1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass reassociates commutative expressions in an order that is designed 11 // to promote better constant propagation, GCSE, LICM, PRE, etc. 12 // 13 // For example: 4 + (x + 5) -> x + (4 + 5) 14 // 15 // In the implementation of this algorithm, constants are assigned rank = 0, 16 // function arguments are rank = 1, and other values are assigned ranks 17 // corresponding to the reverse post order traversal of current function 18 // (starting at 2), which effectively gives values in deep loops higher rank 19 // than values not in loops. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/Transforms/Scalar/Reassociate.h" 24 #include "llvm/ADT/APFloat.h" 25 #include "llvm/ADT/APInt.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/ADT/SetVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/GlobalsModRef.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/CFG.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/IRBuilder.h" 41 #include "llvm/IR/InstrTypes.h" 42 #include "llvm/IR/Instruction.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/IR/PassManager.h" 46 #include "llvm/IR/PatternMatch.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/IR/User.h" 49 #include "llvm/IR/Value.h" 50 #include "llvm/IR/ValueHandle.h" 51 #include "llvm/Pass.h" 52 #include "llvm/Support/Casting.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Transforms/Scalar.h" 57 #include "llvm/Transforms/Utils/Local.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <utility> 61 62 using namespace llvm; 63 using namespace reassociate; 64 65 #define DEBUG_TYPE "reassociate" 66 67 STATISTIC(NumChanged, "Number of insts reassociated"); 68 STATISTIC(NumAnnihil, "Number of expr tree annihilated"); 69 STATISTIC(NumFactor , "Number of multiplies factored"); 70 71 #ifndef NDEBUG 72 /// Print out the expression identified in the Ops list. 73 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) { 74 Module *M = I->getModule(); 75 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " " 76 << *Ops[0].Op->getType() << '\t'; 77 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 78 dbgs() << "[ "; 79 Ops[i].Op->printAsOperand(dbgs(), false, M); 80 dbgs() << ", #" << Ops[i].Rank << "] "; 81 } 82 } 83 #endif 84 85 /// Utility class representing a non-constant Xor-operand. We classify 86 /// non-constant Xor-Operands into two categories: 87 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0 88 /// C2) 89 /// C2.1) The operand is in the form of "X | C", where C is a non-zero 90 /// constant. 91 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this 92 /// operand as "E | 0" 93 class llvm::reassociate::XorOpnd { 94 public: 95 XorOpnd(Value *V); 96 97 bool isInvalid() const { return SymbolicPart == nullptr; } 98 bool isOrExpr() const { return isOr; } 99 Value *getValue() const { return OrigVal; } 100 Value *getSymbolicPart() const { return SymbolicPart; } 101 unsigned getSymbolicRank() const { return SymbolicRank; } 102 const APInt &getConstPart() const { return ConstPart; } 103 104 void Invalidate() { SymbolicPart = OrigVal = nullptr; } 105 void setSymbolicRank(unsigned R) { SymbolicRank = R; } 106 107 private: 108 Value *OrigVal; 109 Value *SymbolicPart; 110 APInt ConstPart; 111 unsigned SymbolicRank; 112 bool isOr; 113 }; 114 115 XorOpnd::XorOpnd(Value *V) { 116 assert(!isa<ConstantInt>(V) && "No ConstantInt"); 117 OrigVal = V; 118 Instruction *I = dyn_cast<Instruction>(V); 119 SymbolicRank = 0; 120 121 if (I && (I->getOpcode() == Instruction::Or || 122 I->getOpcode() == Instruction::And)) { 123 Value *V0 = I->getOperand(0); 124 Value *V1 = I->getOperand(1); 125 const APInt *C; 126 if (match(V0, PatternMatch::m_APInt(C))) 127 std::swap(V0, V1); 128 129 if (match(V1, PatternMatch::m_APInt(C))) { 130 ConstPart = *C; 131 SymbolicPart = V0; 132 isOr = (I->getOpcode() == Instruction::Or); 133 return; 134 } 135 } 136 137 // view the operand as "V | 0" 138 SymbolicPart = V; 139 ConstPart = APInt::getNullValue(V->getType()->getScalarSizeInBits()); 140 isOr = true; 141 } 142 143 /// Return true if V is an instruction of the specified opcode and if it 144 /// only has one use. 145 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) { 146 if (V->hasOneUse() && isa<Instruction>(V) && 147 cast<Instruction>(V)->getOpcode() == Opcode && 148 (!isa<FPMathOperator>(V) || 149 cast<Instruction>(V)->hasUnsafeAlgebra())) 150 return cast<BinaryOperator>(V); 151 return nullptr; 152 } 153 154 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1, 155 unsigned Opcode2) { 156 if (V->hasOneUse() && isa<Instruction>(V) && 157 (cast<Instruction>(V)->getOpcode() == Opcode1 || 158 cast<Instruction>(V)->getOpcode() == Opcode2) && 159 (!isa<FPMathOperator>(V) || 160 cast<Instruction>(V)->hasUnsafeAlgebra())) 161 return cast<BinaryOperator>(V); 162 return nullptr; 163 } 164 165 void ReassociatePass::BuildRankMap(Function &F, 166 ReversePostOrderTraversal<Function*> &RPOT) { 167 unsigned Rank = 2; 168 169 // Assign distinct ranks to function arguments. 170 for (auto &Arg : F.args()) { 171 ValueRankMap[&Arg] = ++Rank; 172 DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank 173 << "\n"); 174 } 175 176 // Traverse basic blocks in ReversePostOrder 177 for (BasicBlock *BB : RPOT) { 178 unsigned BBRank = RankMap[BB] = ++Rank << 16; 179 180 // Walk the basic block, adding precomputed ranks for any instructions that 181 // we cannot move. This ensures that the ranks for these instructions are 182 // all different in the block. 183 for (Instruction &I : *BB) 184 if (mayBeMemoryDependent(I)) 185 ValueRankMap[&I] = ++BBRank; 186 } 187 } 188 189 unsigned ReassociatePass::getRank(Value *V) { 190 Instruction *I = dyn_cast<Instruction>(V); 191 if (!I) { 192 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument. 193 return 0; // Otherwise it's a global or constant, rank 0. 194 } 195 196 if (unsigned Rank = ValueRankMap[I]) 197 return Rank; // Rank already known? 198 199 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that 200 // we can reassociate expressions for code motion! Since we do not recurse 201 // for PHI nodes, we cannot have infinite recursion here, because there 202 // cannot be loops in the value graph that do not go through PHI nodes. 203 unsigned Rank = 0, MaxRank = RankMap[I->getParent()]; 204 for (unsigned i = 0, e = I->getNumOperands(); 205 i != e && Rank != MaxRank; ++i) 206 Rank = std::max(Rank, getRank(I->getOperand(i))); 207 208 // If this is a not or neg instruction, do not count it for rank. This 209 // assures us that X and ~X will have the same rank. 210 if (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) && 211 !BinaryOperator::isFNeg(I)) 212 ++Rank; 213 214 DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n"); 215 216 return ValueRankMap[I] = Rank; 217 } 218 219 // Canonicalize constants to RHS. Otherwise, sort the operands by rank. 220 void ReassociatePass::canonicalizeOperands(Instruction *I) { 221 assert(isa<BinaryOperator>(I) && "Expected binary operator."); 222 assert(I->isCommutative() && "Expected commutative operator."); 223 224 Value *LHS = I->getOperand(0); 225 Value *RHS = I->getOperand(1); 226 if (LHS == RHS || isa<Constant>(RHS)) 227 return; 228 if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS)) 229 cast<BinaryOperator>(I)->swapOperands(); 230 } 231 232 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name, 233 Instruction *InsertBefore, Value *FlagsOp) { 234 if (S1->getType()->isIntOrIntVectorTy()) 235 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore); 236 else { 237 BinaryOperator *Res = 238 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore); 239 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 240 return Res; 241 } 242 } 243 244 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name, 245 Instruction *InsertBefore, Value *FlagsOp) { 246 if (S1->getType()->isIntOrIntVectorTy()) 247 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore); 248 else { 249 BinaryOperator *Res = 250 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore); 251 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 252 return Res; 253 } 254 } 255 256 static BinaryOperator *CreateNeg(Value *S1, const Twine &Name, 257 Instruction *InsertBefore, Value *FlagsOp) { 258 if (S1->getType()->isIntOrIntVectorTy()) 259 return BinaryOperator::CreateNeg(S1, Name, InsertBefore); 260 else { 261 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore); 262 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 263 return Res; 264 } 265 } 266 267 /// Replace 0-X with X*-1. 268 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) { 269 Type *Ty = Neg->getType(); 270 Constant *NegOne = Ty->isIntOrIntVectorTy() ? 271 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0); 272 273 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg); 274 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op. 275 Res->takeName(Neg); 276 Neg->replaceAllUsesWith(Res); 277 Res->setDebugLoc(Neg->getDebugLoc()); 278 return Res; 279 } 280 281 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael 282 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for 283 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic. 284 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every 285 /// even x in Bitwidth-bit arithmetic. 286 static unsigned CarmichaelShift(unsigned Bitwidth) { 287 if (Bitwidth < 3) 288 return Bitwidth - 1; 289 return Bitwidth - 2; 290 } 291 292 /// Add the extra weight 'RHS' to the existing weight 'LHS', 293 /// reducing the combined weight using any special properties of the operation. 294 /// The existing weight LHS represents the computation X op X op ... op X where 295 /// X occurs LHS times. The combined weight represents X op X op ... op X with 296 /// X occurring LHS + RHS times. If op is "Xor" for example then the combined 297 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even; 298 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second. 299 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) { 300 // If we were working with infinite precision arithmetic then the combined 301 // weight would be LHS + RHS. But we are using finite precision arithmetic, 302 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct 303 // for nilpotent operations and addition, but not for idempotent operations 304 // and multiplication), so it is important to correctly reduce the combined 305 // weight back into range if wrapping would be wrong. 306 307 // If RHS is zero then the weight didn't change. 308 if (RHS.isMinValue()) 309 return; 310 // If LHS is zero then the combined weight is RHS. 311 if (LHS.isMinValue()) { 312 LHS = RHS; 313 return; 314 } 315 // From this point on we know that neither LHS nor RHS is zero. 316 317 if (Instruction::isIdempotent(Opcode)) { 318 // Idempotent means X op X === X, so any non-zero weight is equivalent to a 319 // weight of 1. Keeping weights at zero or one also means that wrapping is 320 // not a problem. 321 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 322 return; // Return a weight of 1. 323 } 324 if (Instruction::isNilpotent(Opcode)) { 325 // Nilpotent means X op X === 0, so reduce weights modulo 2. 326 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 327 LHS = 0; // 1 + 1 === 0 modulo 2. 328 return; 329 } 330 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) { 331 // TODO: Reduce the weight by exploiting nsw/nuw? 332 LHS += RHS; 333 return; 334 } 335 336 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) && 337 "Unknown associative operation!"); 338 unsigned Bitwidth = LHS.getBitWidth(); 339 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth 340 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth 341 // bit number x, since either x is odd in which case x^CM = 1, or x is even in 342 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples 343 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth) 344 // which by a happy accident means that they can always be represented using 345 // Bitwidth bits. 346 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than 347 // the Carmichael number). 348 if (Bitwidth > 3) { 349 /// CM - The value of Carmichael's lambda function. 350 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth)); 351 // Any weight W >= Threshold can be replaced with W - CM. 352 APInt Threshold = CM + Bitwidth; 353 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!"); 354 // For Bitwidth 4 or more the following sum does not overflow. 355 LHS += RHS; 356 while (LHS.uge(Threshold)) 357 LHS -= CM; 358 } else { 359 // To avoid problems with overflow do everything the same as above but using 360 // a larger type. 361 unsigned CM = 1U << CarmichaelShift(Bitwidth); 362 unsigned Threshold = CM + Bitwidth; 363 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold && 364 "Weights not reduced!"); 365 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue(); 366 while (Total >= Threshold) 367 Total -= CM; 368 LHS = Total; 369 } 370 } 371 372 using RepeatedValue = std::pair<Value*, APInt>; 373 374 /// Given an associative binary expression, return the leaf 375 /// nodes in Ops along with their weights (how many times the leaf occurs). The 376 /// original expression is the same as 377 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times 378 /// op 379 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times 380 /// op 381 /// ... 382 /// op 383 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times 384 /// 385 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct. 386 /// 387 /// This routine may modify the function, in which case it returns 'true'. The 388 /// changes it makes may well be destructive, changing the value computed by 'I' 389 /// to something completely different. Thus if the routine returns 'true' then 390 /// you MUST either replace I with a new expression computed from the Ops array, 391 /// or use RewriteExprTree to put the values back in. 392 /// 393 /// A leaf node is either not a binary operation of the same kind as the root 394 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different 395 /// opcode), or is the same kind of binary operator but has a use which either 396 /// does not belong to the expression, or does belong to the expression but is 397 /// a leaf node. Every leaf node has at least one use that is a non-leaf node 398 /// of the expression, while for non-leaf nodes (except for the root 'I') every 399 /// use is a non-leaf node of the expression. 400 /// 401 /// For example: 402 /// expression graph node names 403 /// 404 /// + | I 405 /// / \ | 406 /// + + | A, B 407 /// / \ / \ | 408 /// * + * | C, D, E 409 /// / \ / \ / \ | 410 /// + * | F, G 411 /// 412 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in 413 /// that order) (C, 1), (E, 1), (F, 2), (G, 2). 414 /// 415 /// The expression is maximal: if some instruction is a binary operator of the 416 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression, 417 /// then the instruction also belongs to the expression, is not a leaf node of 418 /// it, and its operands also belong to the expression (but may be leaf nodes). 419 /// 420 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in 421 /// order to ensure that every non-root node in the expression has *exactly one* 422 /// use by a non-leaf node of the expression. This destruction means that the 423 /// caller MUST either replace 'I' with a new expression or use something like 424 /// RewriteExprTree to put the values back in if the routine indicates that it 425 /// made a change by returning 'true'. 426 /// 427 /// In the above example either the right operand of A or the left operand of B 428 /// will be replaced by undef. If it is B's operand then this gives: 429 /// 430 /// + | I 431 /// / \ | 432 /// + + | A, B - operand of B replaced with undef 433 /// / \ \ | 434 /// * + * | C, D, E 435 /// / \ / \ / \ | 436 /// + * | F, G 437 /// 438 /// Note that such undef operands can only be reached by passing through 'I'. 439 /// For example, if you visit operands recursively starting from a leaf node 440 /// then you will never see such an undef operand unless you get back to 'I', 441 /// which requires passing through a phi node. 442 /// 443 /// Note that this routine may also mutate binary operators of the wrong type 444 /// that have all uses inside the expression (i.e. only used by non-leaf nodes 445 /// of the expression) if it can turn them into binary operators of the right 446 /// type and thus make the expression bigger. 447 static bool LinearizeExprTree(BinaryOperator *I, 448 SmallVectorImpl<RepeatedValue> &Ops) { 449 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n'); 450 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits(); 451 unsigned Opcode = I->getOpcode(); 452 assert(I->isAssociative() && I->isCommutative() && 453 "Expected an associative and commutative operation!"); 454 455 // Visit all operands of the expression, keeping track of their weight (the 456 // number of paths from the expression root to the operand, or if you like 457 // the number of times that operand occurs in the linearized expression). 458 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1 459 // while A has weight two. 460 461 // Worklist of non-leaf nodes (their operands are in the expression too) along 462 // with their weights, representing a certain number of paths to the operator. 463 // If an operator occurs in the worklist multiple times then we found multiple 464 // ways to get to it. 465 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight) 466 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1))); 467 bool Changed = false; 468 469 // Leaves of the expression are values that either aren't the right kind of 470 // operation (eg: a constant, or a multiply in an add tree), or are, but have 471 // some uses that are not inside the expression. For example, in I = X + X, 472 // X = A + B, the value X has two uses (by I) that are in the expression. If 473 // X has any other uses, for example in a return instruction, then we consider 474 // X to be a leaf, and won't analyze it further. When we first visit a value, 475 // if it has more than one use then at first we conservatively consider it to 476 // be a leaf. Later, as the expression is explored, we may discover some more 477 // uses of the value from inside the expression. If all uses turn out to be 478 // from within the expression (and the value is a binary operator of the right 479 // kind) then the value is no longer considered to be a leaf, and its operands 480 // are explored. 481 482 // Leaves - Keeps track of the set of putative leaves as well as the number of 483 // paths to each leaf seen so far. 484 using LeafMap = DenseMap<Value *, APInt>; 485 LeafMap Leaves; // Leaf -> Total weight so far. 486 SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order. 487 488 #ifndef NDEBUG 489 SmallPtrSet<Value *, 8> Visited; // For sanity checking the iteration scheme. 490 #endif 491 while (!Worklist.empty()) { 492 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val(); 493 I = P.first; // We examine the operands of this binary operator. 494 495 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands. 496 Value *Op = I->getOperand(OpIdx); 497 APInt Weight = P.second; // Number of paths to this operand. 498 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n"); 499 assert(!Op->use_empty() && "No uses, so how did we get to it?!"); 500 501 // If this is a binary operation of the right kind with only one use then 502 // add its operands to the expression. 503 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 504 assert(Visited.insert(Op).second && "Not first visit!"); 505 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n"); 506 Worklist.push_back(std::make_pair(BO, Weight)); 507 continue; 508 } 509 510 // Appears to be a leaf. Is the operand already in the set of leaves? 511 LeafMap::iterator It = Leaves.find(Op); 512 if (It == Leaves.end()) { 513 // Not in the leaf map. Must be the first time we saw this operand. 514 assert(Visited.insert(Op).second && "Not first visit!"); 515 if (!Op->hasOneUse()) { 516 // This value has uses not accounted for by the expression, so it is 517 // not safe to modify. Mark it as being a leaf. 518 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n"); 519 LeafOrder.push_back(Op); 520 Leaves[Op] = Weight; 521 continue; 522 } 523 // No uses outside the expression, try morphing it. 524 } else { 525 // Already in the leaf map. 526 assert(It != Leaves.end() && Visited.count(Op) && 527 "In leaf map but not visited!"); 528 529 // Update the number of paths to the leaf. 530 IncorporateWeight(It->second, Weight, Opcode); 531 532 #if 0 // TODO: Re-enable once PR13021 is fixed. 533 // The leaf already has one use from inside the expression. As we want 534 // exactly one such use, drop this new use of the leaf. 535 assert(!Op->hasOneUse() && "Only one use, but we got here twice!"); 536 I->setOperand(OpIdx, UndefValue::get(I->getType())); 537 Changed = true; 538 539 // If the leaf is a binary operation of the right kind and we now see 540 // that its multiple original uses were in fact all by nodes belonging 541 // to the expression, then no longer consider it to be a leaf and add 542 // its operands to the expression. 543 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 544 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n"); 545 Worklist.push_back(std::make_pair(BO, It->second)); 546 Leaves.erase(It); 547 continue; 548 } 549 #endif 550 551 // If we still have uses that are not accounted for by the expression 552 // then it is not safe to modify the value. 553 if (!Op->hasOneUse()) 554 continue; 555 556 // No uses outside the expression, try morphing it. 557 Weight = It->second; 558 Leaves.erase(It); // Since the value may be morphed below. 559 } 560 561 // At this point we have a value which, first of all, is not a binary 562 // expression of the right kind, and secondly, is only used inside the 563 // expression. This means that it can safely be modified. See if we 564 // can usefully morph it into an expression of the right kind. 565 assert((!isa<Instruction>(Op) || 566 cast<Instruction>(Op)->getOpcode() != Opcode 567 || (isa<FPMathOperator>(Op) && 568 !cast<Instruction>(Op)->hasUnsafeAlgebra())) && 569 "Should have been handled above!"); 570 assert(Op->hasOneUse() && "Has uses outside the expression tree!"); 571 572 // If this is a multiply expression, turn any internal negations into 573 // multiplies by -1 so they can be reassociated. 574 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) 575 if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) || 576 (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) { 577 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO "); 578 BO = LowerNegateToMultiply(BO); 579 DEBUG(dbgs() << *BO << '\n'); 580 Worklist.push_back(std::make_pair(BO, Weight)); 581 Changed = true; 582 continue; 583 } 584 585 // Failed to morph into an expression of the right type. This really is 586 // a leaf. 587 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n"); 588 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?"); 589 LeafOrder.push_back(Op); 590 Leaves[Op] = Weight; 591 } 592 } 593 594 // The leaves, repeated according to their weights, represent the linearized 595 // form of the expression. 596 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) { 597 Value *V = LeafOrder[i]; 598 LeafMap::iterator It = Leaves.find(V); 599 if (It == Leaves.end()) 600 // Node initially thought to be a leaf wasn't. 601 continue; 602 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!"); 603 APInt Weight = It->second; 604 if (Weight.isMinValue()) 605 // Leaf already output or weight reduction eliminated it. 606 continue; 607 // Ensure the leaf is only output once. 608 It->second = 0; 609 Ops.push_back(std::make_pair(V, Weight)); 610 } 611 612 // For nilpotent operations or addition there may be no operands, for example 613 // because the expression was "X xor X" or consisted of 2^Bitwidth additions: 614 // in both cases the weight reduces to 0 causing the value to be skipped. 615 if (Ops.empty()) { 616 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType()); 617 assert(Identity && "Associative operation without identity!"); 618 Ops.emplace_back(Identity, APInt(Bitwidth, 1)); 619 } 620 621 return Changed; 622 } 623 624 /// Now that the operands for this expression tree are 625 /// linearized and optimized, emit them in-order. 626 void ReassociatePass::RewriteExprTree(BinaryOperator *I, 627 SmallVectorImpl<ValueEntry> &Ops) { 628 assert(Ops.size() > 1 && "Single values should be used directly!"); 629 630 // Since our optimizations should never increase the number of operations, the 631 // new expression can usually be written reusing the existing binary operators 632 // from the original expression tree, without creating any new instructions, 633 // though the rewritten expression may have a completely different topology. 634 // We take care to not change anything if the new expression will be the same 635 // as the original. If more than trivial changes (like commuting operands) 636 // were made then we are obliged to clear out any optional subclass data like 637 // nsw flags. 638 639 /// NodesToRewrite - Nodes from the original expression available for writing 640 /// the new expression into. 641 SmallVector<BinaryOperator*, 8> NodesToRewrite; 642 unsigned Opcode = I->getOpcode(); 643 BinaryOperator *Op = I; 644 645 /// NotRewritable - The operands being written will be the leaves of the new 646 /// expression and must not be used as inner nodes (via NodesToRewrite) by 647 /// mistake. Inner nodes are always reassociable, and usually leaves are not 648 /// (if they were they would have been incorporated into the expression and so 649 /// would not be leaves), so most of the time there is no danger of this. But 650 /// in rare cases a leaf may become reassociable if an optimization kills uses 651 /// of it, or it may momentarily become reassociable during rewriting (below) 652 /// due it being removed as an operand of one of its uses. Ensure that misuse 653 /// of leaf nodes as inner nodes cannot occur by remembering all of the future 654 /// leaves and refusing to reuse any of them as inner nodes. 655 SmallPtrSet<Value*, 8> NotRewritable; 656 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 657 NotRewritable.insert(Ops[i].Op); 658 659 // ExpressionChanged - Non-null if the rewritten expression differs from the 660 // original in some non-trivial way, requiring the clearing of optional flags. 661 // Flags are cleared from the operator in ExpressionChanged up to I inclusive. 662 BinaryOperator *ExpressionChanged = nullptr; 663 for (unsigned i = 0; ; ++i) { 664 // The last operation (which comes earliest in the IR) is special as both 665 // operands will come from Ops, rather than just one with the other being 666 // a subexpression. 667 if (i+2 == Ops.size()) { 668 Value *NewLHS = Ops[i].Op; 669 Value *NewRHS = Ops[i+1].Op; 670 Value *OldLHS = Op->getOperand(0); 671 Value *OldRHS = Op->getOperand(1); 672 673 if (NewLHS == OldLHS && NewRHS == OldRHS) 674 // Nothing changed, leave it alone. 675 break; 676 677 if (NewLHS == OldRHS && NewRHS == OldLHS) { 678 // The order of the operands was reversed. Swap them. 679 DEBUG(dbgs() << "RA: " << *Op << '\n'); 680 Op->swapOperands(); 681 DEBUG(dbgs() << "TO: " << *Op << '\n'); 682 MadeChange = true; 683 ++NumChanged; 684 break; 685 } 686 687 // The new operation differs non-trivially from the original. Overwrite 688 // the old operands with the new ones. 689 DEBUG(dbgs() << "RA: " << *Op << '\n'); 690 if (NewLHS != OldLHS) { 691 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode); 692 if (BO && !NotRewritable.count(BO)) 693 NodesToRewrite.push_back(BO); 694 Op->setOperand(0, NewLHS); 695 } 696 if (NewRHS != OldRHS) { 697 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode); 698 if (BO && !NotRewritable.count(BO)) 699 NodesToRewrite.push_back(BO); 700 Op->setOperand(1, NewRHS); 701 } 702 DEBUG(dbgs() << "TO: " << *Op << '\n'); 703 704 ExpressionChanged = Op; 705 MadeChange = true; 706 ++NumChanged; 707 708 break; 709 } 710 711 // Not the last operation. The left-hand side will be a sub-expression 712 // while the right-hand side will be the current element of Ops. 713 Value *NewRHS = Ops[i].Op; 714 if (NewRHS != Op->getOperand(1)) { 715 DEBUG(dbgs() << "RA: " << *Op << '\n'); 716 if (NewRHS == Op->getOperand(0)) { 717 // The new right-hand side was already present as the left operand. If 718 // we are lucky then swapping the operands will sort out both of them. 719 Op->swapOperands(); 720 } else { 721 // Overwrite with the new right-hand side. 722 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode); 723 if (BO && !NotRewritable.count(BO)) 724 NodesToRewrite.push_back(BO); 725 Op->setOperand(1, NewRHS); 726 ExpressionChanged = Op; 727 } 728 DEBUG(dbgs() << "TO: " << *Op << '\n'); 729 MadeChange = true; 730 ++NumChanged; 731 } 732 733 // Now deal with the left-hand side. If this is already an operation node 734 // from the original expression then just rewrite the rest of the expression 735 // into it. 736 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode); 737 if (BO && !NotRewritable.count(BO)) { 738 Op = BO; 739 continue; 740 } 741 742 // Otherwise, grab a spare node from the original expression and use that as 743 // the left-hand side. If there are no nodes left then the optimizers made 744 // an expression with more nodes than the original! This usually means that 745 // they did something stupid but it might mean that the problem was just too 746 // hard (finding the mimimal number of multiplications needed to realize a 747 // multiplication expression is NP-complete). Whatever the reason, smart or 748 // stupid, create a new node if there are none left. 749 BinaryOperator *NewOp; 750 if (NodesToRewrite.empty()) { 751 Constant *Undef = UndefValue::get(I->getType()); 752 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode), 753 Undef, Undef, "", I); 754 if (NewOp->getType()->isFPOrFPVectorTy()) 755 NewOp->setFastMathFlags(I->getFastMathFlags()); 756 } else { 757 NewOp = NodesToRewrite.pop_back_val(); 758 } 759 760 DEBUG(dbgs() << "RA: " << *Op << '\n'); 761 Op->setOperand(0, NewOp); 762 DEBUG(dbgs() << "TO: " << *Op << '\n'); 763 ExpressionChanged = Op; 764 MadeChange = true; 765 ++NumChanged; 766 Op = NewOp; 767 } 768 769 // If the expression changed non-trivially then clear out all subclass data 770 // starting from the operator specified in ExpressionChanged, and compactify 771 // the operators to just before the expression root to guarantee that the 772 // expression tree is dominated by all of Ops. 773 if (ExpressionChanged) 774 do { 775 // Preserve FastMathFlags. 776 if (isa<FPMathOperator>(I)) { 777 FastMathFlags Flags = I->getFastMathFlags(); 778 ExpressionChanged->clearSubclassOptionalData(); 779 ExpressionChanged->setFastMathFlags(Flags); 780 } else 781 ExpressionChanged->clearSubclassOptionalData(); 782 783 if (ExpressionChanged == I) 784 break; 785 ExpressionChanged->moveBefore(I); 786 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin()); 787 } while (true); 788 789 // Throw away any left over nodes from the original expression. 790 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i) 791 RedoInsts.insert(NodesToRewrite[i]); 792 } 793 794 /// Insert instructions before the instruction pointed to by BI, 795 /// that computes the negative version of the value specified. The negative 796 /// version of the value is returned, and BI is left pointing at the instruction 797 /// that should be processed next by the reassociation pass. 798 /// Also add intermediate instructions to the redo list that are modified while 799 /// pushing the negates through adds. These will be revisited to see if 800 /// additional opportunities have been exposed. 801 static Value *NegateValue(Value *V, Instruction *BI, 802 SetVector<AssertingVH<Instruction>> &ToRedo) { 803 if (Constant *C = dyn_cast<Constant>(V)) { 804 if (C->getType()->isFPOrFPVectorTy()) { 805 return ConstantExpr::getFNeg(C); 806 } 807 return ConstantExpr::getNeg(C); 808 } 809 810 // We are trying to expose opportunity for reassociation. One of the things 811 // that we want to do to achieve this is to push a negation as deep into an 812 // expression chain as possible, to expose the add instructions. In practice, 813 // this means that we turn this: 814 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D 815 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate 816 // the constants. We assume that instcombine will clean up the mess later if 817 // we introduce tons of unnecessary negation instructions. 818 // 819 if (BinaryOperator *I = 820 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) { 821 // Push the negates through the add. 822 I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo)); 823 I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo)); 824 if (I->getOpcode() == Instruction::Add) { 825 I->setHasNoUnsignedWrap(false); 826 I->setHasNoSignedWrap(false); 827 } 828 829 // We must move the add instruction here, because the neg instructions do 830 // not dominate the old add instruction in general. By moving it, we are 831 // assured that the neg instructions we just inserted dominate the 832 // instruction we are about to insert after them. 833 // 834 I->moveBefore(BI); 835 I->setName(I->getName()+".neg"); 836 837 // Add the intermediate negates to the redo list as processing them later 838 // could expose more reassociating opportunities. 839 ToRedo.insert(I); 840 return I; 841 } 842 843 // Okay, we need to materialize a negated version of V with an instruction. 844 // Scan the use lists of V to see if we have one already. 845 for (User *U : V->users()) { 846 if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U)) 847 continue; 848 849 // We found one! Now we have to make sure that the definition dominates 850 // this use. We do this by moving it to the entry block (if it is a 851 // non-instruction value) or right after the definition. These negates will 852 // be zapped by reassociate later, so we don't need much finesse here. 853 BinaryOperator *TheNeg = cast<BinaryOperator>(U); 854 855 // Verify that the negate is in this function, V might be a constant expr. 856 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent()) 857 continue; 858 859 BasicBlock::iterator InsertPt; 860 if (Instruction *InstInput = dyn_cast<Instruction>(V)) { 861 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) { 862 InsertPt = II->getNormalDest()->begin(); 863 } else { 864 InsertPt = ++InstInput->getIterator(); 865 } 866 while (isa<PHINode>(InsertPt)) ++InsertPt; 867 } else { 868 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin(); 869 } 870 TheNeg->moveBefore(&*InsertPt); 871 if (TheNeg->getOpcode() == Instruction::Sub) { 872 TheNeg->setHasNoUnsignedWrap(false); 873 TheNeg->setHasNoSignedWrap(false); 874 } else { 875 TheNeg->andIRFlags(BI); 876 } 877 ToRedo.insert(TheNeg); 878 return TheNeg; 879 } 880 881 // Insert a 'neg' instruction that subtracts the value from zero to get the 882 // negation. 883 BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI); 884 ToRedo.insert(NewNeg); 885 return NewNeg; 886 } 887 888 /// Return true if we should break up this subtract of X-Y into (X + -Y). 889 static bool ShouldBreakUpSubtract(Instruction *Sub) { 890 // If this is a negation, we can't split it up! 891 if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub)) 892 return false; 893 894 // Don't breakup X - undef. 895 if (isa<UndefValue>(Sub->getOperand(1))) 896 return false; 897 898 // Don't bother to break this up unless either the LHS is an associable add or 899 // subtract or if this is only used by one. 900 Value *V0 = Sub->getOperand(0); 901 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) || 902 isReassociableOp(V0, Instruction::Sub, Instruction::FSub)) 903 return true; 904 Value *V1 = Sub->getOperand(1); 905 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) || 906 isReassociableOp(V1, Instruction::Sub, Instruction::FSub)) 907 return true; 908 Value *VB = Sub->user_back(); 909 if (Sub->hasOneUse() && 910 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) || 911 isReassociableOp(VB, Instruction::Sub, Instruction::FSub))) 912 return true; 913 914 return false; 915 } 916 917 /// If we have (X-Y), and if either X is an add, or if this is only used by an 918 /// add, transform this into (X+(0-Y)) to promote better reassociation. 919 static BinaryOperator * 920 BreakUpSubtract(Instruction *Sub, SetVector<AssertingVH<Instruction>> &ToRedo) { 921 // Convert a subtract into an add and a neg instruction. This allows sub 922 // instructions to be commuted with other add instructions. 923 // 924 // Calculate the negative value of Operand 1 of the sub instruction, 925 // and set it as the RHS of the add instruction we just made. 926 Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo); 927 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub); 928 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op. 929 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op. 930 New->takeName(Sub); 931 932 // Everyone now refers to the add instruction. 933 Sub->replaceAllUsesWith(New); 934 New->setDebugLoc(Sub->getDebugLoc()); 935 936 DEBUG(dbgs() << "Negated: " << *New << '\n'); 937 return New; 938 } 939 940 /// If this is a shift of a reassociable multiply or is used by one, change 941 /// this into a multiply by a constant to assist with further reassociation. 942 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) { 943 Constant *MulCst = ConstantInt::get(Shl->getType(), 1); 944 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1))); 945 946 BinaryOperator *Mul = 947 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl); 948 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op. 949 Mul->takeName(Shl); 950 951 // Everyone now refers to the mul instruction. 952 Shl->replaceAllUsesWith(Mul); 953 Mul->setDebugLoc(Shl->getDebugLoc()); 954 955 // We can safely preserve the nuw flag in all cases. It's also safe to turn a 956 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special 957 // handling. 958 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap(); 959 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap(); 960 if (NSW && NUW) 961 Mul->setHasNoSignedWrap(true); 962 Mul->setHasNoUnsignedWrap(NUW); 963 return Mul; 964 } 965 966 /// Scan backwards and forwards among values with the same rank as element i 967 /// to see if X exists. If X does not exist, return i. This is useful when 968 /// scanning for 'x' when we see '-x' because they both get the same rank. 969 static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops, 970 unsigned i, Value *X) { 971 unsigned XRank = Ops[i].Rank; 972 unsigned e = Ops.size(); 973 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) { 974 if (Ops[j].Op == X) 975 return j; 976 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 977 if (Instruction *I2 = dyn_cast<Instruction>(X)) 978 if (I1->isIdenticalTo(I2)) 979 return j; 980 } 981 // Scan backwards. 982 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) { 983 if (Ops[j].Op == X) 984 return j; 985 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 986 if (Instruction *I2 = dyn_cast<Instruction>(X)) 987 if (I1->isIdenticalTo(I2)) 988 return j; 989 } 990 return i; 991 } 992 993 /// Emit a tree of add instructions, summing Ops together 994 /// and returning the result. Insert the tree before I. 995 static Value *EmitAddTreeOfValues(Instruction *I, 996 SmallVectorImpl<WeakTrackingVH> &Ops) { 997 if (Ops.size() == 1) return Ops.back(); 998 999 Value *V1 = Ops.back(); 1000 Ops.pop_back(); 1001 Value *V2 = EmitAddTreeOfValues(I, Ops); 1002 return CreateAdd(V2, V1, "tmp", I, I); 1003 } 1004 1005 /// If V is an expression tree that is a multiplication sequence, 1006 /// and if this sequence contains a multiply by Factor, 1007 /// remove Factor from the tree and return the new tree. 1008 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) { 1009 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1010 if (!BO) 1011 return nullptr; 1012 1013 SmallVector<RepeatedValue, 8> Tree; 1014 MadeChange |= LinearizeExprTree(BO, Tree); 1015 SmallVector<ValueEntry, 8> Factors; 1016 Factors.reserve(Tree.size()); 1017 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 1018 RepeatedValue E = Tree[i]; 1019 Factors.append(E.second.getZExtValue(), 1020 ValueEntry(getRank(E.first), E.first)); 1021 } 1022 1023 bool FoundFactor = false; 1024 bool NeedsNegate = false; 1025 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1026 if (Factors[i].Op == Factor) { 1027 FoundFactor = true; 1028 Factors.erase(Factors.begin()+i); 1029 break; 1030 } 1031 1032 // If this is a negative version of this factor, remove it. 1033 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) { 1034 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op)) 1035 if (FC1->getValue() == -FC2->getValue()) { 1036 FoundFactor = NeedsNegate = true; 1037 Factors.erase(Factors.begin()+i); 1038 break; 1039 } 1040 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) { 1041 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) { 1042 const APFloat &F1 = FC1->getValueAPF(); 1043 APFloat F2(FC2->getValueAPF()); 1044 F2.changeSign(); 1045 if (F1.compare(F2) == APFloat::cmpEqual) { 1046 FoundFactor = NeedsNegate = true; 1047 Factors.erase(Factors.begin() + i); 1048 break; 1049 } 1050 } 1051 } 1052 } 1053 1054 if (!FoundFactor) { 1055 // Make sure to restore the operands to the expression tree. 1056 RewriteExprTree(BO, Factors); 1057 return nullptr; 1058 } 1059 1060 BasicBlock::iterator InsertPt = ++BO->getIterator(); 1061 1062 // If this was just a single multiply, remove the multiply and return the only 1063 // remaining operand. 1064 if (Factors.size() == 1) { 1065 RedoInsts.insert(BO); 1066 V = Factors[0].Op; 1067 } else { 1068 RewriteExprTree(BO, Factors); 1069 V = BO; 1070 } 1071 1072 if (NeedsNegate) 1073 V = CreateNeg(V, "neg", &*InsertPt, BO); 1074 1075 return V; 1076 } 1077 1078 /// If V is a single-use multiply, recursively add its operands as factors, 1079 /// otherwise add V to the list of factors. 1080 /// 1081 /// Ops is the top-level list of add operands we're trying to factor. 1082 static void FindSingleUseMultiplyFactors(Value *V, 1083 SmallVectorImpl<Value*> &Factors) { 1084 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1085 if (!BO) { 1086 Factors.push_back(V); 1087 return; 1088 } 1089 1090 // Otherwise, add the LHS and RHS to the list of factors. 1091 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors); 1092 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors); 1093 } 1094 1095 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction. 1096 /// This optimizes based on identities. If it can be reduced to a single Value, 1097 /// it is returned, otherwise the Ops list is mutated as necessary. 1098 static Value *OptimizeAndOrXor(unsigned Opcode, 1099 SmallVectorImpl<ValueEntry> &Ops) { 1100 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs. 1101 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1. 1102 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1103 // First, check for X and ~X in the operand list. 1104 assert(i < Ops.size()); 1105 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^. 1106 Value *X = BinaryOperator::getNotArgument(Ops[i].Op); 1107 unsigned FoundX = FindInOperandList(Ops, i, X); 1108 if (FoundX != i) { 1109 if (Opcode == Instruction::And) // ...&X&~X = 0 1110 return Constant::getNullValue(X->getType()); 1111 1112 if (Opcode == Instruction::Or) // ...|X|~X = -1 1113 return Constant::getAllOnesValue(X->getType()); 1114 } 1115 } 1116 1117 // Next, check for duplicate pairs of values, which we assume are next to 1118 // each other, due to our sorting criteria. 1119 assert(i < Ops.size()); 1120 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) { 1121 if (Opcode == Instruction::And || Opcode == Instruction::Or) { 1122 // Drop duplicate values for And and Or. 1123 Ops.erase(Ops.begin()+i); 1124 --i; --e; 1125 ++NumAnnihil; 1126 continue; 1127 } 1128 1129 // Drop pairs of values for Xor. 1130 assert(Opcode == Instruction::Xor); 1131 if (e == 2) 1132 return Constant::getNullValue(Ops[0].Op->getType()); 1133 1134 // Y ^ X^X -> Y 1135 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1136 i -= 1; e -= 2; 1137 ++NumAnnihil; 1138 } 1139 } 1140 return nullptr; 1141 } 1142 1143 /// Helper function of CombineXorOpnd(). It creates a bitwise-and 1144 /// instruction with the given two operands, and return the resulting 1145 /// instruction. There are two special cases: 1) if the constant operand is 0, 1146 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will 1147 /// be returned. 1148 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd, 1149 const APInt &ConstOpnd) { 1150 if (ConstOpnd.isNullValue()) 1151 return nullptr; 1152 1153 if (ConstOpnd.isAllOnesValue()) 1154 return Opnd; 1155 1156 Instruction *I = BinaryOperator::CreateAnd( 1157 Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra", 1158 InsertBefore); 1159 I->setDebugLoc(InsertBefore->getDebugLoc()); 1160 return I; 1161 } 1162 1163 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd" 1164 // into "R ^ C", where C would be 0, and R is a symbolic value. 1165 // 1166 // If it was successful, true is returned, and the "R" and "C" is returned 1167 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned, 1168 // and both "Res" and "ConstOpnd" remain unchanged. 1169 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1170 APInt &ConstOpnd, Value *&Res) { 1171 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2 1172 // = ((x | c1) ^ c1) ^ (c1 ^ c2) 1173 // = (x & ~c1) ^ (c1 ^ c2) 1174 // It is useful only when c1 == c2. 1175 if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isNullValue()) 1176 return false; 1177 1178 if (!Opnd1->getValue()->hasOneUse()) 1179 return false; 1180 1181 const APInt &C1 = Opnd1->getConstPart(); 1182 if (C1 != ConstOpnd) 1183 return false; 1184 1185 Value *X = Opnd1->getSymbolicPart(); 1186 Res = createAndInstr(I, X, ~C1); 1187 // ConstOpnd was C2, now C1 ^ C2. 1188 ConstOpnd ^= C1; 1189 1190 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1191 RedoInsts.insert(T); 1192 return true; 1193 } 1194 1195 // Helper function of OptimizeXor(). It tries to simplify 1196 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a 1197 // symbolic value. 1198 // 1199 // If it was successful, true is returned, and the "R" and "C" is returned 1200 // via "Res" and "ConstOpnd", respectively (If the entire expression is 1201 // evaluated to a constant, the Res is set to NULL); otherwise, false is 1202 // returned, and both "Res" and "ConstOpnd" remain unchanged. 1203 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1204 XorOpnd *Opnd2, APInt &ConstOpnd, 1205 Value *&Res) { 1206 Value *X = Opnd1->getSymbolicPart(); 1207 if (X != Opnd2->getSymbolicPart()) 1208 return false; 1209 1210 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.) 1211 int DeadInstNum = 1; 1212 if (Opnd1->getValue()->hasOneUse()) 1213 DeadInstNum++; 1214 if (Opnd2->getValue()->hasOneUse()) 1215 DeadInstNum++; 1216 1217 // Xor-Rule 2: 1218 // (x | c1) ^ (x & c2) 1219 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1 1220 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1 1221 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3 1222 // 1223 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) { 1224 if (Opnd2->isOrExpr()) 1225 std::swap(Opnd1, Opnd2); 1226 1227 const APInt &C1 = Opnd1->getConstPart(); 1228 const APInt &C2 = Opnd2->getConstPart(); 1229 APInt C3((~C1) ^ C2); 1230 1231 // Do not increase code size! 1232 if (!C3.isNullValue() && !C3.isAllOnesValue()) { 1233 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2; 1234 if (NewInstNum > DeadInstNum) 1235 return false; 1236 } 1237 1238 Res = createAndInstr(I, X, C3); 1239 ConstOpnd ^= C1; 1240 } else if (Opnd1->isOrExpr()) { 1241 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2 1242 // 1243 const APInt &C1 = Opnd1->getConstPart(); 1244 const APInt &C2 = Opnd2->getConstPart(); 1245 APInt C3 = C1 ^ C2; 1246 1247 // Do not increase code size 1248 if (!C3.isNullValue() && !C3.isAllOnesValue()) { 1249 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2; 1250 if (NewInstNum > DeadInstNum) 1251 return false; 1252 } 1253 1254 Res = createAndInstr(I, X, C3); 1255 ConstOpnd ^= C3; 1256 } else { 1257 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2)) 1258 // 1259 const APInt &C1 = Opnd1->getConstPart(); 1260 const APInt &C2 = Opnd2->getConstPart(); 1261 APInt C3 = C1 ^ C2; 1262 Res = createAndInstr(I, X, C3); 1263 } 1264 1265 // Put the original operands in the Redo list; hope they will be deleted 1266 // as dead code. 1267 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1268 RedoInsts.insert(T); 1269 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue())) 1270 RedoInsts.insert(T); 1271 1272 return true; 1273 } 1274 1275 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced 1276 /// to a single Value, it is returned, otherwise the Ops list is mutated as 1277 /// necessary. 1278 Value *ReassociatePass::OptimizeXor(Instruction *I, 1279 SmallVectorImpl<ValueEntry> &Ops) { 1280 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops)) 1281 return V; 1282 1283 if (Ops.size() == 1) 1284 return nullptr; 1285 1286 SmallVector<XorOpnd, 8> Opnds; 1287 SmallVector<XorOpnd*, 8> OpndPtrs; 1288 Type *Ty = Ops[0].Op->getType(); 1289 APInt ConstOpnd(Ty->getScalarSizeInBits(), 0); 1290 1291 // Step 1: Convert ValueEntry to XorOpnd 1292 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1293 Value *V = Ops[i].Op; 1294 const APInt *C; 1295 // TODO: Support non-splat vectors. 1296 if (match(V, PatternMatch::m_APInt(C))) { 1297 ConstOpnd ^= *C; 1298 } else { 1299 XorOpnd O(V); 1300 O.setSymbolicRank(getRank(O.getSymbolicPart())); 1301 Opnds.push_back(O); 1302 } 1303 } 1304 1305 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds". 1306 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate 1307 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop 1308 // with the previous loop --- the iterator of the "Opnds" may be invalidated 1309 // when new elements are added to the vector. 1310 for (unsigned i = 0, e = Opnds.size(); i != e; ++i) 1311 OpndPtrs.push_back(&Opnds[i]); 1312 1313 // Step 2: Sort the Xor-Operands in a way such that the operands containing 1314 // the same symbolic value cluster together. For instance, the input operand 1315 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into: 1316 // ("x | 123", "x & 789", "y & 456"). 1317 // 1318 // The purpose is twofold: 1319 // 1) Cluster together the operands sharing the same symbolic-value. 1320 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which 1321 // could potentially shorten crital path, and expose more loop-invariants. 1322 // Note that values' rank are basically defined in RPO order (FIXME). 1323 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier 1324 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2", 1325 // "z" in the order of X-Y-Z is better than any other orders. 1326 std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), 1327 [](XorOpnd *LHS, XorOpnd *RHS) { 1328 return LHS->getSymbolicRank() < RHS->getSymbolicRank(); 1329 }); 1330 1331 // Step 3: Combine adjacent operands 1332 XorOpnd *PrevOpnd = nullptr; 1333 bool Changed = false; 1334 for (unsigned i = 0, e = Opnds.size(); i < e; i++) { 1335 XorOpnd *CurrOpnd = OpndPtrs[i]; 1336 // The combined value 1337 Value *CV; 1338 1339 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd" 1340 if (!ConstOpnd.isNullValue() && 1341 CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) { 1342 Changed = true; 1343 if (CV) 1344 *CurrOpnd = XorOpnd(CV); 1345 else { 1346 CurrOpnd->Invalidate(); 1347 continue; 1348 } 1349 } 1350 1351 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) { 1352 PrevOpnd = CurrOpnd; 1353 continue; 1354 } 1355 1356 // step 3.2: When previous and current operands share the same symbolic 1357 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd" 1358 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) { 1359 // Remove previous operand 1360 PrevOpnd->Invalidate(); 1361 if (CV) { 1362 *CurrOpnd = XorOpnd(CV); 1363 PrevOpnd = CurrOpnd; 1364 } else { 1365 CurrOpnd->Invalidate(); 1366 PrevOpnd = nullptr; 1367 } 1368 Changed = true; 1369 } 1370 } 1371 1372 // Step 4: Reassemble the Ops 1373 if (Changed) { 1374 Ops.clear(); 1375 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) { 1376 XorOpnd &O = Opnds[i]; 1377 if (O.isInvalid()) 1378 continue; 1379 ValueEntry VE(getRank(O.getValue()), O.getValue()); 1380 Ops.push_back(VE); 1381 } 1382 if (!ConstOpnd.isNullValue()) { 1383 Value *C = ConstantInt::get(Ty, ConstOpnd); 1384 ValueEntry VE(getRank(C), C); 1385 Ops.push_back(VE); 1386 } 1387 unsigned Sz = Ops.size(); 1388 if (Sz == 1) 1389 return Ops.back().Op; 1390 if (Sz == 0) { 1391 assert(ConstOpnd.isNullValue()); 1392 return ConstantInt::get(Ty, ConstOpnd); 1393 } 1394 } 1395 1396 return nullptr; 1397 } 1398 1399 /// Optimize a series of operands to an 'add' instruction. This 1400 /// optimizes based on identities. If it can be reduced to a single Value, it 1401 /// is returned, otherwise the Ops list is mutated as necessary. 1402 Value *ReassociatePass::OptimizeAdd(Instruction *I, 1403 SmallVectorImpl<ValueEntry> &Ops) { 1404 // Scan the operand lists looking for X and -X pairs. If we find any, we 1405 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it, 1406 // scan for any 1407 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z. 1408 1409 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1410 Value *TheOp = Ops[i].Op; 1411 // Check to see if we've seen this operand before. If so, we factor all 1412 // instances of the operand together. Due to our sorting criteria, we know 1413 // that these need to be next to each other in the vector. 1414 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) { 1415 // Rescan the list, remove all instances of this operand from the expr. 1416 unsigned NumFound = 0; 1417 do { 1418 Ops.erase(Ops.begin()+i); 1419 ++NumFound; 1420 } while (i != Ops.size() && Ops[i].Op == TheOp); 1421 1422 DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n'); 1423 ++NumFactor; 1424 1425 // Insert a new multiply. 1426 Type *Ty = TheOp->getType(); 1427 Constant *C = Ty->isIntOrIntVectorTy() ? 1428 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound); 1429 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I); 1430 1431 // Now that we have inserted a multiply, optimize it. This allows us to 1432 // handle cases that require multiple factoring steps, such as this: 1433 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6 1434 RedoInsts.insert(Mul); 1435 1436 // If every add operand was a duplicate, return the multiply. 1437 if (Ops.empty()) 1438 return Mul; 1439 1440 // Otherwise, we had some input that didn't have the dupe, such as 1441 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of 1442 // things being added by this operation. 1443 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul)); 1444 1445 --i; 1446 e = Ops.size(); 1447 continue; 1448 } 1449 1450 // Check for X and -X or X and ~X in the operand list. 1451 if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) && 1452 !BinaryOperator::isNot(TheOp)) 1453 continue; 1454 1455 Value *X = nullptr; 1456 if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)) 1457 X = BinaryOperator::getNegArgument(TheOp); 1458 else if (BinaryOperator::isNot(TheOp)) 1459 X = BinaryOperator::getNotArgument(TheOp); 1460 1461 unsigned FoundX = FindInOperandList(Ops, i, X); 1462 if (FoundX == i) 1463 continue; 1464 1465 // Remove X and -X from the operand list. 1466 if (Ops.size() == 2 && 1467 (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))) 1468 return Constant::getNullValue(X->getType()); 1469 1470 // Remove X and ~X from the operand list. 1471 if (Ops.size() == 2 && BinaryOperator::isNot(TheOp)) 1472 return Constant::getAllOnesValue(X->getType()); 1473 1474 Ops.erase(Ops.begin()+i); 1475 if (i < FoundX) 1476 --FoundX; 1477 else 1478 --i; // Need to back up an extra one. 1479 Ops.erase(Ops.begin()+FoundX); 1480 ++NumAnnihil; 1481 --i; // Revisit element. 1482 e -= 2; // Removed two elements. 1483 1484 // if X and ~X we append -1 to the operand list. 1485 if (BinaryOperator::isNot(TheOp)) { 1486 Value *V = Constant::getAllOnesValue(X->getType()); 1487 Ops.insert(Ops.end(), ValueEntry(getRank(V), V)); 1488 e += 1; 1489 } 1490 } 1491 1492 // Scan the operand list, checking to see if there are any common factors 1493 // between operands. Consider something like A*A+A*B*C+D. We would like to 1494 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies. 1495 // To efficiently find this, we count the number of times a factor occurs 1496 // for any ADD operands that are MULs. 1497 DenseMap<Value*, unsigned> FactorOccurrences; 1498 1499 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4) 1500 // where they are actually the same multiply. 1501 unsigned MaxOcc = 0; 1502 Value *MaxOccVal = nullptr; 1503 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1504 BinaryOperator *BOp = 1505 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1506 if (!BOp) 1507 continue; 1508 1509 // Compute all of the factors of this added value. 1510 SmallVector<Value*, 8> Factors; 1511 FindSingleUseMultiplyFactors(BOp, Factors); 1512 assert(Factors.size() > 1 && "Bad linearize!"); 1513 1514 // Add one to FactorOccurrences for each unique factor in this op. 1515 SmallPtrSet<Value*, 8> Duplicates; 1516 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1517 Value *Factor = Factors[i]; 1518 if (!Duplicates.insert(Factor).second) 1519 continue; 1520 1521 unsigned Occ = ++FactorOccurrences[Factor]; 1522 if (Occ > MaxOcc) { 1523 MaxOcc = Occ; 1524 MaxOccVal = Factor; 1525 } 1526 1527 // If Factor is a negative constant, add the negated value as a factor 1528 // because we can percolate the negate out. Watch for minint, which 1529 // cannot be positivified. 1530 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) { 1531 if (CI->isNegative() && !CI->isMinValue(true)) { 1532 Factor = ConstantInt::get(CI->getContext(), -CI->getValue()); 1533 if (!Duplicates.insert(Factor).second) 1534 continue; 1535 unsigned Occ = ++FactorOccurrences[Factor]; 1536 if (Occ > MaxOcc) { 1537 MaxOcc = Occ; 1538 MaxOccVal = Factor; 1539 } 1540 } 1541 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) { 1542 if (CF->isNegative()) { 1543 APFloat F(CF->getValueAPF()); 1544 F.changeSign(); 1545 Factor = ConstantFP::get(CF->getContext(), F); 1546 if (!Duplicates.insert(Factor).second) 1547 continue; 1548 unsigned Occ = ++FactorOccurrences[Factor]; 1549 if (Occ > MaxOcc) { 1550 MaxOcc = Occ; 1551 MaxOccVal = Factor; 1552 } 1553 } 1554 } 1555 } 1556 } 1557 1558 // If any factor occurred more than one time, we can pull it out. 1559 if (MaxOcc > 1) { 1560 DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n'); 1561 ++NumFactor; 1562 1563 // Create a new instruction that uses the MaxOccVal twice. If we don't do 1564 // this, we could otherwise run into situations where removing a factor 1565 // from an expression will drop a use of maxocc, and this can cause 1566 // RemoveFactorFromExpression on successive values to behave differently. 1567 Instruction *DummyInst = 1568 I->getType()->isIntOrIntVectorTy() 1569 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal) 1570 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal); 1571 1572 SmallVector<WeakTrackingVH, 4> NewMulOps; 1573 for (unsigned i = 0; i != Ops.size(); ++i) { 1574 // Only try to remove factors from expressions we're allowed to. 1575 BinaryOperator *BOp = 1576 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1577 if (!BOp) 1578 continue; 1579 1580 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) { 1581 // The factorized operand may occur several times. Convert them all in 1582 // one fell swoop. 1583 for (unsigned j = Ops.size(); j != i;) { 1584 --j; 1585 if (Ops[j].Op == Ops[i].Op) { 1586 NewMulOps.push_back(V); 1587 Ops.erase(Ops.begin()+j); 1588 } 1589 } 1590 --i; 1591 } 1592 } 1593 1594 // No need for extra uses anymore. 1595 DummyInst->deleteValue(); 1596 1597 unsigned NumAddedValues = NewMulOps.size(); 1598 Value *V = EmitAddTreeOfValues(I, NewMulOps); 1599 1600 // Now that we have inserted the add tree, optimize it. This allows us to 1601 // handle cases that require multiple factoring steps, such as this: 1602 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C)) 1603 assert(NumAddedValues > 1 && "Each occurrence should contribute a value"); 1604 (void)NumAddedValues; 1605 if (Instruction *VI = dyn_cast<Instruction>(V)) 1606 RedoInsts.insert(VI); 1607 1608 // Create the multiply. 1609 Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I); 1610 1611 // Rerun associate on the multiply in case the inner expression turned into 1612 // a multiply. We want to make sure that we keep things in canonical form. 1613 RedoInsts.insert(V2); 1614 1615 // If every add operand included the factor (e.g. "A*B + A*C"), then the 1616 // entire result expression is just the multiply "A*(B+C)". 1617 if (Ops.empty()) 1618 return V2; 1619 1620 // Otherwise, we had some input that didn't have the factor, such as 1621 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of 1622 // things being added by this operation. 1623 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2)); 1624 } 1625 1626 return nullptr; 1627 } 1628 1629 /// \brief Build up a vector of value/power pairs factoring a product. 1630 /// 1631 /// Given a series of multiplication operands, build a vector of factors and 1632 /// the powers each is raised to when forming the final product. Sort them in 1633 /// the order of descending power. 1634 /// 1635 /// (x*x) -> [(x, 2)] 1636 /// ((x*x)*x) -> [(x, 3)] 1637 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)] 1638 /// 1639 /// \returns Whether any factors have a power greater than one. 1640 static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, 1641 SmallVectorImpl<Factor> &Factors) { 1642 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this. 1643 // Compute the sum of powers of simplifiable factors. 1644 unsigned FactorPowerSum = 0; 1645 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) { 1646 Value *Op = Ops[Idx-1].Op; 1647 1648 // Count the number of occurrences of this value. 1649 unsigned Count = 1; 1650 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx) 1651 ++Count; 1652 // Track for simplification all factors which occur 2 or more times. 1653 if (Count > 1) 1654 FactorPowerSum += Count; 1655 } 1656 1657 // We can only simplify factors if the sum of the powers of our simplifiable 1658 // factors is 4 or higher. When that is the case, we will *always* have 1659 // a simplification. This is an important invariant to prevent cyclicly 1660 // trying to simplify already minimal formations. 1661 if (FactorPowerSum < 4) 1662 return false; 1663 1664 // Now gather the simplifiable factors, removing them from Ops. 1665 FactorPowerSum = 0; 1666 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) { 1667 Value *Op = Ops[Idx-1].Op; 1668 1669 // Count the number of occurrences of this value. 1670 unsigned Count = 1; 1671 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx) 1672 ++Count; 1673 if (Count == 1) 1674 continue; 1675 // Move an even number of occurrences to Factors. 1676 Count &= ~1U; 1677 Idx -= Count; 1678 FactorPowerSum += Count; 1679 Factors.push_back(Factor(Op, Count)); 1680 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count); 1681 } 1682 1683 // None of the adjustments above should have reduced the sum of factor powers 1684 // below our mininum of '4'. 1685 assert(FactorPowerSum >= 4); 1686 1687 std::stable_sort(Factors.begin(), Factors.end(), 1688 [](const Factor &LHS, const Factor &RHS) { 1689 return LHS.Power > RHS.Power; 1690 }); 1691 return true; 1692 } 1693 1694 /// \brief Build a tree of multiplies, computing the product of Ops. 1695 static Value *buildMultiplyTree(IRBuilder<> &Builder, 1696 SmallVectorImpl<Value*> &Ops) { 1697 if (Ops.size() == 1) 1698 return Ops.back(); 1699 1700 Value *LHS = Ops.pop_back_val(); 1701 do { 1702 if (LHS->getType()->isIntOrIntVectorTy()) 1703 LHS = Builder.CreateMul(LHS, Ops.pop_back_val()); 1704 else 1705 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val()); 1706 } while (!Ops.empty()); 1707 1708 return LHS; 1709 } 1710 1711 /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*... 1712 /// 1713 /// Given a vector of values raised to various powers, where no two values are 1714 /// equal and the powers are sorted in decreasing order, compute the minimal 1715 /// DAG of multiplies to compute the final product, and return that product 1716 /// value. 1717 Value * 1718 ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder, 1719 SmallVectorImpl<Factor> &Factors) { 1720 assert(Factors[0].Power); 1721 SmallVector<Value *, 4> OuterProduct; 1722 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size(); 1723 Idx < Size && Factors[Idx].Power > 0; ++Idx) { 1724 if (Factors[Idx].Power != Factors[LastIdx].Power) { 1725 LastIdx = Idx; 1726 continue; 1727 } 1728 1729 // We want to multiply across all the factors with the same power so that 1730 // we can raise them to that power as a single entity. Build a mini tree 1731 // for that. 1732 SmallVector<Value *, 4> InnerProduct; 1733 InnerProduct.push_back(Factors[LastIdx].Base); 1734 do { 1735 InnerProduct.push_back(Factors[Idx].Base); 1736 ++Idx; 1737 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power); 1738 1739 // Reset the base value of the first factor to the new expression tree. 1740 // We'll remove all the factors with the same power in a second pass. 1741 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct); 1742 if (Instruction *MI = dyn_cast<Instruction>(M)) 1743 RedoInsts.insert(MI); 1744 1745 LastIdx = Idx; 1746 } 1747 // Unique factors with equal powers -- we've folded them into the first one's 1748 // base. 1749 Factors.erase(std::unique(Factors.begin(), Factors.end(), 1750 [](const Factor &LHS, const Factor &RHS) { 1751 return LHS.Power == RHS.Power; 1752 }), 1753 Factors.end()); 1754 1755 // Iteratively collect the base of each factor with an add power into the 1756 // outer product, and halve each power in preparation for squaring the 1757 // expression. 1758 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) { 1759 if (Factors[Idx].Power & 1) 1760 OuterProduct.push_back(Factors[Idx].Base); 1761 Factors[Idx].Power >>= 1; 1762 } 1763 if (Factors[0].Power) { 1764 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors); 1765 OuterProduct.push_back(SquareRoot); 1766 OuterProduct.push_back(SquareRoot); 1767 } 1768 if (OuterProduct.size() == 1) 1769 return OuterProduct.front(); 1770 1771 Value *V = buildMultiplyTree(Builder, OuterProduct); 1772 return V; 1773 } 1774 1775 Value *ReassociatePass::OptimizeMul(BinaryOperator *I, 1776 SmallVectorImpl<ValueEntry> &Ops) { 1777 // We can only optimize the multiplies when there is a chain of more than 1778 // three, such that a balanced tree might require fewer total multiplies. 1779 if (Ops.size() < 4) 1780 return nullptr; 1781 1782 // Try to turn linear trees of multiplies without other uses of the 1783 // intermediate stages into minimal multiply DAGs with perfect sub-expression 1784 // re-use. 1785 SmallVector<Factor, 4> Factors; 1786 if (!collectMultiplyFactors(Ops, Factors)) 1787 return nullptr; // All distinct factors, so nothing left for us to do. 1788 1789 IRBuilder<> Builder(I); 1790 // The reassociate transformation for FP operations is performed only 1791 // if unsafe algebra is permitted by FastMathFlags. Propagate those flags 1792 // to the newly generated operations. 1793 if (auto FPI = dyn_cast<FPMathOperator>(I)) 1794 Builder.setFastMathFlags(FPI->getFastMathFlags()); 1795 1796 Value *V = buildMinimalMultiplyDAG(Builder, Factors); 1797 if (Ops.empty()) 1798 return V; 1799 1800 ValueEntry NewEntry = ValueEntry(getRank(V), V); 1801 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry); 1802 return nullptr; 1803 } 1804 1805 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I, 1806 SmallVectorImpl<ValueEntry> &Ops) { 1807 // Now that we have the linearized expression tree, try to optimize it. 1808 // Start by folding any constants that we found. 1809 Constant *Cst = nullptr; 1810 unsigned Opcode = I->getOpcode(); 1811 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) { 1812 Constant *C = cast<Constant>(Ops.pop_back_val().Op); 1813 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C; 1814 } 1815 // If there was nothing but constants then we are done. 1816 if (Ops.empty()) 1817 return Cst; 1818 1819 // Put the combined constant back at the end of the operand list, except if 1820 // there is no point. For example, an add of 0 gets dropped here, while a 1821 // multiplication by zero turns the whole expression into zero. 1822 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) { 1823 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType())) 1824 return Cst; 1825 Ops.push_back(ValueEntry(0, Cst)); 1826 } 1827 1828 if (Ops.size() == 1) return Ops[0].Op; 1829 1830 // Handle destructive annihilation due to identities between elements in the 1831 // argument list here. 1832 unsigned NumOps = Ops.size(); 1833 switch (Opcode) { 1834 default: break; 1835 case Instruction::And: 1836 case Instruction::Or: 1837 if (Value *Result = OptimizeAndOrXor(Opcode, Ops)) 1838 return Result; 1839 break; 1840 1841 case Instruction::Xor: 1842 if (Value *Result = OptimizeXor(I, Ops)) 1843 return Result; 1844 break; 1845 1846 case Instruction::Add: 1847 case Instruction::FAdd: 1848 if (Value *Result = OptimizeAdd(I, Ops)) 1849 return Result; 1850 break; 1851 1852 case Instruction::Mul: 1853 case Instruction::FMul: 1854 if (Value *Result = OptimizeMul(I, Ops)) 1855 return Result; 1856 break; 1857 } 1858 1859 if (Ops.size() != NumOps) 1860 return OptimizeExpression(I, Ops); 1861 return nullptr; 1862 } 1863 1864 // Remove dead instructions and if any operands are trivially dead add them to 1865 // Insts so they will be removed as well. 1866 void ReassociatePass::RecursivelyEraseDeadInsts( 1867 Instruction *I, SetVector<AssertingVH<Instruction>> &Insts) { 1868 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1869 SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end()); 1870 ValueRankMap.erase(I); 1871 Insts.remove(I); 1872 RedoInsts.remove(I); 1873 I->eraseFromParent(); 1874 for (auto Op : Ops) 1875 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1876 if (OpInst->use_empty()) 1877 Insts.insert(OpInst); 1878 } 1879 1880 /// Zap the given instruction, adding interesting operands to the work list. 1881 void ReassociatePass::EraseInst(Instruction *I) { 1882 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1883 DEBUG(dbgs() << "Erasing dead inst: "; I->dump()); 1884 1885 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 1886 // Erase the dead instruction. 1887 ValueRankMap.erase(I); 1888 RedoInsts.remove(I); 1889 I->eraseFromParent(); 1890 // Optimize its operands. 1891 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes. 1892 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1893 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) { 1894 // If this is a node in an expression tree, climb to the expression root 1895 // and add that since that's where optimization actually happens. 1896 unsigned Opcode = Op->getOpcode(); 1897 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode && 1898 Visited.insert(Op).second) 1899 Op = Op->user_back(); 1900 RedoInsts.insert(Op); 1901 } 1902 1903 MadeChange = true; 1904 } 1905 1906 // Canonicalize expressions of the following form: 1907 // x + (-Constant * y) -> x - (Constant * y) 1908 // x - (-Constant * y) -> x + (Constant * y) 1909 Instruction *ReassociatePass::canonicalizeNegConstExpr(Instruction *I) { 1910 if (!I->hasOneUse() || I->getType()->isVectorTy()) 1911 return nullptr; 1912 1913 // Must be a fmul or fdiv instruction. 1914 unsigned Opcode = I->getOpcode(); 1915 if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv) 1916 return nullptr; 1917 1918 auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0)); 1919 auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1)); 1920 1921 // Both operands are constant, let it get constant folded away. 1922 if (C0 && C1) 1923 return nullptr; 1924 1925 ConstantFP *CF = C0 ? C0 : C1; 1926 1927 // Must have one constant operand. 1928 if (!CF) 1929 return nullptr; 1930 1931 // Must be a negative ConstantFP. 1932 if (!CF->isNegative()) 1933 return nullptr; 1934 1935 // User must be a binary operator with one or more uses. 1936 Instruction *User = I->user_back(); 1937 if (!isa<BinaryOperator>(User) || User->use_empty()) 1938 return nullptr; 1939 1940 unsigned UserOpcode = User->getOpcode(); 1941 if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub) 1942 return nullptr; 1943 1944 // Subtraction is not commutative. Explicitly, the following transform is 1945 // not valid: (-Constant * y) - x -> x + (Constant * y) 1946 if (!User->isCommutative() && User->getOperand(1) != I) 1947 return nullptr; 1948 1949 // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the 1950 // resulting subtract will be broken up later. This can get us into an 1951 // infinite loop during reassociation. 1952 if (UserOpcode == Instruction::FAdd && ShouldBreakUpSubtract(User)) 1953 return nullptr; 1954 1955 // Change the sign of the constant. 1956 APFloat Val = CF->getValueAPF(); 1957 Val.changeSign(); 1958 I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val)); 1959 1960 // Canonicalize I to RHS to simplify the next bit of logic. E.g., 1961 // ((-Const*y) + x) -> (x + (-Const*y)). 1962 if (User->getOperand(0) == I && User->isCommutative()) 1963 cast<BinaryOperator>(User)->swapOperands(); 1964 1965 Value *Op0 = User->getOperand(0); 1966 Value *Op1 = User->getOperand(1); 1967 BinaryOperator *NI; 1968 switch (UserOpcode) { 1969 default: 1970 llvm_unreachable("Unexpected Opcode!"); 1971 case Instruction::FAdd: 1972 NI = BinaryOperator::CreateFSub(Op0, Op1); 1973 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags()); 1974 break; 1975 case Instruction::FSub: 1976 NI = BinaryOperator::CreateFAdd(Op0, Op1); 1977 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags()); 1978 break; 1979 } 1980 1981 NI->insertBefore(User); 1982 NI->setName(User->getName()); 1983 User->replaceAllUsesWith(NI); 1984 NI->setDebugLoc(I->getDebugLoc()); 1985 RedoInsts.insert(I); 1986 MadeChange = true; 1987 return NI; 1988 } 1989 1990 /// Inspect and optimize the given instruction. Note that erasing 1991 /// instructions is not allowed. 1992 void ReassociatePass::OptimizeInst(Instruction *I) { 1993 // Only consider operations that we understand. 1994 if (!isa<BinaryOperator>(I)) 1995 return; 1996 1997 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1))) 1998 // If an operand of this shift is a reassociable multiply, or if the shift 1999 // is used by a reassociable multiply or add, turn into a multiply. 2000 if (isReassociableOp(I->getOperand(0), Instruction::Mul) || 2001 (I->hasOneUse() && 2002 (isReassociableOp(I->user_back(), Instruction::Mul) || 2003 isReassociableOp(I->user_back(), Instruction::Add)))) { 2004 Instruction *NI = ConvertShiftToMul(I); 2005 RedoInsts.insert(I); 2006 MadeChange = true; 2007 I = NI; 2008 } 2009 2010 // Canonicalize negative constants out of expressions. 2011 if (Instruction *Res = canonicalizeNegConstExpr(I)) 2012 I = Res; 2013 2014 // Commute binary operators, to canonicalize the order of their operands. 2015 // This can potentially expose more CSE opportunities, and makes writing other 2016 // transformations simpler. 2017 if (I->isCommutative()) 2018 canonicalizeOperands(I); 2019 2020 // Don't optimize floating point instructions that don't have unsafe algebra. 2021 if (I->getType()->isFPOrFPVectorTy() && !I->hasUnsafeAlgebra()) 2022 return; 2023 2024 // Do not reassociate boolean (i1) expressions. We want to preserve the 2025 // original order of evaluation for short-circuited comparisons that 2026 // SimplifyCFG has folded to AND/OR expressions. If the expression 2027 // is not further optimized, it is likely to be transformed back to a 2028 // short-circuited form for code gen, and the source order may have been 2029 // optimized for the most likely conditions. 2030 if (I->getType()->isIntegerTy(1)) 2031 return; 2032 2033 // If this is a subtract instruction which is not already in negate form, 2034 // see if we can convert it to X+-Y. 2035 if (I->getOpcode() == Instruction::Sub) { 2036 if (ShouldBreakUpSubtract(I)) { 2037 Instruction *NI = BreakUpSubtract(I, RedoInsts); 2038 RedoInsts.insert(I); 2039 MadeChange = true; 2040 I = NI; 2041 } else if (BinaryOperator::isNeg(I)) { 2042 // Otherwise, this is a negation. See if the operand is a multiply tree 2043 // and if this is not an inner node of a multiply tree. 2044 if (isReassociableOp(I->getOperand(1), Instruction::Mul) && 2045 (!I->hasOneUse() || 2046 !isReassociableOp(I->user_back(), Instruction::Mul))) { 2047 Instruction *NI = LowerNegateToMultiply(I); 2048 // If the negate was simplified, revisit the users to see if we can 2049 // reassociate further. 2050 for (User *U : NI->users()) { 2051 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U)) 2052 RedoInsts.insert(Tmp); 2053 } 2054 RedoInsts.insert(I); 2055 MadeChange = true; 2056 I = NI; 2057 } 2058 } 2059 } else if (I->getOpcode() == Instruction::FSub) { 2060 if (ShouldBreakUpSubtract(I)) { 2061 Instruction *NI = BreakUpSubtract(I, RedoInsts); 2062 RedoInsts.insert(I); 2063 MadeChange = true; 2064 I = NI; 2065 } else if (BinaryOperator::isFNeg(I)) { 2066 // Otherwise, this is a negation. See if the operand is a multiply tree 2067 // and if this is not an inner node of a multiply tree. 2068 if (isReassociableOp(I->getOperand(1), Instruction::FMul) && 2069 (!I->hasOneUse() || 2070 !isReassociableOp(I->user_back(), Instruction::FMul))) { 2071 // If the negate was simplified, revisit the users to see if we can 2072 // reassociate further. 2073 Instruction *NI = LowerNegateToMultiply(I); 2074 for (User *U : NI->users()) { 2075 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U)) 2076 RedoInsts.insert(Tmp); 2077 } 2078 RedoInsts.insert(I); 2079 MadeChange = true; 2080 I = NI; 2081 } 2082 } 2083 } 2084 2085 // If this instruction is an associative binary operator, process it. 2086 if (!I->isAssociative()) return; 2087 BinaryOperator *BO = cast<BinaryOperator>(I); 2088 2089 // If this is an interior node of a reassociable tree, ignore it until we 2090 // get to the root of the tree, to avoid N^2 analysis. 2091 unsigned Opcode = BO->getOpcode(); 2092 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) { 2093 // During the initial run we will get to the root of the tree. 2094 // But if we get here while we are redoing instructions, there is no 2095 // guarantee that the root will be visited. So Redo later 2096 if (BO->user_back() != BO && 2097 BO->getParent() == BO->user_back()->getParent()) 2098 RedoInsts.insert(BO->user_back()); 2099 return; 2100 } 2101 2102 // If this is an add tree that is used by a sub instruction, ignore it 2103 // until we process the subtract. 2104 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add && 2105 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub) 2106 return; 2107 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd && 2108 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub) 2109 return; 2110 2111 ReassociateExpression(BO); 2112 } 2113 2114 void ReassociatePass::ReassociateExpression(BinaryOperator *I) { 2115 // First, walk the expression tree, linearizing the tree, collecting the 2116 // operand information. 2117 SmallVector<RepeatedValue, 8> Tree; 2118 MadeChange |= LinearizeExprTree(I, Tree); 2119 SmallVector<ValueEntry, 8> Ops; 2120 Ops.reserve(Tree.size()); 2121 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 2122 RepeatedValue E = Tree[i]; 2123 Ops.append(E.second.getZExtValue(), 2124 ValueEntry(getRank(E.first), E.first)); 2125 } 2126 2127 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2128 2129 // Now that we have linearized the tree to a list and have gathered all of 2130 // the operands and their ranks, sort the operands by their rank. Use a 2131 // stable_sort so that values with equal ranks will have their relative 2132 // positions maintained (and so the compiler is deterministic). Note that 2133 // this sorts so that the highest ranking values end up at the beginning of 2134 // the vector. 2135 std::stable_sort(Ops.begin(), Ops.end()); 2136 2137 // Now that we have the expression tree in a convenient 2138 // sorted form, optimize it globally if possible. 2139 if (Value *V = OptimizeExpression(I, Ops)) { 2140 if (V == I) 2141 // Self-referential expression in unreachable code. 2142 return; 2143 // This expression tree simplified to something that isn't a tree, 2144 // eliminate it. 2145 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n'); 2146 I->replaceAllUsesWith(V); 2147 if (Instruction *VI = dyn_cast<Instruction>(V)) 2148 if (I->getDebugLoc()) 2149 VI->setDebugLoc(I->getDebugLoc()); 2150 RedoInsts.insert(I); 2151 ++NumAnnihil; 2152 return; 2153 } 2154 2155 // We want to sink immediates as deeply as possible except in the case where 2156 // this is a multiply tree used only by an add, and the immediate is a -1. 2157 // In this case we reassociate to put the negation on the outside so that we 2158 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y 2159 if (I->hasOneUse()) { 2160 if (I->getOpcode() == Instruction::Mul && 2161 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add && 2162 isa<ConstantInt>(Ops.back().Op) && 2163 cast<ConstantInt>(Ops.back().Op)->isMinusOne()) { 2164 ValueEntry Tmp = Ops.pop_back_val(); 2165 Ops.insert(Ops.begin(), Tmp); 2166 } else if (I->getOpcode() == Instruction::FMul && 2167 cast<Instruction>(I->user_back())->getOpcode() == 2168 Instruction::FAdd && 2169 isa<ConstantFP>(Ops.back().Op) && 2170 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) { 2171 ValueEntry Tmp = Ops.pop_back_val(); 2172 Ops.insert(Ops.begin(), Tmp); 2173 } 2174 } 2175 2176 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2177 2178 if (Ops.size() == 1) { 2179 if (Ops[0].Op == I) 2180 // Self-referential expression in unreachable code. 2181 return; 2182 2183 // This expression tree simplified to something that isn't a tree, 2184 // eliminate it. 2185 I->replaceAllUsesWith(Ops[0].Op); 2186 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op)) 2187 OI->setDebugLoc(I->getDebugLoc()); 2188 RedoInsts.insert(I); 2189 return; 2190 } 2191 2192 // Now that we ordered and optimized the expressions, splat them back into 2193 // the expression tree, removing any unneeded nodes. 2194 RewriteExprTree(I, Ops); 2195 } 2196 2197 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) { 2198 // Get the functions basic blocks in Reverse Post Order. This order is used by 2199 // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic 2200 // blocks (it has been seen that the analysis in this pass could hang when 2201 // analysing dead basic blocks). 2202 ReversePostOrderTraversal<Function *> RPOT(&F); 2203 2204 // Calculate the rank map for F. 2205 BuildRankMap(F, RPOT); 2206 2207 MadeChange = false; 2208 // Traverse the same blocks that was analysed by BuildRankMap. 2209 for (BasicBlock *BI : RPOT) { 2210 assert(RankMap.count(&*BI) && "BB should be ranked."); 2211 // Optimize every instruction in the basic block. 2212 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;) 2213 if (isInstructionTriviallyDead(&*II)) { 2214 EraseInst(&*II++); 2215 } else { 2216 OptimizeInst(&*II); 2217 assert(II->getParent() == &*BI && "Moved to a different block!"); 2218 ++II; 2219 } 2220 2221 // Make a copy of all the instructions to be redone so we can remove dead 2222 // instructions. 2223 SetVector<AssertingVH<Instruction>> ToRedo(RedoInsts); 2224 // Iterate over all instructions to be reevaluated and remove trivially dead 2225 // instructions. If any operand of the trivially dead instruction becomes 2226 // dead mark it for deletion as well. Continue this process until all 2227 // trivially dead instructions have been removed. 2228 while (!ToRedo.empty()) { 2229 Instruction *I = ToRedo.pop_back_val(); 2230 if (isInstructionTriviallyDead(I)) { 2231 RecursivelyEraseDeadInsts(I, ToRedo); 2232 MadeChange = true; 2233 } 2234 } 2235 2236 // Now that we have removed dead instructions, we can reoptimize the 2237 // remaining instructions. 2238 while (!RedoInsts.empty()) { 2239 Instruction *I = RedoInsts.pop_back_val(); 2240 if (isInstructionTriviallyDead(I)) 2241 EraseInst(I); 2242 else 2243 OptimizeInst(I); 2244 } 2245 } 2246 2247 // We are done with the rank map. 2248 RankMap.clear(); 2249 ValueRankMap.clear(); 2250 2251 if (MadeChange) { 2252 PreservedAnalyses PA; 2253 PA.preserveSet<CFGAnalyses>(); 2254 PA.preserve<GlobalsAA>(); 2255 return PA; 2256 } 2257 2258 return PreservedAnalyses::all(); 2259 } 2260 2261 namespace { 2262 2263 class ReassociateLegacyPass : public FunctionPass { 2264 ReassociatePass Impl; 2265 2266 public: 2267 static char ID; // Pass identification, replacement for typeid 2268 2269 ReassociateLegacyPass() : FunctionPass(ID) { 2270 initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry()); 2271 } 2272 2273 bool runOnFunction(Function &F) override { 2274 if (skipFunction(F)) 2275 return false; 2276 2277 FunctionAnalysisManager DummyFAM; 2278 auto PA = Impl.run(F, DummyFAM); 2279 return !PA.areAllPreserved(); 2280 } 2281 2282 void getAnalysisUsage(AnalysisUsage &AU) const override { 2283 AU.setPreservesCFG(); 2284 AU.addPreserved<GlobalsAAWrapperPass>(); 2285 } 2286 }; 2287 2288 } // end anonymous namespace 2289 2290 char ReassociateLegacyPass::ID = 0; 2291 2292 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate", 2293 "Reassociate expressions", false, false) 2294 2295 // Public interface to the Reassociate pass 2296 FunctionPass *llvm::createReassociatePass() { 2297 return new ReassociateLegacyPass(); 2298 } 2299