1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass reassociates commutative expressions in an order that is designed 11 // to promote better constant propagation, GCSE, LICM, PRE, etc. 12 // 13 // For example: 4 + (x + 5) -> x + (4 + 5) 14 // 15 // In the implementation of this algorithm, constants are assigned rank = 0, 16 // function arguments are rank = 1, and other values are assigned ranks 17 // corresponding to the reverse post order traversal of current function 18 // (starting at 2), which effectively gives values in deep loops higher rank 19 // than values not in loops. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/Transforms/Scalar.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/PostOrderIterator.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/Analysis/GlobalsModRef.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/ValueHandle.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Transforms/Utils/Local.h" 43 #include <algorithm> 44 using namespace llvm; 45 46 #define DEBUG_TYPE "reassociate" 47 48 STATISTIC(NumChanged, "Number of insts reassociated"); 49 STATISTIC(NumAnnihil, "Number of expr tree annihilated"); 50 STATISTIC(NumFactor , "Number of multiplies factored"); 51 52 namespace { 53 struct ValueEntry { 54 unsigned Rank; 55 Value *Op; 56 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {} 57 }; 58 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) { 59 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start. 60 } 61 } 62 63 #ifndef NDEBUG 64 /// Print out the expression identified in the Ops list. 65 /// 66 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) { 67 Module *M = I->getParent()->getParent()->getParent(); 68 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " " 69 << *Ops[0].Op->getType() << '\t'; 70 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 71 dbgs() << "[ "; 72 Ops[i].Op->printAsOperand(dbgs(), false, M); 73 dbgs() << ", #" << Ops[i].Rank << "] "; 74 } 75 } 76 #endif 77 78 namespace { 79 /// \brief Utility class representing a base and exponent pair which form one 80 /// factor of some product. 81 struct Factor { 82 Value *Base; 83 unsigned Power; 84 85 Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {} 86 87 /// \brief Sort factors by their Base. 88 struct BaseSorter { 89 bool operator()(const Factor &LHS, const Factor &RHS) { 90 return LHS.Base < RHS.Base; 91 } 92 }; 93 94 /// \brief Compare factors for equal bases. 95 struct BaseEqual { 96 bool operator()(const Factor &LHS, const Factor &RHS) { 97 return LHS.Base == RHS.Base; 98 } 99 }; 100 101 /// \brief Sort factors in descending order by their power. 102 struct PowerDescendingSorter { 103 bool operator()(const Factor &LHS, const Factor &RHS) { 104 return LHS.Power > RHS.Power; 105 } 106 }; 107 108 /// \brief Compare factors for equal powers. 109 struct PowerEqual { 110 bool operator()(const Factor &LHS, const Factor &RHS) { 111 return LHS.Power == RHS.Power; 112 } 113 }; 114 }; 115 116 /// Utility class representing a non-constant Xor-operand. We classify 117 /// non-constant Xor-Operands into two categories: 118 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0 119 /// C2) 120 /// C2.1) The operand is in the form of "X | C", where C is a non-zero 121 /// constant. 122 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this 123 /// operand as "E | 0" 124 class XorOpnd { 125 public: 126 XorOpnd(Value *V); 127 128 bool isInvalid() const { return SymbolicPart == nullptr; } 129 bool isOrExpr() const { return isOr; } 130 Value *getValue() const { return OrigVal; } 131 Value *getSymbolicPart() const { return SymbolicPart; } 132 unsigned getSymbolicRank() const { return SymbolicRank; } 133 const APInt &getConstPart() const { return ConstPart; } 134 135 void Invalidate() { SymbolicPart = OrigVal = nullptr; } 136 void setSymbolicRank(unsigned R) { SymbolicRank = R; } 137 138 // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank. 139 // The purpose is twofold: 140 // 1) Cluster together the operands sharing the same symbolic-value. 141 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which 142 // could potentially shorten crital path, and expose more loop-invariants. 143 // Note that values' rank are basically defined in RPO order (FIXME). 144 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier 145 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2", 146 // "z" in the order of X-Y-Z is better than any other orders. 147 struct PtrSortFunctor { 148 bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) { 149 return LHS->getSymbolicRank() < RHS->getSymbolicRank(); 150 } 151 }; 152 private: 153 Value *OrigVal; 154 Value *SymbolicPart; 155 APInt ConstPart; 156 unsigned SymbolicRank; 157 bool isOr; 158 }; 159 } 160 161 namespace { 162 class Reassociate : public FunctionPass { 163 DenseMap<BasicBlock*, unsigned> RankMap; 164 DenseMap<AssertingVH<Value>, unsigned> ValueRankMap; 165 SetVector<AssertingVH<Instruction> > RedoInsts; 166 bool MadeChange; 167 public: 168 static char ID; // Pass identification, replacement for typeid 169 Reassociate() : FunctionPass(ID) { 170 initializeReassociatePass(*PassRegistry::getPassRegistry()); 171 } 172 173 bool runOnFunction(Function &F) override; 174 175 void getAnalysisUsage(AnalysisUsage &AU) const override { 176 AU.setPreservesCFG(); 177 AU.addPreserved<GlobalsAAWrapperPass>(); 178 } 179 private: 180 void BuildRankMap(Function &F); 181 unsigned getRank(Value *V); 182 void canonicalizeOperands(Instruction *I); 183 void ReassociateExpression(BinaryOperator *I); 184 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops); 185 Value *OptimizeExpression(BinaryOperator *I, 186 SmallVectorImpl<ValueEntry> &Ops); 187 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops); 188 Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops); 189 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd, 190 Value *&Res); 191 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2, 192 APInt &ConstOpnd, Value *&Res); 193 bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, 194 SmallVectorImpl<Factor> &Factors); 195 Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder, 196 SmallVectorImpl<Factor> &Factors); 197 Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops); 198 Value *RemoveFactorFromExpression(Value *V, Value *Factor); 199 void EraseInst(Instruction *I); 200 void OptimizeInst(Instruction *I); 201 Instruction *canonicalizeNegConstExpr(Instruction *I); 202 }; 203 } 204 205 XorOpnd::XorOpnd(Value *V) { 206 assert(!isa<ConstantInt>(V) && "No ConstantInt"); 207 OrigVal = V; 208 Instruction *I = dyn_cast<Instruction>(V); 209 SymbolicRank = 0; 210 211 if (I && (I->getOpcode() == Instruction::Or || 212 I->getOpcode() == Instruction::And)) { 213 Value *V0 = I->getOperand(0); 214 Value *V1 = I->getOperand(1); 215 if (isa<ConstantInt>(V0)) 216 std::swap(V0, V1); 217 218 if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) { 219 ConstPart = C->getValue(); 220 SymbolicPart = V0; 221 isOr = (I->getOpcode() == Instruction::Or); 222 return; 223 } 224 } 225 226 // view the operand as "V | 0" 227 SymbolicPart = V; 228 ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth()); 229 isOr = true; 230 } 231 232 char Reassociate::ID = 0; 233 INITIALIZE_PASS(Reassociate, "reassociate", 234 "Reassociate expressions", false, false) 235 236 // Public interface to the Reassociate pass 237 FunctionPass *llvm::createReassociatePass() { return new Reassociate(); } 238 239 /// Return true if V is an instruction of the specified opcode and if it 240 /// only has one use. 241 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) { 242 if (V->hasOneUse() && isa<Instruction>(V) && 243 cast<Instruction>(V)->getOpcode() == Opcode && 244 (!isa<FPMathOperator>(V) || 245 cast<Instruction>(V)->hasUnsafeAlgebra())) 246 return cast<BinaryOperator>(V); 247 return nullptr; 248 } 249 250 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1, 251 unsigned Opcode2) { 252 if (V->hasOneUse() && isa<Instruction>(V) && 253 (cast<Instruction>(V)->getOpcode() == Opcode1 || 254 cast<Instruction>(V)->getOpcode() == Opcode2) && 255 (!isa<FPMathOperator>(V) || 256 cast<Instruction>(V)->hasUnsafeAlgebra())) 257 return cast<BinaryOperator>(V); 258 return nullptr; 259 } 260 261 void Reassociate::BuildRankMap(Function &F) { 262 unsigned i = 2; 263 264 // Assign distinct ranks to function arguments. 265 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { 266 ValueRankMap[&*I] = ++i; 267 DEBUG(dbgs() << "Calculated Rank[" << I->getName() << "] = " << i << "\n"); 268 } 269 270 ReversePostOrderTraversal<Function*> RPOT(&F); 271 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(), 272 E = RPOT.end(); I != E; ++I) { 273 BasicBlock *BB = *I; 274 unsigned BBRank = RankMap[BB] = ++i << 16; 275 276 // Walk the basic block, adding precomputed ranks for any instructions that 277 // we cannot move. This ensures that the ranks for these instructions are 278 // all different in the block. 279 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 280 if (mayBeMemoryDependent(*I)) 281 ValueRankMap[&*I] = ++BBRank; 282 } 283 } 284 285 unsigned Reassociate::getRank(Value *V) { 286 Instruction *I = dyn_cast<Instruction>(V); 287 if (!I) { 288 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument. 289 return 0; // Otherwise it's a global or constant, rank 0. 290 } 291 292 if (unsigned Rank = ValueRankMap[I]) 293 return Rank; // Rank already known? 294 295 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that 296 // we can reassociate expressions for code motion! Since we do not recurse 297 // for PHI nodes, we cannot have infinite recursion here, because there 298 // cannot be loops in the value graph that do not go through PHI nodes. 299 unsigned Rank = 0, MaxRank = RankMap[I->getParent()]; 300 for (unsigned i = 0, e = I->getNumOperands(); 301 i != e && Rank != MaxRank; ++i) 302 Rank = std::max(Rank, getRank(I->getOperand(i))); 303 304 // If this is a not or neg instruction, do not count it for rank. This 305 // assures us that X and ~X will have the same rank. 306 if (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) && 307 !BinaryOperator::isFNeg(I)) 308 ++Rank; 309 310 DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n"); 311 312 return ValueRankMap[I] = Rank; 313 } 314 315 // Canonicalize constants to RHS. Otherwise, sort the operands by rank. 316 void Reassociate::canonicalizeOperands(Instruction *I) { 317 assert(isa<BinaryOperator>(I) && "Expected binary operator."); 318 assert(I->isCommutative() && "Expected commutative operator."); 319 320 Value *LHS = I->getOperand(0); 321 Value *RHS = I->getOperand(1); 322 unsigned LHSRank = getRank(LHS); 323 unsigned RHSRank = getRank(RHS); 324 325 if (isa<Constant>(RHS)) 326 return; 327 328 if (isa<Constant>(LHS) || RHSRank < LHSRank) 329 cast<BinaryOperator>(I)->swapOperands(); 330 } 331 332 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name, 333 Instruction *InsertBefore, Value *FlagsOp) { 334 if (S1->getType()->isIntOrIntVectorTy()) 335 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore); 336 else { 337 BinaryOperator *Res = 338 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore); 339 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 340 return Res; 341 } 342 } 343 344 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name, 345 Instruction *InsertBefore, Value *FlagsOp) { 346 if (S1->getType()->isIntOrIntVectorTy()) 347 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore); 348 else { 349 BinaryOperator *Res = 350 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore); 351 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 352 return Res; 353 } 354 } 355 356 static BinaryOperator *CreateNeg(Value *S1, const Twine &Name, 357 Instruction *InsertBefore, Value *FlagsOp) { 358 if (S1->getType()->isIntOrIntVectorTy()) 359 return BinaryOperator::CreateNeg(S1, Name, InsertBefore); 360 else { 361 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore); 362 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 363 return Res; 364 } 365 } 366 367 /// Replace 0-X with X*-1. 368 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) { 369 Type *Ty = Neg->getType(); 370 Constant *NegOne = Ty->isIntOrIntVectorTy() ? 371 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0); 372 373 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg); 374 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op. 375 Res->takeName(Neg); 376 Neg->replaceAllUsesWith(Res); 377 Res->setDebugLoc(Neg->getDebugLoc()); 378 return Res; 379 } 380 381 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael 382 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for 383 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic. 384 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every 385 /// even x in Bitwidth-bit arithmetic. 386 static unsigned CarmichaelShift(unsigned Bitwidth) { 387 if (Bitwidth < 3) 388 return Bitwidth - 1; 389 return Bitwidth - 2; 390 } 391 392 /// Add the extra weight 'RHS' to the existing weight 'LHS', 393 /// reducing the combined weight using any special properties of the operation. 394 /// The existing weight LHS represents the computation X op X op ... op X where 395 /// X occurs LHS times. The combined weight represents X op X op ... op X with 396 /// X occurring LHS + RHS times. If op is "Xor" for example then the combined 397 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even; 398 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second. 399 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) { 400 // If we were working with infinite precision arithmetic then the combined 401 // weight would be LHS + RHS. But we are using finite precision arithmetic, 402 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct 403 // for nilpotent operations and addition, but not for idempotent operations 404 // and multiplication), so it is important to correctly reduce the combined 405 // weight back into range if wrapping would be wrong. 406 407 // If RHS is zero then the weight didn't change. 408 if (RHS.isMinValue()) 409 return; 410 // If LHS is zero then the combined weight is RHS. 411 if (LHS.isMinValue()) { 412 LHS = RHS; 413 return; 414 } 415 // From this point on we know that neither LHS nor RHS is zero. 416 417 if (Instruction::isIdempotent(Opcode)) { 418 // Idempotent means X op X === X, so any non-zero weight is equivalent to a 419 // weight of 1. Keeping weights at zero or one also means that wrapping is 420 // not a problem. 421 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 422 return; // Return a weight of 1. 423 } 424 if (Instruction::isNilpotent(Opcode)) { 425 // Nilpotent means X op X === 0, so reduce weights modulo 2. 426 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 427 LHS = 0; // 1 + 1 === 0 modulo 2. 428 return; 429 } 430 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) { 431 // TODO: Reduce the weight by exploiting nsw/nuw? 432 LHS += RHS; 433 return; 434 } 435 436 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) && 437 "Unknown associative operation!"); 438 unsigned Bitwidth = LHS.getBitWidth(); 439 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth 440 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth 441 // bit number x, since either x is odd in which case x^CM = 1, or x is even in 442 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples 443 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth) 444 // which by a happy accident means that they can always be represented using 445 // Bitwidth bits. 446 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than 447 // the Carmichael number). 448 if (Bitwidth > 3) { 449 /// CM - The value of Carmichael's lambda function. 450 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth)); 451 // Any weight W >= Threshold can be replaced with W - CM. 452 APInt Threshold = CM + Bitwidth; 453 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!"); 454 // For Bitwidth 4 or more the following sum does not overflow. 455 LHS += RHS; 456 while (LHS.uge(Threshold)) 457 LHS -= CM; 458 } else { 459 // To avoid problems with overflow do everything the same as above but using 460 // a larger type. 461 unsigned CM = 1U << CarmichaelShift(Bitwidth); 462 unsigned Threshold = CM + Bitwidth; 463 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold && 464 "Weights not reduced!"); 465 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue(); 466 while (Total >= Threshold) 467 Total -= CM; 468 LHS = Total; 469 } 470 } 471 472 typedef std::pair<Value*, APInt> RepeatedValue; 473 474 /// Given an associative binary expression, return the leaf 475 /// nodes in Ops along with their weights (how many times the leaf occurs). The 476 /// original expression is the same as 477 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times 478 /// op 479 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times 480 /// op 481 /// ... 482 /// op 483 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times 484 /// 485 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct. 486 /// 487 /// This routine may modify the function, in which case it returns 'true'. The 488 /// changes it makes may well be destructive, changing the value computed by 'I' 489 /// to something completely different. Thus if the routine returns 'true' then 490 /// you MUST either replace I with a new expression computed from the Ops array, 491 /// or use RewriteExprTree to put the values back in. 492 /// 493 /// A leaf node is either not a binary operation of the same kind as the root 494 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different 495 /// opcode), or is the same kind of binary operator but has a use which either 496 /// does not belong to the expression, or does belong to the expression but is 497 /// a leaf node. Every leaf node has at least one use that is a non-leaf node 498 /// of the expression, while for non-leaf nodes (except for the root 'I') every 499 /// use is a non-leaf node of the expression. 500 /// 501 /// For example: 502 /// expression graph node names 503 /// 504 /// + | I 505 /// / \ | 506 /// + + | A, B 507 /// / \ / \ | 508 /// * + * | C, D, E 509 /// / \ / \ / \ | 510 /// + * | F, G 511 /// 512 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in 513 /// that order) (C, 1), (E, 1), (F, 2), (G, 2). 514 /// 515 /// The expression is maximal: if some instruction is a binary operator of the 516 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression, 517 /// then the instruction also belongs to the expression, is not a leaf node of 518 /// it, and its operands also belong to the expression (but may be leaf nodes). 519 /// 520 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in 521 /// order to ensure that every non-root node in the expression has *exactly one* 522 /// use by a non-leaf node of the expression. This destruction means that the 523 /// caller MUST either replace 'I' with a new expression or use something like 524 /// RewriteExprTree to put the values back in if the routine indicates that it 525 /// made a change by returning 'true'. 526 /// 527 /// In the above example either the right operand of A or the left operand of B 528 /// will be replaced by undef. If it is B's operand then this gives: 529 /// 530 /// + | I 531 /// / \ | 532 /// + + | A, B - operand of B replaced with undef 533 /// / \ \ | 534 /// * + * | C, D, E 535 /// / \ / \ / \ | 536 /// + * | F, G 537 /// 538 /// Note that such undef operands can only be reached by passing through 'I'. 539 /// For example, if you visit operands recursively starting from a leaf node 540 /// then you will never see such an undef operand unless you get back to 'I', 541 /// which requires passing through a phi node. 542 /// 543 /// Note that this routine may also mutate binary operators of the wrong type 544 /// that have all uses inside the expression (i.e. only used by non-leaf nodes 545 /// of the expression) if it can turn them into binary operators of the right 546 /// type and thus make the expression bigger. 547 548 static bool LinearizeExprTree(BinaryOperator *I, 549 SmallVectorImpl<RepeatedValue> &Ops) { 550 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n'); 551 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits(); 552 unsigned Opcode = I->getOpcode(); 553 assert(I->isAssociative() && I->isCommutative() && 554 "Expected an associative and commutative operation!"); 555 556 // Visit all operands of the expression, keeping track of their weight (the 557 // number of paths from the expression root to the operand, or if you like 558 // the number of times that operand occurs in the linearized expression). 559 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1 560 // while A has weight two. 561 562 // Worklist of non-leaf nodes (their operands are in the expression too) along 563 // with their weights, representing a certain number of paths to the operator. 564 // If an operator occurs in the worklist multiple times then we found multiple 565 // ways to get to it. 566 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight) 567 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1))); 568 bool Changed = false; 569 570 // Leaves of the expression are values that either aren't the right kind of 571 // operation (eg: a constant, or a multiply in an add tree), or are, but have 572 // some uses that are not inside the expression. For example, in I = X + X, 573 // X = A + B, the value X has two uses (by I) that are in the expression. If 574 // X has any other uses, for example in a return instruction, then we consider 575 // X to be a leaf, and won't analyze it further. When we first visit a value, 576 // if it has more than one use then at first we conservatively consider it to 577 // be a leaf. Later, as the expression is explored, we may discover some more 578 // uses of the value from inside the expression. If all uses turn out to be 579 // from within the expression (and the value is a binary operator of the right 580 // kind) then the value is no longer considered to be a leaf, and its operands 581 // are explored. 582 583 // Leaves - Keeps track of the set of putative leaves as well as the number of 584 // paths to each leaf seen so far. 585 typedef DenseMap<Value*, APInt> LeafMap; 586 LeafMap Leaves; // Leaf -> Total weight so far. 587 SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order. 588 589 #ifndef NDEBUG 590 SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme. 591 #endif 592 while (!Worklist.empty()) { 593 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val(); 594 I = P.first; // We examine the operands of this binary operator. 595 596 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands. 597 Value *Op = I->getOperand(OpIdx); 598 APInt Weight = P.second; // Number of paths to this operand. 599 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n"); 600 assert(!Op->use_empty() && "No uses, so how did we get to it?!"); 601 602 // If this is a binary operation of the right kind with only one use then 603 // add its operands to the expression. 604 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 605 assert(Visited.insert(Op).second && "Not first visit!"); 606 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n"); 607 Worklist.push_back(std::make_pair(BO, Weight)); 608 continue; 609 } 610 611 // Appears to be a leaf. Is the operand already in the set of leaves? 612 LeafMap::iterator It = Leaves.find(Op); 613 if (It == Leaves.end()) { 614 // Not in the leaf map. Must be the first time we saw this operand. 615 assert(Visited.insert(Op).second && "Not first visit!"); 616 if (!Op->hasOneUse()) { 617 // This value has uses not accounted for by the expression, so it is 618 // not safe to modify. Mark it as being a leaf. 619 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n"); 620 LeafOrder.push_back(Op); 621 Leaves[Op] = Weight; 622 continue; 623 } 624 // No uses outside the expression, try morphing it. 625 } else if (It != Leaves.end()) { 626 // Already in the leaf map. 627 assert(Visited.count(Op) && "In leaf map but not visited!"); 628 629 // Update the number of paths to the leaf. 630 IncorporateWeight(It->second, Weight, Opcode); 631 632 #if 0 // TODO: Re-enable once PR13021 is fixed. 633 // The leaf already has one use from inside the expression. As we want 634 // exactly one such use, drop this new use of the leaf. 635 assert(!Op->hasOneUse() && "Only one use, but we got here twice!"); 636 I->setOperand(OpIdx, UndefValue::get(I->getType())); 637 Changed = true; 638 639 // If the leaf is a binary operation of the right kind and we now see 640 // that its multiple original uses were in fact all by nodes belonging 641 // to the expression, then no longer consider it to be a leaf and add 642 // its operands to the expression. 643 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 644 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n"); 645 Worklist.push_back(std::make_pair(BO, It->second)); 646 Leaves.erase(It); 647 continue; 648 } 649 #endif 650 651 // If we still have uses that are not accounted for by the expression 652 // then it is not safe to modify the value. 653 if (!Op->hasOneUse()) 654 continue; 655 656 // No uses outside the expression, try morphing it. 657 Weight = It->second; 658 Leaves.erase(It); // Since the value may be morphed below. 659 } 660 661 // At this point we have a value which, first of all, is not a binary 662 // expression of the right kind, and secondly, is only used inside the 663 // expression. This means that it can safely be modified. See if we 664 // can usefully morph it into an expression of the right kind. 665 assert((!isa<Instruction>(Op) || 666 cast<Instruction>(Op)->getOpcode() != Opcode 667 || (isa<FPMathOperator>(Op) && 668 !cast<Instruction>(Op)->hasUnsafeAlgebra())) && 669 "Should have been handled above!"); 670 assert(Op->hasOneUse() && "Has uses outside the expression tree!"); 671 672 // If this is a multiply expression, turn any internal negations into 673 // multiplies by -1 so they can be reassociated. 674 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) 675 if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) || 676 (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) { 677 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO "); 678 BO = LowerNegateToMultiply(BO); 679 DEBUG(dbgs() << *BO << '\n'); 680 Worklist.push_back(std::make_pair(BO, Weight)); 681 Changed = true; 682 continue; 683 } 684 685 // Failed to morph into an expression of the right type. This really is 686 // a leaf. 687 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n"); 688 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?"); 689 LeafOrder.push_back(Op); 690 Leaves[Op] = Weight; 691 } 692 } 693 694 // The leaves, repeated according to their weights, represent the linearized 695 // form of the expression. 696 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) { 697 Value *V = LeafOrder[i]; 698 LeafMap::iterator It = Leaves.find(V); 699 if (It == Leaves.end()) 700 // Node initially thought to be a leaf wasn't. 701 continue; 702 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!"); 703 APInt Weight = It->second; 704 if (Weight.isMinValue()) 705 // Leaf already output or weight reduction eliminated it. 706 continue; 707 // Ensure the leaf is only output once. 708 It->second = 0; 709 Ops.push_back(std::make_pair(V, Weight)); 710 } 711 712 // For nilpotent operations or addition there may be no operands, for example 713 // because the expression was "X xor X" or consisted of 2^Bitwidth additions: 714 // in both cases the weight reduces to 0 causing the value to be skipped. 715 if (Ops.empty()) { 716 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType()); 717 assert(Identity && "Associative operation without identity!"); 718 Ops.emplace_back(Identity, APInt(Bitwidth, 1)); 719 } 720 721 return Changed; 722 } 723 724 /// Now that the operands for this expression tree are 725 /// linearized and optimized, emit them in-order. 726 void Reassociate::RewriteExprTree(BinaryOperator *I, 727 SmallVectorImpl<ValueEntry> &Ops) { 728 assert(Ops.size() > 1 && "Single values should be used directly!"); 729 730 // Since our optimizations should never increase the number of operations, the 731 // new expression can usually be written reusing the existing binary operators 732 // from the original expression tree, without creating any new instructions, 733 // though the rewritten expression may have a completely different topology. 734 // We take care to not change anything if the new expression will be the same 735 // as the original. If more than trivial changes (like commuting operands) 736 // were made then we are obliged to clear out any optional subclass data like 737 // nsw flags. 738 739 /// NodesToRewrite - Nodes from the original expression available for writing 740 /// the new expression into. 741 SmallVector<BinaryOperator*, 8> NodesToRewrite; 742 unsigned Opcode = I->getOpcode(); 743 BinaryOperator *Op = I; 744 745 /// NotRewritable - The operands being written will be the leaves of the new 746 /// expression and must not be used as inner nodes (via NodesToRewrite) by 747 /// mistake. Inner nodes are always reassociable, and usually leaves are not 748 /// (if they were they would have been incorporated into the expression and so 749 /// would not be leaves), so most of the time there is no danger of this. But 750 /// in rare cases a leaf may become reassociable if an optimization kills uses 751 /// of it, or it may momentarily become reassociable during rewriting (below) 752 /// due it being removed as an operand of one of its uses. Ensure that misuse 753 /// of leaf nodes as inner nodes cannot occur by remembering all of the future 754 /// leaves and refusing to reuse any of them as inner nodes. 755 SmallPtrSet<Value*, 8> NotRewritable; 756 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 757 NotRewritable.insert(Ops[i].Op); 758 759 // ExpressionChanged - Non-null if the rewritten expression differs from the 760 // original in some non-trivial way, requiring the clearing of optional flags. 761 // Flags are cleared from the operator in ExpressionChanged up to I inclusive. 762 BinaryOperator *ExpressionChanged = nullptr; 763 for (unsigned i = 0; ; ++i) { 764 // The last operation (which comes earliest in the IR) is special as both 765 // operands will come from Ops, rather than just one with the other being 766 // a subexpression. 767 if (i+2 == Ops.size()) { 768 Value *NewLHS = Ops[i].Op; 769 Value *NewRHS = Ops[i+1].Op; 770 Value *OldLHS = Op->getOperand(0); 771 Value *OldRHS = Op->getOperand(1); 772 773 if (NewLHS == OldLHS && NewRHS == OldRHS) 774 // Nothing changed, leave it alone. 775 break; 776 777 if (NewLHS == OldRHS && NewRHS == OldLHS) { 778 // The order of the operands was reversed. Swap them. 779 DEBUG(dbgs() << "RA: " << *Op << '\n'); 780 Op->swapOperands(); 781 DEBUG(dbgs() << "TO: " << *Op << '\n'); 782 MadeChange = true; 783 ++NumChanged; 784 break; 785 } 786 787 // The new operation differs non-trivially from the original. Overwrite 788 // the old operands with the new ones. 789 DEBUG(dbgs() << "RA: " << *Op << '\n'); 790 if (NewLHS != OldLHS) { 791 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode); 792 if (BO && !NotRewritable.count(BO)) 793 NodesToRewrite.push_back(BO); 794 Op->setOperand(0, NewLHS); 795 } 796 if (NewRHS != OldRHS) { 797 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode); 798 if (BO && !NotRewritable.count(BO)) 799 NodesToRewrite.push_back(BO); 800 Op->setOperand(1, NewRHS); 801 } 802 DEBUG(dbgs() << "TO: " << *Op << '\n'); 803 804 ExpressionChanged = Op; 805 MadeChange = true; 806 ++NumChanged; 807 808 break; 809 } 810 811 // Not the last operation. The left-hand side will be a sub-expression 812 // while the right-hand side will be the current element of Ops. 813 Value *NewRHS = Ops[i].Op; 814 if (NewRHS != Op->getOperand(1)) { 815 DEBUG(dbgs() << "RA: " << *Op << '\n'); 816 if (NewRHS == Op->getOperand(0)) { 817 // The new right-hand side was already present as the left operand. If 818 // we are lucky then swapping the operands will sort out both of them. 819 Op->swapOperands(); 820 } else { 821 // Overwrite with the new right-hand side. 822 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode); 823 if (BO && !NotRewritable.count(BO)) 824 NodesToRewrite.push_back(BO); 825 Op->setOperand(1, NewRHS); 826 ExpressionChanged = Op; 827 } 828 DEBUG(dbgs() << "TO: " << *Op << '\n'); 829 MadeChange = true; 830 ++NumChanged; 831 } 832 833 // Now deal with the left-hand side. If this is already an operation node 834 // from the original expression then just rewrite the rest of the expression 835 // into it. 836 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode); 837 if (BO && !NotRewritable.count(BO)) { 838 Op = BO; 839 continue; 840 } 841 842 // Otherwise, grab a spare node from the original expression and use that as 843 // the left-hand side. If there are no nodes left then the optimizers made 844 // an expression with more nodes than the original! This usually means that 845 // they did something stupid but it might mean that the problem was just too 846 // hard (finding the mimimal number of multiplications needed to realize a 847 // multiplication expression is NP-complete). Whatever the reason, smart or 848 // stupid, create a new node if there are none left. 849 BinaryOperator *NewOp; 850 if (NodesToRewrite.empty()) { 851 Constant *Undef = UndefValue::get(I->getType()); 852 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode), 853 Undef, Undef, "", I); 854 if (NewOp->getType()->isFPOrFPVectorTy()) 855 NewOp->setFastMathFlags(I->getFastMathFlags()); 856 } else { 857 NewOp = NodesToRewrite.pop_back_val(); 858 } 859 860 DEBUG(dbgs() << "RA: " << *Op << '\n'); 861 Op->setOperand(0, NewOp); 862 DEBUG(dbgs() << "TO: " << *Op << '\n'); 863 ExpressionChanged = Op; 864 MadeChange = true; 865 ++NumChanged; 866 Op = NewOp; 867 } 868 869 // If the expression changed non-trivially then clear out all subclass data 870 // starting from the operator specified in ExpressionChanged, and compactify 871 // the operators to just before the expression root to guarantee that the 872 // expression tree is dominated by all of Ops. 873 if (ExpressionChanged) 874 do { 875 // Preserve FastMathFlags. 876 if (isa<FPMathOperator>(I)) { 877 FastMathFlags Flags = I->getFastMathFlags(); 878 ExpressionChanged->clearSubclassOptionalData(); 879 ExpressionChanged->setFastMathFlags(Flags); 880 } else 881 ExpressionChanged->clearSubclassOptionalData(); 882 883 if (ExpressionChanged == I) 884 break; 885 ExpressionChanged->moveBefore(I); 886 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin()); 887 } while (1); 888 889 // Throw away any left over nodes from the original expression. 890 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i) 891 RedoInsts.insert(NodesToRewrite[i]); 892 } 893 894 /// Insert instructions before the instruction pointed to by BI, 895 /// that computes the negative version of the value specified. The negative 896 /// version of the value is returned, and BI is left pointing at the instruction 897 /// that should be processed next by the reassociation pass. 898 static Value *NegateValue(Value *V, Instruction *BI) { 899 if (Constant *C = dyn_cast<Constant>(V)) { 900 if (C->getType()->isFPOrFPVectorTy()) { 901 return ConstantExpr::getFNeg(C); 902 } 903 return ConstantExpr::getNeg(C); 904 } 905 906 907 // We are trying to expose opportunity for reassociation. One of the things 908 // that we want to do to achieve this is to push a negation as deep into an 909 // expression chain as possible, to expose the add instructions. In practice, 910 // this means that we turn this: 911 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D 912 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate 913 // the constants. We assume that instcombine will clean up the mess later if 914 // we introduce tons of unnecessary negation instructions. 915 // 916 if (BinaryOperator *I = 917 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) { 918 // Push the negates through the add. 919 I->setOperand(0, NegateValue(I->getOperand(0), BI)); 920 I->setOperand(1, NegateValue(I->getOperand(1), BI)); 921 if (I->getOpcode() == Instruction::Add) { 922 I->setHasNoUnsignedWrap(false); 923 I->setHasNoSignedWrap(false); 924 } 925 926 // We must move the add instruction here, because the neg instructions do 927 // not dominate the old add instruction in general. By moving it, we are 928 // assured that the neg instructions we just inserted dominate the 929 // instruction we are about to insert after them. 930 // 931 I->moveBefore(BI); 932 I->setName(I->getName()+".neg"); 933 return I; 934 } 935 936 // Okay, we need to materialize a negated version of V with an instruction. 937 // Scan the use lists of V to see if we have one already. 938 for (User *U : V->users()) { 939 if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U)) 940 continue; 941 942 // We found one! Now we have to make sure that the definition dominates 943 // this use. We do this by moving it to the entry block (if it is a 944 // non-instruction value) or right after the definition. These negates will 945 // be zapped by reassociate later, so we don't need much finesse here. 946 BinaryOperator *TheNeg = cast<BinaryOperator>(U); 947 948 // Verify that the negate is in this function, V might be a constant expr. 949 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent()) 950 continue; 951 952 BasicBlock::iterator InsertPt; 953 if (Instruction *InstInput = dyn_cast<Instruction>(V)) { 954 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) { 955 InsertPt = II->getNormalDest()->begin(); 956 } else if (auto *CPI = dyn_cast<CatchPadInst>(InstInput)) { 957 InsertPt = CPI->getNormalDest()->begin(); 958 } else { 959 InsertPt = InstInput; 960 ++InsertPt; 961 } 962 while (isa<PHINode>(InsertPt)) ++InsertPt; 963 } else { 964 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin(); 965 } 966 TheNeg->moveBefore(InsertPt); 967 if (TheNeg->getOpcode() == Instruction::Sub) { 968 TheNeg->setHasNoUnsignedWrap(false); 969 TheNeg->setHasNoSignedWrap(false); 970 } else { 971 TheNeg->andIRFlags(BI); 972 } 973 return TheNeg; 974 } 975 976 // Insert a 'neg' instruction that subtracts the value from zero to get the 977 // negation. 978 return CreateNeg(V, V->getName() + ".neg", BI, BI); 979 } 980 981 /// Return true if we should break up this subtract of X-Y into (X + -Y). 982 static bool ShouldBreakUpSubtract(Instruction *Sub) { 983 // If this is a negation, we can't split it up! 984 if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub)) 985 return false; 986 987 // Don't breakup X - undef. 988 if (isa<UndefValue>(Sub->getOperand(1))) 989 return false; 990 991 // Don't bother to break this up unless either the LHS is an associable add or 992 // subtract or if this is only used by one. 993 Value *V0 = Sub->getOperand(0); 994 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) || 995 isReassociableOp(V0, Instruction::Sub, Instruction::FSub)) 996 return true; 997 Value *V1 = Sub->getOperand(1); 998 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) || 999 isReassociableOp(V1, Instruction::Sub, Instruction::FSub)) 1000 return true; 1001 Value *VB = Sub->user_back(); 1002 if (Sub->hasOneUse() && 1003 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) || 1004 isReassociableOp(VB, Instruction::Sub, Instruction::FSub))) 1005 return true; 1006 1007 return false; 1008 } 1009 1010 /// If we have (X-Y), and if either X is an add, or if this is only used by an 1011 /// add, transform this into (X+(0-Y)) to promote better reassociation. 1012 static BinaryOperator *BreakUpSubtract(Instruction *Sub) { 1013 // Convert a subtract into an add and a neg instruction. This allows sub 1014 // instructions to be commuted with other add instructions. 1015 // 1016 // Calculate the negative value of Operand 1 of the sub instruction, 1017 // and set it as the RHS of the add instruction we just made. 1018 // 1019 Value *NegVal = NegateValue(Sub->getOperand(1), Sub); 1020 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub); 1021 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op. 1022 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op. 1023 New->takeName(Sub); 1024 1025 // Everyone now refers to the add instruction. 1026 Sub->replaceAllUsesWith(New); 1027 New->setDebugLoc(Sub->getDebugLoc()); 1028 1029 DEBUG(dbgs() << "Negated: " << *New << '\n'); 1030 return New; 1031 } 1032 1033 /// If this is a shift of a reassociable multiply or is used by one, change 1034 /// this into a multiply by a constant to assist with further reassociation. 1035 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) { 1036 Constant *MulCst = ConstantInt::get(Shl->getType(), 1); 1037 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1))); 1038 1039 BinaryOperator *Mul = 1040 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl); 1041 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op. 1042 Mul->takeName(Shl); 1043 1044 // Everyone now refers to the mul instruction. 1045 Shl->replaceAllUsesWith(Mul); 1046 Mul->setDebugLoc(Shl->getDebugLoc()); 1047 1048 // We can safely preserve the nuw flag in all cases. It's also safe to turn a 1049 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special 1050 // handling. 1051 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap(); 1052 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap(); 1053 if (NSW && NUW) 1054 Mul->setHasNoSignedWrap(true); 1055 Mul->setHasNoUnsignedWrap(NUW); 1056 return Mul; 1057 } 1058 1059 /// Scan backwards and forwards among values with the same rank as element i 1060 /// to see if X exists. If X does not exist, return i. This is useful when 1061 /// scanning for 'x' when we see '-x' because they both get the same rank. 1062 static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i, 1063 Value *X) { 1064 unsigned XRank = Ops[i].Rank; 1065 unsigned e = Ops.size(); 1066 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) { 1067 if (Ops[j].Op == X) 1068 return j; 1069 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 1070 if (Instruction *I2 = dyn_cast<Instruction>(X)) 1071 if (I1->isIdenticalTo(I2)) 1072 return j; 1073 } 1074 // Scan backwards. 1075 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) { 1076 if (Ops[j].Op == X) 1077 return j; 1078 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 1079 if (Instruction *I2 = dyn_cast<Instruction>(X)) 1080 if (I1->isIdenticalTo(I2)) 1081 return j; 1082 } 1083 return i; 1084 } 1085 1086 /// Emit a tree of add instructions, summing Ops together 1087 /// and returning the result. Insert the tree before I. 1088 static Value *EmitAddTreeOfValues(Instruction *I, 1089 SmallVectorImpl<WeakVH> &Ops){ 1090 if (Ops.size() == 1) return Ops.back(); 1091 1092 Value *V1 = Ops.back(); 1093 Ops.pop_back(); 1094 Value *V2 = EmitAddTreeOfValues(I, Ops); 1095 return CreateAdd(V2, V1, "tmp", I, I); 1096 } 1097 1098 /// If V is an expression tree that is a multiplication sequence, 1099 /// and if this sequence contains a multiply by Factor, 1100 /// remove Factor from the tree and return the new tree. 1101 Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) { 1102 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1103 if (!BO) 1104 return nullptr; 1105 1106 SmallVector<RepeatedValue, 8> Tree; 1107 MadeChange |= LinearizeExprTree(BO, Tree); 1108 SmallVector<ValueEntry, 8> Factors; 1109 Factors.reserve(Tree.size()); 1110 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 1111 RepeatedValue E = Tree[i]; 1112 Factors.append(E.second.getZExtValue(), 1113 ValueEntry(getRank(E.first), E.first)); 1114 } 1115 1116 bool FoundFactor = false; 1117 bool NeedsNegate = false; 1118 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1119 if (Factors[i].Op == Factor) { 1120 FoundFactor = true; 1121 Factors.erase(Factors.begin()+i); 1122 break; 1123 } 1124 1125 // If this is a negative version of this factor, remove it. 1126 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) { 1127 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op)) 1128 if (FC1->getValue() == -FC2->getValue()) { 1129 FoundFactor = NeedsNegate = true; 1130 Factors.erase(Factors.begin()+i); 1131 break; 1132 } 1133 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) { 1134 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) { 1135 APFloat F1(FC1->getValueAPF()); 1136 APFloat F2(FC2->getValueAPF()); 1137 F2.changeSign(); 1138 if (F1.compare(F2) == APFloat::cmpEqual) { 1139 FoundFactor = NeedsNegate = true; 1140 Factors.erase(Factors.begin() + i); 1141 break; 1142 } 1143 } 1144 } 1145 } 1146 1147 if (!FoundFactor) { 1148 // Make sure to restore the operands to the expression tree. 1149 RewriteExprTree(BO, Factors); 1150 return nullptr; 1151 } 1152 1153 BasicBlock::iterator InsertPt = BO; ++InsertPt; 1154 1155 // If this was just a single multiply, remove the multiply and return the only 1156 // remaining operand. 1157 if (Factors.size() == 1) { 1158 RedoInsts.insert(BO); 1159 V = Factors[0].Op; 1160 } else { 1161 RewriteExprTree(BO, Factors); 1162 V = BO; 1163 } 1164 1165 if (NeedsNegate) 1166 V = CreateNeg(V, "neg", InsertPt, BO); 1167 1168 return V; 1169 } 1170 1171 /// If V is a single-use multiply, recursively add its operands as factors, 1172 /// otherwise add V to the list of factors. 1173 /// 1174 /// Ops is the top-level list of add operands we're trying to factor. 1175 static void FindSingleUseMultiplyFactors(Value *V, 1176 SmallVectorImpl<Value*> &Factors, 1177 const SmallVectorImpl<ValueEntry> &Ops) { 1178 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1179 if (!BO) { 1180 Factors.push_back(V); 1181 return; 1182 } 1183 1184 // Otherwise, add the LHS and RHS to the list of factors. 1185 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops); 1186 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops); 1187 } 1188 1189 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction. 1190 /// This optimizes based on identities. If it can be reduced to a single Value, 1191 /// it is returned, otherwise the Ops list is mutated as necessary. 1192 static Value *OptimizeAndOrXor(unsigned Opcode, 1193 SmallVectorImpl<ValueEntry> &Ops) { 1194 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs. 1195 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1. 1196 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1197 // First, check for X and ~X in the operand list. 1198 assert(i < Ops.size()); 1199 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^. 1200 Value *X = BinaryOperator::getNotArgument(Ops[i].Op); 1201 unsigned FoundX = FindInOperandList(Ops, i, X); 1202 if (FoundX != i) { 1203 if (Opcode == Instruction::And) // ...&X&~X = 0 1204 return Constant::getNullValue(X->getType()); 1205 1206 if (Opcode == Instruction::Or) // ...|X|~X = -1 1207 return Constant::getAllOnesValue(X->getType()); 1208 } 1209 } 1210 1211 // Next, check for duplicate pairs of values, which we assume are next to 1212 // each other, due to our sorting criteria. 1213 assert(i < Ops.size()); 1214 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) { 1215 if (Opcode == Instruction::And || Opcode == Instruction::Or) { 1216 // Drop duplicate values for And and Or. 1217 Ops.erase(Ops.begin()+i); 1218 --i; --e; 1219 ++NumAnnihil; 1220 continue; 1221 } 1222 1223 // Drop pairs of values for Xor. 1224 assert(Opcode == Instruction::Xor); 1225 if (e == 2) 1226 return Constant::getNullValue(Ops[0].Op->getType()); 1227 1228 // Y ^ X^X -> Y 1229 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1230 i -= 1; e -= 2; 1231 ++NumAnnihil; 1232 } 1233 } 1234 return nullptr; 1235 } 1236 1237 /// Helper funciton of CombineXorOpnd(). It creates a bitwise-and 1238 /// instruction with the given two operands, and return the resulting 1239 /// instruction. There are two special cases: 1) if the constant operand is 0, 1240 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will 1241 /// be returned. 1242 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd, 1243 const APInt &ConstOpnd) { 1244 if (ConstOpnd != 0) { 1245 if (!ConstOpnd.isAllOnesValue()) { 1246 LLVMContext &Ctx = Opnd->getType()->getContext(); 1247 Instruction *I; 1248 I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd), 1249 "and.ra", InsertBefore); 1250 I->setDebugLoc(InsertBefore->getDebugLoc()); 1251 return I; 1252 } 1253 return Opnd; 1254 } 1255 return nullptr; 1256 } 1257 1258 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd" 1259 // into "R ^ C", where C would be 0, and R is a symbolic value. 1260 // 1261 // If it was successful, true is returned, and the "R" and "C" is returned 1262 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned, 1263 // and both "Res" and "ConstOpnd" remain unchanged. 1264 // 1265 bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1266 APInt &ConstOpnd, Value *&Res) { 1267 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2 1268 // = ((x | c1) ^ c1) ^ (c1 ^ c2) 1269 // = (x & ~c1) ^ (c1 ^ c2) 1270 // It is useful only when c1 == c2. 1271 if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) { 1272 if (!Opnd1->getValue()->hasOneUse()) 1273 return false; 1274 1275 const APInt &C1 = Opnd1->getConstPart(); 1276 if (C1 != ConstOpnd) 1277 return false; 1278 1279 Value *X = Opnd1->getSymbolicPart(); 1280 Res = createAndInstr(I, X, ~C1); 1281 // ConstOpnd was C2, now C1 ^ C2. 1282 ConstOpnd ^= C1; 1283 1284 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1285 RedoInsts.insert(T); 1286 return true; 1287 } 1288 return false; 1289 } 1290 1291 1292 // Helper function of OptimizeXor(). It tries to simplify 1293 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a 1294 // symbolic value. 1295 // 1296 // If it was successful, true is returned, and the "R" and "C" is returned 1297 // via "Res" and "ConstOpnd", respectively (If the entire expression is 1298 // evaluated to a constant, the Res is set to NULL); otherwise, false is 1299 // returned, and both "Res" and "ConstOpnd" remain unchanged. 1300 bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2, 1301 APInt &ConstOpnd, Value *&Res) { 1302 Value *X = Opnd1->getSymbolicPart(); 1303 if (X != Opnd2->getSymbolicPart()) 1304 return false; 1305 1306 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.) 1307 int DeadInstNum = 1; 1308 if (Opnd1->getValue()->hasOneUse()) 1309 DeadInstNum++; 1310 if (Opnd2->getValue()->hasOneUse()) 1311 DeadInstNum++; 1312 1313 // Xor-Rule 2: 1314 // (x | c1) ^ (x & c2) 1315 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1 1316 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1 1317 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3 1318 // 1319 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) { 1320 if (Opnd2->isOrExpr()) 1321 std::swap(Opnd1, Opnd2); 1322 1323 const APInt &C1 = Opnd1->getConstPart(); 1324 const APInt &C2 = Opnd2->getConstPart(); 1325 APInt C3((~C1) ^ C2); 1326 1327 // Do not increase code size! 1328 if (C3 != 0 && !C3.isAllOnesValue()) { 1329 int NewInstNum = ConstOpnd != 0 ? 1 : 2; 1330 if (NewInstNum > DeadInstNum) 1331 return false; 1332 } 1333 1334 Res = createAndInstr(I, X, C3); 1335 ConstOpnd ^= C1; 1336 1337 } else if (Opnd1->isOrExpr()) { 1338 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2 1339 // 1340 const APInt &C1 = Opnd1->getConstPart(); 1341 const APInt &C2 = Opnd2->getConstPart(); 1342 APInt C3 = C1 ^ C2; 1343 1344 // Do not increase code size 1345 if (C3 != 0 && !C3.isAllOnesValue()) { 1346 int NewInstNum = ConstOpnd != 0 ? 1 : 2; 1347 if (NewInstNum > DeadInstNum) 1348 return false; 1349 } 1350 1351 Res = createAndInstr(I, X, C3); 1352 ConstOpnd ^= C3; 1353 } else { 1354 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2)) 1355 // 1356 const APInt &C1 = Opnd1->getConstPart(); 1357 const APInt &C2 = Opnd2->getConstPart(); 1358 APInt C3 = C1 ^ C2; 1359 Res = createAndInstr(I, X, C3); 1360 } 1361 1362 // Put the original operands in the Redo list; hope they will be deleted 1363 // as dead code. 1364 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1365 RedoInsts.insert(T); 1366 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue())) 1367 RedoInsts.insert(T); 1368 1369 return true; 1370 } 1371 1372 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced 1373 /// to a single Value, it is returned, otherwise the Ops list is mutated as 1374 /// necessary. 1375 Value *Reassociate::OptimizeXor(Instruction *I, 1376 SmallVectorImpl<ValueEntry> &Ops) { 1377 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops)) 1378 return V; 1379 1380 if (Ops.size() == 1) 1381 return nullptr; 1382 1383 SmallVector<XorOpnd, 8> Opnds; 1384 SmallVector<XorOpnd*, 8> OpndPtrs; 1385 Type *Ty = Ops[0].Op->getType(); 1386 APInt ConstOpnd(Ty->getIntegerBitWidth(), 0); 1387 1388 // Step 1: Convert ValueEntry to XorOpnd 1389 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1390 Value *V = Ops[i].Op; 1391 if (!isa<ConstantInt>(V)) { 1392 XorOpnd O(V); 1393 O.setSymbolicRank(getRank(O.getSymbolicPart())); 1394 Opnds.push_back(O); 1395 } else 1396 ConstOpnd ^= cast<ConstantInt>(V)->getValue(); 1397 } 1398 1399 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds". 1400 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate 1401 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop 1402 // with the previous loop --- the iterator of the "Opnds" may be invalidated 1403 // when new elements are added to the vector. 1404 for (unsigned i = 0, e = Opnds.size(); i != e; ++i) 1405 OpndPtrs.push_back(&Opnds[i]); 1406 1407 // Step 2: Sort the Xor-Operands in a way such that the operands containing 1408 // the same symbolic value cluster together. For instance, the input operand 1409 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into: 1410 // ("x | 123", "x & 789", "y & 456"). 1411 std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor()); 1412 1413 // Step 3: Combine adjacent operands 1414 XorOpnd *PrevOpnd = nullptr; 1415 bool Changed = false; 1416 for (unsigned i = 0, e = Opnds.size(); i < e; i++) { 1417 XorOpnd *CurrOpnd = OpndPtrs[i]; 1418 // The combined value 1419 Value *CV; 1420 1421 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd" 1422 if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) { 1423 Changed = true; 1424 if (CV) 1425 *CurrOpnd = XorOpnd(CV); 1426 else { 1427 CurrOpnd->Invalidate(); 1428 continue; 1429 } 1430 } 1431 1432 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) { 1433 PrevOpnd = CurrOpnd; 1434 continue; 1435 } 1436 1437 // step 3.2: When previous and current operands share the same symbolic 1438 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd" 1439 // 1440 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) { 1441 // Remove previous operand 1442 PrevOpnd->Invalidate(); 1443 if (CV) { 1444 *CurrOpnd = XorOpnd(CV); 1445 PrevOpnd = CurrOpnd; 1446 } else { 1447 CurrOpnd->Invalidate(); 1448 PrevOpnd = nullptr; 1449 } 1450 Changed = true; 1451 } 1452 } 1453 1454 // Step 4: Reassemble the Ops 1455 if (Changed) { 1456 Ops.clear(); 1457 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) { 1458 XorOpnd &O = Opnds[i]; 1459 if (O.isInvalid()) 1460 continue; 1461 ValueEntry VE(getRank(O.getValue()), O.getValue()); 1462 Ops.push_back(VE); 1463 } 1464 if (ConstOpnd != 0) { 1465 Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd); 1466 ValueEntry VE(getRank(C), C); 1467 Ops.push_back(VE); 1468 } 1469 int Sz = Ops.size(); 1470 if (Sz == 1) 1471 return Ops.back().Op; 1472 else if (Sz == 0) { 1473 assert(ConstOpnd == 0); 1474 return ConstantInt::get(Ty->getContext(), ConstOpnd); 1475 } 1476 } 1477 1478 return nullptr; 1479 } 1480 1481 /// Optimize a series of operands to an 'add' instruction. This 1482 /// optimizes based on identities. If it can be reduced to a single Value, it 1483 /// is returned, otherwise the Ops list is mutated as necessary. 1484 Value *Reassociate::OptimizeAdd(Instruction *I, 1485 SmallVectorImpl<ValueEntry> &Ops) { 1486 // Scan the operand lists looking for X and -X pairs. If we find any, we 1487 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it, 1488 // scan for any 1489 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z. 1490 1491 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1492 Value *TheOp = Ops[i].Op; 1493 // Check to see if we've seen this operand before. If so, we factor all 1494 // instances of the operand together. Due to our sorting criteria, we know 1495 // that these need to be next to each other in the vector. 1496 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) { 1497 // Rescan the list, remove all instances of this operand from the expr. 1498 unsigned NumFound = 0; 1499 do { 1500 Ops.erase(Ops.begin()+i); 1501 ++NumFound; 1502 } while (i != Ops.size() && Ops[i].Op == TheOp); 1503 1504 DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n'); 1505 ++NumFactor; 1506 1507 // Insert a new multiply. 1508 Type *Ty = TheOp->getType(); 1509 Constant *C = Ty->isIntOrIntVectorTy() ? 1510 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound); 1511 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I); 1512 1513 // Now that we have inserted a multiply, optimize it. This allows us to 1514 // handle cases that require multiple factoring steps, such as this: 1515 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6 1516 RedoInsts.insert(Mul); 1517 1518 // If every add operand was a duplicate, return the multiply. 1519 if (Ops.empty()) 1520 return Mul; 1521 1522 // Otherwise, we had some input that didn't have the dupe, such as 1523 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of 1524 // things being added by this operation. 1525 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul)); 1526 1527 --i; 1528 e = Ops.size(); 1529 continue; 1530 } 1531 1532 // Check for X and -X or X and ~X in the operand list. 1533 if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) && 1534 !BinaryOperator::isNot(TheOp)) 1535 continue; 1536 1537 Value *X = nullptr; 1538 if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)) 1539 X = BinaryOperator::getNegArgument(TheOp); 1540 else if (BinaryOperator::isNot(TheOp)) 1541 X = BinaryOperator::getNotArgument(TheOp); 1542 1543 unsigned FoundX = FindInOperandList(Ops, i, X); 1544 if (FoundX == i) 1545 continue; 1546 1547 // Remove X and -X from the operand list. 1548 if (Ops.size() == 2 && 1549 (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))) 1550 return Constant::getNullValue(X->getType()); 1551 1552 // Remove X and ~X from the operand list. 1553 if (Ops.size() == 2 && BinaryOperator::isNot(TheOp)) 1554 return Constant::getAllOnesValue(X->getType()); 1555 1556 Ops.erase(Ops.begin()+i); 1557 if (i < FoundX) 1558 --FoundX; 1559 else 1560 --i; // Need to back up an extra one. 1561 Ops.erase(Ops.begin()+FoundX); 1562 ++NumAnnihil; 1563 --i; // Revisit element. 1564 e -= 2; // Removed two elements. 1565 1566 // if X and ~X we append -1 to the operand list. 1567 if (BinaryOperator::isNot(TheOp)) { 1568 Value *V = Constant::getAllOnesValue(X->getType()); 1569 Ops.insert(Ops.end(), ValueEntry(getRank(V), V)); 1570 e += 1; 1571 } 1572 } 1573 1574 // Scan the operand list, checking to see if there are any common factors 1575 // between operands. Consider something like A*A+A*B*C+D. We would like to 1576 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies. 1577 // To efficiently find this, we count the number of times a factor occurs 1578 // for any ADD operands that are MULs. 1579 DenseMap<Value*, unsigned> FactorOccurrences; 1580 1581 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4) 1582 // where they are actually the same multiply. 1583 unsigned MaxOcc = 0; 1584 Value *MaxOccVal = nullptr; 1585 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1586 BinaryOperator *BOp = 1587 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1588 if (!BOp) 1589 continue; 1590 1591 // Compute all of the factors of this added value. 1592 SmallVector<Value*, 8> Factors; 1593 FindSingleUseMultiplyFactors(BOp, Factors, Ops); 1594 assert(Factors.size() > 1 && "Bad linearize!"); 1595 1596 // Add one to FactorOccurrences for each unique factor in this op. 1597 SmallPtrSet<Value*, 8> Duplicates; 1598 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1599 Value *Factor = Factors[i]; 1600 if (!Duplicates.insert(Factor).second) 1601 continue; 1602 1603 unsigned Occ = ++FactorOccurrences[Factor]; 1604 if (Occ > MaxOcc) { 1605 MaxOcc = Occ; 1606 MaxOccVal = Factor; 1607 } 1608 1609 // If Factor is a negative constant, add the negated value as a factor 1610 // because we can percolate the negate out. Watch for minint, which 1611 // cannot be positivified. 1612 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) { 1613 if (CI->isNegative() && !CI->isMinValue(true)) { 1614 Factor = ConstantInt::get(CI->getContext(), -CI->getValue()); 1615 assert(!Duplicates.count(Factor) && 1616 "Shouldn't have two constant factors, missed a canonicalize"); 1617 unsigned Occ = ++FactorOccurrences[Factor]; 1618 if (Occ > MaxOcc) { 1619 MaxOcc = Occ; 1620 MaxOccVal = Factor; 1621 } 1622 } 1623 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) { 1624 if (CF->isNegative()) { 1625 APFloat F(CF->getValueAPF()); 1626 F.changeSign(); 1627 Factor = ConstantFP::get(CF->getContext(), F); 1628 assert(!Duplicates.count(Factor) && 1629 "Shouldn't have two constant factors, missed a canonicalize"); 1630 unsigned Occ = ++FactorOccurrences[Factor]; 1631 if (Occ > MaxOcc) { 1632 MaxOcc = Occ; 1633 MaxOccVal = Factor; 1634 } 1635 } 1636 } 1637 } 1638 } 1639 1640 // If any factor occurred more than one time, we can pull it out. 1641 if (MaxOcc > 1) { 1642 DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n'); 1643 ++NumFactor; 1644 1645 // Create a new instruction that uses the MaxOccVal twice. If we don't do 1646 // this, we could otherwise run into situations where removing a factor 1647 // from an expression will drop a use of maxocc, and this can cause 1648 // RemoveFactorFromExpression on successive values to behave differently. 1649 Instruction *DummyInst = 1650 I->getType()->isIntOrIntVectorTy() 1651 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal) 1652 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal); 1653 1654 SmallVector<WeakVH, 4> NewMulOps; 1655 for (unsigned i = 0; i != Ops.size(); ++i) { 1656 // Only try to remove factors from expressions we're allowed to. 1657 BinaryOperator *BOp = 1658 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1659 if (!BOp) 1660 continue; 1661 1662 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) { 1663 // The factorized operand may occur several times. Convert them all in 1664 // one fell swoop. 1665 for (unsigned j = Ops.size(); j != i;) { 1666 --j; 1667 if (Ops[j].Op == Ops[i].Op) { 1668 NewMulOps.push_back(V); 1669 Ops.erase(Ops.begin()+j); 1670 } 1671 } 1672 --i; 1673 } 1674 } 1675 1676 // No need for extra uses anymore. 1677 delete DummyInst; 1678 1679 unsigned NumAddedValues = NewMulOps.size(); 1680 Value *V = EmitAddTreeOfValues(I, NewMulOps); 1681 1682 // Now that we have inserted the add tree, optimize it. This allows us to 1683 // handle cases that require multiple factoring steps, such as this: 1684 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C)) 1685 assert(NumAddedValues > 1 && "Each occurrence should contribute a value"); 1686 (void)NumAddedValues; 1687 if (Instruction *VI = dyn_cast<Instruction>(V)) 1688 RedoInsts.insert(VI); 1689 1690 // Create the multiply. 1691 Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I); 1692 1693 // Rerun associate on the multiply in case the inner expression turned into 1694 // a multiply. We want to make sure that we keep things in canonical form. 1695 RedoInsts.insert(V2); 1696 1697 // If every add operand included the factor (e.g. "A*B + A*C"), then the 1698 // entire result expression is just the multiply "A*(B+C)". 1699 if (Ops.empty()) 1700 return V2; 1701 1702 // Otherwise, we had some input that didn't have the factor, such as 1703 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of 1704 // things being added by this operation. 1705 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2)); 1706 } 1707 1708 return nullptr; 1709 } 1710 1711 /// \brief Build up a vector of value/power pairs factoring a product. 1712 /// 1713 /// Given a series of multiplication operands, build a vector of factors and 1714 /// the powers each is raised to when forming the final product. Sort them in 1715 /// the order of descending power. 1716 /// 1717 /// (x*x) -> [(x, 2)] 1718 /// ((x*x)*x) -> [(x, 3)] 1719 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)] 1720 /// 1721 /// \returns Whether any factors have a power greater than one. 1722 bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, 1723 SmallVectorImpl<Factor> &Factors) { 1724 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this. 1725 // Compute the sum of powers of simplifiable factors. 1726 unsigned FactorPowerSum = 0; 1727 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) { 1728 Value *Op = Ops[Idx-1].Op; 1729 1730 // Count the number of occurrences of this value. 1731 unsigned Count = 1; 1732 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx) 1733 ++Count; 1734 // Track for simplification all factors which occur 2 or more times. 1735 if (Count > 1) 1736 FactorPowerSum += Count; 1737 } 1738 1739 // We can only simplify factors if the sum of the powers of our simplifiable 1740 // factors is 4 or higher. When that is the case, we will *always* have 1741 // a simplification. This is an important invariant to prevent cyclicly 1742 // trying to simplify already minimal formations. 1743 if (FactorPowerSum < 4) 1744 return false; 1745 1746 // Now gather the simplifiable factors, removing them from Ops. 1747 FactorPowerSum = 0; 1748 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) { 1749 Value *Op = Ops[Idx-1].Op; 1750 1751 // Count the number of occurrences of this value. 1752 unsigned Count = 1; 1753 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx) 1754 ++Count; 1755 if (Count == 1) 1756 continue; 1757 // Move an even number of occurrences to Factors. 1758 Count &= ~1U; 1759 Idx -= Count; 1760 FactorPowerSum += Count; 1761 Factors.push_back(Factor(Op, Count)); 1762 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count); 1763 } 1764 1765 // None of the adjustments above should have reduced the sum of factor powers 1766 // below our mininum of '4'. 1767 assert(FactorPowerSum >= 4); 1768 1769 std::stable_sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter()); 1770 return true; 1771 } 1772 1773 /// \brief Build a tree of multiplies, computing the product of Ops. 1774 static Value *buildMultiplyTree(IRBuilder<> &Builder, 1775 SmallVectorImpl<Value*> &Ops) { 1776 if (Ops.size() == 1) 1777 return Ops.back(); 1778 1779 Value *LHS = Ops.pop_back_val(); 1780 do { 1781 if (LHS->getType()->isIntOrIntVectorTy()) 1782 LHS = Builder.CreateMul(LHS, Ops.pop_back_val()); 1783 else 1784 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val()); 1785 } while (!Ops.empty()); 1786 1787 return LHS; 1788 } 1789 1790 /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*... 1791 /// 1792 /// Given a vector of values raised to various powers, where no two values are 1793 /// equal and the powers are sorted in decreasing order, compute the minimal 1794 /// DAG of multiplies to compute the final product, and return that product 1795 /// value. 1796 Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder, 1797 SmallVectorImpl<Factor> &Factors) { 1798 assert(Factors[0].Power); 1799 SmallVector<Value *, 4> OuterProduct; 1800 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size(); 1801 Idx < Size && Factors[Idx].Power > 0; ++Idx) { 1802 if (Factors[Idx].Power != Factors[LastIdx].Power) { 1803 LastIdx = Idx; 1804 continue; 1805 } 1806 1807 // We want to multiply across all the factors with the same power so that 1808 // we can raise them to that power as a single entity. Build a mini tree 1809 // for that. 1810 SmallVector<Value *, 4> InnerProduct; 1811 InnerProduct.push_back(Factors[LastIdx].Base); 1812 do { 1813 InnerProduct.push_back(Factors[Idx].Base); 1814 ++Idx; 1815 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power); 1816 1817 // Reset the base value of the first factor to the new expression tree. 1818 // We'll remove all the factors with the same power in a second pass. 1819 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct); 1820 if (Instruction *MI = dyn_cast<Instruction>(M)) 1821 RedoInsts.insert(MI); 1822 1823 LastIdx = Idx; 1824 } 1825 // Unique factors with equal powers -- we've folded them into the first one's 1826 // base. 1827 Factors.erase(std::unique(Factors.begin(), Factors.end(), 1828 Factor::PowerEqual()), 1829 Factors.end()); 1830 1831 // Iteratively collect the base of each factor with an add power into the 1832 // outer product, and halve each power in preparation for squaring the 1833 // expression. 1834 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) { 1835 if (Factors[Idx].Power & 1) 1836 OuterProduct.push_back(Factors[Idx].Base); 1837 Factors[Idx].Power >>= 1; 1838 } 1839 if (Factors[0].Power) { 1840 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors); 1841 OuterProduct.push_back(SquareRoot); 1842 OuterProduct.push_back(SquareRoot); 1843 } 1844 if (OuterProduct.size() == 1) 1845 return OuterProduct.front(); 1846 1847 Value *V = buildMultiplyTree(Builder, OuterProduct); 1848 return V; 1849 } 1850 1851 Value *Reassociate::OptimizeMul(BinaryOperator *I, 1852 SmallVectorImpl<ValueEntry> &Ops) { 1853 // We can only optimize the multiplies when there is a chain of more than 1854 // three, such that a balanced tree might require fewer total multiplies. 1855 if (Ops.size() < 4) 1856 return nullptr; 1857 1858 // Try to turn linear trees of multiplies without other uses of the 1859 // intermediate stages into minimal multiply DAGs with perfect sub-expression 1860 // re-use. 1861 SmallVector<Factor, 4> Factors; 1862 if (!collectMultiplyFactors(Ops, Factors)) 1863 return nullptr; // All distinct factors, so nothing left for us to do. 1864 1865 IRBuilder<> Builder(I); 1866 Value *V = buildMinimalMultiplyDAG(Builder, Factors); 1867 if (Ops.empty()) 1868 return V; 1869 1870 ValueEntry NewEntry = ValueEntry(getRank(V), V); 1871 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry); 1872 return nullptr; 1873 } 1874 1875 Value *Reassociate::OptimizeExpression(BinaryOperator *I, 1876 SmallVectorImpl<ValueEntry> &Ops) { 1877 // Now that we have the linearized expression tree, try to optimize it. 1878 // Start by folding any constants that we found. 1879 Constant *Cst = nullptr; 1880 unsigned Opcode = I->getOpcode(); 1881 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) { 1882 Constant *C = cast<Constant>(Ops.pop_back_val().Op); 1883 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C; 1884 } 1885 // If there was nothing but constants then we are done. 1886 if (Ops.empty()) 1887 return Cst; 1888 1889 // Put the combined constant back at the end of the operand list, except if 1890 // there is no point. For example, an add of 0 gets dropped here, while a 1891 // multiplication by zero turns the whole expression into zero. 1892 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) { 1893 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType())) 1894 return Cst; 1895 Ops.push_back(ValueEntry(0, Cst)); 1896 } 1897 1898 if (Ops.size() == 1) return Ops[0].Op; 1899 1900 // Handle destructive annihilation due to identities between elements in the 1901 // argument list here. 1902 unsigned NumOps = Ops.size(); 1903 switch (Opcode) { 1904 default: break; 1905 case Instruction::And: 1906 case Instruction::Or: 1907 if (Value *Result = OptimizeAndOrXor(Opcode, Ops)) 1908 return Result; 1909 break; 1910 1911 case Instruction::Xor: 1912 if (Value *Result = OptimizeXor(I, Ops)) 1913 return Result; 1914 break; 1915 1916 case Instruction::Add: 1917 case Instruction::FAdd: 1918 if (Value *Result = OptimizeAdd(I, Ops)) 1919 return Result; 1920 break; 1921 1922 case Instruction::Mul: 1923 case Instruction::FMul: 1924 if (Value *Result = OptimizeMul(I, Ops)) 1925 return Result; 1926 break; 1927 } 1928 1929 if (Ops.size() != NumOps) 1930 return OptimizeExpression(I, Ops); 1931 return nullptr; 1932 } 1933 1934 /// Zap the given instruction, adding interesting operands to the work list. 1935 void Reassociate::EraseInst(Instruction *I) { 1936 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1937 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 1938 // Erase the dead instruction. 1939 ValueRankMap.erase(I); 1940 RedoInsts.remove(I); 1941 I->eraseFromParent(); 1942 // Optimize its operands. 1943 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes. 1944 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1945 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) { 1946 // If this is a node in an expression tree, climb to the expression root 1947 // and add that since that's where optimization actually happens. 1948 unsigned Opcode = Op->getOpcode(); 1949 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode && 1950 Visited.insert(Op).second) 1951 Op = Op->user_back(); 1952 RedoInsts.insert(Op); 1953 } 1954 } 1955 1956 // Canonicalize expressions of the following form: 1957 // x + (-Constant * y) -> x - (Constant * y) 1958 // x - (-Constant * y) -> x + (Constant * y) 1959 Instruction *Reassociate::canonicalizeNegConstExpr(Instruction *I) { 1960 if (!I->hasOneUse() || I->getType()->isVectorTy()) 1961 return nullptr; 1962 1963 // Must be a fmul or fdiv instruction. 1964 unsigned Opcode = I->getOpcode(); 1965 if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv) 1966 return nullptr; 1967 1968 auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0)); 1969 auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1)); 1970 1971 // Both operands are constant, let it get constant folded away. 1972 if (C0 && C1) 1973 return nullptr; 1974 1975 ConstantFP *CF = C0 ? C0 : C1; 1976 1977 // Must have one constant operand. 1978 if (!CF) 1979 return nullptr; 1980 1981 // Must be a negative ConstantFP. 1982 if (!CF->isNegative()) 1983 return nullptr; 1984 1985 // User must be a binary operator with one or more uses. 1986 Instruction *User = I->user_back(); 1987 if (!isa<BinaryOperator>(User) || !User->hasNUsesOrMore(1)) 1988 return nullptr; 1989 1990 unsigned UserOpcode = User->getOpcode(); 1991 if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub) 1992 return nullptr; 1993 1994 // Subtraction is not commutative. Explicitly, the following transform is 1995 // not valid: (-Constant * y) - x -> x + (Constant * y) 1996 if (!User->isCommutative() && User->getOperand(1) != I) 1997 return nullptr; 1998 1999 // Change the sign of the constant. 2000 APFloat Val = CF->getValueAPF(); 2001 Val.changeSign(); 2002 I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val)); 2003 2004 // Canonicalize I to RHS to simplify the next bit of logic. E.g., 2005 // ((-Const*y) + x) -> (x + (-Const*y)). 2006 if (User->getOperand(0) == I && User->isCommutative()) 2007 cast<BinaryOperator>(User)->swapOperands(); 2008 2009 Value *Op0 = User->getOperand(0); 2010 Value *Op1 = User->getOperand(1); 2011 BinaryOperator *NI; 2012 switch (UserOpcode) { 2013 default: 2014 llvm_unreachable("Unexpected Opcode!"); 2015 case Instruction::FAdd: 2016 NI = BinaryOperator::CreateFSub(Op0, Op1); 2017 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags()); 2018 break; 2019 case Instruction::FSub: 2020 NI = BinaryOperator::CreateFAdd(Op0, Op1); 2021 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags()); 2022 break; 2023 } 2024 2025 NI->insertBefore(User); 2026 NI->setName(User->getName()); 2027 User->replaceAllUsesWith(NI); 2028 NI->setDebugLoc(I->getDebugLoc()); 2029 RedoInsts.insert(I); 2030 MadeChange = true; 2031 return NI; 2032 } 2033 2034 /// Inspect and optimize the given instruction. Note that erasing 2035 /// instructions is not allowed. 2036 void Reassociate::OptimizeInst(Instruction *I) { 2037 // Only consider operations that we understand. 2038 if (!isa<BinaryOperator>(I)) 2039 return; 2040 2041 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1))) 2042 // If an operand of this shift is a reassociable multiply, or if the shift 2043 // is used by a reassociable multiply or add, turn into a multiply. 2044 if (isReassociableOp(I->getOperand(0), Instruction::Mul) || 2045 (I->hasOneUse() && 2046 (isReassociableOp(I->user_back(), Instruction::Mul) || 2047 isReassociableOp(I->user_back(), Instruction::Add)))) { 2048 Instruction *NI = ConvertShiftToMul(I); 2049 RedoInsts.insert(I); 2050 MadeChange = true; 2051 I = NI; 2052 } 2053 2054 // Canonicalize negative constants out of expressions. 2055 if (Instruction *Res = canonicalizeNegConstExpr(I)) 2056 I = Res; 2057 2058 // Commute binary operators, to canonicalize the order of their operands. 2059 // This can potentially expose more CSE opportunities, and makes writing other 2060 // transformations simpler. 2061 if (I->isCommutative()) 2062 canonicalizeOperands(I); 2063 2064 // TODO: We should optimize vector Xor instructions, but they are 2065 // currently unsupported. 2066 if (I->getType()->isVectorTy() && I->getOpcode() == Instruction::Xor) 2067 return; 2068 2069 // Don't optimize floating point instructions that don't have unsafe algebra. 2070 if (I->getType()->isFloatingPointTy() && !I->hasUnsafeAlgebra()) 2071 return; 2072 2073 // Do not reassociate boolean (i1) expressions. We want to preserve the 2074 // original order of evaluation for short-circuited comparisons that 2075 // SimplifyCFG has folded to AND/OR expressions. If the expression 2076 // is not further optimized, it is likely to be transformed back to a 2077 // short-circuited form for code gen, and the source order may have been 2078 // optimized for the most likely conditions. 2079 if (I->getType()->isIntegerTy(1)) 2080 return; 2081 2082 // If this is a subtract instruction which is not already in negate form, 2083 // see if we can convert it to X+-Y. 2084 if (I->getOpcode() == Instruction::Sub) { 2085 if (ShouldBreakUpSubtract(I)) { 2086 Instruction *NI = BreakUpSubtract(I); 2087 RedoInsts.insert(I); 2088 MadeChange = true; 2089 I = NI; 2090 } else if (BinaryOperator::isNeg(I)) { 2091 // Otherwise, this is a negation. See if the operand is a multiply tree 2092 // and if this is not an inner node of a multiply tree. 2093 if (isReassociableOp(I->getOperand(1), Instruction::Mul) && 2094 (!I->hasOneUse() || 2095 !isReassociableOp(I->user_back(), Instruction::Mul))) { 2096 Instruction *NI = LowerNegateToMultiply(I); 2097 RedoInsts.insert(I); 2098 MadeChange = true; 2099 I = NI; 2100 } 2101 } 2102 } else if (I->getOpcode() == Instruction::FSub) { 2103 if (ShouldBreakUpSubtract(I)) { 2104 Instruction *NI = BreakUpSubtract(I); 2105 RedoInsts.insert(I); 2106 MadeChange = true; 2107 I = NI; 2108 } else if (BinaryOperator::isFNeg(I)) { 2109 // Otherwise, this is a negation. See if the operand is a multiply tree 2110 // and if this is not an inner node of a multiply tree. 2111 if (isReassociableOp(I->getOperand(1), Instruction::FMul) && 2112 (!I->hasOneUse() || 2113 !isReassociableOp(I->user_back(), Instruction::FMul))) { 2114 Instruction *NI = LowerNegateToMultiply(I); 2115 RedoInsts.insert(I); 2116 MadeChange = true; 2117 I = NI; 2118 } 2119 } 2120 } 2121 2122 // If this instruction is an associative binary operator, process it. 2123 if (!I->isAssociative()) return; 2124 BinaryOperator *BO = cast<BinaryOperator>(I); 2125 2126 // If this is an interior node of a reassociable tree, ignore it until we 2127 // get to the root of the tree, to avoid N^2 analysis. 2128 unsigned Opcode = BO->getOpcode(); 2129 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) 2130 return; 2131 2132 // If this is an add tree that is used by a sub instruction, ignore it 2133 // until we process the subtract. 2134 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add && 2135 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub) 2136 return; 2137 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd && 2138 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub) 2139 return; 2140 2141 ReassociateExpression(BO); 2142 } 2143 2144 void Reassociate::ReassociateExpression(BinaryOperator *I) { 2145 // First, walk the expression tree, linearizing the tree, collecting the 2146 // operand information. 2147 SmallVector<RepeatedValue, 8> Tree; 2148 MadeChange |= LinearizeExprTree(I, Tree); 2149 SmallVector<ValueEntry, 8> Ops; 2150 Ops.reserve(Tree.size()); 2151 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 2152 RepeatedValue E = Tree[i]; 2153 Ops.append(E.second.getZExtValue(), 2154 ValueEntry(getRank(E.first), E.first)); 2155 } 2156 2157 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2158 2159 // Now that we have linearized the tree to a list and have gathered all of 2160 // the operands and their ranks, sort the operands by their rank. Use a 2161 // stable_sort so that values with equal ranks will have their relative 2162 // positions maintained (and so the compiler is deterministic). Note that 2163 // this sorts so that the highest ranking values end up at the beginning of 2164 // the vector. 2165 std::stable_sort(Ops.begin(), Ops.end()); 2166 2167 // Now that we have the expression tree in a convenient 2168 // sorted form, optimize it globally if possible. 2169 if (Value *V = OptimizeExpression(I, Ops)) { 2170 if (V == I) 2171 // Self-referential expression in unreachable code. 2172 return; 2173 // This expression tree simplified to something that isn't a tree, 2174 // eliminate it. 2175 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n'); 2176 I->replaceAllUsesWith(V); 2177 if (Instruction *VI = dyn_cast<Instruction>(V)) 2178 VI->setDebugLoc(I->getDebugLoc()); 2179 RedoInsts.insert(I); 2180 ++NumAnnihil; 2181 return; 2182 } 2183 2184 // We want to sink immediates as deeply as possible except in the case where 2185 // this is a multiply tree used only by an add, and the immediate is a -1. 2186 // In this case we reassociate to put the negation on the outside so that we 2187 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y 2188 if (I->hasOneUse()) { 2189 if (I->getOpcode() == Instruction::Mul && 2190 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add && 2191 isa<ConstantInt>(Ops.back().Op) && 2192 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) { 2193 ValueEntry Tmp = Ops.pop_back_val(); 2194 Ops.insert(Ops.begin(), Tmp); 2195 } else if (I->getOpcode() == Instruction::FMul && 2196 cast<Instruction>(I->user_back())->getOpcode() == 2197 Instruction::FAdd && 2198 isa<ConstantFP>(Ops.back().Op) && 2199 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) { 2200 ValueEntry Tmp = Ops.pop_back_val(); 2201 Ops.insert(Ops.begin(), Tmp); 2202 } 2203 } 2204 2205 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2206 2207 if (Ops.size() == 1) { 2208 if (Ops[0].Op == I) 2209 // Self-referential expression in unreachable code. 2210 return; 2211 2212 // This expression tree simplified to something that isn't a tree, 2213 // eliminate it. 2214 I->replaceAllUsesWith(Ops[0].Op); 2215 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op)) 2216 OI->setDebugLoc(I->getDebugLoc()); 2217 RedoInsts.insert(I); 2218 return; 2219 } 2220 2221 // Now that we ordered and optimized the expressions, splat them back into 2222 // the expression tree, removing any unneeded nodes. 2223 RewriteExprTree(I, Ops); 2224 } 2225 2226 bool Reassociate::runOnFunction(Function &F) { 2227 if (skipOptnoneFunction(F)) 2228 return false; 2229 2230 // Calculate the rank map for F 2231 BuildRankMap(F); 2232 2233 MadeChange = false; 2234 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) { 2235 // Optimize every instruction in the basic block. 2236 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; ) 2237 if (isInstructionTriviallyDead(II)) { 2238 EraseInst(II++); 2239 } else { 2240 OptimizeInst(II); 2241 assert(II->getParent() == BI && "Moved to a different block!"); 2242 ++II; 2243 } 2244 2245 // If this produced extra instructions to optimize, handle them now. 2246 while (!RedoInsts.empty()) { 2247 Instruction *I = RedoInsts.pop_back_val(); 2248 if (isInstructionTriviallyDead(I)) 2249 EraseInst(I); 2250 else 2251 OptimizeInst(I); 2252 } 2253 } 2254 2255 // We are done with the rank map. 2256 RankMap.clear(); 2257 ValueRankMap.clear(); 2258 2259 return MadeChange; 2260 } 2261