
2120   if (Candidates.empty())
2121     return nullptr;
2122 
2123   // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the
2124   // resulting subtract will be broken up later.  This can get us into an
2125   // infinite loop during reassociation.
2126   bool IsFSub = I->getOpcode() == Instruction::FSub;
2127   bool NeedsSubtract = !IsFSub && Candidates.size() % 2 == 1;
2128   if (NeedsSubtract && ShouldBreakUpSubtract(I))
2129     return nullptr;
2130 
2131   for (Instruction *Negatible : Candidates) {
2132     const APFloat *C;
2133     if (match(Negatible->getOperand(0), m_APFloat(C))) {
2134       assert(!match(Negatible->getOperand(1), m_Constant()) &&
2135              "Expecting only 1 constant operand");
2136       assert(C->isNegative() && "Expected negative FP constant");
2137       Negatible->setOperand(0, ConstantFP::get(Negatible->getType(), abs(*C)));
2138       MadeChange = true;
2139     }
2140     if (match(Negatible->getOperand(1), m_APFloat(C))) {
2141       assert(!match(Negatible->getOperand(0), m_Constant()) &&
2142              "Expecting only 1 constant operand");
2143       assert(C->isNegative() && "Expected negative FP constant");
2144       Negatible->setOperand(1, ConstantFP::get(Negatible->getType(), abs(*C)));
2145       MadeChange = true;
2146     }
2147   }
2148   assert(MadeChange == true && "Negative constant candidate was not changed");
2149 
2150   // Negations cancelled out.
2151   if (Candidates.size() % 2 == 0)
2152     return I;
2153 
2154   // Negate the final operand in the expression by flipping the opcode of this
2155   // fadd/fsub.
2156   assert(Candidates.size() % 2 == 1 && "Expected odd number");
2157   IRBuilder<> Builder(I);
2158   Value *NewInst = IsFSub ? Builder.CreateFAddFMF(OtherOp, Op, I)
2159                           : Builder.CreateFSubFMF(OtherOp, Op, I);
2160   I->replaceAllUsesWith(NewInst);
2161   RedoInsts.insert(I);
2162   return dyn_cast<Instruction>(NewInst);
2163 }
2164 
2165 /// Canonicalize expressions that contain a negative floating-point constant
2166 /// of the following form:
2167 ///   OtherOp + (subtree) -> OtherOp {+/-} (canonical subtree)
2168 ///   (subtree) + OtherOp -> OtherOp {+/-} (canonical subtree)
2169 ///   OtherOp - (subtree) -> OtherOp {+/-} (canonical subtree)
2170 ///
2171 /// The fadd/fsub opcode may be switched to allow folding a negation into the
2172 /// input instruction.
2173 Instruction *ReassociatePass::canonicalizeNegFPConstants(Instruction *I) {
2174   LLVM_DEBUG(dbgs() << "Combine negations for: " << *I << '\n');
2175   Value *X;
2176   Instruction *Op;
2177   if (match(I, m_FAdd(m_Value(X), m_OneUse(m_Instruction(Op)))))
2178     if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
2179       I = R;
2180   if (match(I, m_FAdd(m_OneUse(m_Instruction(Op)), m_Value(X))))
2181     if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
2182       I = R;
2183   if (match(I, m_FSub(m_Value(X), m_OneUse(m_Instruction(Op)))))
2184     if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
2185       I = R;
2186   return I;
2187 }
2188 
2189 /// Inspect and optimize the given instruction. Note that erasing
2190 /// instructions is not allowed.
2191 void ReassociatePass::OptimizeInst(Instruction *I) {
2192   // Only consider operations that we understand.
2193   if (!isa<UnaryOperator>(I) && !isa<BinaryOperator>(I))
2194     return;
2195 
2196   if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
2197     // If an operand of this shift is a reassociable multiply, or if the shift
2198     // is used by a reassociable multiply or add, turn into a multiply.
2199     if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
2200         (I->hasOneUse() &&
2201          (isReassociableOp(I->user_back(), Instruction::Mul) ||
2202           isReassociableOp(I->user_back(), Instruction::Add)))) {
2203       Instruction *NI = ConvertShiftToMul(I);
2204       RedoInsts.insert(I);
2205       MadeChange = true;
2206       I = NI;
2207     }
2208 
2209   // Commute binary operators, to canonicalize the order of their operands.
2210   // This can potentially expose more CSE opportunities, and makes writing other
2211   // transformations simpler.
2212   if (I->isCommutative())
2213     canonicalizeOperands(I);
2214 
2215   // Canonicalize negative constants out of expressions.
2216   if (Instruction *Res = canonicalizeNegFPConstants(I))
2217     I = Res;
2218 
2219   // Don't optimize floating-point instructions unless they are 'fast'.
2220   if (I->getType()->isFPOrFPVectorTy() && !I->isFast())
2221     return;
2222 
2223   // Do not reassociate boolean (i1) expressions.  We want to preserve the
2224   // original order of evaluation for short-circuited comparisons that
2225   // SimplifyCFG has folded to AND/OR expressions.  If the expression
2226   // is not further optimized, it is likely to be transformed back to a
2227   // short-circuited form for code gen, and the source order may have been
2228   // optimized for the most likely conditions.
2229   if (I->getType()->isIntegerTy(1))
2230     return;
2231 
2232   // If this is a bitwise or instruction of operands
2233   // with no common bits set, convert it to X+Y.
2234   if (I->getOpcode() == Instruction::Or &&
2235       shouldConvertOrWithNoCommonBitsToAdd(I) && !isLoadCombineCandidate(I) &&
2236       haveNoCommonBitsSet(I->getOperand(0), I->getOperand(1),
2237                           I->getModule()->getDataLayout(), /*AC=*/nullptr, I,
2238                           /*DT=*/nullptr)) {
2239     Instruction *NI = convertOrWithNoCommonBitsToAdd(I);
2240     RedoInsts.insert(I);
2241     MadeChange = true;
2242     I = NI;
2243   }
2244 
2245   // If this is a subtract instruction which is not already in negate form,
2246   // see if we can convert it to X+-Y.
2247   if (I->getOpcode() == Instruction::Sub) {
2248     if (ShouldBreakUpSubtract(I)) {
2249       Instruction *NI = BreakUpSubtract(I, RedoInsts);
2250       RedoInsts.insert(I);
2251       MadeChange = true;
2252       I = NI;
2253     } else if (match(I, m_Neg(m_Value()))) {
2254       // Otherwise, this is a negation.  See if the operand is a multiply tree
2255       // and if this is not an inner node of a multiply tree.
2256       if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2257           (!I->hasOneUse() ||
2258            !isReassociableOp(I->user_back(), Instruction::Mul))) {
2259         Instruction *NI = LowerNegateToMultiply(I);
2260         // If the negate was simplified, revisit the users to see if we can
2261         // reassociate further.
2262         for (User *U : NI->users()) {
2263           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2264             RedoInsts.insert(Tmp);
2265         }
2266         RedoInsts.insert(I);
2267         MadeChange = true;
2268         I = NI;
2269       }
2270     }
2271   } else if (I->getOpcode() == Instruction::FNeg ||
2272              I->getOpcode() == Instruction::FSub) {
2273     if (ShouldBreakUpSubtract(I)) {
2274       Instruction *NI = BreakUpSubtract(I, RedoInsts);
2275       RedoInsts.insert(I);
2276       MadeChange = true;
2277       I = NI;
2278     } else if (match(I, m_FNeg(m_Value()))) {
2279       // Otherwise, this is a negation.  See if the operand is a multiply tree
2280       // and if this is not an inner node of a multiply tree.
2281       Value *Op = isa<BinaryOperator>(I) ? I->getOperand(1) :
2282                                            I->getOperand(0);
2283       if (isReassociableOp(Op, Instruction::FMul) &&
2284           (!I->hasOneUse() ||
2285            !isReassociableOp(I->user_back(), Instruction::FMul))) {
2286         // If the negate was simplified, revisit the users to see if we can
2287         // reassociate further.
2288         Instruction *NI = LowerNegateToMultiply(I);
2289         for (User *U : NI->users()) {
2290           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2291             RedoInsts.insert(Tmp);
2292         }
2293         RedoInsts.insert(I);
2294         MadeChange = true;
2295         I = NI;
2296       }
2297     }
2298   }
2299 
2300   // If this instruction is an associative binary operator, process it.
2301   if (!I->isAssociative()) return;
2302   BinaryOperator *BO = cast<BinaryOperator>(I);
2303 
2304   // If this is an interior node of a reassociable tree, ignore it until we
2305   // get to the root of the tree, to avoid N^2 analysis.
2306   unsigned Opcode = BO->getOpcode();
2307   if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2308     // During the initial run we will get to the root of the tree.
2309     // But if we get here while we are redoing instructions, there is no
2310     // guarantee that the root will be visited. So Redo later
2311     if (BO->user_back() != BO &&
2312         BO->getParent() == BO->user_back()->getParent())
2313       RedoInsts.insert(BO->user_back());
2314     return;
2315   }
2316 
2317   // If this is an add tree that is used by a sub instruction, ignore it
2318   // until we process the subtract.
2319   if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
2320       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
2321     return;
2322   if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2323       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2324     return;
2325 
2326   ReassociateExpression(BO);
2327 }
2328 
2329 void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
2330   // First, walk the expression tree, linearizing the tree, collecting the
2331   // operand information.
2332   SmallVector<RepeatedValue, 8> Tree;
2333   MadeChange |= LinearizeExprTree(I, Tree, RedoInsts);
2334   SmallVector<ValueEntry, 8> Ops;
2335   Ops.reserve(Tree.size());
2336   for (const RepeatedValue &E : Tree)
2337     Ops.append(E.second.getZExtValue(), ValueEntry(getRank(E.first), E.first));
2338 
2339   LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2340 
2341   // Now that we have linearized the tree to a list and have gathered all of
2342   // the operands and their ranks, sort the operands by their rank.  Use a
2343   // stable_sort so that values with equal ranks will have their relative
2344   // positions maintained (and so the compiler is deterministic).  Note that
2345   // this sorts so that the highest ranking values end up at the beginning of
2346   // the vector.
2347   llvm::stable_sort(Ops);
2348 
2349   // Now that we have the expression tree in a convenient
2350   // sorted form, optimize it globally if possible.
2351   if (Value *V = OptimizeExpression(I, Ops)) {
2352     if (V == I)
2353       // Self-referential expression in unreachable code.
2354       return;
2355     // This expression tree simplified to something that isn't a tree,
2356     // eliminate it.
2357     LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
2358     I->replaceAllUsesWith(V);
2359     if (Instruction *VI = dyn_cast<Instruction>(V))
2360       if (I->getDebugLoc())
2361         VI->setDebugLoc(I->getDebugLoc());
2362     RedoInsts.insert(I);
2363     ++NumAnnihil;
2364     return;
2365   }
2366 
2367   // We want to sink immediates as deeply as possible except in the case where
2368   // this is a multiply tree used only by an add, and the immediate is a -1.
2369   // In this case we reassociate to put the negation on the outside so that we
2370   // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
2371   if (I->hasOneUse()) {
2372     if (I->getOpcode() == Instruction::Mul &&
2373         cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2374         isa<ConstantInt>(Ops.back().Op) &&
2375         cast<ConstantInt>(Ops.back().Op)->isMinusOne()) {
2376       ValueEntry Tmp = Ops.pop_back_val();
2377       Ops.insert(Ops.begin(), Tmp);
2378     } else if (I->getOpcode() == Instruction::FMul &&
2379                cast<Instruction>(I->user_back())->getOpcode() ==
2380                    Instruction::FAdd &&
2381                isa<ConstantFP>(Ops.back().Op) &&
2382                cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2383       ValueEntry Tmp = Ops.pop_back_val();
2384       Ops.insert(Ops.begin(), Tmp);
2385     }
2386   }
2387 
2388   LLVM_DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
2389 
2390   if (Ops.size() == 1) {
2391     if (Ops[0].Op == I)
2392       // Self-referential expression in unreachable code.
2393       return;
2394 
2395     // This expression tree simplified to something that isn't a tree,
2396     // eliminate it.
2397     I->replaceAllUsesWith(Ops[0].Op);
2398     if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2399       OI->setDebugLoc(I->getDebugLoc());
2400     RedoInsts.insert(I);
2401     return;
2402   }
2403 
2404   if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) {
2405     // Find the pair with the highest count in the pairmap and move it to the
2406     // back of the list so that it can later be CSE'd.
2407     // example:
2408     //   a*b*c*d*e
2409     // if c*e is the most "popular" pair, we can express this as
2410     //   (((c*e)*d)*b)*a
2411     unsigned Max = 1;
2412     unsigned BestRank = 0;
2413     std::pair<unsigned, unsigned> BestPair;
2414     unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin;
2415     for (unsigned i = 0; i < Ops.size() - 1; ++i)
2416       for (unsigned j = i + 1; j < Ops.size(); ++j) {
2417         unsigned Score = 0;
2418         Value *Op0 = Ops[i].Op;
2419         Value *Op1 = Ops[j].Op;
2420         if (std::less<Value *>()(Op1, Op0))
2421           std::swap(Op0, Op1);
2422         auto it = PairMap[Idx].find({Op0, Op1});
2423         if (it != PairMap[Idx].end()) {
2424           // Functions like BreakUpSubtract() can erase the Values we're using
2425           // as keys and create new Values after we built the PairMap. There's a
2426           // small chance that the new nodes can have the same address as
2427           // something already in the table. We shouldn't accumulate the stored
2428           // score in that case as it refers to the wrong Value.
2429           if (it->second.isValid())
2430             Score += it->second.Score;
2431         }
2432 
2433         unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank);
2434         if (Score > Max || (Score == Max && MaxRank < BestRank)) {
2435           BestPair = {i, j};
2436           Max = Score;
2437           BestRank = MaxRank;
2438         }
2439       }
2440     if (Max > 1) {
2441       auto Op0 = Ops[BestPair.first];
2442       auto Op1 = Ops[BestPair.second];
2443       Ops.erase(&Ops[BestPair.second]);
2444       Ops.erase(&Ops[BestPair.first]);
2445       Ops.push_back(Op0);
2446       Ops.push_back(Op1);
2447     }
2448   }
2449   // Now that we ordered and optimized the expressions, splat them back into
2450   // the expression tree, removing any unneeded nodes.
2451   RewriteExprTree(I, Ops);
2452 }
2453 
2454 void
2455 ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) {
2456   // Make a "pairmap" of how often each operand pair occurs.
2457   for (BasicBlock *BI : RPOT) {
2458     for (Instruction &I : *BI) {
2459       if (!I.isAssociative())
2460         continue;
2461 
2462       // Ignore nodes that aren't at the root of trees.
2463       if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode())
2464         continue;
2465 
2466       // Collect all operands in a single reassociable expression.
2467       // Since Reassociate has already been run once, we can assume things
2468       // are already canonical according to Reassociation's regime.
2469       SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) };
2470       SmallVector<Value *, 8> Ops;
2471       while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) {
2472         Value *Op = Worklist.pop_back_val();
2473         Instruction *OpI = dyn_cast<Instruction>(Op);
2474         if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) {
2475           Ops.push_back(Op);
2476           continue;
2477         }
2478         // Be paranoid about self-referencing expressions in unreachable code.
2479         if (OpI->getOperand(0) != OpI)
2480           Worklist.push_back(OpI->getOperand(0));
2481         if (OpI->getOperand(1) != OpI)
2482           Worklist.push_back(OpI->getOperand(1));
2483       }
2484       // Skip extremely long expressions.
2485       if (Ops.size() > GlobalReassociateLimit)
2486         continue;
2487 
2488       // Add all pairwise combinations of operands to the pair map.
2489       unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin;
2490       SmallSet<std::pair<Value *, Value*>, 32> Visited;
2491       for (unsigned i = 0; i < Ops.size() - 1; ++i) {
2492         for (unsigned j = i + 1; j < Ops.size(); ++j) {
2493           // Canonicalize operand orderings.
2494           Value *Op0 = Ops[i];
2495           Value *Op1 = Ops[j];
2496           if (std::less<Value *>()(Op1, Op0))
2497             std::swap(Op0, Op1);
2498           if (!Visited.insert({Op0, Op1}).second)
2499             continue;
2500           auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, {Op0, Op1, 1}});
2501           if (!res.second) {
2502             // If either key value has been erased then we've got the same
2503             // address by coincidence. That can't happen here because nothing is
2504             // erasing values but it can happen by the time we're querying the
2505             // map.
2506             assert(res.first->second.isValid() && "WeakVH invalidated");
2507             ++res.first->second.Score;
2508           }
2509         }
2510       }
2511     }
2512   }
2513 }
2514 
2515 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
2516   // Get the functions basic blocks in Reverse Post Order. This order is used by
2517   // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic
2518   // blocks (it has been seen that the analysis in this pass could hang when
2519   // analysing dead basic blocks).
2520   ReversePostOrderTraversal<Function *> RPOT(&F);
2521 
2522   // Calculate the rank map for F.
2523   BuildRankMap(F, RPOT);
2524 
2525   // Build the pair map before running reassociate.
2526   // Technically this would be more accurate if we did it after one round
2527   // of reassociation, but in practice it doesn't seem to help much on
2528   // real-world code, so don't waste the compile time running reassociate
2529   // twice.
2530   // If a user wants, they could expicitly run reassociate twice in their
2531   // pass pipeline for further potential gains.
2532   // It might also be possible to update the pair map during runtime, but the
2533   // overhead of that may be large if there's many reassociable chains.
2534   BuildPairMap(RPOT);
2535 
2536   MadeChange = false;
2537 
2538   // Traverse the same blocks that were analysed by BuildRankMap.
2539   for (BasicBlock *BI : RPOT) {
2540     assert(RankMap.count(&*BI) && "BB should be ranked.");
2541     // Optimize every instruction in the basic block.
2542     for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;)
2543       if (isInstructionTriviallyDead(&*II)) {
2544         EraseInst(&*II++);
2545       } else {
2546         OptimizeInst(&*II);
2547         assert(II->getParent() == &*BI && "Moved to a different block!");
2548         ++II;
2549       }
2550 
2551     // Make a copy of all the instructions to be redone so we can remove dead
2552     // instructions.
2553     OrderedSet ToRedo(RedoInsts);
2554     // Iterate over all instructions to be reevaluated and remove trivially dead
2555     // instructions. If any operand of the trivially dead instruction becomes
2556     // dead mark it for deletion as well. Continue this process until all
2557     // trivially dead instructions have been removed.
2558     while (!ToRedo.empty()) {
2559       Instruction *I = ToRedo.pop_back_val();
2560       if (isInstructionTriviallyDead(I)) {
2561         RecursivelyEraseDeadInsts(I, ToRedo);
2562         MadeChange = true;
2563       }
2564     }
2565 
2566     // Now that we have removed dead instructions, we can reoptimize the
2567     // remaining instructions.
2568     while (!RedoInsts.empty()) {
2569       Instruction *I = RedoInsts.front();
2570       RedoInsts.erase(RedoInsts.begin());
2571       if (isInstructionTriviallyDead(I))
2572         EraseInst(I);
2573       else
2574         OptimizeInst(I);
2575     }
2576   }
2577 
2578   // We are done with the rank map and pair map.
2579   RankMap.clear();
2580   ValueRankMap.clear();
2581   for (auto &Entry : PairMap)
2582     Entry.clear();
2583 
2584   if (MadeChange) {
2585     PreservedAnalyses PA;
2586     PA.preserveSet<CFGAnalyses>();
2587     return PA;
2588   }
2589 
2590   return PreservedAnalyses::all();
2591 }
2592 
2593 namespace {
2594 
2595   class ReassociateLegacyPass : public FunctionPass {
2596     ReassociatePass Impl;
2597 
2598   public:
2599     static char ID; // Pass identification, replacement for typeid
2600 
2601     ReassociateLegacyPass() : FunctionPass(ID) {
2602       initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
2603     }
2604 
2605     bool runOnFunction(Function &F) override {
2606       if (skipFunction(F))
2607         return false;
2608 
2609       FunctionAnalysisManager DummyFAM;
2610       auto PA = Impl.run(F, DummyFAM);
2611       return !PA.areAllPreserved();
2612     }
2613 
2614     void getAnalysisUsage(AnalysisUsage &AU) const override {
2615       AU.setPreservesCFG();
2616       AU.addPreserved<AAResultsWrapperPass>();
2617       AU.addPreserved<BasicAAWrapperPass>();
2618       AU.addPreserved<GlobalsAAWrapperPass>();
2619     }
2620   };
2621 
2622 } // end anonymous namespace
2623 
2624 char ReassociateLegacyPass::ID = 0;
2625 
2626 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
2627                 "Reassociate expressions", false, false)
2628 
2629 // Public interface to the Reassociate pass
2630 FunctionPass *llvm::createReassociatePass() {
2631   return new ReassociateLegacyPass();
2632 }
2633