1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass reassociates commutative expressions in an order that is designed 11 // to promote better constant propagation, GCSE, LICM, PRE, etc. 12 // 13 // For example: 4 + (x + 5) -> x + (4 + 5) 14 // 15 // In the implementation of this algorithm, constants are assigned rank = 0, 16 // function arguments are rank = 1, and other values are assigned ranks 17 // corresponding to the reverse post order traversal of current function 18 // (starting at 2), which effectively gives values in deep loops higher rank 19 // than values not in loops. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/Transforms/Scalar.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/PostOrderIterator.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/Analysis/GlobalsModRef.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/ValueHandle.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Transforms/Utils/Local.h" 43 #include <algorithm> 44 using namespace llvm; 45 46 #define DEBUG_TYPE "reassociate" 47 48 STATISTIC(NumChanged, "Number of insts reassociated"); 49 STATISTIC(NumAnnihil, "Number of expr tree annihilated"); 50 STATISTIC(NumFactor , "Number of multiplies factored"); 51 52 namespace { 53 struct ValueEntry { 54 unsigned Rank; 55 Value *Op; 56 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {} 57 }; 58 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) { 59 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start. 60 } 61 } 62 63 #ifndef NDEBUG 64 /// Print out the expression identified in the Ops list. 65 /// 66 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) { 67 Module *M = I->getModule(); 68 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " " 69 << *Ops[0].Op->getType() << '\t'; 70 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 71 dbgs() << "[ "; 72 Ops[i].Op->printAsOperand(dbgs(), false, M); 73 dbgs() << ", #" << Ops[i].Rank << "] "; 74 } 75 } 76 #endif 77 78 namespace { 79 /// \brief Utility class representing a base and exponent pair which form one 80 /// factor of some product. 81 struct Factor { 82 Value *Base; 83 unsigned Power; 84 85 Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {} 86 87 /// \brief Sort factors in descending order by their power. 88 struct PowerDescendingSorter { 89 bool operator()(const Factor &LHS, const Factor &RHS) { 90 return LHS.Power > RHS.Power; 91 } 92 }; 93 94 /// \brief Compare factors for equal powers. 95 struct PowerEqual { 96 bool operator()(const Factor &LHS, const Factor &RHS) { 97 return LHS.Power == RHS.Power; 98 } 99 }; 100 }; 101 102 /// Utility class representing a non-constant Xor-operand. We classify 103 /// non-constant Xor-Operands into two categories: 104 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0 105 /// C2) 106 /// C2.1) The operand is in the form of "X | C", where C is a non-zero 107 /// constant. 108 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this 109 /// operand as "E | 0" 110 class XorOpnd { 111 public: 112 XorOpnd(Value *V); 113 114 bool isInvalid() const { return SymbolicPart == nullptr; } 115 bool isOrExpr() const { return isOr; } 116 Value *getValue() const { return OrigVal; } 117 Value *getSymbolicPart() const { return SymbolicPart; } 118 unsigned getSymbolicRank() const { return SymbolicRank; } 119 const APInt &getConstPart() const { return ConstPart; } 120 121 void Invalidate() { SymbolicPart = OrigVal = nullptr; } 122 void setSymbolicRank(unsigned R) { SymbolicRank = R; } 123 124 // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank. 125 // The purpose is twofold: 126 // 1) Cluster together the operands sharing the same symbolic-value. 127 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which 128 // could potentially shorten crital path, and expose more loop-invariants. 129 // Note that values' rank are basically defined in RPO order (FIXME). 130 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier 131 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2", 132 // "z" in the order of X-Y-Z is better than any other orders. 133 struct PtrSortFunctor { 134 bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) { 135 return LHS->getSymbolicRank() < RHS->getSymbolicRank(); 136 } 137 }; 138 private: 139 Value *OrigVal; 140 Value *SymbolicPart; 141 APInt ConstPart; 142 unsigned SymbolicRank; 143 bool isOr; 144 }; 145 } 146 147 namespace { 148 class Reassociate : public FunctionPass { 149 DenseMap<BasicBlock*, unsigned> RankMap; 150 DenseMap<AssertingVH<Value>, unsigned> ValueRankMap; 151 SetVector<AssertingVH<Instruction> > RedoInsts; 152 bool MadeChange; 153 public: 154 static char ID; // Pass identification, replacement for typeid 155 Reassociate() : FunctionPass(ID) { 156 initializeReassociatePass(*PassRegistry::getPassRegistry()); 157 } 158 159 bool runOnFunction(Function &F) override; 160 161 void getAnalysisUsage(AnalysisUsage &AU) const override { 162 AU.setPreservesCFG(); 163 AU.addPreserved<GlobalsAAWrapperPass>(); 164 } 165 private: 166 void BuildRankMap(Function &F, ReversePostOrderTraversal<Function *> &RPOT); 167 168 unsigned getRank(Value *V); 169 void canonicalizeOperands(Instruction *I); 170 void ReassociateExpression(BinaryOperator *I); 171 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops); 172 Value *OptimizeExpression(BinaryOperator *I, 173 SmallVectorImpl<ValueEntry> &Ops); 174 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops); 175 Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops); 176 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd, 177 Value *&Res); 178 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2, 179 APInt &ConstOpnd, Value *&Res); 180 bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, 181 SmallVectorImpl<Factor> &Factors); 182 Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder, 183 SmallVectorImpl<Factor> &Factors); 184 Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops); 185 Value *RemoveFactorFromExpression(Value *V, Value *Factor); 186 void EraseInst(Instruction *I); 187 void RecursivelyEraseDeadInsts(Instruction *I, 188 SetVector<AssertingVH<Instruction>> &Insts); 189 void OptimizeInst(Instruction *I); 190 Instruction *canonicalizeNegConstExpr(Instruction *I); 191 }; 192 } 193 194 XorOpnd::XorOpnd(Value *V) { 195 assert(!isa<ConstantInt>(V) && "No ConstantInt"); 196 OrigVal = V; 197 Instruction *I = dyn_cast<Instruction>(V); 198 SymbolicRank = 0; 199 200 if (I && (I->getOpcode() == Instruction::Or || 201 I->getOpcode() == Instruction::And)) { 202 Value *V0 = I->getOperand(0); 203 Value *V1 = I->getOperand(1); 204 if (isa<ConstantInt>(V0)) 205 std::swap(V0, V1); 206 207 if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) { 208 ConstPart = C->getValue(); 209 SymbolicPart = V0; 210 isOr = (I->getOpcode() == Instruction::Or); 211 return; 212 } 213 } 214 215 // view the operand as "V | 0" 216 SymbolicPart = V; 217 ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth()); 218 isOr = true; 219 } 220 221 char Reassociate::ID = 0; 222 INITIALIZE_PASS(Reassociate, "reassociate", 223 "Reassociate expressions", false, false) 224 225 // Public interface to the Reassociate pass 226 FunctionPass *llvm::createReassociatePass() { return new Reassociate(); } 227 228 /// Return true if V is an instruction of the specified opcode and if it 229 /// only has one use. 230 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) { 231 if (V->hasOneUse() && isa<Instruction>(V) && 232 cast<Instruction>(V)->getOpcode() == Opcode && 233 (!isa<FPMathOperator>(V) || 234 cast<Instruction>(V)->hasUnsafeAlgebra())) 235 return cast<BinaryOperator>(V); 236 return nullptr; 237 } 238 239 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1, 240 unsigned Opcode2) { 241 if (V->hasOneUse() && isa<Instruction>(V) && 242 (cast<Instruction>(V)->getOpcode() == Opcode1 || 243 cast<Instruction>(V)->getOpcode() == Opcode2) && 244 (!isa<FPMathOperator>(V) || 245 cast<Instruction>(V)->hasUnsafeAlgebra())) 246 return cast<BinaryOperator>(V); 247 return nullptr; 248 } 249 250 void Reassociate::BuildRankMap(Function &F, 251 ReversePostOrderTraversal<Function *> &RPOT) { 252 unsigned i = 2; 253 254 // Assign distinct ranks to function arguments. 255 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { 256 ValueRankMap[&*I] = ++i; 257 DEBUG(dbgs() << "Calculated Rank[" << I->getName() << "] = " << i << "\n"); 258 } 259 260 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(), 261 E = RPOT.end(); I != E; ++I) { 262 BasicBlock *BB = *I; 263 unsigned BBRank = RankMap[BB] = ++i << 16; 264 265 // Walk the basic block, adding precomputed ranks for any instructions that 266 // we cannot move. This ensures that the ranks for these instructions are 267 // all different in the block. 268 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 269 if (mayBeMemoryDependent(*I)) 270 ValueRankMap[&*I] = ++BBRank; 271 } 272 } 273 274 unsigned Reassociate::getRank(Value *V) { 275 Instruction *I = dyn_cast<Instruction>(V); 276 if (!I) { 277 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument. 278 return 0; // Otherwise it's a global or constant, rank 0. 279 } 280 281 if (unsigned Rank = ValueRankMap[I]) 282 return Rank; // Rank already known? 283 284 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that 285 // we can reassociate expressions for code motion! Since we do not recurse 286 // for PHI nodes, we cannot have infinite recursion here, because there 287 // cannot be loops in the value graph that do not go through PHI nodes. 288 unsigned Rank = 0, MaxRank = RankMap[I->getParent()]; 289 for (unsigned i = 0, e = I->getNumOperands(); 290 i != e && Rank != MaxRank; ++i) 291 Rank = std::max(Rank, getRank(I->getOperand(i))); 292 293 // If this is a not or neg instruction, do not count it for rank. This 294 // assures us that X and ~X will have the same rank. 295 if (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) && 296 !BinaryOperator::isFNeg(I)) 297 ++Rank; 298 299 DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n"); 300 301 return ValueRankMap[I] = Rank; 302 } 303 304 // Canonicalize constants to RHS. Otherwise, sort the operands by rank. 305 void Reassociate::canonicalizeOperands(Instruction *I) { 306 assert(isa<BinaryOperator>(I) && "Expected binary operator."); 307 assert(I->isCommutative() && "Expected commutative operator."); 308 309 Value *LHS = I->getOperand(0); 310 Value *RHS = I->getOperand(1); 311 unsigned LHSRank = getRank(LHS); 312 unsigned RHSRank = getRank(RHS); 313 314 if (isa<Constant>(RHS)) 315 return; 316 317 if (isa<Constant>(LHS) || RHSRank < LHSRank) 318 cast<BinaryOperator>(I)->swapOperands(); 319 } 320 321 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name, 322 Instruction *InsertBefore, Value *FlagsOp) { 323 if (S1->getType()->isIntOrIntVectorTy()) 324 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore); 325 else { 326 BinaryOperator *Res = 327 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore); 328 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 329 return Res; 330 } 331 } 332 333 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name, 334 Instruction *InsertBefore, Value *FlagsOp) { 335 if (S1->getType()->isIntOrIntVectorTy()) 336 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore); 337 else { 338 BinaryOperator *Res = 339 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore); 340 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 341 return Res; 342 } 343 } 344 345 static BinaryOperator *CreateNeg(Value *S1, const Twine &Name, 346 Instruction *InsertBefore, Value *FlagsOp) { 347 if (S1->getType()->isIntOrIntVectorTy()) 348 return BinaryOperator::CreateNeg(S1, Name, InsertBefore); 349 else { 350 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore); 351 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 352 return Res; 353 } 354 } 355 356 /// Replace 0-X with X*-1. 357 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) { 358 Type *Ty = Neg->getType(); 359 Constant *NegOne = Ty->isIntOrIntVectorTy() ? 360 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0); 361 362 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg); 363 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op. 364 Res->takeName(Neg); 365 Neg->replaceAllUsesWith(Res); 366 Res->setDebugLoc(Neg->getDebugLoc()); 367 return Res; 368 } 369 370 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael 371 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for 372 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic. 373 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every 374 /// even x in Bitwidth-bit arithmetic. 375 static unsigned CarmichaelShift(unsigned Bitwidth) { 376 if (Bitwidth < 3) 377 return Bitwidth - 1; 378 return Bitwidth - 2; 379 } 380 381 /// Add the extra weight 'RHS' to the existing weight 'LHS', 382 /// reducing the combined weight using any special properties of the operation. 383 /// The existing weight LHS represents the computation X op X op ... op X where 384 /// X occurs LHS times. The combined weight represents X op X op ... op X with 385 /// X occurring LHS + RHS times. If op is "Xor" for example then the combined 386 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even; 387 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second. 388 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) { 389 // If we were working with infinite precision arithmetic then the combined 390 // weight would be LHS + RHS. But we are using finite precision arithmetic, 391 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct 392 // for nilpotent operations and addition, but not for idempotent operations 393 // and multiplication), so it is important to correctly reduce the combined 394 // weight back into range if wrapping would be wrong. 395 396 // If RHS is zero then the weight didn't change. 397 if (RHS.isMinValue()) 398 return; 399 // If LHS is zero then the combined weight is RHS. 400 if (LHS.isMinValue()) { 401 LHS = RHS; 402 return; 403 } 404 // From this point on we know that neither LHS nor RHS is zero. 405 406 if (Instruction::isIdempotent(Opcode)) { 407 // Idempotent means X op X === X, so any non-zero weight is equivalent to a 408 // weight of 1. Keeping weights at zero or one also means that wrapping is 409 // not a problem. 410 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 411 return; // Return a weight of 1. 412 } 413 if (Instruction::isNilpotent(Opcode)) { 414 // Nilpotent means X op X === 0, so reduce weights modulo 2. 415 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 416 LHS = 0; // 1 + 1 === 0 modulo 2. 417 return; 418 } 419 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) { 420 // TODO: Reduce the weight by exploiting nsw/nuw? 421 LHS += RHS; 422 return; 423 } 424 425 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) && 426 "Unknown associative operation!"); 427 unsigned Bitwidth = LHS.getBitWidth(); 428 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth 429 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth 430 // bit number x, since either x is odd in which case x^CM = 1, or x is even in 431 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples 432 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth) 433 // which by a happy accident means that they can always be represented using 434 // Bitwidth bits. 435 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than 436 // the Carmichael number). 437 if (Bitwidth > 3) { 438 /// CM - The value of Carmichael's lambda function. 439 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth)); 440 // Any weight W >= Threshold can be replaced with W - CM. 441 APInt Threshold = CM + Bitwidth; 442 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!"); 443 // For Bitwidth 4 or more the following sum does not overflow. 444 LHS += RHS; 445 while (LHS.uge(Threshold)) 446 LHS -= CM; 447 } else { 448 // To avoid problems with overflow do everything the same as above but using 449 // a larger type. 450 unsigned CM = 1U << CarmichaelShift(Bitwidth); 451 unsigned Threshold = CM + Bitwidth; 452 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold && 453 "Weights not reduced!"); 454 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue(); 455 while (Total >= Threshold) 456 Total -= CM; 457 LHS = Total; 458 } 459 } 460 461 typedef std::pair<Value*, APInt> RepeatedValue; 462 463 /// Given an associative binary expression, return the leaf 464 /// nodes in Ops along with their weights (how many times the leaf occurs). The 465 /// original expression is the same as 466 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times 467 /// op 468 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times 469 /// op 470 /// ... 471 /// op 472 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times 473 /// 474 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct. 475 /// 476 /// This routine may modify the function, in which case it returns 'true'. The 477 /// changes it makes may well be destructive, changing the value computed by 'I' 478 /// to something completely different. Thus if the routine returns 'true' then 479 /// you MUST either replace I with a new expression computed from the Ops array, 480 /// or use RewriteExprTree to put the values back in. 481 /// 482 /// A leaf node is either not a binary operation of the same kind as the root 483 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different 484 /// opcode), or is the same kind of binary operator but has a use which either 485 /// does not belong to the expression, or does belong to the expression but is 486 /// a leaf node. Every leaf node has at least one use that is a non-leaf node 487 /// of the expression, while for non-leaf nodes (except for the root 'I') every 488 /// use is a non-leaf node of the expression. 489 /// 490 /// For example: 491 /// expression graph node names 492 /// 493 /// + | I 494 /// / \ | 495 /// + + | A, B 496 /// / \ / \ | 497 /// * + * | C, D, E 498 /// / \ / \ / \ | 499 /// + * | F, G 500 /// 501 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in 502 /// that order) (C, 1), (E, 1), (F, 2), (G, 2). 503 /// 504 /// The expression is maximal: if some instruction is a binary operator of the 505 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression, 506 /// then the instruction also belongs to the expression, is not a leaf node of 507 /// it, and its operands also belong to the expression (but may be leaf nodes). 508 /// 509 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in 510 /// order to ensure that every non-root node in the expression has *exactly one* 511 /// use by a non-leaf node of the expression. This destruction means that the 512 /// caller MUST either replace 'I' with a new expression or use something like 513 /// RewriteExprTree to put the values back in if the routine indicates that it 514 /// made a change by returning 'true'. 515 /// 516 /// In the above example either the right operand of A or the left operand of B 517 /// will be replaced by undef. If it is B's operand then this gives: 518 /// 519 /// + | I 520 /// / \ | 521 /// + + | A, B - operand of B replaced with undef 522 /// / \ \ | 523 /// * + * | C, D, E 524 /// / \ / \ / \ | 525 /// + * | F, G 526 /// 527 /// Note that such undef operands can only be reached by passing through 'I'. 528 /// For example, if you visit operands recursively starting from a leaf node 529 /// then you will never see such an undef operand unless you get back to 'I', 530 /// which requires passing through a phi node. 531 /// 532 /// Note that this routine may also mutate binary operators of the wrong type 533 /// that have all uses inside the expression (i.e. only used by non-leaf nodes 534 /// of the expression) if it can turn them into binary operators of the right 535 /// type and thus make the expression bigger. 536 537 static bool LinearizeExprTree(BinaryOperator *I, 538 SmallVectorImpl<RepeatedValue> &Ops) { 539 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n'); 540 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits(); 541 unsigned Opcode = I->getOpcode(); 542 assert(I->isAssociative() && I->isCommutative() && 543 "Expected an associative and commutative operation!"); 544 545 // Visit all operands of the expression, keeping track of their weight (the 546 // number of paths from the expression root to the operand, or if you like 547 // the number of times that operand occurs in the linearized expression). 548 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1 549 // while A has weight two. 550 551 // Worklist of non-leaf nodes (their operands are in the expression too) along 552 // with their weights, representing a certain number of paths to the operator. 553 // If an operator occurs in the worklist multiple times then we found multiple 554 // ways to get to it. 555 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight) 556 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1))); 557 bool Changed = false; 558 559 // Leaves of the expression are values that either aren't the right kind of 560 // operation (eg: a constant, or a multiply in an add tree), or are, but have 561 // some uses that are not inside the expression. For example, in I = X + X, 562 // X = A + B, the value X has two uses (by I) that are in the expression. If 563 // X has any other uses, for example in a return instruction, then we consider 564 // X to be a leaf, and won't analyze it further. When we first visit a value, 565 // if it has more than one use then at first we conservatively consider it to 566 // be a leaf. Later, as the expression is explored, we may discover some more 567 // uses of the value from inside the expression. If all uses turn out to be 568 // from within the expression (and the value is a binary operator of the right 569 // kind) then the value is no longer considered to be a leaf, and its operands 570 // are explored. 571 572 // Leaves - Keeps track of the set of putative leaves as well as the number of 573 // paths to each leaf seen so far. 574 typedef DenseMap<Value*, APInt> LeafMap; 575 LeafMap Leaves; // Leaf -> Total weight so far. 576 SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order. 577 578 #ifndef NDEBUG 579 SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme. 580 #endif 581 while (!Worklist.empty()) { 582 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val(); 583 I = P.first; // We examine the operands of this binary operator. 584 585 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands. 586 Value *Op = I->getOperand(OpIdx); 587 APInt Weight = P.second; // Number of paths to this operand. 588 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n"); 589 assert(!Op->use_empty() && "No uses, so how did we get to it?!"); 590 591 // If this is a binary operation of the right kind with only one use then 592 // add its operands to the expression. 593 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 594 assert(Visited.insert(Op).second && "Not first visit!"); 595 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n"); 596 Worklist.push_back(std::make_pair(BO, Weight)); 597 continue; 598 } 599 600 // Appears to be a leaf. Is the operand already in the set of leaves? 601 LeafMap::iterator It = Leaves.find(Op); 602 if (It == Leaves.end()) { 603 // Not in the leaf map. Must be the first time we saw this operand. 604 assert(Visited.insert(Op).second && "Not first visit!"); 605 if (!Op->hasOneUse()) { 606 // This value has uses not accounted for by the expression, so it is 607 // not safe to modify. Mark it as being a leaf. 608 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n"); 609 LeafOrder.push_back(Op); 610 Leaves[Op] = Weight; 611 continue; 612 } 613 // No uses outside the expression, try morphing it. 614 } else if (It != Leaves.end()) { 615 // Already in the leaf map. 616 assert(Visited.count(Op) && "In leaf map but not visited!"); 617 618 // Update the number of paths to the leaf. 619 IncorporateWeight(It->second, Weight, Opcode); 620 621 #if 0 // TODO: Re-enable once PR13021 is fixed. 622 // The leaf already has one use from inside the expression. As we want 623 // exactly one such use, drop this new use of the leaf. 624 assert(!Op->hasOneUse() && "Only one use, but we got here twice!"); 625 I->setOperand(OpIdx, UndefValue::get(I->getType())); 626 Changed = true; 627 628 // If the leaf is a binary operation of the right kind and we now see 629 // that its multiple original uses were in fact all by nodes belonging 630 // to the expression, then no longer consider it to be a leaf and add 631 // its operands to the expression. 632 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 633 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n"); 634 Worklist.push_back(std::make_pair(BO, It->second)); 635 Leaves.erase(It); 636 continue; 637 } 638 #endif 639 640 // If we still have uses that are not accounted for by the expression 641 // then it is not safe to modify the value. 642 if (!Op->hasOneUse()) 643 continue; 644 645 // No uses outside the expression, try morphing it. 646 Weight = It->second; 647 Leaves.erase(It); // Since the value may be morphed below. 648 } 649 650 // At this point we have a value which, first of all, is not a binary 651 // expression of the right kind, and secondly, is only used inside the 652 // expression. This means that it can safely be modified. See if we 653 // can usefully morph it into an expression of the right kind. 654 assert((!isa<Instruction>(Op) || 655 cast<Instruction>(Op)->getOpcode() != Opcode 656 || (isa<FPMathOperator>(Op) && 657 !cast<Instruction>(Op)->hasUnsafeAlgebra())) && 658 "Should have been handled above!"); 659 assert(Op->hasOneUse() && "Has uses outside the expression tree!"); 660 661 // If this is a multiply expression, turn any internal negations into 662 // multiplies by -1 so they can be reassociated. 663 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) 664 if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) || 665 (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) { 666 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO "); 667 BO = LowerNegateToMultiply(BO); 668 DEBUG(dbgs() << *BO << '\n'); 669 Worklist.push_back(std::make_pair(BO, Weight)); 670 Changed = true; 671 continue; 672 } 673 674 // Failed to morph into an expression of the right type. This really is 675 // a leaf. 676 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n"); 677 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?"); 678 LeafOrder.push_back(Op); 679 Leaves[Op] = Weight; 680 } 681 } 682 683 // The leaves, repeated according to their weights, represent the linearized 684 // form of the expression. 685 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) { 686 Value *V = LeafOrder[i]; 687 LeafMap::iterator It = Leaves.find(V); 688 if (It == Leaves.end()) 689 // Node initially thought to be a leaf wasn't. 690 continue; 691 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!"); 692 APInt Weight = It->second; 693 if (Weight.isMinValue()) 694 // Leaf already output or weight reduction eliminated it. 695 continue; 696 // Ensure the leaf is only output once. 697 It->second = 0; 698 Ops.push_back(std::make_pair(V, Weight)); 699 } 700 701 // For nilpotent operations or addition there may be no operands, for example 702 // because the expression was "X xor X" or consisted of 2^Bitwidth additions: 703 // in both cases the weight reduces to 0 causing the value to be skipped. 704 if (Ops.empty()) { 705 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType()); 706 assert(Identity && "Associative operation without identity!"); 707 Ops.emplace_back(Identity, APInt(Bitwidth, 1)); 708 } 709 710 return Changed; 711 } 712 713 /// Now that the operands for this expression tree are 714 /// linearized and optimized, emit them in-order. 715 void Reassociate::RewriteExprTree(BinaryOperator *I, 716 SmallVectorImpl<ValueEntry> &Ops) { 717 assert(Ops.size() > 1 && "Single values should be used directly!"); 718 719 // Since our optimizations should never increase the number of operations, the 720 // new expression can usually be written reusing the existing binary operators 721 // from the original expression tree, without creating any new instructions, 722 // though the rewritten expression may have a completely different topology. 723 // We take care to not change anything if the new expression will be the same 724 // as the original. If more than trivial changes (like commuting operands) 725 // were made then we are obliged to clear out any optional subclass data like 726 // nsw flags. 727 728 /// NodesToRewrite - Nodes from the original expression available for writing 729 /// the new expression into. 730 SmallVector<BinaryOperator*, 8> NodesToRewrite; 731 unsigned Opcode = I->getOpcode(); 732 BinaryOperator *Op = I; 733 734 /// NotRewritable - The operands being written will be the leaves of the new 735 /// expression and must not be used as inner nodes (via NodesToRewrite) by 736 /// mistake. Inner nodes are always reassociable, and usually leaves are not 737 /// (if they were they would have been incorporated into the expression and so 738 /// would not be leaves), so most of the time there is no danger of this. But 739 /// in rare cases a leaf may become reassociable if an optimization kills uses 740 /// of it, or it may momentarily become reassociable during rewriting (below) 741 /// due it being removed as an operand of one of its uses. Ensure that misuse 742 /// of leaf nodes as inner nodes cannot occur by remembering all of the future 743 /// leaves and refusing to reuse any of them as inner nodes. 744 SmallPtrSet<Value*, 8> NotRewritable; 745 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 746 NotRewritable.insert(Ops[i].Op); 747 748 // ExpressionChanged - Non-null if the rewritten expression differs from the 749 // original in some non-trivial way, requiring the clearing of optional flags. 750 // Flags are cleared from the operator in ExpressionChanged up to I inclusive. 751 BinaryOperator *ExpressionChanged = nullptr; 752 for (unsigned i = 0; ; ++i) { 753 // The last operation (which comes earliest in the IR) is special as both 754 // operands will come from Ops, rather than just one with the other being 755 // a subexpression. 756 if (i+2 == Ops.size()) { 757 Value *NewLHS = Ops[i].Op; 758 Value *NewRHS = Ops[i+1].Op; 759 Value *OldLHS = Op->getOperand(0); 760 Value *OldRHS = Op->getOperand(1); 761 762 if (NewLHS == OldLHS && NewRHS == OldRHS) 763 // Nothing changed, leave it alone. 764 break; 765 766 if (NewLHS == OldRHS && NewRHS == OldLHS) { 767 // The order of the operands was reversed. Swap them. 768 DEBUG(dbgs() << "RA: " << *Op << '\n'); 769 Op->swapOperands(); 770 DEBUG(dbgs() << "TO: " << *Op << '\n'); 771 MadeChange = true; 772 ++NumChanged; 773 break; 774 } 775 776 // The new operation differs non-trivially from the original. Overwrite 777 // the old operands with the new ones. 778 DEBUG(dbgs() << "RA: " << *Op << '\n'); 779 if (NewLHS != OldLHS) { 780 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode); 781 if (BO && !NotRewritable.count(BO)) 782 NodesToRewrite.push_back(BO); 783 Op->setOperand(0, NewLHS); 784 } 785 if (NewRHS != OldRHS) { 786 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode); 787 if (BO && !NotRewritable.count(BO)) 788 NodesToRewrite.push_back(BO); 789 Op->setOperand(1, NewRHS); 790 } 791 DEBUG(dbgs() << "TO: " << *Op << '\n'); 792 793 ExpressionChanged = Op; 794 MadeChange = true; 795 ++NumChanged; 796 797 break; 798 } 799 800 // Not the last operation. The left-hand side will be a sub-expression 801 // while the right-hand side will be the current element of Ops. 802 Value *NewRHS = Ops[i].Op; 803 if (NewRHS != Op->getOperand(1)) { 804 DEBUG(dbgs() << "RA: " << *Op << '\n'); 805 if (NewRHS == Op->getOperand(0)) { 806 // The new right-hand side was already present as the left operand. If 807 // we are lucky then swapping the operands will sort out both of them. 808 Op->swapOperands(); 809 } else { 810 // Overwrite with the new right-hand side. 811 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode); 812 if (BO && !NotRewritable.count(BO)) 813 NodesToRewrite.push_back(BO); 814 Op->setOperand(1, NewRHS); 815 ExpressionChanged = Op; 816 } 817 DEBUG(dbgs() << "TO: " << *Op << '\n'); 818 MadeChange = true; 819 ++NumChanged; 820 } 821 822 // Now deal with the left-hand side. If this is already an operation node 823 // from the original expression then just rewrite the rest of the expression 824 // into it. 825 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode); 826 if (BO && !NotRewritable.count(BO)) { 827 Op = BO; 828 continue; 829 } 830 831 // Otherwise, grab a spare node from the original expression and use that as 832 // the left-hand side. If there are no nodes left then the optimizers made 833 // an expression with more nodes than the original! This usually means that 834 // they did something stupid but it might mean that the problem was just too 835 // hard (finding the mimimal number of multiplications needed to realize a 836 // multiplication expression is NP-complete). Whatever the reason, smart or 837 // stupid, create a new node if there are none left. 838 BinaryOperator *NewOp; 839 if (NodesToRewrite.empty()) { 840 Constant *Undef = UndefValue::get(I->getType()); 841 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode), 842 Undef, Undef, "", I); 843 if (NewOp->getType()->isFPOrFPVectorTy()) 844 NewOp->setFastMathFlags(I->getFastMathFlags()); 845 } else { 846 NewOp = NodesToRewrite.pop_back_val(); 847 } 848 849 DEBUG(dbgs() << "RA: " << *Op << '\n'); 850 Op->setOperand(0, NewOp); 851 DEBUG(dbgs() << "TO: " << *Op << '\n'); 852 ExpressionChanged = Op; 853 MadeChange = true; 854 ++NumChanged; 855 Op = NewOp; 856 } 857 858 // If the expression changed non-trivially then clear out all subclass data 859 // starting from the operator specified in ExpressionChanged, and compactify 860 // the operators to just before the expression root to guarantee that the 861 // expression tree is dominated by all of Ops. 862 if (ExpressionChanged) 863 do { 864 // Preserve FastMathFlags. 865 if (isa<FPMathOperator>(I)) { 866 FastMathFlags Flags = I->getFastMathFlags(); 867 ExpressionChanged->clearSubclassOptionalData(); 868 ExpressionChanged->setFastMathFlags(Flags); 869 } else 870 ExpressionChanged->clearSubclassOptionalData(); 871 872 if (ExpressionChanged == I) 873 break; 874 ExpressionChanged->moveBefore(I); 875 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin()); 876 } while (1); 877 878 // Throw away any left over nodes from the original expression. 879 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i) 880 RedoInsts.insert(NodesToRewrite[i]); 881 } 882 883 /// Insert instructions before the instruction pointed to by BI, 884 /// that computes the negative version of the value specified. The negative 885 /// version of the value is returned, and BI is left pointing at the instruction 886 /// that should be processed next by the reassociation pass. 887 /// Also add intermediate instructions to the redo list that are modified while 888 /// pushing the negates through adds. These will be revisited to see if 889 /// additional opportunities have been exposed. 890 static Value *NegateValue(Value *V, Instruction *BI, 891 SetVector<AssertingVH<Instruction>> &ToRedo) { 892 if (Constant *C = dyn_cast<Constant>(V)) { 893 if (C->getType()->isFPOrFPVectorTy()) { 894 return ConstantExpr::getFNeg(C); 895 } 896 return ConstantExpr::getNeg(C); 897 } 898 899 900 // We are trying to expose opportunity for reassociation. One of the things 901 // that we want to do to achieve this is to push a negation as deep into an 902 // expression chain as possible, to expose the add instructions. In practice, 903 // this means that we turn this: 904 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D 905 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate 906 // the constants. We assume that instcombine will clean up the mess later if 907 // we introduce tons of unnecessary negation instructions. 908 // 909 if (BinaryOperator *I = 910 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) { 911 // Push the negates through the add. 912 I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo)); 913 I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo)); 914 if (I->getOpcode() == Instruction::Add) { 915 I->setHasNoUnsignedWrap(false); 916 I->setHasNoSignedWrap(false); 917 } 918 919 // We must move the add instruction here, because the neg instructions do 920 // not dominate the old add instruction in general. By moving it, we are 921 // assured that the neg instructions we just inserted dominate the 922 // instruction we are about to insert after them. 923 // 924 I->moveBefore(BI); 925 I->setName(I->getName()+".neg"); 926 927 // Add the intermediate negates to the redo list as processing them later 928 // could expose more reassociating opportunities. 929 ToRedo.insert(I); 930 return I; 931 } 932 933 // Okay, we need to materialize a negated version of V with an instruction. 934 // Scan the use lists of V to see if we have one already. 935 for (User *U : V->users()) { 936 if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U)) 937 continue; 938 939 // We found one! Now we have to make sure that the definition dominates 940 // this use. We do this by moving it to the entry block (if it is a 941 // non-instruction value) or right after the definition. These negates will 942 // be zapped by reassociate later, so we don't need much finesse here. 943 BinaryOperator *TheNeg = cast<BinaryOperator>(U); 944 945 // Verify that the negate is in this function, V might be a constant expr. 946 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent()) 947 continue; 948 949 BasicBlock::iterator InsertPt; 950 if (Instruction *InstInput = dyn_cast<Instruction>(V)) { 951 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) { 952 InsertPt = II->getNormalDest()->begin(); 953 } else { 954 InsertPt = ++InstInput->getIterator(); 955 } 956 while (isa<PHINode>(InsertPt)) ++InsertPt; 957 } else { 958 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin(); 959 } 960 TheNeg->moveBefore(&*InsertPt); 961 if (TheNeg->getOpcode() == Instruction::Sub) { 962 TheNeg->setHasNoUnsignedWrap(false); 963 TheNeg->setHasNoSignedWrap(false); 964 } else { 965 TheNeg->andIRFlags(BI); 966 } 967 ToRedo.insert(TheNeg); 968 return TheNeg; 969 } 970 971 // Insert a 'neg' instruction that subtracts the value from zero to get the 972 // negation. 973 BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI); 974 ToRedo.insert(NewNeg); 975 return NewNeg; 976 } 977 978 /// Return true if we should break up this subtract of X-Y into (X + -Y). 979 static bool ShouldBreakUpSubtract(Instruction *Sub) { 980 // If this is a negation, we can't split it up! 981 if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub)) 982 return false; 983 984 // Don't breakup X - undef. 985 if (isa<UndefValue>(Sub->getOperand(1))) 986 return false; 987 988 // Don't bother to break this up unless either the LHS is an associable add or 989 // subtract or if this is only used by one. 990 Value *V0 = Sub->getOperand(0); 991 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) || 992 isReassociableOp(V0, Instruction::Sub, Instruction::FSub)) 993 return true; 994 Value *V1 = Sub->getOperand(1); 995 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) || 996 isReassociableOp(V1, Instruction::Sub, Instruction::FSub)) 997 return true; 998 Value *VB = Sub->user_back(); 999 if (Sub->hasOneUse() && 1000 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) || 1001 isReassociableOp(VB, Instruction::Sub, Instruction::FSub))) 1002 return true; 1003 1004 return false; 1005 } 1006 1007 /// If we have (X-Y), and if either X is an add, or if this is only used by an 1008 /// add, transform this into (X+(0-Y)) to promote better reassociation. 1009 static BinaryOperator * 1010 BreakUpSubtract(Instruction *Sub, SetVector<AssertingVH<Instruction>> &ToRedo) { 1011 // Convert a subtract into an add and a neg instruction. This allows sub 1012 // instructions to be commuted with other add instructions. 1013 // 1014 // Calculate the negative value of Operand 1 of the sub instruction, 1015 // and set it as the RHS of the add instruction we just made. 1016 // 1017 Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo); 1018 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub); 1019 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op. 1020 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op. 1021 New->takeName(Sub); 1022 1023 // Everyone now refers to the add instruction. 1024 Sub->replaceAllUsesWith(New); 1025 New->setDebugLoc(Sub->getDebugLoc()); 1026 1027 DEBUG(dbgs() << "Negated: " << *New << '\n'); 1028 return New; 1029 } 1030 1031 /// If this is a shift of a reassociable multiply or is used by one, change 1032 /// this into a multiply by a constant to assist with further reassociation. 1033 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) { 1034 Constant *MulCst = ConstantInt::get(Shl->getType(), 1); 1035 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1))); 1036 1037 BinaryOperator *Mul = 1038 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl); 1039 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op. 1040 Mul->takeName(Shl); 1041 1042 // Everyone now refers to the mul instruction. 1043 Shl->replaceAllUsesWith(Mul); 1044 Mul->setDebugLoc(Shl->getDebugLoc()); 1045 1046 // We can safely preserve the nuw flag in all cases. It's also safe to turn a 1047 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special 1048 // handling. 1049 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap(); 1050 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap(); 1051 if (NSW && NUW) 1052 Mul->setHasNoSignedWrap(true); 1053 Mul->setHasNoUnsignedWrap(NUW); 1054 return Mul; 1055 } 1056 1057 /// Scan backwards and forwards among values with the same rank as element i 1058 /// to see if X exists. If X does not exist, return i. This is useful when 1059 /// scanning for 'x' when we see '-x' because they both get the same rank. 1060 static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i, 1061 Value *X) { 1062 unsigned XRank = Ops[i].Rank; 1063 unsigned e = Ops.size(); 1064 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) { 1065 if (Ops[j].Op == X) 1066 return j; 1067 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 1068 if (Instruction *I2 = dyn_cast<Instruction>(X)) 1069 if (I1->isIdenticalTo(I2)) 1070 return j; 1071 } 1072 // Scan backwards. 1073 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) { 1074 if (Ops[j].Op == X) 1075 return j; 1076 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 1077 if (Instruction *I2 = dyn_cast<Instruction>(X)) 1078 if (I1->isIdenticalTo(I2)) 1079 return j; 1080 } 1081 return i; 1082 } 1083 1084 /// Emit a tree of add instructions, summing Ops together 1085 /// and returning the result. Insert the tree before I. 1086 static Value *EmitAddTreeOfValues(Instruction *I, 1087 SmallVectorImpl<WeakVH> &Ops){ 1088 if (Ops.size() == 1) return Ops.back(); 1089 1090 Value *V1 = Ops.back(); 1091 Ops.pop_back(); 1092 Value *V2 = EmitAddTreeOfValues(I, Ops); 1093 return CreateAdd(V2, V1, "tmp", I, I); 1094 } 1095 1096 /// If V is an expression tree that is a multiplication sequence, 1097 /// and if this sequence contains a multiply by Factor, 1098 /// remove Factor from the tree and return the new tree. 1099 Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) { 1100 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1101 if (!BO) 1102 return nullptr; 1103 1104 SmallVector<RepeatedValue, 8> Tree; 1105 MadeChange |= LinearizeExprTree(BO, Tree); 1106 SmallVector<ValueEntry, 8> Factors; 1107 Factors.reserve(Tree.size()); 1108 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 1109 RepeatedValue E = Tree[i]; 1110 Factors.append(E.second.getZExtValue(), 1111 ValueEntry(getRank(E.first), E.first)); 1112 } 1113 1114 bool FoundFactor = false; 1115 bool NeedsNegate = false; 1116 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1117 if (Factors[i].Op == Factor) { 1118 FoundFactor = true; 1119 Factors.erase(Factors.begin()+i); 1120 break; 1121 } 1122 1123 // If this is a negative version of this factor, remove it. 1124 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) { 1125 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op)) 1126 if (FC1->getValue() == -FC2->getValue()) { 1127 FoundFactor = NeedsNegate = true; 1128 Factors.erase(Factors.begin()+i); 1129 break; 1130 } 1131 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) { 1132 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) { 1133 APFloat F1(FC1->getValueAPF()); 1134 APFloat F2(FC2->getValueAPF()); 1135 F2.changeSign(); 1136 if (F1.compare(F2) == APFloat::cmpEqual) { 1137 FoundFactor = NeedsNegate = true; 1138 Factors.erase(Factors.begin() + i); 1139 break; 1140 } 1141 } 1142 } 1143 } 1144 1145 if (!FoundFactor) { 1146 // Make sure to restore the operands to the expression tree. 1147 RewriteExprTree(BO, Factors); 1148 return nullptr; 1149 } 1150 1151 BasicBlock::iterator InsertPt = ++BO->getIterator(); 1152 1153 // If this was just a single multiply, remove the multiply and return the only 1154 // remaining operand. 1155 if (Factors.size() == 1) { 1156 RedoInsts.insert(BO); 1157 V = Factors[0].Op; 1158 } else { 1159 RewriteExprTree(BO, Factors); 1160 V = BO; 1161 } 1162 1163 if (NeedsNegate) 1164 V = CreateNeg(V, "neg", &*InsertPt, BO); 1165 1166 return V; 1167 } 1168 1169 /// If V is a single-use multiply, recursively add its operands as factors, 1170 /// otherwise add V to the list of factors. 1171 /// 1172 /// Ops is the top-level list of add operands we're trying to factor. 1173 static void FindSingleUseMultiplyFactors(Value *V, 1174 SmallVectorImpl<Value*> &Factors, 1175 const SmallVectorImpl<ValueEntry> &Ops) { 1176 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1177 if (!BO) { 1178 Factors.push_back(V); 1179 return; 1180 } 1181 1182 // Otherwise, add the LHS and RHS to the list of factors. 1183 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops); 1184 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops); 1185 } 1186 1187 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction. 1188 /// This optimizes based on identities. If it can be reduced to a single Value, 1189 /// it is returned, otherwise the Ops list is mutated as necessary. 1190 static Value *OptimizeAndOrXor(unsigned Opcode, 1191 SmallVectorImpl<ValueEntry> &Ops) { 1192 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs. 1193 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1. 1194 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1195 // First, check for X and ~X in the operand list. 1196 assert(i < Ops.size()); 1197 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^. 1198 Value *X = BinaryOperator::getNotArgument(Ops[i].Op); 1199 unsigned FoundX = FindInOperandList(Ops, i, X); 1200 if (FoundX != i) { 1201 if (Opcode == Instruction::And) // ...&X&~X = 0 1202 return Constant::getNullValue(X->getType()); 1203 1204 if (Opcode == Instruction::Or) // ...|X|~X = -1 1205 return Constant::getAllOnesValue(X->getType()); 1206 } 1207 } 1208 1209 // Next, check for duplicate pairs of values, which we assume are next to 1210 // each other, due to our sorting criteria. 1211 assert(i < Ops.size()); 1212 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) { 1213 if (Opcode == Instruction::And || Opcode == Instruction::Or) { 1214 // Drop duplicate values for And and Or. 1215 Ops.erase(Ops.begin()+i); 1216 --i; --e; 1217 ++NumAnnihil; 1218 continue; 1219 } 1220 1221 // Drop pairs of values for Xor. 1222 assert(Opcode == Instruction::Xor); 1223 if (e == 2) 1224 return Constant::getNullValue(Ops[0].Op->getType()); 1225 1226 // Y ^ X^X -> Y 1227 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1228 i -= 1; e -= 2; 1229 ++NumAnnihil; 1230 } 1231 } 1232 return nullptr; 1233 } 1234 1235 /// Helper function of CombineXorOpnd(). It creates a bitwise-and 1236 /// instruction with the given two operands, and return the resulting 1237 /// instruction. There are two special cases: 1) if the constant operand is 0, 1238 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will 1239 /// be returned. 1240 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd, 1241 const APInt &ConstOpnd) { 1242 if (ConstOpnd != 0) { 1243 if (!ConstOpnd.isAllOnesValue()) { 1244 LLVMContext &Ctx = Opnd->getType()->getContext(); 1245 Instruction *I; 1246 I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd), 1247 "and.ra", InsertBefore); 1248 I->setDebugLoc(InsertBefore->getDebugLoc()); 1249 return I; 1250 } 1251 return Opnd; 1252 } 1253 return nullptr; 1254 } 1255 1256 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd" 1257 // into "R ^ C", where C would be 0, and R is a symbolic value. 1258 // 1259 // If it was successful, true is returned, and the "R" and "C" is returned 1260 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned, 1261 // and both "Res" and "ConstOpnd" remain unchanged. 1262 // 1263 bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1264 APInt &ConstOpnd, Value *&Res) { 1265 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2 1266 // = ((x | c1) ^ c1) ^ (c1 ^ c2) 1267 // = (x & ~c1) ^ (c1 ^ c2) 1268 // It is useful only when c1 == c2. 1269 if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) { 1270 if (!Opnd1->getValue()->hasOneUse()) 1271 return false; 1272 1273 const APInt &C1 = Opnd1->getConstPart(); 1274 if (C1 != ConstOpnd) 1275 return false; 1276 1277 Value *X = Opnd1->getSymbolicPart(); 1278 Res = createAndInstr(I, X, ~C1); 1279 // ConstOpnd was C2, now C1 ^ C2. 1280 ConstOpnd ^= C1; 1281 1282 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1283 RedoInsts.insert(T); 1284 return true; 1285 } 1286 return false; 1287 } 1288 1289 1290 // Helper function of OptimizeXor(). It tries to simplify 1291 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a 1292 // symbolic value. 1293 // 1294 // If it was successful, true is returned, and the "R" and "C" is returned 1295 // via "Res" and "ConstOpnd", respectively (If the entire expression is 1296 // evaluated to a constant, the Res is set to NULL); otherwise, false is 1297 // returned, and both "Res" and "ConstOpnd" remain unchanged. 1298 bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2, 1299 APInt &ConstOpnd, Value *&Res) { 1300 Value *X = Opnd1->getSymbolicPart(); 1301 if (X != Opnd2->getSymbolicPart()) 1302 return false; 1303 1304 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.) 1305 int DeadInstNum = 1; 1306 if (Opnd1->getValue()->hasOneUse()) 1307 DeadInstNum++; 1308 if (Opnd2->getValue()->hasOneUse()) 1309 DeadInstNum++; 1310 1311 // Xor-Rule 2: 1312 // (x | c1) ^ (x & c2) 1313 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1 1314 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1 1315 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3 1316 // 1317 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) { 1318 if (Opnd2->isOrExpr()) 1319 std::swap(Opnd1, Opnd2); 1320 1321 const APInt &C1 = Opnd1->getConstPart(); 1322 const APInt &C2 = Opnd2->getConstPart(); 1323 APInt C3((~C1) ^ C2); 1324 1325 // Do not increase code size! 1326 if (C3 != 0 && !C3.isAllOnesValue()) { 1327 int NewInstNum = ConstOpnd != 0 ? 1 : 2; 1328 if (NewInstNum > DeadInstNum) 1329 return false; 1330 } 1331 1332 Res = createAndInstr(I, X, C3); 1333 ConstOpnd ^= C1; 1334 1335 } else if (Opnd1->isOrExpr()) { 1336 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2 1337 // 1338 const APInt &C1 = Opnd1->getConstPart(); 1339 const APInt &C2 = Opnd2->getConstPart(); 1340 APInt C3 = C1 ^ C2; 1341 1342 // Do not increase code size 1343 if (C3 != 0 && !C3.isAllOnesValue()) { 1344 int NewInstNum = ConstOpnd != 0 ? 1 : 2; 1345 if (NewInstNum > DeadInstNum) 1346 return false; 1347 } 1348 1349 Res = createAndInstr(I, X, C3); 1350 ConstOpnd ^= C3; 1351 } else { 1352 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2)) 1353 // 1354 const APInt &C1 = Opnd1->getConstPart(); 1355 const APInt &C2 = Opnd2->getConstPart(); 1356 APInt C3 = C1 ^ C2; 1357 Res = createAndInstr(I, X, C3); 1358 } 1359 1360 // Put the original operands in the Redo list; hope they will be deleted 1361 // as dead code. 1362 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1363 RedoInsts.insert(T); 1364 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue())) 1365 RedoInsts.insert(T); 1366 1367 return true; 1368 } 1369 1370 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced 1371 /// to a single Value, it is returned, otherwise the Ops list is mutated as 1372 /// necessary. 1373 Value *Reassociate::OptimizeXor(Instruction *I, 1374 SmallVectorImpl<ValueEntry> &Ops) { 1375 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops)) 1376 return V; 1377 1378 if (Ops.size() == 1) 1379 return nullptr; 1380 1381 SmallVector<XorOpnd, 8> Opnds; 1382 SmallVector<XorOpnd*, 8> OpndPtrs; 1383 Type *Ty = Ops[0].Op->getType(); 1384 APInt ConstOpnd(Ty->getIntegerBitWidth(), 0); 1385 1386 // Step 1: Convert ValueEntry to XorOpnd 1387 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1388 Value *V = Ops[i].Op; 1389 if (!isa<ConstantInt>(V)) { 1390 XorOpnd O(V); 1391 O.setSymbolicRank(getRank(O.getSymbolicPart())); 1392 Opnds.push_back(O); 1393 } else 1394 ConstOpnd ^= cast<ConstantInt>(V)->getValue(); 1395 } 1396 1397 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds". 1398 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate 1399 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop 1400 // with the previous loop --- the iterator of the "Opnds" may be invalidated 1401 // when new elements are added to the vector. 1402 for (unsigned i = 0, e = Opnds.size(); i != e; ++i) 1403 OpndPtrs.push_back(&Opnds[i]); 1404 1405 // Step 2: Sort the Xor-Operands in a way such that the operands containing 1406 // the same symbolic value cluster together. For instance, the input operand 1407 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into: 1408 // ("x | 123", "x & 789", "y & 456"). 1409 std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor()); 1410 1411 // Step 3: Combine adjacent operands 1412 XorOpnd *PrevOpnd = nullptr; 1413 bool Changed = false; 1414 for (unsigned i = 0, e = Opnds.size(); i < e; i++) { 1415 XorOpnd *CurrOpnd = OpndPtrs[i]; 1416 // The combined value 1417 Value *CV; 1418 1419 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd" 1420 if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) { 1421 Changed = true; 1422 if (CV) 1423 *CurrOpnd = XorOpnd(CV); 1424 else { 1425 CurrOpnd->Invalidate(); 1426 continue; 1427 } 1428 } 1429 1430 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) { 1431 PrevOpnd = CurrOpnd; 1432 continue; 1433 } 1434 1435 // step 3.2: When previous and current operands share the same symbolic 1436 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd" 1437 // 1438 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) { 1439 // Remove previous operand 1440 PrevOpnd->Invalidate(); 1441 if (CV) { 1442 *CurrOpnd = XorOpnd(CV); 1443 PrevOpnd = CurrOpnd; 1444 } else { 1445 CurrOpnd->Invalidate(); 1446 PrevOpnd = nullptr; 1447 } 1448 Changed = true; 1449 } 1450 } 1451 1452 // Step 4: Reassemble the Ops 1453 if (Changed) { 1454 Ops.clear(); 1455 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) { 1456 XorOpnd &O = Opnds[i]; 1457 if (O.isInvalid()) 1458 continue; 1459 ValueEntry VE(getRank(O.getValue()), O.getValue()); 1460 Ops.push_back(VE); 1461 } 1462 if (ConstOpnd != 0) { 1463 Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd); 1464 ValueEntry VE(getRank(C), C); 1465 Ops.push_back(VE); 1466 } 1467 int Sz = Ops.size(); 1468 if (Sz == 1) 1469 return Ops.back().Op; 1470 else if (Sz == 0) { 1471 assert(ConstOpnd == 0); 1472 return ConstantInt::get(Ty->getContext(), ConstOpnd); 1473 } 1474 } 1475 1476 return nullptr; 1477 } 1478 1479 /// Optimize a series of operands to an 'add' instruction. This 1480 /// optimizes based on identities. If it can be reduced to a single Value, it 1481 /// is returned, otherwise the Ops list is mutated as necessary. 1482 Value *Reassociate::OptimizeAdd(Instruction *I, 1483 SmallVectorImpl<ValueEntry> &Ops) { 1484 // Scan the operand lists looking for X and -X pairs. If we find any, we 1485 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it, 1486 // scan for any 1487 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z. 1488 1489 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1490 Value *TheOp = Ops[i].Op; 1491 // Check to see if we've seen this operand before. If so, we factor all 1492 // instances of the operand together. Due to our sorting criteria, we know 1493 // that these need to be next to each other in the vector. 1494 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) { 1495 // Rescan the list, remove all instances of this operand from the expr. 1496 unsigned NumFound = 0; 1497 do { 1498 Ops.erase(Ops.begin()+i); 1499 ++NumFound; 1500 } while (i != Ops.size() && Ops[i].Op == TheOp); 1501 1502 DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n'); 1503 ++NumFactor; 1504 1505 // Insert a new multiply. 1506 Type *Ty = TheOp->getType(); 1507 Constant *C = Ty->isIntOrIntVectorTy() ? 1508 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound); 1509 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I); 1510 1511 // Now that we have inserted a multiply, optimize it. This allows us to 1512 // handle cases that require multiple factoring steps, such as this: 1513 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6 1514 RedoInsts.insert(Mul); 1515 1516 // If every add operand was a duplicate, return the multiply. 1517 if (Ops.empty()) 1518 return Mul; 1519 1520 // Otherwise, we had some input that didn't have the dupe, such as 1521 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of 1522 // things being added by this operation. 1523 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul)); 1524 1525 --i; 1526 e = Ops.size(); 1527 continue; 1528 } 1529 1530 // Check for X and -X or X and ~X in the operand list. 1531 if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) && 1532 !BinaryOperator::isNot(TheOp)) 1533 continue; 1534 1535 Value *X = nullptr; 1536 if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)) 1537 X = BinaryOperator::getNegArgument(TheOp); 1538 else if (BinaryOperator::isNot(TheOp)) 1539 X = BinaryOperator::getNotArgument(TheOp); 1540 1541 unsigned FoundX = FindInOperandList(Ops, i, X); 1542 if (FoundX == i) 1543 continue; 1544 1545 // Remove X and -X from the operand list. 1546 if (Ops.size() == 2 && 1547 (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))) 1548 return Constant::getNullValue(X->getType()); 1549 1550 // Remove X and ~X from the operand list. 1551 if (Ops.size() == 2 && BinaryOperator::isNot(TheOp)) 1552 return Constant::getAllOnesValue(X->getType()); 1553 1554 Ops.erase(Ops.begin()+i); 1555 if (i < FoundX) 1556 --FoundX; 1557 else 1558 --i; // Need to back up an extra one. 1559 Ops.erase(Ops.begin()+FoundX); 1560 ++NumAnnihil; 1561 --i; // Revisit element. 1562 e -= 2; // Removed two elements. 1563 1564 // if X and ~X we append -1 to the operand list. 1565 if (BinaryOperator::isNot(TheOp)) { 1566 Value *V = Constant::getAllOnesValue(X->getType()); 1567 Ops.insert(Ops.end(), ValueEntry(getRank(V), V)); 1568 e += 1; 1569 } 1570 } 1571 1572 // Scan the operand list, checking to see if there are any common factors 1573 // between operands. Consider something like A*A+A*B*C+D. We would like to 1574 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies. 1575 // To efficiently find this, we count the number of times a factor occurs 1576 // for any ADD operands that are MULs. 1577 DenseMap<Value*, unsigned> FactorOccurrences; 1578 1579 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4) 1580 // where they are actually the same multiply. 1581 unsigned MaxOcc = 0; 1582 Value *MaxOccVal = nullptr; 1583 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1584 BinaryOperator *BOp = 1585 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1586 if (!BOp) 1587 continue; 1588 1589 // Compute all of the factors of this added value. 1590 SmallVector<Value*, 8> Factors; 1591 FindSingleUseMultiplyFactors(BOp, Factors, Ops); 1592 assert(Factors.size() > 1 && "Bad linearize!"); 1593 1594 // Add one to FactorOccurrences for each unique factor in this op. 1595 SmallPtrSet<Value*, 8> Duplicates; 1596 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1597 Value *Factor = Factors[i]; 1598 if (!Duplicates.insert(Factor).second) 1599 continue; 1600 1601 unsigned Occ = ++FactorOccurrences[Factor]; 1602 if (Occ > MaxOcc) { 1603 MaxOcc = Occ; 1604 MaxOccVal = Factor; 1605 } 1606 1607 // If Factor is a negative constant, add the negated value as a factor 1608 // because we can percolate the negate out. Watch for minint, which 1609 // cannot be positivified. 1610 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) { 1611 if (CI->isNegative() && !CI->isMinValue(true)) { 1612 Factor = ConstantInt::get(CI->getContext(), -CI->getValue()); 1613 assert(!Duplicates.count(Factor) && 1614 "Shouldn't have two constant factors, missed a canonicalize"); 1615 unsigned Occ = ++FactorOccurrences[Factor]; 1616 if (Occ > MaxOcc) { 1617 MaxOcc = Occ; 1618 MaxOccVal = Factor; 1619 } 1620 } 1621 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) { 1622 if (CF->isNegative()) { 1623 APFloat F(CF->getValueAPF()); 1624 F.changeSign(); 1625 Factor = ConstantFP::get(CF->getContext(), F); 1626 assert(!Duplicates.count(Factor) && 1627 "Shouldn't have two constant factors, missed a canonicalize"); 1628 unsigned Occ = ++FactorOccurrences[Factor]; 1629 if (Occ > MaxOcc) { 1630 MaxOcc = Occ; 1631 MaxOccVal = Factor; 1632 } 1633 } 1634 } 1635 } 1636 } 1637 1638 // If any factor occurred more than one time, we can pull it out. 1639 if (MaxOcc > 1) { 1640 DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n'); 1641 ++NumFactor; 1642 1643 // Create a new instruction that uses the MaxOccVal twice. If we don't do 1644 // this, we could otherwise run into situations where removing a factor 1645 // from an expression will drop a use of maxocc, and this can cause 1646 // RemoveFactorFromExpression on successive values to behave differently. 1647 Instruction *DummyInst = 1648 I->getType()->isIntOrIntVectorTy() 1649 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal) 1650 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal); 1651 1652 SmallVector<WeakVH, 4> NewMulOps; 1653 for (unsigned i = 0; i != Ops.size(); ++i) { 1654 // Only try to remove factors from expressions we're allowed to. 1655 BinaryOperator *BOp = 1656 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1657 if (!BOp) 1658 continue; 1659 1660 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) { 1661 // The factorized operand may occur several times. Convert them all in 1662 // one fell swoop. 1663 for (unsigned j = Ops.size(); j != i;) { 1664 --j; 1665 if (Ops[j].Op == Ops[i].Op) { 1666 NewMulOps.push_back(V); 1667 Ops.erase(Ops.begin()+j); 1668 } 1669 } 1670 --i; 1671 } 1672 } 1673 1674 // No need for extra uses anymore. 1675 delete DummyInst; 1676 1677 unsigned NumAddedValues = NewMulOps.size(); 1678 Value *V = EmitAddTreeOfValues(I, NewMulOps); 1679 1680 // Now that we have inserted the add tree, optimize it. This allows us to 1681 // handle cases that require multiple factoring steps, such as this: 1682 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C)) 1683 assert(NumAddedValues > 1 && "Each occurrence should contribute a value"); 1684 (void)NumAddedValues; 1685 if (Instruction *VI = dyn_cast<Instruction>(V)) 1686 RedoInsts.insert(VI); 1687 1688 // Create the multiply. 1689 Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I); 1690 1691 // Rerun associate on the multiply in case the inner expression turned into 1692 // a multiply. We want to make sure that we keep things in canonical form. 1693 RedoInsts.insert(V2); 1694 1695 // If every add operand included the factor (e.g. "A*B + A*C"), then the 1696 // entire result expression is just the multiply "A*(B+C)". 1697 if (Ops.empty()) 1698 return V2; 1699 1700 // Otherwise, we had some input that didn't have the factor, such as 1701 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of 1702 // things being added by this operation. 1703 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2)); 1704 } 1705 1706 return nullptr; 1707 } 1708 1709 /// \brief Build up a vector of value/power pairs factoring a product. 1710 /// 1711 /// Given a series of multiplication operands, build a vector of factors and 1712 /// the powers each is raised to when forming the final product. Sort them in 1713 /// the order of descending power. 1714 /// 1715 /// (x*x) -> [(x, 2)] 1716 /// ((x*x)*x) -> [(x, 3)] 1717 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)] 1718 /// 1719 /// \returns Whether any factors have a power greater than one. 1720 bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, 1721 SmallVectorImpl<Factor> &Factors) { 1722 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this. 1723 // Compute the sum of powers of simplifiable factors. 1724 unsigned FactorPowerSum = 0; 1725 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) { 1726 Value *Op = Ops[Idx-1].Op; 1727 1728 // Count the number of occurrences of this value. 1729 unsigned Count = 1; 1730 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx) 1731 ++Count; 1732 // Track for simplification all factors which occur 2 or more times. 1733 if (Count > 1) 1734 FactorPowerSum += Count; 1735 } 1736 1737 // We can only simplify factors if the sum of the powers of our simplifiable 1738 // factors is 4 or higher. When that is the case, we will *always* have 1739 // a simplification. This is an important invariant to prevent cyclicly 1740 // trying to simplify already minimal formations. 1741 if (FactorPowerSum < 4) 1742 return false; 1743 1744 // Now gather the simplifiable factors, removing them from Ops. 1745 FactorPowerSum = 0; 1746 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) { 1747 Value *Op = Ops[Idx-1].Op; 1748 1749 // Count the number of occurrences of this value. 1750 unsigned Count = 1; 1751 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx) 1752 ++Count; 1753 if (Count == 1) 1754 continue; 1755 // Move an even number of occurrences to Factors. 1756 Count &= ~1U; 1757 Idx -= Count; 1758 FactorPowerSum += Count; 1759 Factors.push_back(Factor(Op, Count)); 1760 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count); 1761 } 1762 1763 // None of the adjustments above should have reduced the sum of factor powers 1764 // below our mininum of '4'. 1765 assert(FactorPowerSum >= 4); 1766 1767 std::stable_sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter()); 1768 return true; 1769 } 1770 1771 /// \brief Build a tree of multiplies, computing the product of Ops. 1772 static Value *buildMultiplyTree(IRBuilder<> &Builder, 1773 SmallVectorImpl<Value*> &Ops) { 1774 if (Ops.size() == 1) 1775 return Ops.back(); 1776 1777 Value *LHS = Ops.pop_back_val(); 1778 do { 1779 if (LHS->getType()->isIntOrIntVectorTy()) 1780 LHS = Builder.CreateMul(LHS, Ops.pop_back_val()); 1781 else 1782 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val()); 1783 } while (!Ops.empty()); 1784 1785 return LHS; 1786 } 1787 1788 /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*... 1789 /// 1790 /// Given a vector of values raised to various powers, where no two values are 1791 /// equal and the powers are sorted in decreasing order, compute the minimal 1792 /// DAG of multiplies to compute the final product, and return that product 1793 /// value. 1794 Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder, 1795 SmallVectorImpl<Factor> &Factors) { 1796 assert(Factors[0].Power); 1797 SmallVector<Value *, 4> OuterProduct; 1798 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size(); 1799 Idx < Size && Factors[Idx].Power > 0; ++Idx) { 1800 if (Factors[Idx].Power != Factors[LastIdx].Power) { 1801 LastIdx = Idx; 1802 continue; 1803 } 1804 1805 // We want to multiply across all the factors with the same power so that 1806 // we can raise them to that power as a single entity. Build a mini tree 1807 // for that. 1808 SmallVector<Value *, 4> InnerProduct; 1809 InnerProduct.push_back(Factors[LastIdx].Base); 1810 do { 1811 InnerProduct.push_back(Factors[Idx].Base); 1812 ++Idx; 1813 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power); 1814 1815 // Reset the base value of the first factor to the new expression tree. 1816 // We'll remove all the factors with the same power in a second pass. 1817 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct); 1818 if (Instruction *MI = dyn_cast<Instruction>(M)) 1819 RedoInsts.insert(MI); 1820 1821 LastIdx = Idx; 1822 } 1823 // Unique factors with equal powers -- we've folded them into the first one's 1824 // base. 1825 Factors.erase(std::unique(Factors.begin(), Factors.end(), 1826 Factor::PowerEqual()), 1827 Factors.end()); 1828 1829 // Iteratively collect the base of each factor with an add power into the 1830 // outer product, and halve each power in preparation for squaring the 1831 // expression. 1832 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) { 1833 if (Factors[Idx].Power & 1) 1834 OuterProduct.push_back(Factors[Idx].Base); 1835 Factors[Idx].Power >>= 1; 1836 } 1837 if (Factors[0].Power) { 1838 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors); 1839 OuterProduct.push_back(SquareRoot); 1840 OuterProduct.push_back(SquareRoot); 1841 } 1842 if (OuterProduct.size() == 1) 1843 return OuterProduct.front(); 1844 1845 Value *V = buildMultiplyTree(Builder, OuterProduct); 1846 return V; 1847 } 1848 1849 Value *Reassociate::OptimizeMul(BinaryOperator *I, 1850 SmallVectorImpl<ValueEntry> &Ops) { 1851 // We can only optimize the multiplies when there is a chain of more than 1852 // three, such that a balanced tree might require fewer total multiplies. 1853 if (Ops.size() < 4) 1854 return nullptr; 1855 1856 // Try to turn linear trees of multiplies without other uses of the 1857 // intermediate stages into minimal multiply DAGs with perfect sub-expression 1858 // re-use. 1859 SmallVector<Factor, 4> Factors; 1860 if (!collectMultiplyFactors(Ops, Factors)) 1861 return nullptr; // All distinct factors, so nothing left for us to do. 1862 1863 IRBuilder<> Builder(I); 1864 Value *V = buildMinimalMultiplyDAG(Builder, Factors); 1865 if (Ops.empty()) 1866 return V; 1867 1868 ValueEntry NewEntry = ValueEntry(getRank(V), V); 1869 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry); 1870 return nullptr; 1871 } 1872 1873 Value *Reassociate::OptimizeExpression(BinaryOperator *I, 1874 SmallVectorImpl<ValueEntry> &Ops) { 1875 // Now that we have the linearized expression tree, try to optimize it. 1876 // Start by folding any constants that we found. 1877 Constant *Cst = nullptr; 1878 unsigned Opcode = I->getOpcode(); 1879 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) { 1880 Constant *C = cast<Constant>(Ops.pop_back_val().Op); 1881 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C; 1882 } 1883 // If there was nothing but constants then we are done. 1884 if (Ops.empty()) 1885 return Cst; 1886 1887 // Put the combined constant back at the end of the operand list, except if 1888 // there is no point. For example, an add of 0 gets dropped here, while a 1889 // multiplication by zero turns the whole expression into zero. 1890 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) { 1891 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType())) 1892 return Cst; 1893 Ops.push_back(ValueEntry(0, Cst)); 1894 } 1895 1896 if (Ops.size() == 1) return Ops[0].Op; 1897 1898 // Handle destructive annihilation due to identities between elements in the 1899 // argument list here. 1900 unsigned NumOps = Ops.size(); 1901 switch (Opcode) { 1902 default: break; 1903 case Instruction::And: 1904 case Instruction::Or: 1905 if (Value *Result = OptimizeAndOrXor(Opcode, Ops)) 1906 return Result; 1907 break; 1908 1909 case Instruction::Xor: 1910 if (Value *Result = OptimizeXor(I, Ops)) 1911 return Result; 1912 break; 1913 1914 case Instruction::Add: 1915 case Instruction::FAdd: 1916 if (Value *Result = OptimizeAdd(I, Ops)) 1917 return Result; 1918 break; 1919 1920 case Instruction::Mul: 1921 case Instruction::FMul: 1922 if (Value *Result = OptimizeMul(I, Ops)) 1923 return Result; 1924 break; 1925 } 1926 1927 if (Ops.size() != NumOps) 1928 return OptimizeExpression(I, Ops); 1929 return nullptr; 1930 } 1931 1932 // Remove dead instructions and if any operands are trivially dead add them to 1933 // Insts so they will be removed as well. 1934 void Reassociate::RecursivelyEraseDeadInsts( 1935 Instruction *I, SetVector<AssertingVH<Instruction>> &Insts) { 1936 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1937 SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end()); 1938 ValueRankMap.erase(I); 1939 Insts.remove(I); 1940 RedoInsts.remove(I); 1941 I->eraseFromParent(); 1942 for (auto Op : Ops) 1943 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1944 if (OpInst->use_empty()) 1945 Insts.insert(OpInst); 1946 } 1947 1948 /// Zap the given instruction, adding interesting operands to the work list. 1949 void Reassociate::EraseInst(Instruction *I) { 1950 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1951 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 1952 // Erase the dead instruction. 1953 ValueRankMap.erase(I); 1954 RedoInsts.remove(I); 1955 I->eraseFromParent(); 1956 // Optimize its operands. 1957 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes. 1958 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1959 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) { 1960 // If this is a node in an expression tree, climb to the expression root 1961 // and add that since that's where optimization actually happens. 1962 unsigned Opcode = Op->getOpcode(); 1963 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode && 1964 Visited.insert(Op).second) 1965 Op = Op->user_back(); 1966 RedoInsts.insert(Op); 1967 } 1968 } 1969 1970 // Canonicalize expressions of the following form: 1971 // x + (-Constant * y) -> x - (Constant * y) 1972 // x - (-Constant * y) -> x + (Constant * y) 1973 Instruction *Reassociate::canonicalizeNegConstExpr(Instruction *I) { 1974 if (!I->hasOneUse() || I->getType()->isVectorTy()) 1975 return nullptr; 1976 1977 // Must be a fmul or fdiv instruction. 1978 unsigned Opcode = I->getOpcode(); 1979 if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv) 1980 return nullptr; 1981 1982 auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0)); 1983 auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1)); 1984 1985 // Both operands are constant, let it get constant folded away. 1986 if (C0 && C1) 1987 return nullptr; 1988 1989 ConstantFP *CF = C0 ? C0 : C1; 1990 1991 // Must have one constant operand. 1992 if (!CF) 1993 return nullptr; 1994 1995 // Must be a negative ConstantFP. 1996 if (!CF->isNegative()) 1997 return nullptr; 1998 1999 // User must be a binary operator with one or more uses. 2000 Instruction *User = I->user_back(); 2001 if (!isa<BinaryOperator>(User) || !User->hasNUsesOrMore(1)) 2002 return nullptr; 2003 2004 unsigned UserOpcode = User->getOpcode(); 2005 if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub) 2006 return nullptr; 2007 2008 // Subtraction is not commutative. Explicitly, the following transform is 2009 // not valid: (-Constant * y) - x -> x + (Constant * y) 2010 if (!User->isCommutative() && User->getOperand(1) != I) 2011 return nullptr; 2012 2013 // Change the sign of the constant. 2014 APFloat Val = CF->getValueAPF(); 2015 Val.changeSign(); 2016 I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val)); 2017 2018 // Canonicalize I to RHS to simplify the next bit of logic. E.g., 2019 // ((-Const*y) + x) -> (x + (-Const*y)). 2020 if (User->getOperand(0) == I && User->isCommutative()) 2021 cast<BinaryOperator>(User)->swapOperands(); 2022 2023 Value *Op0 = User->getOperand(0); 2024 Value *Op1 = User->getOperand(1); 2025 BinaryOperator *NI; 2026 switch (UserOpcode) { 2027 default: 2028 llvm_unreachable("Unexpected Opcode!"); 2029 case Instruction::FAdd: 2030 NI = BinaryOperator::CreateFSub(Op0, Op1); 2031 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags()); 2032 break; 2033 case Instruction::FSub: 2034 NI = BinaryOperator::CreateFAdd(Op0, Op1); 2035 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags()); 2036 break; 2037 } 2038 2039 NI->insertBefore(User); 2040 NI->setName(User->getName()); 2041 User->replaceAllUsesWith(NI); 2042 NI->setDebugLoc(I->getDebugLoc()); 2043 RedoInsts.insert(I); 2044 MadeChange = true; 2045 return NI; 2046 } 2047 2048 /// Inspect and optimize the given instruction. Note that erasing 2049 /// instructions is not allowed. 2050 void Reassociate::OptimizeInst(Instruction *I) { 2051 // Only consider operations that we understand. 2052 if (!isa<BinaryOperator>(I)) 2053 return; 2054 2055 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1))) 2056 // If an operand of this shift is a reassociable multiply, or if the shift 2057 // is used by a reassociable multiply or add, turn into a multiply. 2058 if (isReassociableOp(I->getOperand(0), Instruction::Mul) || 2059 (I->hasOneUse() && 2060 (isReassociableOp(I->user_back(), Instruction::Mul) || 2061 isReassociableOp(I->user_back(), Instruction::Add)))) { 2062 Instruction *NI = ConvertShiftToMul(I); 2063 RedoInsts.insert(I); 2064 MadeChange = true; 2065 I = NI; 2066 } 2067 2068 // Canonicalize negative constants out of expressions. 2069 if (Instruction *Res = canonicalizeNegConstExpr(I)) 2070 I = Res; 2071 2072 // Commute binary operators, to canonicalize the order of their operands. 2073 // This can potentially expose more CSE opportunities, and makes writing other 2074 // transformations simpler. 2075 if (I->isCommutative()) 2076 canonicalizeOperands(I); 2077 2078 // TODO: We should optimize vector Xor instructions, but they are 2079 // currently unsupported. 2080 if (I->getType()->isVectorTy() && I->getOpcode() == Instruction::Xor) 2081 return; 2082 2083 // Don't optimize floating point instructions that don't have unsafe algebra. 2084 if (I->getType()->isFPOrFPVectorTy() && !I->hasUnsafeAlgebra()) 2085 return; 2086 2087 // Do not reassociate boolean (i1) expressions. We want to preserve the 2088 // original order of evaluation for short-circuited comparisons that 2089 // SimplifyCFG has folded to AND/OR expressions. If the expression 2090 // is not further optimized, it is likely to be transformed back to a 2091 // short-circuited form for code gen, and the source order may have been 2092 // optimized for the most likely conditions. 2093 if (I->getType()->isIntegerTy(1)) 2094 return; 2095 2096 // If this is a subtract instruction which is not already in negate form, 2097 // see if we can convert it to X+-Y. 2098 if (I->getOpcode() == Instruction::Sub) { 2099 if (ShouldBreakUpSubtract(I)) { 2100 Instruction *NI = BreakUpSubtract(I, RedoInsts); 2101 RedoInsts.insert(I); 2102 MadeChange = true; 2103 I = NI; 2104 } else if (BinaryOperator::isNeg(I)) { 2105 // Otherwise, this is a negation. See if the operand is a multiply tree 2106 // and if this is not an inner node of a multiply tree. 2107 if (isReassociableOp(I->getOperand(1), Instruction::Mul) && 2108 (!I->hasOneUse() || 2109 !isReassociableOp(I->user_back(), Instruction::Mul))) { 2110 Instruction *NI = LowerNegateToMultiply(I); 2111 // If the negate was simplified, revisit the users to see if we can 2112 // reassociate further. 2113 for (User *U : NI->users()) { 2114 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U)) 2115 RedoInsts.insert(Tmp); 2116 } 2117 RedoInsts.insert(I); 2118 MadeChange = true; 2119 I = NI; 2120 } 2121 } 2122 } else if (I->getOpcode() == Instruction::FSub) { 2123 if (ShouldBreakUpSubtract(I)) { 2124 Instruction *NI = BreakUpSubtract(I, RedoInsts); 2125 RedoInsts.insert(I); 2126 MadeChange = true; 2127 I = NI; 2128 } else if (BinaryOperator::isFNeg(I)) { 2129 // Otherwise, this is a negation. See if the operand is a multiply tree 2130 // and if this is not an inner node of a multiply tree. 2131 if (isReassociableOp(I->getOperand(1), Instruction::FMul) && 2132 (!I->hasOneUse() || 2133 !isReassociableOp(I->user_back(), Instruction::FMul))) { 2134 // If the negate was simplified, revisit the users to see if we can 2135 // reassociate further. 2136 Instruction *NI = LowerNegateToMultiply(I); 2137 for (User *U : NI->users()) { 2138 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U)) 2139 RedoInsts.insert(Tmp); 2140 } 2141 RedoInsts.insert(I); 2142 MadeChange = true; 2143 I = NI; 2144 } 2145 } 2146 } 2147 2148 // If this instruction is an associative binary operator, process it. 2149 if (!I->isAssociative()) return; 2150 BinaryOperator *BO = cast<BinaryOperator>(I); 2151 2152 // If this is an interior node of a reassociable tree, ignore it until we 2153 // get to the root of the tree, to avoid N^2 analysis. 2154 unsigned Opcode = BO->getOpcode(); 2155 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) { 2156 // During the initial run we will get to the root of the tree. 2157 // But if we get here while we are redoing instructions, there is no 2158 // guarantee that the root will be visited. So Redo later 2159 if (BO->user_back() != BO && 2160 BO->getParent() == BO->user_back()->getParent()) 2161 RedoInsts.insert(BO->user_back()); 2162 return; 2163 } 2164 2165 // If this is an add tree that is used by a sub instruction, ignore it 2166 // until we process the subtract. 2167 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add && 2168 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub) 2169 return; 2170 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd && 2171 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub) 2172 return; 2173 2174 ReassociateExpression(BO); 2175 } 2176 2177 void Reassociate::ReassociateExpression(BinaryOperator *I) { 2178 // First, walk the expression tree, linearizing the tree, collecting the 2179 // operand information. 2180 SmallVector<RepeatedValue, 8> Tree; 2181 MadeChange |= LinearizeExprTree(I, Tree); 2182 SmallVector<ValueEntry, 8> Ops; 2183 Ops.reserve(Tree.size()); 2184 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 2185 RepeatedValue E = Tree[i]; 2186 Ops.append(E.second.getZExtValue(), 2187 ValueEntry(getRank(E.first), E.first)); 2188 } 2189 2190 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2191 2192 // Now that we have linearized the tree to a list and have gathered all of 2193 // the operands and their ranks, sort the operands by their rank. Use a 2194 // stable_sort so that values with equal ranks will have their relative 2195 // positions maintained (and so the compiler is deterministic). Note that 2196 // this sorts so that the highest ranking values end up at the beginning of 2197 // the vector. 2198 std::stable_sort(Ops.begin(), Ops.end()); 2199 2200 // Now that we have the expression tree in a convenient 2201 // sorted form, optimize it globally if possible. 2202 if (Value *V = OptimizeExpression(I, Ops)) { 2203 if (V == I) 2204 // Self-referential expression in unreachable code. 2205 return; 2206 // This expression tree simplified to something that isn't a tree, 2207 // eliminate it. 2208 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n'); 2209 I->replaceAllUsesWith(V); 2210 if (Instruction *VI = dyn_cast<Instruction>(V)) 2211 VI->setDebugLoc(I->getDebugLoc()); 2212 RedoInsts.insert(I); 2213 ++NumAnnihil; 2214 return; 2215 } 2216 2217 // We want to sink immediates as deeply as possible except in the case where 2218 // this is a multiply tree used only by an add, and the immediate is a -1. 2219 // In this case we reassociate to put the negation on the outside so that we 2220 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y 2221 if (I->hasOneUse()) { 2222 if (I->getOpcode() == Instruction::Mul && 2223 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add && 2224 isa<ConstantInt>(Ops.back().Op) && 2225 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) { 2226 ValueEntry Tmp = Ops.pop_back_val(); 2227 Ops.insert(Ops.begin(), Tmp); 2228 } else if (I->getOpcode() == Instruction::FMul && 2229 cast<Instruction>(I->user_back())->getOpcode() == 2230 Instruction::FAdd && 2231 isa<ConstantFP>(Ops.back().Op) && 2232 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) { 2233 ValueEntry Tmp = Ops.pop_back_val(); 2234 Ops.insert(Ops.begin(), Tmp); 2235 } 2236 } 2237 2238 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2239 2240 if (Ops.size() == 1) { 2241 if (Ops[0].Op == I) 2242 // Self-referential expression in unreachable code. 2243 return; 2244 2245 // This expression tree simplified to something that isn't a tree, 2246 // eliminate it. 2247 I->replaceAllUsesWith(Ops[0].Op); 2248 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op)) 2249 OI->setDebugLoc(I->getDebugLoc()); 2250 RedoInsts.insert(I); 2251 return; 2252 } 2253 2254 // Now that we ordered and optimized the expressions, splat them back into 2255 // the expression tree, removing any unneeded nodes. 2256 RewriteExprTree(I, Ops); 2257 } 2258 2259 bool Reassociate::runOnFunction(Function &F) { 2260 if (skipOptnoneFunction(F)) 2261 return false; 2262 2263 // Reassociate needs for each instruction to have its operands already 2264 // processed, so we first perform a RPOT of the basic blocks so that 2265 // when we process a basic block, all its dominators have been processed 2266 // before. 2267 ReversePostOrderTraversal<Function *> RPOT(&F); 2268 BuildRankMap(F, RPOT); 2269 2270 MadeChange = false; 2271 for (BasicBlock *BI : RPOT) { 2272 // Use a worklist to keep track of which instructions have been processed 2273 // (and which insts won't be optimized again) so when redoing insts, 2274 // optimize insts rightaway which won't be processed later. 2275 SmallSet<Instruction *, 8> Worklist; 2276 2277 // Insert all instructions in the BB 2278 for (Instruction &I : *BI) 2279 Worklist.insert(&I); 2280 2281 // Optimize every instruction in the basic block. 2282 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;) { 2283 // This instruction has been processed. 2284 Worklist.erase(&*II); 2285 if (isInstructionTriviallyDead(&*II)) { 2286 EraseInst(&*II++); 2287 } else { 2288 OptimizeInst(&*II); 2289 assert(II->getParent() == &*BI && "Moved to a different block!"); 2290 ++II; 2291 } 2292 2293 // If the above optimizations produced new instructions to optimize or 2294 // made modifications which need to be redone, do them now if they won't 2295 // be handled later. 2296 while (!RedoInsts.empty()) { 2297 Instruction *I = RedoInsts.pop_back_val(); 2298 // Process instructions that won't be processed later, either 2299 // inside the block itself or in another basic block (based on rank), 2300 // since these will be processed later. 2301 if ((I->getParent() != BI || !Worklist.count(I)) && 2302 RankMap[I->getParent()] <= RankMap[BI]) { 2303 if (isInstructionTriviallyDead(I)) 2304 EraseInst(I); 2305 else 2306 OptimizeInst(I); 2307 } 2308 } 2309 } 2310 } 2311 2312 // We are done with the rank map. 2313 RankMap.clear(); 2314 ValueRankMap.clear(); 2315 2316 return MadeChange; 2317 } 2318