1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass reassociates commutative expressions in an order that is designed 11 // to promote better constant propagation, GCSE, LICM, PRE, etc. 12 // 13 // For example: 4 + (x + 5) -> x + (4 + 5) 14 // 15 // In the implementation of this algorithm, constants are assigned rank = 0, 16 // function arguments are rank = 1, and other values are assigned ranks 17 // corresponding to the reverse post order traversal of current function 18 // (starting at 2), which effectively gives values in deep loops higher rank 19 // than values not in loops. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #define DEBUG_TYPE "reassociate" 24 #include "llvm/Transforms/Scalar.h" 25 #include "llvm/Transforms/Utils/Local.h" 26 #include "llvm/Constants.h" 27 #include "llvm/DerivedTypes.h" 28 #include "llvm/Function.h" 29 #include "llvm/IRBuilder.h" 30 #include "llvm/Instructions.h" 31 #include "llvm/IntrinsicInst.h" 32 #include "llvm/Pass.h" 33 #include "llvm/ADT/DenseMap.h" 34 #include "llvm/ADT/PostOrderIterator.h" 35 #include "llvm/ADT/STLExtras.h" 36 #include "llvm/ADT/SetVector.h" 37 #include "llvm/ADT/Statistic.h" 38 #include "llvm/Assembly/Writer.h" 39 #include "llvm/Support/CFG.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/ValueHandle.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <algorithm> 44 using namespace llvm; 45 46 STATISTIC(NumChanged, "Number of insts reassociated"); 47 STATISTIC(NumAnnihil, "Number of expr tree annihilated"); 48 STATISTIC(NumFactor , "Number of multiplies factored"); 49 50 namespace { 51 struct ValueEntry { 52 unsigned Rank; 53 Value *Op; 54 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {} 55 }; 56 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) { 57 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start. 58 } 59 } 60 61 #ifndef NDEBUG 62 /// PrintOps - Print out the expression identified in the Ops list. 63 /// 64 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) { 65 Module *M = I->getParent()->getParent()->getParent(); 66 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " " 67 << *Ops[0].Op->getType() << '\t'; 68 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 69 dbgs() << "[ "; 70 WriteAsOperand(dbgs(), Ops[i].Op, false, M); 71 dbgs() << ", #" << Ops[i].Rank << "] "; 72 } 73 } 74 #endif 75 76 namespace { 77 /// \brief Utility class representing a base and exponent pair which form one 78 /// factor of some product. 79 struct Factor { 80 Value *Base; 81 unsigned Power; 82 83 Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {} 84 85 /// \brief Sort factors by their Base. 86 struct BaseSorter { 87 bool operator()(const Factor &LHS, const Factor &RHS) { 88 return LHS.Base < RHS.Base; 89 } 90 }; 91 92 /// \brief Compare factors for equal bases. 93 struct BaseEqual { 94 bool operator()(const Factor &LHS, const Factor &RHS) { 95 return LHS.Base == RHS.Base; 96 } 97 }; 98 99 /// \brief Sort factors in descending order by their power. 100 struct PowerDescendingSorter { 101 bool operator()(const Factor &LHS, const Factor &RHS) { 102 return LHS.Power > RHS.Power; 103 } 104 }; 105 106 /// \brief Compare factors for equal powers. 107 struct PowerEqual { 108 bool operator()(const Factor &LHS, const Factor &RHS) { 109 return LHS.Power == RHS.Power; 110 } 111 }; 112 }; 113 } 114 115 namespace { 116 class Reassociate : public FunctionPass { 117 DenseMap<BasicBlock*, unsigned> RankMap; 118 DenseMap<AssertingVH<Value>, unsigned> ValueRankMap; 119 SetVector<AssertingVH<Instruction> > RedoInsts; 120 bool MadeChange; 121 public: 122 static char ID; // Pass identification, replacement for typeid 123 Reassociate() : FunctionPass(ID) { 124 initializeReassociatePass(*PassRegistry::getPassRegistry()); 125 } 126 127 bool runOnFunction(Function &F); 128 129 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 130 AU.setPreservesCFG(); 131 } 132 private: 133 void BuildRankMap(Function &F); 134 unsigned getRank(Value *V); 135 void ReassociateExpression(BinaryOperator *I); 136 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops); 137 Value *OptimizeExpression(BinaryOperator *I, 138 SmallVectorImpl<ValueEntry> &Ops); 139 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops); 140 bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, 141 SmallVectorImpl<Factor> &Factors); 142 Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder, 143 SmallVectorImpl<Factor> &Factors); 144 Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops); 145 Value *RemoveFactorFromExpression(Value *V, Value *Factor); 146 void EraseInst(Instruction *I); 147 void OptimizeInst(Instruction *I); 148 }; 149 } 150 151 char Reassociate::ID = 0; 152 INITIALIZE_PASS(Reassociate, "reassociate", 153 "Reassociate expressions", false, false) 154 155 // Public interface to the Reassociate pass 156 FunctionPass *llvm::createReassociatePass() { return new Reassociate(); } 157 158 /// isReassociableOp - Return true if V is an instruction of the specified 159 /// opcode and if it only has one use. 160 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) { 161 if (V->hasOneUse() && isa<Instruction>(V) && 162 cast<Instruction>(V)->getOpcode() == Opcode) 163 return cast<BinaryOperator>(V); 164 return 0; 165 } 166 167 static bool isUnmovableInstruction(Instruction *I) { 168 if (I->getOpcode() == Instruction::PHI || 169 I->getOpcode() == Instruction::LandingPad || 170 I->getOpcode() == Instruction::Alloca || 171 I->getOpcode() == Instruction::Load || 172 I->getOpcode() == Instruction::Invoke || 173 (I->getOpcode() == Instruction::Call && 174 !isa<DbgInfoIntrinsic>(I)) || 175 I->getOpcode() == Instruction::UDiv || 176 I->getOpcode() == Instruction::SDiv || 177 I->getOpcode() == Instruction::FDiv || 178 I->getOpcode() == Instruction::URem || 179 I->getOpcode() == Instruction::SRem || 180 I->getOpcode() == Instruction::FRem) 181 return true; 182 return false; 183 } 184 185 void Reassociate::BuildRankMap(Function &F) { 186 unsigned i = 2; 187 188 // Assign distinct ranks to function arguments 189 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) 190 ValueRankMap[&*I] = ++i; 191 192 ReversePostOrderTraversal<Function*> RPOT(&F); 193 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(), 194 E = RPOT.end(); I != E; ++I) { 195 BasicBlock *BB = *I; 196 unsigned BBRank = RankMap[BB] = ++i << 16; 197 198 // Walk the basic block, adding precomputed ranks for any instructions that 199 // we cannot move. This ensures that the ranks for these instructions are 200 // all different in the block. 201 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 202 if (isUnmovableInstruction(I)) 203 ValueRankMap[&*I] = ++BBRank; 204 } 205 } 206 207 unsigned Reassociate::getRank(Value *V) { 208 Instruction *I = dyn_cast<Instruction>(V); 209 if (I == 0) { 210 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument. 211 return 0; // Otherwise it's a global or constant, rank 0. 212 } 213 214 if (unsigned Rank = ValueRankMap[I]) 215 return Rank; // Rank already known? 216 217 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that 218 // we can reassociate expressions for code motion! Since we do not recurse 219 // for PHI nodes, we cannot have infinite recursion here, because there 220 // cannot be loops in the value graph that do not go through PHI nodes. 221 unsigned Rank = 0, MaxRank = RankMap[I->getParent()]; 222 for (unsigned i = 0, e = I->getNumOperands(); 223 i != e && Rank != MaxRank; ++i) 224 Rank = std::max(Rank, getRank(I->getOperand(i))); 225 226 // If this is a not or neg instruction, do not count it for rank. This 227 // assures us that X and ~X will have the same rank. 228 if (!I->getType()->isIntegerTy() || 229 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I))) 230 ++Rank; 231 232 //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " 233 // << Rank << "\n"); 234 235 return ValueRankMap[I] = Rank; 236 } 237 238 /// LowerNegateToMultiply - Replace 0-X with X*-1. 239 /// 240 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) { 241 Constant *Cst = Constant::getAllOnesValue(Neg->getType()); 242 243 BinaryOperator *Res = 244 BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg); 245 Neg->setOperand(1, Constant::getNullValue(Neg->getType())); // Drop use of op. 246 Res->takeName(Neg); 247 Neg->replaceAllUsesWith(Res); 248 Res->setDebugLoc(Neg->getDebugLoc()); 249 return Res; 250 } 251 252 /// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda 253 /// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for 254 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic. 255 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every 256 /// even x in Bitwidth-bit arithmetic. 257 static unsigned CarmichaelShift(unsigned Bitwidth) { 258 if (Bitwidth < 3) 259 return Bitwidth - 1; 260 return Bitwidth - 2; 261 } 262 263 /// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS', 264 /// reducing the combined weight using any special properties of the operation. 265 /// The existing weight LHS represents the computation X op X op ... op X where 266 /// X occurs LHS times. The combined weight represents X op X op ... op X with 267 /// X occurring LHS + RHS times. If op is "Xor" for example then the combined 268 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even; 269 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second. 270 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) { 271 // If we were working with infinite precision arithmetic then the combined 272 // weight would be LHS + RHS. But we are using finite precision arithmetic, 273 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct 274 // for nilpotent operations and addition, but not for idempotent operations 275 // and multiplication), so it is important to correctly reduce the combined 276 // weight back into range if wrapping would be wrong. 277 278 // If RHS is zero then the weight didn't change. 279 if (RHS.isMinValue()) 280 return; 281 // If LHS is zero then the combined weight is RHS. 282 if (LHS.isMinValue()) { 283 LHS = RHS; 284 return; 285 } 286 // From this point on we know that neither LHS nor RHS is zero. 287 288 if (Instruction::isIdempotent(Opcode)) { 289 // Idempotent means X op X === X, so any non-zero weight is equivalent to a 290 // weight of 1. Keeping weights at zero or one also means that wrapping is 291 // not a problem. 292 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 293 return; // Return a weight of 1. 294 } 295 if (Instruction::isNilpotent(Opcode)) { 296 // Nilpotent means X op X === 0, so reduce weights modulo 2. 297 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 298 LHS = 0; // 1 + 1 === 0 modulo 2. 299 return; 300 } 301 if (Opcode == Instruction::Add) { 302 // TODO: Reduce the weight by exploiting nsw/nuw? 303 LHS += RHS; 304 return; 305 } 306 307 assert(Opcode == Instruction::Mul && "Unknown associative operation!"); 308 unsigned Bitwidth = LHS.getBitWidth(); 309 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth 310 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth 311 // bit number x, since either x is odd in which case x^CM = 1, or x is even in 312 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples 313 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth) 314 // which by a happy accident means that they can always be represented using 315 // Bitwidth bits. 316 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than 317 // the Carmichael number). 318 if (Bitwidth > 3) { 319 /// CM - The value of Carmichael's lambda function. 320 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth)); 321 // Any weight W >= Threshold can be replaced with W - CM. 322 APInt Threshold = CM + Bitwidth; 323 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!"); 324 // For Bitwidth 4 or more the following sum does not overflow. 325 LHS += RHS; 326 while (LHS.uge(Threshold)) 327 LHS -= CM; 328 } else { 329 // To avoid problems with overflow do everything the same as above but using 330 // a larger type. 331 unsigned CM = 1U << CarmichaelShift(Bitwidth); 332 unsigned Threshold = CM + Bitwidth; 333 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold && 334 "Weights not reduced!"); 335 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue(); 336 while (Total >= Threshold) 337 Total -= CM; 338 LHS = Total; 339 } 340 } 341 342 /// EvaluateRepeatedConstant - Compute C op C op ... op C where the constant C 343 /// is repeated Weight times. 344 static Constant *EvaluateRepeatedConstant(unsigned Opcode, Constant *C, 345 APInt Weight) { 346 // For addition the result can be efficiently computed as the product of the 347 // constant and the weight. 348 if (Opcode == Instruction::Add) 349 return ConstantExpr::getMul(C, ConstantInt::get(C->getContext(), Weight)); 350 351 // The weight might be huge, so compute by repeated squaring to ensure that 352 // compile time is proportional to the logarithm of the weight. 353 Constant *Result = 0; 354 Constant *Power = C; // Successively C, C op C, (C op C) op (C op C) etc. 355 // Visit the bits in Weight. 356 while (Weight != 0) { 357 // If the current bit in Weight is non-zero do Result = Result op Power. 358 if (Weight[0]) 359 Result = Result ? ConstantExpr::get(Opcode, Result, Power) : Power; 360 // Move on to the next bit if any more are non-zero. 361 Weight = Weight.lshr(1); 362 if (Weight.isMinValue()) 363 break; 364 // Square the power. 365 Power = ConstantExpr::get(Opcode, Power, Power); 366 } 367 368 assert(Result && "Only positive weights supported!"); 369 return Result; 370 } 371 372 typedef std::pair<Value*, APInt> RepeatedValue; 373 374 /// LinearizeExprTree - Given an associative binary expression, return the leaf 375 /// nodes in Ops along with their weights (how many times the leaf occurs). The 376 /// original expression is the same as 377 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times 378 /// op 379 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times 380 /// op 381 /// ... 382 /// op 383 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times 384 /// 385 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct, and 386 /// they are all non-constant except possibly for the last one, which if it is 387 /// constant will have weight one (Ops[N].second === 1). 388 /// 389 /// This routine may modify the function, in which case it returns 'true'. The 390 /// changes it makes may well be destructive, changing the value computed by 'I' 391 /// to something completely different. Thus if the routine returns 'true' then 392 /// you MUST either replace I with a new expression computed from the Ops array, 393 /// or use RewriteExprTree to put the values back in. 394 /// 395 /// A leaf node is either not a binary operation of the same kind as the root 396 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different 397 /// opcode), or is the same kind of binary operator but has a use which either 398 /// does not belong to the expression, or does belong to the expression but is 399 /// a leaf node. Every leaf node has at least one use that is a non-leaf node 400 /// of the expression, while for non-leaf nodes (except for the root 'I') every 401 /// use is a non-leaf node of the expression. 402 /// 403 /// For example: 404 /// expression graph node names 405 /// 406 /// + | I 407 /// / \ | 408 /// + + | A, B 409 /// / \ / \ | 410 /// * + * | C, D, E 411 /// / \ / \ / \ | 412 /// + * | F, G 413 /// 414 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in 415 /// that order) (C, 1), (E, 1), (F, 2), (G, 2). 416 /// 417 /// The expression is maximal: if some instruction is a binary operator of the 418 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression, 419 /// then the instruction also belongs to the expression, is not a leaf node of 420 /// it, and its operands also belong to the expression (but may be leaf nodes). 421 /// 422 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in 423 /// order to ensure that every non-root node in the expression has *exactly one* 424 /// use by a non-leaf node of the expression. This destruction means that the 425 /// caller MUST either replace 'I' with a new expression or use something like 426 /// RewriteExprTree to put the values back in if the routine indicates that it 427 /// made a change by returning 'true'. 428 /// 429 /// In the above example either the right operand of A or the left operand of B 430 /// will be replaced by undef. If it is B's operand then this gives: 431 /// 432 /// + | I 433 /// / \ | 434 /// + + | A, B - operand of B replaced with undef 435 /// / \ \ | 436 /// * + * | C, D, E 437 /// / \ / \ / \ | 438 /// + * | F, G 439 /// 440 /// Note that such undef operands can only be reached by passing through 'I'. 441 /// For example, if you visit operands recursively starting from a leaf node 442 /// then you will never see such an undef operand unless you get back to 'I', 443 /// which requires passing through a phi node. 444 /// 445 /// Note that this routine may also mutate binary operators of the wrong type 446 /// that have all uses inside the expression (i.e. only used by non-leaf nodes 447 /// of the expression) if it can turn them into binary operators of the right 448 /// type and thus make the expression bigger. 449 450 static bool LinearizeExprTree(BinaryOperator *I, 451 SmallVectorImpl<RepeatedValue> &Ops) { 452 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n'); 453 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits(); 454 unsigned Opcode = I->getOpcode(); 455 assert(Instruction::isAssociative(Opcode) && 456 Instruction::isCommutative(Opcode) && 457 "Expected an associative and commutative operation!"); 458 // If we see an absorbing element then the entire expression must be equal to 459 // it. For example, if this is a multiplication expression and zero occurs as 460 // an operand somewhere in it then the result of the expression must be zero. 461 Constant *Absorber = ConstantExpr::getBinOpAbsorber(Opcode, I->getType()); 462 463 // Visit all operands of the expression, keeping track of their weight (the 464 // number of paths from the expression root to the operand, or if you like 465 // the number of times that operand occurs in the linearized expression). 466 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1 467 // while A has weight two. 468 469 // Worklist of non-leaf nodes (their operands are in the expression too) along 470 // with their weights, representing a certain number of paths to the operator. 471 // If an operator occurs in the worklist multiple times then we found multiple 472 // ways to get to it. 473 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight) 474 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1))); 475 bool MadeChange = false; 476 477 // Leaves of the expression are values that either aren't the right kind of 478 // operation (eg: a constant, or a multiply in an add tree), or are, but have 479 // some uses that are not inside the expression. For example, in I = X + X, 480 // X = A + B, the value X has two uses (by I) that are in the expression. If 481 // X has any other uses, for example in a return instruction, then we consider 482 // X to be a leaf, and won't analyze it further. When we first visit a value, 483 // if it has more than one use then at first we conservatively consider it to 484 // be a leaf. Later, as the expression is explored, we may discover some more 485 // uses of the value from inside the expression. If all uses turn out to be 486 // from within the expression (and the value is a binary operator of the right 487 // kind) then the value is no longer considered to be a leaf, and its operands 488 // are explored. 489 490 // Leaves - Keeps track of the set of putative leaves as well as the number of 491 // paths to each leaf seen so far. 492 typedef DenseMap<Value*, APInt> LeafMap; 493 LeafMap Leaves; // Leaf -> Total weight so far. 494 SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order. 495 496 #ifndef NDEBUG 497 SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme. 498 #endif 499 while (!Worklist.empty()) { 500 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val(); 501 I = P.first; // We examine the operands of this binary operator. 502 503 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands. 504 Value *Op = I->getOperand(OpIdx); 505 APInt Weight = P.second; // Number of paths to this operand. 506 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n"); 507 assert(!Op->use_empty() && "No uses, so how did we get to it?!"); 508 509 // If the expression contains an absorbing element then there is no need 510 // to analyze it further: it must evaluate to the absorbing element. 511 if (Op == Absorber && !Weight.isMinValue()) { 512 Ops.push_back(std::make_pair(Absorber, APInt(Bitwidth, 1))); 513 return MadeChange; 514 } 515 516 // If this is a binary operation of the right kind with only one use then 517 // add its operands to the expression. 518 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 519 assert(Visited.insert(Op) && "Not first visit!"); 520 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n"); 521 Worklist.push_back(std::make_pair(BO, Weight)); 522 continue; 523 } 524 525 // Appears to be a leaf. Is the operand already in the set of leaves? 526 LeafMap::iterator It = Leaves.find(Op); 527 if (It == Leaves.end()) { 528 // Not in the leaf map. Must be the first time we saw this operand. 529 assert(Visited.insert(Op) && "Not first visit!"); 530 if (!Op->hasOneUse()) { 531 // This value has uses not accounted for by the expression, so it is 532 // not safe to modify. Mark it as being a leaf. 533 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n"); 534 LeafOrder.push_back(Op); 535 Leaves[Op] = Weight; 536 continue; 537 } 538 // No uses outside the expression, try morphing it. 539 } else if (It != Leaves.end()) { 540 // Already in the leaf map. 541 assert(Visited.count(Op) && "In leaf map but not visited!"); 542 543 // Update the number of paths to the leaf. 544 IncorporateWeight(It->second, Weight, Opcode); 545 546 // The leaf already has one use from inside the expression. As we want 547 // exactly one such use, drop this new use of the leaf. 548 assert(!Op->hasOneUse() && "Only one use, but we got here twice!"); 549 I->setOperand(OpIdx, UndefValue::get(I->getType())); 550 MadeChange = true; 551 552 // If the leaf is a binary operation of the right kind and we now see 553 // that its multiple original uses were in fact all by nodes belonging 554 // to the expression, then no longer consider it to be a leaf and add 555 // its operands to the expression. 556 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 557 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n"); 558 Worklist.push_back(std::make_pair(BO, It->second)); 559 Leaves.erase(It); 560 continue; 561 } 562 563 // If we still have uses that are not accounted for by the expression 564 // then it is not safe to modify the value. 565 if (!Op->hasOneUse()) 566 continue; 567 568 // No uses outside the expression, try morphing it. 569 Weight = It->second; 570 Leaves.erase(It); // Since the value may be morphed below. 571 } 572 573 // At this point we have a value which, first of all, is not a binary 574 // expression of the right kind, and secondly, is only used inside the 575 // expression. This means that it can safely be modified. See if we 576 // can usefully morph it into an expression of the right kind. 577 assert((!isa<Instruction>(Op) || 578 cast<Instruction>(Op)->getOpcode() != Opcode) && 579 "Should have been handled above!"); 580 assert(Op->hasOneUse() && "Has uses outside the expression tree!"); 581 582 // If this is a multiply expression, turn any internal negations into 583 // multiplies by -1 so they can be reassociated. 584 BinaryOperator *BO = dyn_cast<BinaryOperator>(Op); 585 if (Opcode == Instruction::Mul && BO && BinaryOperator::isNeg(BO)) { 586 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO "); 587 BO = LowerNegateToMultiply(BO); 588 DEBUG(dbgs() << *BO << 'n'); 589 Worklist.push_back(std::make_pair(BO, Weight)); 590 MadeChange = true; 591 continue; 592 } 593 594 // Failed to morph into an expression of the right type. This really is 595 // a leaf. 596 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n"); 597 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?"); 598 LeafOrder.push_back(Op); 599 Leaves[Op] = Weight; 600 } 601 } 602 603 // The leaves, repeated according to their weights, represent the linearized 604 // form of the expression. 605 Constant *Cst = 0; // Accumulate constants here. 606 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) { 607 Value *V = LeafOrder[i]; 608 LeafMap::iterator It = Leaves.find(V); 609 if (It == Leaves.end()) 610 // Node initially thought to be a leaf wasn't. 611 continue; 612 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!"); 613 APInt Weight = It->second; 614 if (Weight.isMinValue()) 615 // Leaf already output or weight reduction eliminated it. 616 continue; 617 // Ensure the leaf is only output once. 618 It->second = 0; 619 // Glob all constants together into Cst. 620 if (Constant *C = dyn_cast<Constant>(V)) { 621 C = EvaluateRepeatedConstant(Opcode, C, Weight); 622 Cst = Cst ? ConstantExpr::get(Opcode, Cst, C) : C; 623 continue; 624 } 625 // Add non-constant 626 Ops.push_back(std::make_pair(V, Weight)); 627 } 628 629 // Add any constants back into Ops, all globbed together and reduced to having 630 // weight 1 for the convenience of users. 631 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType()); 632 if (Cst && Cst != Identity) { 633 // If combining multiple constants resulted in the absorber then the entire 634 // expression must evaluate to the absorber. 635 if (Cst == Absorber) 636 Ops.clear(); 637 Ops.push_back(std::make_pair(Cst, APInt(Bitwidth, 1))); 638 } 639 640 // For nilpotent operations or addition there may be no operands, for example 641 // because the expression was "X xor X" or consisted of 2^Bitwidth additions: 642 // in both cases the weight reduces to 0 causing the value to be skipped. 643 if (Ops.empty()) { 644 assert(Identity && "Associative operation without identity!"); 645 Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1))); 646 } 647 648 return MadeChange; 649 } 650 651 // RewriteExprTree - Now that the operands for this expression tree are 652 // linearized and optimized, emit them in-order. 653 void Reassociate::RewriteExprTree(BinaryOperator *I, 654 SmallVectorImpl<ValueEntry> &Ops) { 655 assert(Ops.size() > 1 && "Single values should be used directly!"); 656 657 // Since our optimizations never increase the number of operations, the new 658 // expression can always be written by reusing the existing binary operators 659 // from the original expression tree, without creating any new instructions, 660 // though the rewritten expression may have a completely different topology. 661 // We take care to not change anything if the new expression will be the same 662 // as the original. If more than trivial changes (like commuting operands) 663 // were made then we are obliged to clear out any optional subclass data like 664 // nsw flags. 665 666 /// NodesToRewrite - Nodes from the original expression available for writing 667 /// the new expression into. 668 SmallVector<BinaryOperator*, 8> NodesToRewrite; 669 unsigned Opcode = I->getOpcode(); 670 BinaryOperator *Op = I; 671 672 // ExpressionChanged - Non-null if the rewritten expression differs from the 673 // original in some non-trivial way, requiring the clearing of optional flags. 674 // Flags are cleared from the operator in ExpressionChanged up to I inclusive. 675 BinaryOperator *ExpressionChanged = 0; 676 for (unsigned i = 0; ; ++i) { 677 // The last operation (which comes earliest in the IR) is special as both 678 // operands will come from Ops, rather than just one with the other being 679 // a subexpression. 680 if (i+2 == Ops.size()) { 681 Value *NewLHS = Ops[i].Op; 682 Value *NewRHS = Ops[i+1].Op; 683 Value *OldLHS = Op->getOperand(0); 684 Value *OldRHS = Op->getOperand(1); 685 686 if (NewLHS == OldLHS && NewRHS == OldRHS) 687 // Nothing changed, leave it alone. 688 break; 689 690 if (NewLHS == OldRHS && NewRHS == OldLHS) { 691 // The order of the operands was reversed. Swap them. 692 DEBUG(dbgs() << "RA: " << *Op << '\n'); 693 Op->swapOperands(); 694 DEBUG(dbgs() << "TO: " << *Op << '\n'); 695 MadeChange = true; 696 ++NumChanged; 697 break; 698 } 699 700 // The new operation differs non-trivially from the original. Overwrite 701 // the old operands with the new ones. 702 DEBUG(dbgs() << "RA: " << *Op << '\n'); 703 if (NewLHS != OldLHS) { 704 if (BinaryOperator *BO = isReassociableOp(OldLHS, Opcode)) 705 NodesToRewrite.push_back(BO); 706 Op->setOperand(0, NewLHS); 707 } 708 if (NewRHS != OldRHS) { 709 if (BinaryOperator *BO = isReassociableOp(OldRHS, Opcode)) 710 NodesToRewrite.push_back(BO); 711 Op->setOperand(1, NewRHS); 712 } 713 DEBUG(dbgs() << "TO: " << *Op << '\n'); 714 715 ExpressionChanged = Op; 716 MadeChange = true; 717 ++NumChanged; 718 719 break; 720 } 721 722 // Not the last operation. The left-hand side will be a sub-expression 723 // while the right-hand side will be the current element of Ops. 724 Value *NewRHS = Ops[i].Op; 725 if (NewRHS != Op->getOperand(1)) { 726 DEBUG(dbgs() << "RA: " << *Op << '\n'); 727 if (NewRHS == Op->getOperand(0)) { 728 // The new right-hand side was already present as the left operand. If 729 // we are lucky then swapping the operands will sort out both of them. 730 Op->swapOperands(); 731 } else { 732 // Overwrite with the new right-hand side. 733 if (BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode)) 734 NodesToRewrite.push_back(BO); 735 Op->setOperand(1, NewRHS); 736 ExpressionChanged = Op; 737 } 738 DEBUG(dbgs() << "TO: " << *Op << '\n'); 739 MadeChange = true; 740 ++NumChanged; 741 } 742 743 // Now deal with the left-hand side. If this is already an operation node 744 // from the original expression then just rewrite the rest of the expression 745 // into it. 746 if (BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode)) { 747 Op = BO; 748 continue; 749 } 750 751 // Otherwise, grab a spare node from the original expression and use that as 752 // the left-hand side. If there are no nodes left then the optimizers made 753 // an expression with more nodes than the original! This usually means that 754 // they did something stupid but it might mean that the problem was just too 755 // hard (finding the mimimal number of multiplications needed to realize a 756 // multiplication expression is NP-complete). Whatever the reason, smart or 757 // stupid, create a new node if there are none left. 758 BinaryOperator *NewOp; 759 if (NodesToRewrite.empty()) { 760 Constant *Undef = UndefValue::get(I->getType()); 761 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode), 762 Undef, Undef, "", I); 763 } else { 764 NewOp = NodesToRewrite.pop_back_val(); 765 } 766 767 DEBUG(dbgs() << "RA: " << *Op << '\n'); 768 Op->setOperand(0, NewOp); 769 DEBUG(dbgs() << "TO: " << *Op << '\n'); 770 ExpressionChanged = Op; 771 MadeChange = true; 772 ++NumChanged; 773 Op = NewOp; 774 } 775 776 // If the expression changed non-trivially then clear out all subclass data 777 // starting from the operator specified in ExpressionChanged, and compactify 778 // the operators to just before the expression root to guarantee that the 779 // expression tree is dominated by all of Ops. 780 if (ExpressionChanged) 781 do { 782 ExpressionChanged->clearSubclassOptionalData(); 783 if (ExpressionChanged == I) 784 break; 785 ExpressionChanged->moveBefore(I); 786 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->use_begin()); 787 } while (1); 788 789 // Throw away any left over nodes from the original expression. 790 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i) 791 RedoInsts.insert(NodesToRewrite[i]); 792 } 793 794 /// NegateValue - Insert instructions before the instruction pointed to by BI, 795 /// that computes the negative version of the value specified. The negative 796 /// version of the value is returned, and BI is left pointing at the instruction 797 /// that should be processed next by the reassociation pass. 798 static Value *NegateValue(Value *V, Instruction *BI) { 799 if (Constant *C = dyn_cast<Constant>(V)) 800 return ConstantExpr::getNeg(C); 801 802 // We are trying to expose opportunity for reassociation. One of the things 803 // that we want to do to achieve this is to push a negation as deep into an 804 // expression chain as possible, to expose the add instructions. In practice, 805 // this means that we turn this: 806 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D 807 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate 808 // the constants. We assume that instcombine will clean up the mess later if 809 // we introduce tons of unnecessary negation instructions. 810 // 811 if (BinaryOperator *I = isReassociableOp(V, Instruction::Add)) { 812 // Push the negates through the add. 813 I->setOperand(0, NegateValue(I->getOperand(0), BI)); 814 I->setOperand(1, NegateValue(I->getOperand(1), BI)); 815 816 // We must move the add instruction here, because the neg instructions do 817 // not dominate the old add instruction in general. By moving it, we are 818 // assured that the neg instructions we just inserted dominate the 819 // instruction we are about to insert after them. 820 // 821 I->moveBefore(BI); 822 I->setName(I->getName()+".neg"); 823 return I; 824 } 825 826 // Okay, we need to materialize a negated version of V with an instruction. 827 // Scan the use lists of V to see if we have one already. 828 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){ 829 User *U = *UI; 830 if (!BinaryOperator::isNeg(U)) continue; 831 832 // We found one! Now we have to make sure that the definition dominates 833 // this use. We do this by moving it to the entry block (if it is a 834 // non-instruction value) or right after the definition. These negates will 835 // be zapped by reassociate later, so we don't need much finesse here. 836 BinaryOperator *TheNeg = cast<BinaryOperator>(U); 837 838 // Verify that the negate is in this function, V might be a constant expr. 839 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent()) 840 continue; 841 842 BasicBlock::iterator InsertPt; 843 if (Instruction *InstInput = dyn_cast<Instruction>(V)) { 844 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) { 845 InsertPt = II->getNormalDest()->begin(); 846 } else { 847 InsertPt = InstInput; 848 ++InsertPt; 849 } 850 while (isa<PHINode>(InsertPt)) ++InsertPt; 851 } else { 852 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin(); 853 } 854 TheNeg->moveBefore(InsertPt); 855 return TheNeg; 856 } 857 858 // Insert a 'neg' instruction that subtracts the value from zero to get the 859 // negation. 860 return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI); 861 } 862 863 /// ShouldBreakUpSubtract - Return true if we should break up this subtract of 864 /// X-Y into (X + -Y). 865 static bool ShouldBreakUpSubtract(Instruction *Sub) { 866 // If this is a negation, we can't split it up! 867 if (BinaryOperator::isNeg(Sub)) 868 return false; 869 870 // Don't bother to break this up unless either the LHS is an associable add or 871 // subtract or if this is only used by one. 872 if (isReassociableOp(Sub->getOperand(0), Instruction::Add) || 873 isReassociableOp(Sub->getOperand(0), Instruction::Sub)) 874 return true; 875 if (isReassociableOp(Sub->getOperand(1), Instruction::Add) || 876 isReassociableOp(Sub->getOperand(1), Instruction::Sub)) 877 return true; 878 if (Sub->hasOneUse() && 879 (isReassociableOp(Sub->use_back(), Instruction::Add) || 880 isReassociableOp(Sub->use_back(), Instruction::Sub))) 881 return true; 882 883 return false; 884 } 885 886 /// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is 887 /// only used by an add, transform this into (X+(0-Y)) to promote better 888 /// reassociation. 889 static BinaryOperator *BreakUpSubtract(Instruction *Sub) { 890 // Convert a subtract into an add and a neg instruction. This allows sub 891 // instructions to be commuted with other add instructions. 892 // 893 // Calculate the negative value of Operand 1 of the sub instruction, 894 // and set it as the RHS of the add instruction we just made. 895 // 896 Value *NegVal = NegateValue(Sub->getOperand(1), Sub); 897 BinaryOperator *New = 898 BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub); 899 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op. 900 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op. 901 New->takeName(Sub); 902 903 // Everyone now refers to the add instruction. 904 Sub->replaceAllUsesWith(New); 905 New->setDebugLoc(Sub->getDebugLoc()); 906 907 DEBUG(dbgs() << "Negated: " << *New << '\n'); 908 return New; 909 } 910 911 /// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used 912 /// by one, change this into a multiply by a constant to assist with further 913 /// reassociation. 914 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) { 915 Constant *MulCst = ConstantInt::get(Shl->getType(), 1); 916 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1))); 917 918 BinaryOperator *Mul = 919 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl); 920 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op. 921 Mul->takeName(Shl); 922 Shl->replaceAllUsesWith(Mul); 923 Mul->setDebugLoc(Shl->getDebugLoc()); 924 return Mul; 925 } 926 927 /// FindInOperandList - Scan backwards and forwards among values with the same 928 /// rank as element i to see if X exists. If X does not exist, return i. This 929 /// is useful when scanning for 'x' when we see '-x' because they both get the 930 /// same rank. 931 static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i, 932 Value *X) { 933 unsigned XRank = Ops[i].Rank; 934 unsigned e = Ops.size(); 935 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) 936 if (Ops[j].Op == X) 937 return j; 938 // Scan backwards. 939 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) 940 if (Ops[j].Op == X) 941 return j; 942 return i; 943 } 944 945 /// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together 946 /// and returning the result. Insert the tree before I. 947 static Value *EmitAddTreeOfValues(Instruction *I, 948 SmallVectorImpl<WeakVH> &Ops){ 949 if (Ops.size() == 1) return Ops.back(); 950 951 Value *V1 = Ops.back(); 952 Ops.pop_back(); 953 Value *V2 = EmitAddTreeOfValues(I, Ops); 954 return BinaryOperator::CreateAdd(V2, V1, "tmp", I); 955 } 956 957 /// RemoveFactorFromExpression - If V is an expression tree that is a 958 /// multiplication sequence, and if this sequence contains a multiply by Factor, 959 /// remove Factor from the tree and return the new tree. 960 Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) { 961 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul); 962 if (!BO) return 0; 963 964 SmallVector<RepeatedValue, 8> Tree; 965 MadeChange |= LinearizeExprTree(BO, Tree); 966 SmallVector<ValueEntry, 8> Factors; 967 Factors.reserve(Tree.size()); 968 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 969 RepeatedValue E = Tree[i]; 970 Factors.append(E.second.getZExtValue(), 971 ValueEntry(getRank(E.first), E.first)); 972 } 973 974 bool FoundFactor = false; 975 bool NeedsNegate = false; 976 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 977 if (Factors[i].Op == Factor) { 978 FoundFactor = true; 979 Factors.erase(Factors.begin()+i); 980 break; 981 } 982 983 // If this is a negative version of this factor, remove it. 984 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) 985 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op)) 986 if (FC1->getValue() == -FC2->getValue()) { 987 FoundFactor = NeedsNegate = true; 988 Factors.erase(Factors.begin()+i); 989 break; 990 } 991 } 992 993 if (!FoundFactor) { 994 // Make sure to restore the operands to the expression tree. 995 RewriteExprTree(BO, Factors); 996 return 0; 997 } 998 999 BasicBlock::iterator InsertPt = BO; ++InsertPt; 1000 1001 // If this was just a single multiply, remove the multiply and return the only 1002 // remaining operand. 1003 if (Factors.size() == 1) { 1004 RedoInsts.insert(BO); 1005 V = Factors[0].Op; 1006 } else { 1007 RewriteExprTree(BO, Factors); 1008 V = BO; 1009 } 1010 1011 if (NeedsNegate) 1012 V = BinaryOperator::CreateNeg(V, "neg", InsertPt); 1013 1014 return V; 1015 } 1016 1017 /// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively 1018 /// add its operands as factors, otherwise add V to the list of factors. 1019 /// 1020 /// Ops is the top-level list of add operands we're trying to factor. 1021 static void FindSingleUseMultiplyFactors(Value *V, 1022 SmallVectorImpl<Value*> &Factors, 1023 const SmallVectorImpl<ValueEntry> &Ops) { 1024 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul); 1025 if (!BO) { 1026 Factors.push_back(V); 1027 return; 1028 } 1029 1030 // Otherwise, add the LHS and RHS to the list of factors. 1031 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops); 1032 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops); 1033 } 1034 1035 /// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor' 1036 /// instruction. This optimizes based on identities. If it can be reduced to 1037 /// a single Value, it is returned, otherwise the Ops list is mutated as 1038 /// necessary. 1039 static Value *OptimizeAndOrXor(unsigned Opcode, 1040 SmallVectorImpl<ValueEntry> &Ops) { 1041 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs. 1042 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1. 1043 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1044 // First, check for X and ~X in the operand list. 1045 assert(i < Ops.size()); 1046 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^. 1047 Value *X = BinaryOperator::getNotArgument(Ops[i].Op); 1048 unsigned FoundX = FindInOperandList(Ops, i, X); 1049 if (FoundX != i) { 1050 if (Opcode == Instruction::And) // ...&X&~X = 0 1051 return Constant::getNullValue(X->getType()); 1052 1053 if (Opcode == Instruction::Or) // ...|X|~X = -1 1054 return Constant::getAllOnesValue(X->getType()); 1055 } 1056 } 1057 1058 // Next, check for duplicate pairs of values, which we assume are next to 1059 // each other, due to our sorting criteria. 1060 assert(i < Ops.size()); 1061 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) { 1062 if (Opcode == Instruction::And || Opcode == Instruction::Or) { 1063 // Drop duplicate values for And and Or. 1064 Ops.erase(Ops.begin()+i); 1065 --i; --e; 1066 ++NumAnnihil; 1067 continue; 1068 } 1069 1070 // Drop pairs of values for Xor. 1071 assert(Opcode == Instruction::Xor); 1072 if (e == 2) 1073 return Constant::getNullValue(Ops[0].Op->getType()); 1074 1075 // Y ^ X^X -> Y 1076 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1077 i -= 1; e -= 2; 1078 ++NumAnnihil; 1079 } 1080 } 1081 return 0; 1082 } 1083 1084 /// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This 1085 /// optimizes based on identities. If it can be reduced to a single Value, it 1086 /// is returned, otherwise the Ops list is mutated as necessary. 1087 Value *Reassociate::OptimizeAdd(Instruction *I, 1088 SmallVectorImpl<ValueEntry> &Ops) { 1089 // Scan the operand lists looking for X and -X pairs. If we find any, we 1090 // can simplify the expression. X+-X == 0. While we're at it, scan for any 1091 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z. 1092 // 1093 // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1". 1094 // 1095 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1096 Value *TheOp = Ops[i].Op; 1097 // Check to see if we've seen this operand before. If so, we factor all 1098 // instances of the operand together. Due to our sorting criteria, we know 1099 // that these need to be next to each other in the vector. 1100 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) { 1101 // Rescan the list, remove all instances of this operand from the expr. 1102 unsigned NumFound = 0; 1103 do { 1104 Ops.erase(Ops.begin()+i); 1105 ++NumFound; 1106 } while (i != Ops.size() && Ops[i].Op == TheOp); 1107 1108 DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n'); 1109 ++NumFactor; 1110 1111 // Insert a new multiply. 1112 Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound); 1113 Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I); 1114 1115 // Now that we have inserted a multiply, optimize it. This allows us to 1116 // handle cases that require multiple factoring steps, such as this: 1117 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6 1118 RedoInsts.insert(cast<Instruction>(Mul)); 1119 1120 // If every add operand was a duplicate, return the multiply. 1121 if (Ops.empty()) 1122 return Mul; 1123 1124 // Otherwise, we had some input that didn't have the dupe, such as 1125 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of 1126 // things being added by this operation. 1127 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul)); 1128 1129 --i; 1130 e = Ops.size(); 1131 continue; 1132 } 1133 1134 // Check for X and -X in the operand list. 1135 if (!BinaryOperator::isNeg(TheOp)) 1136 continue; 1137 1138 Value *X = BinaryOperator::getNegArgument(TheOp); 1139 unsigned FoundX = FindInOperandList(Ops, i, X); 1140 if (FoundX == i) 1141 continue; 1142 1143 // Remove X and -X from the operand list. 1144 if (Ops.size() == 2) 1145 return Constant::getNullValue(X->getType()); 1146 1147 Ops.erase(Ops.begin()+i); 1148 if (i < FoundX) 1149 --FoundX; 1150 else 1151 --i; // Need to back up an extra one. 1152 Ops.erase(Ops.begin()+FoundX); 1153 ++NumAnnihil; 1154 --i; // Revisit element. 1155 e -= 2; // Removed two elements. 1156 } 1157 1158 // Scan the operand list, checking to see if there are any common factors 1159 // between operands. Consider something like A*A+A*B*C+D. We would like to 1160 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies. 1161 // To efficiently find this, we count the number of times a factor occurs 1162 // for any ADD operands that are MULs. 1163 DenseMap<Value*, unsigned> FactorOccurrences; 1164 1165 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4) 1166 // where they are actually the same multiply. 1167 unsigned MaxOcc = 0; 1168 Value *MaxOccVal = 0; 1169 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1170 BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul); 1171 if (!BOp) 1172 continue; 1173 1174 // Compute all of the factors of this added value. 1175 SmallVector<Value*, 8> Factors; 1176 FindSingleUseMultiplyFactors(BOp, Factors, Ops); 1177 assert(Factors.size() > 1 && "Bad linearize!"); 1178 1179 // Add one to FactorOccurrences for each unique factor in this op. 1180 SmallPtrSet<Value*, 8> Duplicates; 1181 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1182 Value *Factor = Factors[i]; 1183 if (!Duplicates.insert(Factor)) continue; 1184 1185 unsigned Occ = ++FactorOccurrences[Factor]; 1186 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; } 1187 1188 // If Factor is a negative constant, add the negated value as a factor 1189 // because we can percolate the negate out. Watch for minint, which 1190 // cannot be positivified. 1191 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) 1192 if (CI->isNegative() && !CI->isMinValue(true)) { 1193 Factor = ConstantInt::get(CI->getContext(), -CI->getValue()); 1194 assert(!Duplicates.count(Factor) && 1195 "Shouldn't have two constant factors, missed a canonicalize"); 1196 1197 unsigned Occ = ++FactorOccurrences[Factor]; 1198 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; } 1199 } 1200 } 1201 } 1202 1203 // If any factor occurred more than one time, we can pull it out. 1204 if (MaxOcc > 1) { 1205 DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n'); 1206 ++NumFactor; 1207 1208 // Create a new instruction that uses the MaxOccVal twice. If we don't do 1209 // this, we could otherwise run into situations where removing a factor 1210 // from an expression will drop a use of maxocc, and this can cause 1211 // RemoveFactorFromExpression on successive values to behave differently. 1212 Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal); 1213 SmallVector<WeakVH, 4> NewMulOps; 1214 for (unsigned i = 0; i != Ops.size(); ++i) { 1215 // Only try to remove factors from expressions we're allowed to. 1216 BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul); 1217 if (!BOp) 1218 continue; 1219 1220 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) { 1221 // The factorized operand may occur several times. Convert them all in 1222 // one fell swoop. 1223 for (unsigned j = Ops.size(); j != i;) { 1224 --j; 1225 if (Ops[j].Op == Ops[i].Op) { 1226 NewMulOps.push_back(V); 1227 Ops.erase(Ops.begin()+j); 1228 } 1229 } 1230 --i; 1231 } 1232 } 1233 1234 // No need for extra uses anymore. 1235 delete DummyInst; 1236 1237 unsigned NumAddedValues = NewMulOps.size(); 1238 Value *V = EmitAddTreeOfValues(I, NewMulOps); 1239 1240 // Now that we have inserted the add tree, optimize it. This allows us to 1241 // handle cases that require multiple factoring steps, such as this: 1242 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C)) 1243 assert(NumAddedValues > 1 && "Each occurrence should contribute a value"); 1244 (void)NumAddedValues; 1245 if (Instruction *VI = dyn_cast<Instruction>(V)) 1246 RedoInsts.insert(VI); 1247 1248 // Create the multiply. 1249 Instruction *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I); 1250 1251 // Rerun associate on the multiply in case the inner expression turned into 1252 // a multiply. We want to make sure that we keep things in canonical form. 1253 RedoInsts.insert(V2); 1254 1255 // If every add operand included the factor (e.g. "A*B + A*C"), then the 1256 // entire result expression is just the multiply "A*(B+C)". 1257 if (Ops.empty()) 1258 return V2; 1259 1260 // Otherwise, we had some input that didn't have the factor, such as 1261 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of 1262 // things being added by this operation. 1263 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2)); 1264 } 1265 1266 return 0; 1267 } 1268 1269 namespace { 1270 /// \brief Predicate tests whether a ValueEntry's op is in a map. 1271 struct IsValueInMap { 1272 const DenseMap<Value *, unsigned> ⤅ 1273 1274 IsValueInMap(const DenseMap<Value *, unsigned> &Map) : Map(Map) {} 1275 1276 bool operator()(const ValueEntry &Entry) { 1277 return Map.find(Entry.Op) != Map.end(); 1278 } 1279 }; 1280 } 1281 1282 /// \brief Build up a vector of value/power pairs factoring a product. 1283 /// 1284 /// Given a series of multiplication operands, build a vector of factors and 1285 /// the powers each is raised to when forming the final product. Sort them in 1286 /// the order of descending power. 1287 /// 1288 /// (x*x) -> [(x, 2)] 1289 /// ((x*x)*x) -> [(x, 3)] 1290 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)] 1291 /// 1292 /// \returns Whether any factors have a power greater than one. 1293 bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, 1294 SmallVectorImpl<Factor> &Factors) { 1295 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this. 1296 // Compute the sum of powers of simplifiable factors. 1297 unsigned FactorPowerSum = 0; 1298 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) { 1299 Value *Op = Ops[Idx-1].Op; 1300 1301 // Count the number of occurrences of this value. 1302 unsigned Count = 1; 1303 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx) 1304 ++Count; 1305 // Track for simplification all factors which occur 2 or more times. 1306 if (Count > 1) 1307 FactorPowerSum += Count; 1308 } 1309 1310 // We can only simplify factors if the sum of the powers of our simplifiable 1311 // factors is 4 or higher. When that is the case, we will *always* have 1312 // a simplification. This is an important invariant to prevent cyclicly 1313 // trying to simplify already minimal formations. 1314 if (FactorPowerSum < 4) 1315 return false; 1316 1317 // Now gather the simplifiable factors, removing them from Ops. 1318 FactorPowerSum = 0; 1319 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) { 1320 Value *Op = Ops[Idx-1].Op; 1321 1322 // Count the number of occurrences of this value. 1323 unsigned Count = 1; 1324 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx) 1325 ++Count; 1326 if (Count == 1) 1327 continue; 1328 // Move an even number of occurrences to Factors. 1329 Count &= ~1U; 1330 Idx -= Count; 1331 FactorPowerSum += Count; 1332 Factors.push_back(Factor(Op, Count)); 1333 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count); 1334 } 1335 1336 // None of the adjustments above should have reduced the sum of factor powers 1337 // below our mininum of '4'. 1338 assert(FactorPowerSum >= 4); 1339 1340 std::sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter()); 1341 return true; 1342 } 1343 1344 /// \brief Build a tree of multiplies, computing the product of Ops. 1345 static Value *buildMultiplyTree(IRBuilder<> &Builder, 1346 SmallVectorImpl<Value*> &Ops) { 1347 if (Ops.size() == 1) 1348 return Ops.back(); 1349 1350 Value *LHS = Ops.pop_back_val(); 1351 do { 1352 LHS = Builder.CreateMul(LHS, Ops.pop_back_val()); 1353 } while (!Ops.empty()); 1354 1355 return LHS; 1356 } 1357 1358 /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*... 1359 /// 1360 /// Given a vector of values raised to various powers, where no two values are 1361 /// equal and the powers are sorted in decreasing order, compute the minimal 1362 /// DAG of multiplies to compute the final product, and return that product 1363 /// value. 1364 Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder, 1365 SmallVectorImpl<Factor> &Factors) { 1366 assert(Factors[0].Power); 1367 SmallVector<Value *, 4> OuterProduct; 1368 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size(); 1369 Idx < Size && Factors[Idx].Power > 0; ++Idx) { 1370 if (Factors[Idx].Power != Factors[LastIdx].Power) { 1371 LastIdx = Idx; 1372 continue; 1373 } 1374 1375 // We want to multiply across all the factors with the same power so that 1376 // we can raise them to that power as a single entity. Build a mini tree 1377 // for that. 1378 SmallVector<Value *, 4> InnerProduct; 1379 InnerProduct.push_back(Factors[LastIdx].Base); 1380 do { 1381 InnerProduct.push_back(Factors[Idx].Base); 1382 ++Idx; 1383 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power); 1384 1385 // Reset the base value of the first factor to the new expression tree. 1386 // We'll remove all the factors with the same power in a second pass. 1387 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct); 1388 if (Instruction *MI = dyn_cast<Instruction>(M)) 1389 RedoInsts.insert(MI); 1390 1391 LastIdx = Idx; 1392 } 1393 // Unique factors with equal powers -- we've folded them into the first one's 1394 // base. 1395 Factors.erase(std::unique(Factors.begin(), Factors.end(), 1396 Factor::PowerEqual()), 1397 Factors.end()); 1398 1399 // Iteratively collect the base of each factor with an add power into the 1400 // outer product, and halve each power in preparation for squaring the 1401 // expression. 1402 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) { 1403 if (Factors[Idx].Power & 1) 1404 OuterProduct.push_back(Factors[Idx].Base); 1405 Factors[Idx].Power >>= 1; 1406 } 1407 if (Factors[0].Power) { 1408 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors); 1409 OuterProduct.push_back(SquareRoot); 1410 OuterProduct.push_back(SquareRoot); 1411 } 1412 if (OuterProduct.size() == 1) 1413 return OuterProduct.front(); 1414 1415 Value *V = buildMultiplyTree(Builder, OuterProduct); 1416 return V; 1417 } 1418 1419 Value *Reassociate::OptimizeMul(BinaryOperator *I, 1420 SmallVectorImpl<ValueEntry> &Ops) { 1421 // We can only optimize the multiplies when there is a chain of more than 1422 // three, such that a balanced tree might require fewer total multiplies. 1423 if (Ops.size() < 4) 1424 return 0; 1425 1426 // Try to turn linear trees of multiplies without other uses of the 1427 // intermediate stages into minimal multiply DAGs with perfect sub-expression 1428 // re-use. 1429 SmallVector<Factor, 4> Factors; 1430 if (!collectMultiplyFactors(Ops, Factors)) 1431 return 0; // All distinct factors, so nothing left for us to do. 1432 1433 IRBuilder<> Builder(I); 1434 Value *V = buildMinimalMultiplyDAG(Builder, Factors); 1435 if (Ops.empty()) 1436 return V; 1437 1438 ValueEntry NewEntry = ValueEntry(getRank(V), V); 1439 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry); 1440 return 0; 1441 } 1442 1443 Value *Reassociate::OptimizeExpression(BinaryOperator *I, 1444 SmallVectorImpl<ValueEntry> &Ops) { 1445 // Now that we have the linearized expression tree, try to optimize it. 1446 // Start by folding any constants that we found. 1447 if (Ops.size() == 1) return Ops[0].Op; 1448 1449 unsigned Opcode = I->getOpcode(); 1450 1451 // Handle destructive annihilation due to identities between elements in the 1452 // argument list here. 1453 unsigned NumOps = Ops.size(); 1454 switch (Opcode) { 1455 default: break; 1456 case Instruction::And: 1457 case Instruction::Or: 1458 case Instruction::Xor: 1459 if (Value *Result = OptimizeAndOrXor(Opcode, Ops)) 1460 return Result; 1461 break; 1462 1463 case Instruction::Add: 1464 if (Value *Result = OptimizeAdd(I, Ops)) 1465 return Result; 1466 break; 1467 1468 case Instruction::Mul: 1469 if (Value *Result = OptimizeMul(I, Ops)) 1470 return Result; 1471 break; 1472 } 1473 1474 if (Ops.size() != NumOps) 1475 return OptimizeExpression(I, Ops); 1476 return 0; 1477 } 1478 1479 /// EraseInst - Zap the given instruction, adding interesting operands to the 1480 /// work list. 1481 void Reassociate::EraseInst(Instruction *I) { 1482 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1483 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 1484 // Erase the dead instruction. 1485 ValueRankMap.erase(I); 1486 RedoInsts.remove(I); 1487 I->eraseFromParent(); 1488 // Optimize its operands. 1489 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes. 1490 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1491 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) { 1492 // If this is a node in an expression tree, climb to the expression root 1493 // and add that since that's where optimization actually happens. 1494 unsigned Opcode = Op->getOpcode(); 1495 while (Op->hasOneUse() && Op->use_back()->getOpcode() == Opcode && 1496 Visited.insert(Op)) 1497 Op = Op->use_back(); 1498 RedoInsts.insert(Op); 1499 } 1500 } 1501 1502 /// OptimizeInst - Inspect and optimize the given instruction. Note that erasing 1503 /// instructions is not allowed. 1504 void Reassociate::OptimizeInst(Instruction *I) { 1505 // Only consider operations that we understand. 1506 if (!isa<BinaryOperator>(I)) 1507 return; 1508 1509 if (I->getOpcode() == Instruction::Shl && 1510 isa<ConstantInt>(I->getOperand(1))) 1511 // If an operand of this shift is a reassociable multiply, or if the shift 1512 // is used by a reassociable multiply or add, turn into a multiply. 1513 if (isReassociableOp(I->getOperand(0), Instruction::Mul) || 1514 (I->hasOneUse() && 1515 (isReassociableOp(I->use_back(), Instruction::Mul) || 1516 isReassociableOp(I->use_back(), Instruction::Add)))) { 1517 Instruction *NI = ConvertShiftToMul(I); 1518 RedoInsts.insert(I); 1519 MadeChange = true; 1520 I = NI; 1521 } 1522 1523 // Floating point binary operators are not associative, but we can still 1524 // commute (some) of them, to canonicalize the order of their operands. 1525 // This can potentially expose more CSE opportunities, and makes writing 1526 // other transformations simpler. 1527 if ((I->getType()->isFloatingPointTy() || I->getType()->isVectorTy())) { 1528 // FAdd and FMul can be commuted. 1529 if (I->getOpcode() != Instruction::FMul && 1530 I->getOpcode() != Instruction::FAdd) 1531 return; 1532 1533 Value *LHS = I->getOperand(0); 1534 Value *RHS = I->getOperand(1); 1535 unsigned LHSRank = getRank(LHS); 1536 unsigned RHSRank = getRank(RHS); 1537 1538 // Sort the operands by rank. 1539 if (RHSRank < LHSRank) { 1540 I->setOperand(0, RHS); 1541 I->setOperand(1, LHS); 1542 } 1543 1544 return; 1545 } 1546 1547 // Do not reassociate boolean (i1) expressions. We want to preserve the 1548 // original order of evaluation for short-circuited comparisons that 1549 // SimplifyCFG has folded to AND/OR expressions. If the expression 1550 // is not further optimized, it is likely to be transformed back to a 1551 // short-circuited form for code gen, and the source order may have been 1552 // optimized for the most likely conditions. 1553 if (I->getType()->isIntegerTy(1)) 1554 return; 1555 1556 // If this is a subtract instruction which is not already in negate form, 1557 // see if we can convert it to X+-Y. 1558 if (I->getOpcode() == Instruction::Sub) { 1559 if (ShouldBreakUpSubtract(I)) { 1560 Instruction *NI = BreakUpSubtract(I); 1561 RedoInsts.insert(I); 1562 MadeChange = true; 1563 I = NI; 1564 } else if (BinaryOperator::isNeg(I)) { 1565 // Otherwise, this is a negation. See if the operand is a multiply tree 1566 // and if this is not an inner node of a multiply tree. 1567 if (isReassociableOp(I->getOperand(1), Instruction::Mul) && 1568 (!I->hasOneUse() || 1569 !isReassociableOp(I->use_back(), Instruction::Mul))) { 1570 Instruction *NI = LowerNegateToMultiply(I); 1571 RedoInsts.insert(I); 1572 MadeChange = true; 1573 I = NI; 1574 } 1575 } 1576 } 1577 1578 // If this instruction is an associative binary operator, process it. 1579 if (!I->isAssociative()) return; 1580 BinaryOperator *BO = cast<BinaryOperator>(I); 1581 1582 // If this is an interior node of a reassociable tree, ignore it until we 1583 // get to the root of the tree, to avoid N^2 analysis. 1584 if (BO->hasOneUse() && BO->use_back()->getOpcode() == BO->getOpcode()) 1585 return; 1586 1587 // If this is an add tree that is used by a sub instruction, ignore it 1588 // until we process the subtract. 1589 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add && 1590 cast<Instruction>(BO->use_back())->getOpcode() == Instruction::Sub) 1591 return; 1592 1593 ReassociateExpression(BO); 1594 } 1595 1596 void Reassociate::ReassociateExpression(BinaryOperator *I) { 1597 1598 // First, walk the expression tree, linearizing the tree, collecting the 1599 // operand information. 1600 SmallVector<RepeatedValue, 8> Tree; 1601 MadeChange |= LinearizeExprTree(I, Tree); 1602 SmallVector<ValueEntry, 8> Ops; 1603 Ops.reserve(Tree.size()); 1604 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 1605 RepeatedValue E = Tree[i]; 1606 Ops.append(E.second.getZExtValue(), 1607 ValueEntry(getRank(E.first), E.first)); 1608 } 1609 1610 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n'); 1611 1612 // Now that we have linearized the tree to a list and have gathered all of 1613 // the operands and their ranks, sort the operands by their rank. Use a 1614 // stable_sort so that values with equal ranks will have their relative 1615 // positions maintained (and so the compiler is deterministic). Note that 1616 // this sorts so that the highest ranking values end up at the beginning of 1617 // the vector. 1618 std::stable_sort(Ops.begin(), Ops.end()); 1619 1620 // OptimizeExpression - Now that we have the expression tree in a convenient 1621 // sorted form, optimize it globally if possible. 1622 if (Value *V = OptimizeExpression(I, Ops)) { 1623 if (V == I) 1624 // Self-referential expression in unreachable code. 1625 return; 1626 // This expression tree simplified to something that isn't a tree, 1627 // eliminate it. 1628 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n'); 1629 I->replaceAllUsesWith(V); 1630 if (Instruction *VI = dyn_cast<Instruction>(V)) 1631 VI->setDebugLoc(I->getDebugLoc()); 1632 RedoInsts.insert(I); 1633 ++NumAnnihil; 1634 return; 1635 } 1636 1637 // We want to sink immediates as deeply as possible except in the case where 1638 // this is a multiply tree used only by an add, and the immediate is a -1. 1639 // In this case we reassociate to put the negation on the outside so that we 1640 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y 1641 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() && 1642 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add && 1643 isa<ConstantInt>(Ops.back().Op) && 1644 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) { 1645 ValueEntry Tmp = Ops.pop_back_val(); 1646 Ops.insert(Ops.begin(), Tmp); 1647 } 1648 1649 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n'); 1650 1651 if (Ops.size() == 1) { 1652 if (Ops[0].Op == I) 1653 // Self-referential expression in unreachable code. 1654 return; 1655 1656 // This expression tree simplified to something that isn't a tree, 1657 // eliminate it. 1658 I->replaceAllUsesWith(Ops[0].Op); 1659 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op)) 1660 OI->setDebugLoc(I->getDebugLoc()); 1661 RedoInsts.insert(I); 1662 return; 1663 } 1664 1665 // Now that we ordered and optimized the expressions, splat them back into 1666 // the expression tree, removing any unneeded nodes. 1667 RewriteExprTree(I, Ops); 1668 } 1669 1670 bool Reassociate::runOnFunction(Function &F) { 1671 // Calculate the rank map for F 1672 BuildRankMap(F); 1673 1674 MadeChange = false; 1675 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) { 1676 // Optimize every instruction in the basic block. 1677 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; ) 1678 if (isInstructionTriviallyDead(II)) { 1679 EraseInst(II++); 1680 } else { 1681 OptimizeInst(II); 1682 assert(II->getParent() == BI && "Moved to a different block!"); 1683 ++II; 1684 } 1685 1686 // If this produced extra instructions to optimize, handle them now. 1687 while (!RedoInsts.empty()) { 1688 Instruction *I = RedoInsts.pop_back_val(); 1689 if (isInstructionTriviallyDead(I)) 1690 EraseInst(I); 1691 else 1692 OptimizeInst(I); 1693 } 1694 } 1695 1696 // We are done with the rank map. 1697 RankMap.clear(); 1698 ValueRankMap.clear(); 1699 1700 return MadeChange; 1701 } 1702