1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass reassociates commutative expressions in an order that is designed
10 // to promote better constant propagation, GCSE, LICM, PRE, etc.
11 //
12 // For example: 4 + (x + 5) -> x + (4 + 5)
13 //
14 // In the implementation of this algorithm, constants are assigned rank = 0,
15 // function arguments are rank = 1, and other values are assigned ranks
16 // corresponding to the reverse post order traversal of current function
17 // (starting at 2), which effectively gives values in deep loops higher rank
18 // than values not in loops.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "llvm/Transforms/Scalar/Reassociate.h"
23 #include "llvm/ADT/APFloat.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/PostOrderIterator.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Analysis/BasicAliasAnalysis.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/GlobalsModRef.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Operator.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/IR/PatternMatch.h"
48 #include "llvm/IR/Type.h"
49 #include "llvm/IR/User.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/IR/ValueHandle.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Transforms/Scalar.h"
58 #include "llvm/Transforms/Utils/Local.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <utility>
62 
63 using namespace llvm;
64 using namespace reassociate;
65 using namespace PatternMatch;
66 
67 #define DEBUG_TYPE "reassociate"
68 
69 STATISTIC(NumChanged, "Number of insts reassociated");
70 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
71 STATISTIC(NumFactor , "Number of multiplies factored");
72 
73 #ifndef NDEBUG
74 /// Print out the expression identified in the Ops list.
75 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
76   Module *M = I->getModule();
77   dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
78        << *Ops[0].Op->getType() << '\t';
79   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
80     dbgs() << "[ ";
81     Ops[i].Op->printAsOperand(dbgs(), false, M);
82     dbgs() << ", #" << Ops[i].Rank << "] ";
83   }
84 }
85 #endif
86 
87 /// Utility class representing a non-constant Xor-operand. We classify
88 /// non-constant Xor-Operands into two categories:
89 ///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
90 ///  C2)
91 ///    C2.1) The operand is in the form of "X | C", where C is a non-zero
92 ///          constant.
93 ///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
94 ///          operand as "E | 0"
95 class llvm::reassociate::XorOpnd {
96 public:
97   XorOpnd(Value *V);
98 
99   bool isInvalid() const { return SymbolicPart == nullptr; }
100   bool isOrExpr() const { return isOr; }
101   Value *getValue() const { return OrigVal; }
102   Value *getSymbolicPart() const { return SymbolicPart; }
103   unsigned getSymbolicRank() const { return SymbolicRank; }
104   const APInt &getConstPart() const { return ConstPart; }
105 
106   void Invalidate() { SymbolicPart = OrigVal = nullptr; }
107   void setSymbolicRank(unsigned R) { SymbolicRank = R; }
108 
109 private:
110   Value *OrigVal;
111   Value *SymbolicPart;
112   APInt ConstPart;
113   unsigned SymbolicRank;
114   bool isOr;
115 };
116 
117 XorOpnd::XorOpnd(Value *V) {
118   assert(!isa<ConstantInt>(V) && "No ConstantInt");
119   OrigVal = V;
120   Instruction *I = dyn_cast<Instruction>(V);
121   SymbolicRank = 0;
122 
123   if (I && (I->getOpcode() == Instruction::Or ||
124             I->getOpcode() == Instruction::And)) {
125     Value *V0 = I->getOperand(0);
126     Value *V1 = I->getOperand(1);
127     const APInt *C;
128     if (match(V0, m_APInt(C)))
129       std::swap(V0, V1);
130 
131     if (match(V1, m_APInt(C))) {
132       ConstPart = *C;
133       SymbolicPart = V0;
134       isOr = (I->getOpcode() == Instruction::Or);
135       return;
136     }
137   }
138 
139   // view the operand as "V | 0"
140   SymbolicPart = V;
141   ConstPart = APInt::getZero(V->getType()->getScalarSizeInBits());
142   isOr = true;
143 }
144 
145 /// Return true if V is an instruction of the specified opcode and if it
146 /// only has one use.
147 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
148   auto *I = dyn_cast<Instruction>(V);
149   if (I && I->hasOneUse() && I->getOpcode() == Opcode)
150     if (!isa<FPMathOperator>(I) || I->isFast())
151       return cast<BinaryOperator>(I);
152   return nullptr;
153 }
154 
155 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
156                                         unsigned Opcode2) {
157   auto *I = dyn_cast<Instruction>(V);
158   if (I && I->hasOneUse() &&
159       (I->getOpcode() == Opcode1 || I->getOpcode() == Opcode2))
160     if (!isa<FPMathOperator>(I) || I->isFast())
161       return cast<BinaryOperator>(I);
162   return nullptr;
163 }
164 
165 void ReassociatePass::BuildRankMap(Function &F,
166                                    ReversePostOrderTraversal<Function*> &RPOT) {
167   unsigned Rank = 2;
168 
169   // Assign distinct ranks to function arguments.
170   for (auto &Arg : F.args()) {
171     ValueRankMap[&Arg] = ++Rank;
172     LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank
173                       << "\n");
174   }
175 
176   // Traverse basic blocks in ReversePostOrder.
177   for (BasicBlock *BB : RPOT) {
178     unsigned BBRank = RankMap[BB] = ++Rank << 16;
179 
180     // Walk the basic block, adding precomputed ranks for any instructions that
181     // we cannot move.  This ensures that the ranks for these instructions are
182     // all different in the block.
183     for (Instruction &I : *BB)
184       if (mayHaveNonDefUseDependency(I))
185         ValueRankMap[&I] = ++BBRank;
186   }
187 }
188 
189 unsigned ReassociatePass::getRank(Value *V) {
190   Instruction *I = dyn_cast<Instruction>(V);
191   if (!I) {
192     if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
193     return 0;  // Otherwise it's a global or constant, rank 0.
194   }
195 
196   if (unsigned Rank = ValueRankMap[I])
197     return Rank;    // Rank already known?
198 
199   // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
200   // we can reassociate expressions for code motion!  Since we do not recurse
201   // for PHI nodes, we cannot have infinite recursion here, because there
202   // cannot be loops in the value graph that do not go through PHI nodes.
203   unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
204   for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i)
205     Rank = std::max(Rank, getRank(I->getOperand(i)));
206 
207   // If this is a 'not' or 'neg' instruction, do not count it for rank. This
208   // assures us that X and ~X will have the same rank.
209   if (!match(I, m_Not(m_Value())) && !match(I, m_Neg(m_Value())) &&
210       !match(I, m_FNeg(m_Value())))
211     ++Rank;
212 
213   LLVM_DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank
214                     << "\n");
215 
216   return ValueRankMap[I] = Rank;
217 }
218 
219 // Canonicalize constants to RHS.  Otherwise, sort the operands by rank.
220 void ReassociatePass::canonicalizeOperands(Instruction *I) {
221   assert(isa<BinaryOperator>(I) && "Expected binary operator.");
222   assert(I->isCommutative() && "Expected commutative operator.");
223 
224   Value *LHS = I->getOperand(0);
225   Value *RHS = I->getOperand(1);
226   if (LHS == RHS || isa<Constant>(RHS))
227     return;
228   if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS))
229     cast<BinaryOperator>(I)->swapOperands();
230 }
231 
232 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
233                                  Instruction *InsertBefore, Value *FlagsOp) {
234   if (S1->getType()->isIntOrIntVectorTy())
235     return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
236   else {
237     BinaryOperator *Res =
238         BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
239     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
240     return Res;
241   }
242 }
243 
244 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
245                                  Instruction *InsertBefore, Value *FlagsOp) {
246   if (S1->getType()->isIntOrIntVectorTy())
247     return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
248   else {
249     BinaryOperator *Res =
250       BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
251     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
252     return Res;
253   }
254 }
255 
256 static Instruction *CreateNeg(Value *S1, const Twine &Name,
257                               Instruction *InsertBefore, Value *FlagsOp) {
258   if (S1->getType()->isIntOrIntVectorTy())
259     return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
260 
261   if (auto *FMFSource = dyn_cast<Instruction>(FlagsOp))
262     return UnaryOperator::CreateFNegFMF(S1, FMFSource, Name, InsertBefore);
263 
264   return UnaryOperator::CreateFNeg(S1, Name, InsertBefore);
265 }
266 
267 /// Replace 0-X with X*-1.
268 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
269   assert((isa<UnaryOperator>(Neg) || isa<BinaryOperator>(Neg)) &&
270          "Expected a Negate!");
271   // FIXME: It's not safe to lower a unary FNeg into a FMul by -1.0.
272   unsigned OpNo = isa<BinaryOperator>(Neg) ? 1 : 0;
273   Type *Ty = Neg->getType();
274   Constant *NegOne = Ty->isIntOrIntVectorTy() ?
275     ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
276 
277   BinaryOperator *Res = CreateMul(Neg->getOperand(OpNo), NegOne, "", Neg, Neg);
278   Neg->setOperand(OpNo, Constant::getNullValue(Ty)); // Drop use of op.
279   Res->takeName(Neg);
280   Neg->replaceAllUsesWith(Res);
281   Res->setDebugLoc(Neg->getDebugLoc());
282   return Res;
283 }
284 
285 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
286 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
287 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
288 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
289 /// even x in Bitwidth-bit arithmetic.
290 static unsigned CarmichaelShift(unsigned Bitwidth) {
291   if (Bitwidth < 3)
292     return Bitwidth - 1;
293   return Bitwidth - 2;
294 }
295 
296 /// Add the extra weight 'RHS' to the existing weight 'LHS',
297 /// reducing the combined weight using any special properties of the operation.
298 /// The existing weight LHS represents the computation X op X op ... op X where
299 /// X occurs LHS times.  The combined weight represents  X op X op ... op X with
300 /// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
301 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
302 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
303 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
304   // If we were working with infinite precision arithmetic then the combined
305   // weight would be LHS + RHS.  But we are using finite precision arithmetic,
306   // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
307   // for nilpotent operations and addition, but not for idempotent operations
308   // and multiplication), so it is important to correctly reduce the combined
309   // weight back into range if wrapping would be wrong.
310 
311   // If RHS is zero then the weight didn't change.
312   if (RHS.isMinValue())
313     return;
314   // If LHS is zero then the combined weight is RHS.
315   if (LHS.isMinValue()) {
316     LHS = RHS;
317     return;
318   }
319   // From this point on we know that neither LHS nor RHS is zero.
320 
321   if (Instruction::isIdempotent(Opcode)) {
322     // Idempotent means X op X === X, so any non-zero weight is equivalent to a
323     // weight of 1.  Keeping weights at zero or one also means that wrapping is
324     // not a problem.
325     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
326     return; // Return a weight of 1.
327   }
328   if (Instruction::isNilpotent(Opcode)) {
329     // Nilpotent means X op X === 0, so reduce weights modulo 2.
330     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
331     LHS = 0; // 1 + 1 === 0 modulo 2.
332     return;
333   }
334   if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
335     // TODO: Reduce the weight by exploiting nsw/nuw?
336     LHS += RHS;
337     return;
338   }
339 
340   assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
341          "Unknown associative operation!");
342   unsigned Bitwidth = LHS.getBitWidth();
343   // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
344   // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
345   // bit number x, since either x is odd in which case x^CM = 1, or x is even in
346   // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
347   // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
348   // which by a happy accident means that they can always be represented using
349   // Bitwidth bits.
350   // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
351   // the Carmichael number).
352   if (Bitwidth > 3) {
353     /// CM - The value of Carmichael's lambda function.
354     APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
355     // Any weight W >= Threshold can be replaced with W - CM.
356     APInt Threshold = CM + Bitwidth;
357     assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
358     // For Bitwidth 4 or more the following sum does not overflow.
359     LHS += RHS;
360     while (LHS.uge(Threshold))
361       LHS -= CM;
362   } else {
363     // To avoid problems with overflow do everything the same as above but using
364     // a larger type.
365     unsigned CM = 1U << CarmichaelShift(Bitwidth);
366     unsigned Threshold = CM + Bitwidth;
367     assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
368            "Weights not reduced!");
369     unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
370     while (Total >= Threshold)
371       Total -= CM;
372     LHS = Total;
373   }
374 }
375 
376 using RepeatedValue = std::pair<Value*, APInt>;
377 
378 /// Given an associative binary expression, return the leaf
379 /// nodes in Ops along with their weights (how many times the leaf occurs).  The
380 /// original expression is the same as
381 ///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
382 /// op
383 ///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
384 /// op
385 ///   ...
386 /// op
387 ///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
388 ///
389 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
390 ///
391 /// This routine may modify the function, in which case it returns 'true'.  The
392 /// changes it makes may well be destructive, changing the value computed by 'I'
393 /// to something completely different.  Thus if the routine returns 'true' then
394 /// you MUST either replace I with a new expression computed from the Ops array,
395 /// or use RewriteExprTree to put the values back in.
396 ///
397 /// A leaf node is either not a binary operation of the same kind as the root
398 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
399 /// opcode), or is the same kind of binary operator but has a use which either
400 /// does not belong to the expression, or does belong to the expression but is
401 /// a leaf node.  Every leaf node has at least one use that is a non-leaf node
402 /// of the expression, while for non-leaf nodes (except for the root 'I') every
403 /// use is a non-leaf node of the expression.
404 ///
405 /// For example:
406 ///           expression graph        node names
407 ///
408 ///                     +        |        I
409 ///                    / \       |
410 ///                   +   +      |      A,  B
411 ///                  / \ / \     |
412 ///                 *   +   *    |    C,  D,  E
413 ///                / \ / \ / \   |
414 ///                   +   *      |      F,  G
415 ///
416 /// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
417 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
418 ///
419 /// The expression is maximal: if some instruction is a binary operator of the
420 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
421 /// then the instruction also belongs to the expression, is not a leaf node of
422 /// it, and its operands also belong to the expression (but may be leaf nodes).
423 ///
424 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
425 /// order to ensure that every non-root node in the expression has *exactly one*
426 /// use by a non-leaf node of the expression.  This destruction means that the
427 /// caller MUST either replace 'I' with a new expression or use something like
428 /// RewriteExprTree to put the values back in if the routine indicates that it
429 /// made a change by returning 'true'.
430 ///
431 /// In the above example either the right operand of A or the left operand of B
432 /// will be replaced by undef.  If it is B's operand then this gives:
433 ///
434 ///                     +        |        I
435 ///                    / \       |
436 ///                   +   +      |      A,  B - operand of B replaced with undef
437 ///                  / \   \     |
438 ///                 *   +   *    |    C,  D,  E
439 ///                / \ / \ / \   |
440 ///                   +   *      |      F,  G
441 ///
442 /// Note that such undef operands can only be reached by passing through 'I'.
443 /// For example, if you visit operands recursively starting from a leaf node
444 /// then you will never see such an undef operand unless you get back to 'I',
445 /// which requires passing through a phi node.
446 ///
447 /// Note that this routine may also mutate binary operators of the wrong type
448 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
449 /// of the expression) if it can turn them into binary operators of the right
450 /// type and thus make the expression bigger.
451 static bool LinearizeExprTree(Instruction *I,
452                               SmallVectorImpl<RepeatedValue> &Ops) {
453   assert((isa<UnaryOperator>(I) || isa<BinaryOperator>(I)) &&
454          "Expected a UnaryOperator or BinaryOperator!");
455   LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
456   unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
457   unsigned Opcode = I->getOpcode();
458   assert(I->isAssociative() && I->isCommutative() &&
459          "Expected an associative and commutative operation!");
460 
461   // Visit all operands of the expression, keeping track of their weight (the
462   // number of paths from the expression root to the operand, or if you like
463   // the number of times that operand occurs in the linearized expression).
464   // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
465   // while A has weight two.
466 
467   // Worklist of non-leaf nodes (their operands are in the expression too) along
468   // with their weights, representing a certain number of paths to the operator.
469   // If an operator occurs in the worklist multiple times then we found multiple
470   // ways to get to it.
471   SmallVector<std::pair<Instruction*, APInt>, 8> Worklist; // (Op, Weight)
472   Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
473   bool Changed = false;
474 
475   // Leaves of the expression are values that either aren't the right kind of
476   // operation (eg: a constant, or a multiply in an add tree), or are, but have
477   // some uses that are not inside the expression.  For example, in I = X + X,
478   // X = A + B, the value X has two uses (by I) that are in the expression.  If
479   // X has any other uses, for example in a return instruction, then we consider
480   // X to be a leaf, and won't analyze it further.  When we first visit a value,
481   // if it has more than one use then at first we conservatively consider it to
482   // be a leaf.  Later, as the expression is explored, we may discover some more
483   // uses of the value from inside the expression.  If all uses turn out to be
484   // from within the expression (and the value is a binary operator of the right
485   // kind) then the value is no longer considered to be a leaf, and its operands
486   // are explored.
487 
488   // Leaves - Keeps track of the set of putative leaves as well as the number of
489   // paths to each leaf seen so far.
490   using LeafMap = DenseMap<Value *, APInt>;
491   LeafMap Leaves; // Leaf -> Total weight so far.
492   SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order.
493 
494 #ifndef NDEBUG
495   SmallPtrSet<Value *, 8> Visited; // For checking the iteration scheme.
496 #endif
497   while (!Worklist.empty()) {
498     std::pair<Instruction*, APInt> P = Worklist.pop_back_val();
499     I = P.first; // We examine the operands of this binary operator.
500 
501     for (unsigned OpIdx = 0; OpIdx < I->getNumOperands(); ++OpIdx) { // Visit operands.
502       Value *Op = I->getOperand(OpIdx);
503       APInt Weight = P.second; // Number of paths to this operand.
504       LLVM_DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
505       assert(!Op->use_empty() && "No uses, so how did we get to it?!");
506 
507       // If this is a binary operation of the right kind with only one use then
508       // add its operands to the expression.
509       if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
510         assert(Visited.insert(Op).second && "Not first visit!");
511         LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
512         Worklist.push_back(std::make_pair(BO, Weight));
513         continue;
514       }
515 
516       // Appears to be a leaf.  Is the operand already in the set of leaves?
517       LeafMap::iterator It = Leaves.find(Op);
518       if (It == Leaves.end()) {
519         // Not in the leaf map.  Must be the first time we saw this operand.
520         assert(Visited.insert(Op).second && "Not first visit!");
521         if (!Op->hasOneUse()) {
522           // This value has uses not accounted for by the expression, so it is
523           // not safe to modify.  Mark it as being a leaf.
524           LLVM_DEBUG(dbgs()
525                      << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
526           LeafOrder.push_back(Op);
527           Leaves[Op] = Weight;
528           continue;
529         }
530         // No uses outside the expression, try morphing it.
531       } else {
532         // Already in the leaf map.
533         assert(It != Leaves.end() && Visited.count(Op) &&
534                "In leaf map but not visited!");
535 
536         // Update the number of paths to the leaf.
537         IncorporateWeight(It->second, Weight, Opcode);
538 
539 #if 0   // TODO: Re-enable once PR13021 is fixed.
540         // The leaf already has one use from inside the expression.  As we want
541         // exactly one such use, drop this new use of the leaf.
542         assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
543         I->setOperand(OpIdx, UndefValue::get(I->getType()));
544         Changed = true;
545 
546         // If the leaf is a binary operation of the right kind and we now see
547         // that its multiple original uses were in fact all by nodes belonging
548         // to the expression, then no longer consider it to be a leaf and add
549         // its operands to the expression.
550         if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
551           LLVM_DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
552           Worklist.push_back(std::make_pair(BO, It->second));
553           Leaves.erase(It);
554           continue;
555         }
556 #endif
557 
558         // If we still have uses that are not accounted for by the expression
559         // then it is not safe to modify the value.
560         if (!Op->hasOneUse())
561           continue;
562 
563         // No uses outside the expression, try morphing it.
564         Weight = It->second;
565         Leaves.erase(It); // Since the value may be morphed below.
566       }
567 
568       // At this point we have a value which, first of all, is not a binary
569       // expression of the right kind, and secondly, is only used inside the
570       // expression.  This means that it can safely be modified.  See if we
571       // can usefully morph it into an expression of the right kind.
572       assert((!isa<Instruction>(Op) ||
573               cast<Instruction>(Op)->getOpcode() != Opcode
574               || (isa<FPMathOperator>(Op) &&
575                   !cast<Instruction>(Op)->isFast())) &&
576              "Should have been handled above!");
577       assert(Op->hasOneUse() && "Has uses outside the expression tree!");
578 
579       // If this is a multiply expression, turn any internal negations into
580       // multiplies by -1 so they can be reassociated.
581       if (Instruction *Tmp = dyn_cast<Instruction>(Op))
582         if ((Opcode == Instruction::Mul && match(Tmp, m_Neg(m_Value()))) ||
583             (Opcode == Instruction::FMul && match(Tmp, m_FNeg(m_Value())))) {
584           LLVM_DEBUG(dbgs()
585                      << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
586           Tmp = LowerNegateToMultiply(Tmp);
587           LLVM_DEBUG(dbgs() << *Tmp << '\n');
588           Worklist.push_back(std::make_pair(Tmp, Weight));
589           Changed = true;
590           continue;
591         }
592 
593       // Failed to morph into an expression of the right type.  This really is
594       // a leaf.
595       LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
596       assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
597       LeafOrder.push_back(Op);
598       Leaves[Op] = Weight;
599     }
600   }
601 
602   // The leaves, repeated according to their weights, represent the linearized
603   // form of the expression.
604   for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
605     Value *V = LeafOrder[i];
606     LeafMap::iterator It = Leaves.find(V);
607     if (It == Leaves.end())
608       // Node initially thought to be a leaf wasn't.
609       continue;
610     assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
611     APInt Weight = It->second;
612     if (Weight.isMinValue())
613       // Leaf already output or weight reduction eliminated it.
614       continue;
615     // Ensure the leaf is only output once.
616     It->second = 0;
617     Ops.push_back(std::make_pair(V, Weight));
618   }
619 
620   // For nilpotent operations or addition there may be no operands, for example
621   // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
622   // in both cases the weight reduces to 0 causing the value to be skipped.
623   if (Ops.empty()) {
624     Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
625     assert(Identity && "Associative operation without identity!");
626     Ops.emplace_back(Identity, APInt(Bitwidth, 1));
627   }
628 
629   return Changed;
630 }
631 
632 /// Now that the operands for this expression tree are
633 /// linearized and optimized, emit them in-order.
634 void ReassociatePass::RewriteExprTree(BinaryOperator *I,
635                                       SmallVectorImpl<ValueEntry> &Ops) {
636   assert(Ops.size() > 1 && "Single values should be used directly!");
637 
638   // Since our optimizations should never increase the number of operations, the
639   // new expression can usually be written reusing the existing binary operators
640   // from the original expression tree, without creating any new instructions,
641   // though the rewritten expression may have a completely different topology.
642   // We take care to not change anything if the new expression will be the same
643   // as the original.  If more than trivial changes (like commuting operands)
644   // were made then we are obliged to clear out any optional subclass data like
645   // nsw flags.
646 
647   /// NodesToRewrite - Nodes from the original expression available for writing
648   /// the new expression into.
649   SmallVector<BinaryOperator*, 8> NodesToRewrite;
650   unsigned Opcode = I->getOpcode();
651   BinaryOperator *Op = I;
652 
653   /// NotRewritable - The operands being written will be the leaves of the new
654   /// expression and must not be used as inner nodes (via NodesToRewrite) by
655   /// mistake.  Inner nodes are always reassociable, and usually leaves are not
656   /// (if they were they would have been incorporated into the expression and so
657   /// would not be leaves), so most of the time there is no danger of this.  But
658   /// in rare cases a leaf may become reassociable if an optimization kills uses
659   /// of it, or it may momentarily become reassociable during rewriting (below)
660   /// due it being removed as an operand of one of its uses.  Ensure that misuse
661   /// of leaf nodes as inner nodes cannot occur by remembering all of the future
662   /// leaves and refusing to reuse any of them as inner nodes.
663   SmallPtrSet<Value*, 8> NotRewritable;
664   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
665     NotRewritable.insert(Ops[i].Op);
666 
667   // ExpressionChanged - Non-null if the rewritten expression differs from the
668   // original in some non-trivial way, requiring the clearing of optional flags.
669   // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
670   BinaryOperator *ExpressionChanged = nullptr;
671   for (unsigned i = 0; ; ++i) {
672     // The last operation (which comes earliest in the IR) is special as both
673     // operands will come from Ops, rather than just one with the other being
674     // a subexpression.
675     if (i+2 == Ops.size()) {
676       Value *NewLHS = Ops[i].Op;
677       Value *NewRHS = Ops[i+1].Op;
678       Value *OldLHS = Op->getOperand(0);
679       Value *OldRHS = Op->getOperand(1);
680 
681       if (NewLHS == OldLHS && NewRHS == OldRHS)
682         // Nothing changed, leave it alone.
683         break;
684 
685       if (NewLHS == OldRHS && NewRHS == OldLHS) {
686         // The order of the operands was reversed.  Swap them.
687         LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
688         Op->swapOperands();
689         LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
690         MadeChange = true;
691         ++NumChanged;
692         break;
693       }
694 
695       // The new operation differs non-trivially from the original. Overwrite
696       // the old operands with the new ones.
697       LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
698       if (NewLHS != OldLHS) {
699         BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
700         if (BO && !NotRewritable.count(BO))
701           NodesToRewrite.push_back(BO);
702         Op->setOperand(0, NewLHS);
703       }
704       if (NewRHS != OldRHS) {
705         BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
706         if (BO && !NotRewritable.count(BO))
707           NodesToRewrite.push_back(BO);
708         Op->setOperand(1, NewRHS);
709       }
710       LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
711 
712       ExpressionChanged = Op;
713       MadeChange = true;
714       ++NumChanged;
715 
716       break;
717     }
718 
719     // Not the last operation.  The left-hand side will be a sub-expression
720     // while the right-hand side will be the current element of Ops.
721     Value *NewRHS = Ops[i].Op;
722     if (NewRHS != Op->getOperand(1)) {
723       LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
724       if (NewRHS == Op->getOperand(0)) {
725         // The new right-hand side was already present as the left operand.  If
726         // we are lucky then swapping the operands will sort out both of them.
727         Op->swapOperands();
728       } else {
729         // Overwrite with the new right-hand side.
730         BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
731         if (BO && !NotRewritable.count(BO))
732           NodesToRewrite.push_back(BO);
733         Op->setOperand(1, NewRHS);
734         ExpressionChanged = Op;
735       }
736       LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
737       MadeChange = true;
738       ++NumChanged;
739     }
740 
741     // Now deal with the left-hand side.  If this is already an operation node
742     // from the original expression then just rewrite the rest of the expression
743     // into it.
744     BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
745     if (BO && !NotRewritable.count(BO)) {
746       Op = BO;
747       continue;
748     }
749 
750     // Otherwise, grab a spare node from the original expression and use that as
751     // the left-hand side.  If there are no nodes left then the optimizers made
752     // an expression with more nodes than the original!  This usually means that
753     // they did something stupid but it might mean that the problem was just too
754     // hard (finding the mimimal number of multiplications needed to realize a
755     // multiplication expression is NP-complete).  Whatever the reason, smart or
756     // stupid, create a new node if there are none left.
757     BinaryOperator *NewOp;
758     if (NodesToRewrite.empty()) {
759       Constant *Undef = UndefValue::get(I->getType());
760       NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
761                                      Undef, Undef, "", I);
762       if (NewOp->getType()->isFPOrFPVectorTy())
763         NewOp->setFastMathFlags(I->getFastMathFlags());
764     } else {
765       NewOp = NodesToRewrite.pop_back_val();
766     }
767 
768     LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
769     Op->setOperand(0, NewOp);
770     LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
771     ExpressionChanged = Op;
772     MadeChange = true;
773     ++NumChanged;
774     Op = NewOp;
775   }
776 
777   // If the expression changed non-trivially then clear out all subclass data
778   // starting from the operator specified in ExpressionChanged, and compactify
779   // the operators to just before the expression root to guarantee that the
780   // expression tree is dominated by all of Ops.
781   if (ExpressionChanged)
782     do {
783       // Preserve FastMathFlags.
784       if (isa<FPMathOperator>(I)) {
785         FastMathFlags Flags = I->getFastMathFlags();
786         ExpressionChanged->clearSubclassOptionalData();
787         ExpressionChanged->setFastMathFlags(Flags);
788       } else
789         ExpressionChanged->clearSubclassOptionalData();
790 
791       if (ExpressionChanged == I)
792         break;
793 
794       // Discard any debug info related to the expressions that has changed (we
795       // can leave debug infor related to the root, since the result of the
796       // expression tree should be the same even after reassociation).
797       replaceDbgUsesWithUndef(ExpressionChanged);
798 
799       ExpressionChanged->moveBefore(I);
800       ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
801     } while (true);
802 
803   // Throw away any left over nodes from the original expression.
804   for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
805     RedoInsts.insert(NodesToRewrite[i]);
806 }
807 
808 /// Insert instructions before the instruction pointed to by BI,
809 /// that computes the negative version of the value specified.  The negative
810 /// version of the value is returned, and BI is left pointing at the instruction
811 /// that should be processed next by the reassociation pass.
812 /// Also add intermediate instructions to the redo list that are modified while
813 /// pushing the negates through adds.  These will be revisited to see if
814 /// additional opportunities have been exposed.
815 static Value *NegateValue(Value *V, Instruction *BI,
816                           ReassociatePass::OrderedSet &ToRedo) {
817   if (auto *C = dyn_cast<Constant>(V))
818     return C->getType()->isFPOrFPVectorTy() ? ConstantExpr::getFNeg(C) :
819                                               ConstantExpr::getNeg(C);
820 
821   // We are trying to expose opportunity for reassociation.  One of the things
822   // that we want to do to achieve this is to push a negation as deep into an
823   // expression chain as possible, to expose the add instructions.  In practice,
824   // this means that we turn this:
825   //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
826   // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
827   // the constants.  We assume that instcombine will clean up the mess later if
828   // we introduce tons of unnecessary negation instructions.
829   //
830   if (BinaryOperator *I =
831           isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
832     // Push the negates through the add.
833     I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
834     I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
835     if (I->getOpcode() == Instruction::Add) {
836       I->setHasNoUnsignedWrap(false);
837       I->setHasNoSignedWrap(false);
838     }
839 
840     // We must move the add instruction here, because the neg instructions do
841     // not dominate the old add instruction in general.  By moving it, we are
842     // assured that the neg instructions we just inserted dominate the
843     // instruction we are about to insert after them.
844     //
845     I->moveBefore(BI);
846     I->setName(I->getName()+".neg");
847 
848     // Add the intermediate negates to the redo list as processing them later
849     // could expose more reassociating opportunities.
850     ToRedo.insert(I);
851     return I;
852   }
853 
854   // Okay, we need to materialize a negated version of V with an instruction.
855   // Scan the use lists of V to see if we have one already.
856   for (User *U : V->users()) {
857     if (!match(U, m_Neg(m_Value())) && !match(U, m_FNeg(m_Value())))
858       continue;
859 
860     // We found one!  Now we have to make sure that the definition dominates
861     // this use.  We do this by moving it to the entry block (if it is a
862     // non-instruction value) or right after the definition.  These negates will
863     // be zapped by reassociate later, so we don't need much finesse here.
864     Instruction *TheNeg = cast<Instruction>(U);
865 
866     // Verify that the negate is in this function, V might be a constant expr.
867     if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
868       continue;
869 
870     bool FoundCatchSwitch = false;
871 
872     BasicBlock::iterator InsertPt;
873     if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
874       if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
875         InsertPt = II->getNormalDest()->begin();
876       } else {
877         InsertPt = ++InstInput->getIterator();
878       }
879 
880       const BasicBlock *BB = InsertPt->getParent();
881 
882       // Make sure we don't move anything before PHIs or exception
883       // handling pads.
884       while (InsertPt != BB->end() && (isa<PHINode>(InsertPt) ||
885                                        InsertPt->isEHPad())) {
886         if (isa<CatchSwitchInst>(InsertPt))
887           // A catchswitch cannot have anything in the block except
888           // itself and PHIs.  We'll bail out below.
889           FoundCatchSwitch = true;
890         ++InsertPt;
891       }
892     } else {
893       InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
894     }
895 
896     // We found a catchswitch in the block where we want to move the
897     // neg.  We cannot move anything into that block.  Bail and just
898     // create the neg before BI, as if we hadn't found an existing
899     // neg.
900     if (FoundCatchSwitch)
901       break;
902 
903     TheNeg->moveBefore(&*InsertPt);
904     if (TheNeg->getOpcode() == Instruction::Sub) {
905       TheNeg->setHasNoUnsignedWrap(false);
906       TheNeg->setHasNoSignedWrap(false);
907     } else {
908       TheNeg->andIRFlags(BI);
909     }
910     ToRedo.insert(TheNeg);
911     return TheNeg;
912   }
913 
914   // Insert a 'neg' instruction that subtracts the value from zero to get the
915   // negation.
916   Instruction *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
917   ToRedo.insert(NewNeg);
918   return NewNeg;
919 }
920 
921 // See if this `or` looks like an load widening reduction, i.e. that it
922 // consists of an `or`/`shl`/`zext`/`load` nodes only. Note that we don't
923 // ensure that the pattern is *really* a load widening reduction,
924 // we do not ensure that it can really be replaced with a widened load,
925 // only that it mostly looks like one.
926 static bool isLoadCombineCandidate(Instruction *Or) {
927   SmallVector<Instruction *, 8> Worklist;
928   SmallSet<Instruction *, 8> Visited;
929 
930   auto Enqueue = [&](Value *V) {
931     auto *I = dyn_cast<Instruction>(V);
932     // Each node of an `or` reduction must be an instruction,
933     if (!I)
934       return false; // Node is certainly not part of an `or` load reduction.
935     // Only process instructions we have never processed before.
936     if (Visited.insert(I).second)
937       Worklist.emplace_back(I);
938     return true; // Will need to look at parent nodes.
939   };
940 
941   if (!Enqueue(Or))
942     return false; // Not an `or` reduction pattern.
943 
944   while (!Worklist.empty()) {
945     auto *I = Worklist.pop_back_val();
946 
947     // Okay, which instruction is this node?
948     switch (I->getOpcode()) {
949     case Instruction::Or:
950       // Got an `or` node. That's fine, just recurse into it's operands.
951       for (Value *Op : I->operands())
952         if (!Enqueue(Op))
953           return false; // Not an `or` reduction pattern.
954       continue;
955 
956     case Instruction::Shl:
957     case Instruction::ZExt:
958       // `shl`/`zext` nodes are fine, just recurse into their base operand.
959       if (!Enqueue(I->getOperand(0)))
960         return false; // Not an `or` reduction pattern.
961       continue;
962 
963     case Instruction::Load:
964       // Perfect, `load` node means we've reached an edge of the graph.
965       continue;
966 
967     default:        // Unknown node.
968       return false; // Not an `or` reduction pattern.
969     }
970   }
971 
972   return true;
973 }
974 
975 /// Return true if it may be profitable to convert this (X|Y) into (X+Y).
976 static bool shouldConvertOrWithNoCommonBitsToAdd(Instruction *Or) {
977   // Don't bother to convert this up unless either the LHS is an associable add
978   // or subtract or mul or if this is only used by one of the above.
979   // This is only a compile-time improvement, it is not needed for correctness!
980   auto isInteresting = [](Value *V) {
981     for (auto Op : {Instruction::Add, Instruction::Sub, Instruction::Mul,
982                     Instruction::Shl})
983       if (isReassociableOp(V, Op))
984         return true;
985     return false;
986   };
987 
988   if (any_of(Or->operands(), isInteresting))
989     return true;
990 
991   Value *VB = Or->user_back();
992   if (Or->hasOneUse() && isInteresting(VB))
993     return true;
994 
995   return false;
996 }
997 
998 /// If we have (X|Y), and iff X and Y have no common bits set,
999 /// transform this into (X+Y) to allow arithmetics reassociation.
1000 static BinaryOperator *convertOrWithNoCommonBitsToAdd(Instruction *Or) {
1001   // Convert an or into an add.
1002   BinaryOperator *New =
1003       CreateAdd(Or->getOperand(0), Or->getOperand(1), "", Or, Or);
1004   New->setHasNoSignedWrap();
1005   New->setHasNoUnsignedWrap();
1006   New->takeName(Or);
1007 
1008   // Everyone now refers to the add instruction.
1009   Or->replaceAllUsesWith(New);
1010   New->setDebugLoc(Or->getDebugLoc());
1011 
1012   LLVM_DEBUG(dbgs() << "Converted or into an add: " << *New << '\n');
1013   return New;
1014 }
1015 
1016 /// Return true if we should break up this subtract of X-Y into (X + -Y).
1017 static bool ShouldBreakUpSubtract(Instruction *Sub) {
1018   // If this is a negation, we can't split it up!
1019   if (match(Sub, m_Neg(m_Value())) || match(Sub, m_FNeg(m_Value())))
1020     return false;
1021 
1022   // Don't breakup X - undef.
1023   if (isa<UndefValue>(Sub->getOperand(1)))
1024     return false;
1025 
1026   // Don't bother to break this up unless either the LHS is an associable add or
1027   // subtract or if this is only used by one.
1028   Value *V0 = Sub->getOperand(0);
1029   if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
1030       isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
1031     return true;
1032   Value *V1 = Sub->getOperand(1);
1033   if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
1034       isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
1035     return true;
1036   Value *VB = Sub->user_back();
1037   if (Sub->hasOneUse() &&
1038       (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
1039        isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
1040     return true;
1041 
1042   return false;
1043 }
1044 
1045 /// If we have (X-Y), and if either X is an add, or if this is only used by an
1046 /// add, transform this into (X+(0-Y)) to promote better reassociation.
1047 static BinaryOperator *BreakUpSubtract(Instruction *Sub,
1048                                        ReassociatePass::OrderedSet &ToRedo) {
1049   // Convert a subtract into an add and a neg instruction. This allows sub
1050   // instructions to be commuted with other add instructions.
1051   //
1052   // Calculate the negative value of Operand 1 of the sub instruction,
1053   // and set it as the RHS of the add instruction we just made.
1054   Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
1055   BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
1056   Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
1057   Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
1058   New->takeName(Sub);
1059 
1060   // Everyone now refers to the add instruction.
1061   Sub->replaceAllUsesWith(New);
1062   New->setDebugLoc(Sub->getDebugLoc());
1063 
1064   LLVM_DEBUG(dbgs() << "Negated: " << *New << '\n');
1065   return New;
1066 }
1067 
1068 /// If this is a shift of a reassociable multiply or is used by one, change
1069 /// this into a multiply by a constant to assist with further reassociation.
1070 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
1071   Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
1072   auto *SA = cast<ConstantInt>(Shl->getOperand(1));
1073   MulCst = ConstantExpr::getShl(MulCst, SA);
1074 
1075   BinaryOperator *Mul =
1076     BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
1077   Shl->setOperand(0, PoisonValue::get(Shl->getType())); // Drop use of op.
1078   Mul->takeName(Shl);
1079 
1080   // Everyone now refers to the mul instruction.
1081   Shl->replaceAllUsesWith(Mul);
1082   Mul->setDebugLoc(Shl->getDebugLoc());
1083 
1084   // We can safely preserve the nuw flag in all cases.  It's also safe to turn a
1085   // nuw nsw shl into a nuw nsw mul.  However, nsw in isolation requires special
1086   // handling.  It can be preserved as long as we're not left shifting by
1087   // bitwidth - 1.
1088   bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
1089   bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
1090   unsigned BitWidth = Shl->getType()->getIntegerBitWidth();
1091   if (NSW && (NUW || SA->getValue().ult(BitWidth - 1)))
1092     Mul->setHasNoSignedWrap(true);
1093   Mul->setHasNoUnsignedWrap(NUW);
1094   return Mul;
1095 }
1096 
1097 /// Scan backwards and forwards among values with the same rank as element i
1098 /// to see if X exists.  If X does not exist, return i.  This is useful when
1099 /// scanning for 'x' when we see '-x' because they both get the same rank.
1100 static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops,
1101                                   unsigned i, Value *X) {
1102   unsigned XRank = Ops[i].Rank;
1103   unsigned e = Ops.size();
1104   for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
1105     if (Ops[j].Op == X)
1106       return j;
1107     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1108       if (Instruction *I2 = dyn_cast<Instruction>(X))
1109         if (I1->isIdenticalTo(I2))
1110           return j;
1111   }
1112   // Scan backwards.
1113   for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
1114     if (Ops[j].Op == X)
1115       return j;
1116     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1117       if (Instruction *I2 = dyn_cast<Instruction>(X))
1118         if (I1->isIdenticalTo(I2))
1119           return j;
1120   }
1121   return i;
1122 }
1123 
1124 /// Emit a tree of add instructions, summing Ops together
1125 /// and returning the result.  Insert the tree before I.
1126 static Value *EmitAddTreeOfValues(Instruction *I,
1127                                   SmallVectorImpl<WeakTrackingVH> &Ops) {
1128   if (Ops.size() == 1) return Ops.back();
1129 
1130   Value *V1 = Ops.pop_back_val();
1131   Value *V2 = EmitAddTreeOfValues(I, Ops);
1132   return CreateAdd(V2, V1, "reass.add", I, I);
1133 }
1134 
1135 /// If V is an expression tree that is a multiplication sequence,
1136 /// and if this sequence contains a multiply by Factor,
1137 /// remove Factor from the tree and return the new tree.
1138 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
1139   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1140   if (!BO)
1141     return nullptr;
1142 
1143   SmallVector<RepeatedValue, 8> Tree;
1144   MadeChange |= LinearizeExprTree(BO, Tree);
1145   SmallVector<ValueEntry, 8> Factors;
1146   Factors.reserve(Tree.size());
1147   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1148     RepeatedValue E = Tree[i];
1149     Factors.append(E.second.getZExtValue(),
1150                    ValueEntry(getRank(E.first), E.first));
1151   }
1152 
1153   bool FoundFactor = false;
1154   bool NeedsNegate = false;
1155   for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1156     if (Factors[i].Op == Factor) {
1157       FoundFactor = true;
1158       Factors.erase(Factors.begin()+i);
1159       break;
1160     }
1161 
1162     // If this is a negative version of this factor, remove it.
1163     if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
1164       if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1165         if (FC1->getValue() == -FC2->getValue()) {
1166           FoundFactor = NeedsNegate = true;
1167           Factors.erase(Factors.begin()+i);
1168           break;
1169         }
1170     } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1171       if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
1172         const APFloat &F1 = FC1->getValueAPF();
1173         APFloat F2(FC2->getValueAPF());
1174         F2.changeSign();
1175         if (F1 == F2) {
1176           FoundFactor = NeedsNegate = true;
1177           Factors.erase(Factors.begin() + i);
1178           break;
1179         }
1180       }
1181     }
1182   }
1183 
1184   if (!FoundFactor) {
1185     // Make sure to restore the operands to the expression tree.
1186     RewriteExprTree(BO, Factors);
1187     return nullptr;
1188   }
1189 
1190   BasicBlock::iterator InsertPt = ++BO->getIterator();
1191 
1192   // If this was just a single multiply, remove the multiply and return the only
1193   // remaining operand.
1194   if (Factors.size() == 1) {
1195     RedoInsts.insert(BO);
1196     V = Factors[0].Op;
1197   } else {
1198     RewriteExprTree(BO, Factors);
1199     V = BO;
1200   }
1201 
1202   if (NeedsNegate)
1203     V = CreateNeg(V, "neg", &*InsertPt, BO);
1204 
1205   return V;
1206 }
1207 
1208 /// If V is a single-use multiply, recursively add its operands as factors,
1209 /// otherwise add V to the list of factors.
1210 ///
1211 /// Ops is the top-level list of add operands we're trying to factor.
1212 static void FindSingleUseMultiplyFactors(Value *V,
1213                                          SmallVectorImpl<Value*> &Factors) {
1214   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1215   if (!BO) {
1216     Factors.push_back(V);
1217     return;
1218   }
1219 
1220   // Otherwise, add the LHS and RHS to the list of factors.
1221   FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
1222   FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
1223 }
1224 
1225 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1226 /// This optimizes based on identities.  If it can be reduced to a single Value,
1227 /// it is returned, otherwise the Ops list is mutated as necessary.
1228 static Value *OptimizeAndOrXor(unsigned Opcode,
1229                                SmallVectorImpl<ValueEntry> &Ops) {
1230   // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1231   // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1232   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1233     // First, check for X and ~X in the operand list.
1234     assert(i < Ops.size());
1235     Value *X;
1236     if (match(Ops[i].Op, m_Not(m_Value(X)))) {    // Cannot occur for ^.
1237       unsigned FoundX = FindInOperandList(Ops, i, X);
1238       if (FoundX != i) {
1239         if (Opcode == Instruction::And)   // ...&X&~X = 0
1240           return Constant::getNullValue(X->getType());
1241 
1242         if (Opcode == Instruction::Or)    // ...|X|~X = -1
1243           return Constant::getAllOnesValue(X->getType());
1244       }
1245     }
1246 
1247     // Next, check for duplicate pairs of values, which we assume are next to
1248     // each other, due to our sorting criteria.
1249     assert(i < Ops.size());
1250     if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1251       if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1252         // Drop duplicate values for And and Or.
1253         Ops.erase(Ops.begin()+i);
1254         --i; --e;
1255         ++NumAnnihil;
1256         continue;
1257       }
1258 
1259       // Drop pairs of values for Xor.
1260       assert(Opcode == Instruction::Xor);
1261       if (e == 2)
1262         return Constant::getNullValue(Ops[0].Op->getType());
1263 
1264       // Y ^ X^X -> Y
1265       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1266       i -= 1; e -= 2;
1267       ++NumAnnihil;
1268     }
1269   }
1270   return nullptr;
1271 }
1272 
1273 /// Helper function of CombineXorOpnd(). It creates a bitwise-and
1274 /// instruction with the given two operands, and return the resulting
1275 /// instruction. There are two special cases: 1) if the constant operand is 0,
1276 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1277 /// be returned.
1278 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1279                              const APInt &ConstOpnd) {
1280   if (ConstOpnd.isZero())
1281     return nullptr;
1282 
1283   if (ConstOpnd.isAllOnes())
1284     return Opnd;
1285 
1286   Instruction *I = BinaryOperator::CreateAnd(
1287       Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra",
1288       InsertBefore);
1289   I->setDebugLoc(InsertBefore->getDebugLoc());
1290   return I;
1291 }
1292 
1293 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1294 // into "R ^ C", where C would be 0, and R is a symbolic value.
1295 //
1296 // If it was successful, true is returned, and the "R" and "C" is returned
1297 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1298 // and both "Res" and "ConstOpnd" remain unchanged.
1299 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1300                                      APInt &ConstOpnd, Value *&Res) {
1301   // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1302   //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
1303   //                       = (x & ~c1) ^ (c1 ^ c2)
1304   // It is useful only when c1 == c2.
1305   if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isZero())
1306     return false;
1307 
1308   if (!Opnd1->getValue()->hasOneUse())
1309     return false;
1310 
1311   const APInt &C1 = Opnd1->getConstPart();
1312   if (C1 != ConstOpnd)
1313     return false;
1314 
1315   Value *X = Opnd1->getSymbolicPart();
1316   Res = createAndInstr(I, X, ~C1);
1317   // ConstOpnd was C2, now C1 ^ C2.
1318   ConstOpnd ^= C1;
1319 
1320   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1321     RedoInsts.insert(T);
1322   return true;
1323 }
1324 
1325 // Helper function of OptimizeXor(). It tries to simplify
1326 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1327 // symbolic value.
1328 //
1329 // If it was successful, true is returned, and the "R" and "C" is returned
1330 // via "Res" and "ConstOpnd", respectively (If the entire expression is
1331 // evaluated to a constant, the Res is set to NULL); otherwise, false is
1332 // returned, and both "Res" and "ConstOpnd" remain unchanged.
1333 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1334                                      XorOpnd *Opnd2, APInt &ConstOpnd,
1335                                      Value *&Res) {
1336   Value *X = Opnd1->getSymbolicPart();
1337   if (X != Opnd2->getSymbolicPart())
1338     return false;
1339 
1340   // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1341   int DeadInstNum = 1;
1342   if (Opnd1->getValue()->hasOneUse())
1343     DeadInstNum++;
1344   if (Opnd2->getValue()->hasOneUse())
1345     DeadInstNum++;
1346 
1347   // Xor-Rule 2:
1348   //  (x | c1) ^ (x & c2)
1349   //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1350   //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
1351   //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
1352   //
1353   if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1354     if (Opnd2->isOrExpr())
1355       std::swap(Opnd1, Opnd2);
1356 
1357     const APInt &C1 = Opnd1->getConstPart();
1358     const APInt &C2 = Opnd2->getConstPart();
1359     APInt C3((~C1) ^ C2);
1360 
1361     // Do not increase code size!
1362     if (!C3.isZero() && !C3.isAllOnes()) {
1363       int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1364       if (NewInstNum > DeadInstNum)
1365         return false;
1366     }
1367 
1368     Res = createAndInstr(I, X, C3);
1369     ConstOpnd ^= C1;
1370   } else if (Opnd1->isOrExpr()) {
1371     // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1372     //
1373     const APInt &C1 = Opnd1->getConstPart();
1374     const APInt &C2 = Opnd2->getConstPart();
1375     APInt C3 = C1 ^ C2;
1376 
1377     // Do not increase code size
1378     if (!C3.isZero() && !C3.isAllOnes()) {
1379       int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1380       if (NewInstNum > DeadInstNum)
1381         return false;
1382     }
1383 
1384     Res = createAndInstr(I, X, C3);
1385     ConstOpnd ^= C3;
1386   } else {
1387     // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1388     //
1389     const APInt &C1 = Opnd1->getConstPart();
1390     const APInt &C2 = Opnd2->getConstPart();
1391     APInt C3 = C1 ^ C2;
1392     Res = createAndInstr(I, X, C3);
1393   }
1394 
1395   // Put the original operands in the Redo list; hope they will be deleted
1396   // as dead code.
1397   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1398     RedoInsts.insert(T);
1399   if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1400     RedoInsts.insert(T);
1401 
1402   return true;
1403 }
1404 
1405 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1406 /// to a single Value, it is returned, otherwise the Ops list is mutated as
1407 /// necessary.
1408 Value *ReassociatePass::OptimizeXor(Instruction *I,
1409                                     SmallVectorImpl<ValueEntry> &Ops) {
1410   if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1411     return V;
1412 
1413   if (Ops.size() == 1)
1414     return nullptr;
1415 
1416   SmallVector<XorOpnd, 8> Opnds;
1417   SmallVector<XorOpnd*, 8> OpndPtrs;
1418   Type *Ty = Ops[0].Op->getType();
1419   APInt ConstOpnd(Ty->getScalarSizeInBits(), 0);
1420 
1421   // Step 1: Convert ValueEntry to XorOpnd
1422   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1423     Value *V = Ops[i].Op;
1424     const APInt *C;
1425     // TODO: Support non-splat vectors.
1426     if (match(V, m_APInt(C))) {
1427       ConstOpnd ^= *C;
1428     } else {
1429       XorOpnd O(V);
1430       O.setSymbolicRank(getRank(O.getSymbolicPart()));
1431       Opnds.push_back(O);
1432     }
1433   }
1434 
1435   // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1436   //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1437   //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1438   //  with the previous loop --- the iterator of the "Opnds" may be invalidated
1439   //  when new elements are added to the vector.
1440   for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1441     OpndPtrs.push_back(&Opnds[i]);
1442 
1443   // Step 2: Sort the Xor-Operands in a way such that the operands containing
1444   //  the same symbolic value cluster together. For instance, the input operand
1445   //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1446   //  ("x | 123", "x & 789", "y & 456").
1447   //
1448   //  The purpose is twofold:
1449   //  1) Cluster together the operands sharing the same symbolic-value.
1450   //  2) Operand having smaller symbolic-value-rank is permuted earlier, which
1451   //     could potentially shorten crital path, and expose more loop-invariants.
1452   //     Note that values' rank are basically defined in RPO order (FIXME).
1453   //     So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
1454   //     than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
1455   //     "z" in the order of X-Y-Z is better than any other orders.
1456   llvm::stable_sort(OpndPtrs, [](XorOpnd *LHS, XorOpnd *RHS) {
1457     return LHS->getSymbolicRank() < RHS->getSymbolicRank();
1458   });
1459 
1460   // Step 3: Combine adjacent operands
1461   XorOpnd *PrevOpnd = nullptr;
1462   bool Changed = false;
1463   for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
1464     XorOpnd *CurrOpnd = OpndPtrs[i];
1465     // The combined value
1466     Value *CV;
1467 
1468     // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1469     if (!ConstOpnd.isZero() && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1470       Changed = true;
1471       if (CV)
1472         *CurrOpnd = XorOpnd(CV);
1473       else {
1474         CurrOpnd->Invalidate();
1475         continue;
1476       }
1477     }
1478 
1479     if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1480       PrevOpnd = CurrOpnd;
1481       continue;
1482     }
1483 
1484     // step 3.2: When previous and current operands share the same symbolic
1485     //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1486     if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1487       // Remove previous operand
1488       PrevOpnd->Invalidate();
1489       if (CV) {
1490         *CurrOpnd = XorOpnd(CV);
1491         PrevOpnd = CurrOpnd;
1492       } else {
1493         CurrOpnd->Invalidate();
1494         PrevOpnd = nullptr;
1495       }
1496       Changed = true;
1497     }
1498   }
1499 
1500   // Step 4: Reassemble the Ops
1501   if (Changed) {
1502     Ops.clear();
1503     for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1504       XorOpnd &O = Opnds[i];
1505       if (O.isInvalid())
1506         continue;
1507       ValueEntry VE(getRank(O.getValue()), O.getValue());
1508       Ops.push_back(VE);
1509     }
1510     if (!ConstOpnd.isZero()) {
1511       Value *C = ConstantInt::get(Ty, ConstOpnd);
1512       ValueEntry VE(getRank(C), C);
1513       Ops.push_back(VE);
1514     }
1515     unsigned Sz = Ops.size();
1516     if (Sz == 1)
1517       return Ops.back().Op;
1518     if (Sz == 0) {
1519       assert(ConstOpnd.isZero());
1520       return ConstantInt::get(Ty, ConstOpnd);
1521     }
1522   }
1523 
1524   return nullptr;
1525 }
1526 
1527 /// Optimize a series of operands to an 'add' instruction.  This
1528 /// optimizes based on identities.  If it can be reduced to a single Value, it
1529 /// is returned, otherwise the Ops list is mutated as necessary.
1530 Value *ReassociatePass::OptimizeAdd(Instruction *I,
1531                                     SmallVectorImpl<ValueEntry> &Ops) {
1532   // Scan the operand lists looking for X and -X pairs.  If we find any, we
1533   // can simplify expressions like X+-X == 0 and X+~X ==-1.  While we're at it,
1534   // scan for any
1535   // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1536 
1537   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1538     Value *TheOp = Ops[i].Op;
1539     // Check to see if we've seen this operand before.  If so, we factor all
1540     // instances of the operand together.  Due to our sorting criteria, we know
1541     // that these need to be next to each other in the vector.
1542     if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1543       // Rescan the list, remove all instances of this operand from the expr.
1544       unsigned NumFound = 0;
1545       do {
1546         Ops.erase(Ops.begin()+i);
1547         ++NumFound;
1548       } while (i != Ops.size() && Ops[i].Op == TheOp);
1549 
1550       LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp
1551                         << '\n');
1552       ++NumFactor;
1553 
1554       // Insert a new multiply.
1555       Type *Ty = TheOp->getType();
1556       Constant *C = Ty->isIntOrIntVectorTy() ?
1557         ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
1558       Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
1559 
1560       // Now that we have inserted a multiply, optimize it. This allows us to
1561       // handle cases that require multiple factoring steps, such as this:
1562       // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1563       RedoInsts.insert(Mul);
1564 
1565       // If every add operand was a duplicate, return the multiply.
1566       if (Ops.empty())
1567         return Mul;
1568 
1569       // Otherwise, we had some input that didn't have the dupe, such as
1570       // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
1571       // things being added by this operation.
1572       Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1573 
1574       --i;
1575       e = Ops.size();
1576       continue;
1577     }
1578 
1579     // Check for X and -X or X and ~X in the operand list.
1580     Value *X;
1581     if (!match(TheOp, m_Neg(m_Value(X))) && !match(TheOp, m_Not(m_Value(X))) &&
1582         !match(TheOp, m_FNeg(m_Value(X))))
1583       continue;
1584 
1585     unsigned FoundX = FindInOperandList(Ops, i, X);
1586     if (FoundX == i)
1587       continue;
1588 
1589     // Remove X and -X from the operand list.
1590     if (Ops.size() == 2 &&
1591         (match(TheOp, m_Neg(m_Value())) || match(TheOp, m_FNeg(m_Value()))))
1592       return Constant::getNullValue(X->getType());
1593 
1594     // Remove X and ~X from the operand list.
1595     if (Ops.size() == 2 && match(TheOp, m_Not(m_Value())))
1596       return Constant::getAllOnesValue(X->getType());
1597 
1598     Ops.erase(Ops.begin()+i);
1599     if (i < FoundX)
1600       --FoundX;
1601     else
1602       --i;   // Need to back up an extra one.
1603     Ops.erase(Ops.begin()+FoundX);
1604     ++NumAnnihil;
1605     --i;     // Revisit element.
1606     e -= 2;  // Removed two elements.
1607 
1608     // if X and ~X we append -1 to the operand list.
1609     if (match(TheOp, m_Not(m_Value()))) {
1610       Value *V = Constant::getAllOnesValue(X->getType());
1611       Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1612       e += 1;
1613     }
1614   }
1615 
1616   // Scan the operand list, checking to see if there are any common factors
1617   // between operands.  Consider something like A*A+A*B*C+D.  We would like to
1618   // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1619   // To efficiently find this, we count the number of times a factor occurs
1620   // for any ADD operands that are MULs.
1621   DenseMap<Value*, unsigned> FactorOccurrences;
1622 
1623   // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1624   // where they are actually the same multiply.
1625   unsigned MaxOcc = 0;
1626   Value *MaxOccVal = nullptr;
1627   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1628     BinaryOperator *BOp =
1629         isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1630     if (!BOp)
1631       continue;
1632 
1633     // Compute all of the factors of this added value.
1634     SmallVector<Value*, 8> Factors;
1635     FindSingleUseMultiplyFactors(BOp, Factors);
1636     assert(Factors.size() > 1 && "Bad linearize!");
1637 
1638     // Add one to FactorOccurrences for each unique factor in this op.
1639     SmallPtrSet<Value*, 8> Duplicates;
1640     for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1641       Value *Factor = Factors[i];
1642       if (!Duplicates.insert(Factor).second)
1643         continue;
1644 
1645       unsigned Occ = ++FactorOccurrences[Factor];
1646       if (Occ > MaxOcc) {
1647         MaxOcc = Occ;
1648         MaxOccVal = Factor;
1649       }
1650 
1651       // If Factor is a negative constant, add the negated value as a factor
1652       // because we can percolate the negate out.  Watch for minint, which
1653       // cannot be positivified.
1654       if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
1655         if (CI->isNegative() && !CI->isMinValue(true)) {
1656           Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1657           if (!Duplicates.insert(Factor).second)
1658             continue;
1659           unsigned Occ = ++FactorOccurrences[Factor];
1660           if (Occ > MaxOcc) {
1661             MaxOcc = Occ;
1662             MaxOccVal = Factor;
1663           }
1664         }
1665       } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1666         if (CF->isNegative()) {
1667           APFloat F(CF->getValueAPF());
1668           F.changeSign();
1669           Factor = ConstantFP::get(CF->getContext(), F);
1670           if (!Duplicates.insert(Factor).second)
1671             continue;
1672           unsigned Occ = ++FactorOccurrences[Factor];
1673           if (Occ > MaxOcc) {
1674             MaxOcc = Occ;
1675             MaxOccVal = Factor;
1676           }
1677         }
1678       }
1679     }
1680   }
1681 
1682   // If any factor occurred more than one time, we can pull it out.
1683   if (MaxOcc > 1) {
1684     LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal
1685                       << '\n');
1686     ++NumFactor;
1687 
1688     // Create a new instruction that uses the MaxOccVal twice.  If we don't do
1689     // this, we could otherwise run into situations where removing a factor
1690     // from an expression will drop a use of maxocc, and this can cause
1691     // RemoveFactorFromExpression on successive values to behave differently.
1692     Instruction *DummyInst =
1693         I->getType()->isIntOrIntVectorTy()
1694             ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1695             : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1696 
1697     SmallVector<WeakTrackingVH, 4> NewMulOps;
1698     for (unsigned i = 0; i != Ops.size(); ++i) {
1699       // Only try to remove factors from expressions we're allowed to.
1700       BinaryOperator *BOp =
1701           isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1702       if (!BOp)
1703         continue;
1704 
1705       if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1706         // The factorized operand may occur several times.  Convert them all in
1707         // one fell swoop.
1708         for (unsigned j = Ops.size(); j != i;) {
1709           --j;
1710           if (Ops[j].Op == Ops[i].Op) {
1711             NewMulOps.push_back(V);
1712             Ops.erase(Ops.begin()+j);
1713           }
1714         }
1715         --i;
1716       }
1717     }
1718 
1719     // No need for extra uses anymore.
1720     DummyInst->deleteValue();
1721 
1722     unsigned NumAddedValues = NewMulOps.size();
1723     Value *V = EmitAddTreeOfValues(I, NewMulOps);
1724 
1725     // Now that we have inserted the add tree, optimize it. This allows us to
1726     // handle cases that require multiple factoring steps, such as this:
1727     // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
1728     assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1729     (void)NumAddedValues;
1730     if (Instruction *VI = dyn_cast<Instruction>(V))
1731       RedoInsts.insert(VI);
1732 
1733     // Create the multiply.
1734     Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I);
1735 
1736     // Rerun associate on the multiply in case the inner expression turned into
1737     // a multiply.  We want to make sure that we keep things in canonical form.
1738     RedoInsts.insert(V2);
1739 
1740     // If every add operand included the factor (e.g. "A*B + A*C"), then the
1741     // entire result expression is just the multiply "A*(B+C)".
1742     if (Ops.empty())
1743       return V2;
1744 
1745     // Otherwise, we had some input that didn't have the factor, such as
1746     // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
1747     // things being added by this operation.
1748     Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1749   }
1750 
1751   return nullptr;
1752 }
1753 
1754 /// Build up a vector of value/power pairs factoring a product.
1755 ///
1756 /// Given a series of multiplication operands, build a vector of factors and
1757 /// the powers each is raised to when forming the final product. Sort them in
1758 /// the order of descending power.
1759 ///
1760 ///      (x*x)          -> [(x, 2)]
1761 ///     ((x*x)*x)       -> [(x, 3)]
1762 ///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1763 ///
1764 /// \returns Whether any factors have a power greater than one.
1765 static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1766                                    SmallVectorImpl<Factor> &Factors) {
1767   // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1768   // Compute the sum of powers of simplifiable factors.
1769   unsigned FactorPowerSum = 0;
1770   for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1771     Value *Op = Ops[Idx-1].Op;
1772 
1773     // Count the number of occurrences of this value.
1774     unsigned Count = 1;
1775     for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1776       ++Count;
1777     // Track for simplification all factors which occur 2 or more times.
1778     if (Count > 1)
1779       FactorPowerSum += Count;
1780   }
1781 
1782   // We can only simplify factors if the sum of the powers of our simplifiable
1783   // factors is 4 or higher. When that is the case, we will *always* have
1784   // a simplification. This is an important invariant to prevent cyclicly
1785   // trying to simplify already minimal formations.
1786   if (FactorPowerSum < 4)
1787     return false;
1788 
1789   // Now gather the simplifiable factors, removing them from Ops.
1790   FactorPowerSum = 0;
1791   for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1792     Value *Op = Ops[Idx-1].Op;
1793 
1794     // Count the number of occurrences of this value.
1795     unsigned Count = 1;
1796     for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1797       ++Count;
1798     if (Count == 1)
1799       continue;
1800     // Move an even number of occurrences to Factors.
1801     Count &= ~1U;
1802     Idx -= Count;
1803     FactorPowerSum += Count;
1804     Factors.push_back(Factor(Op, Count));
1805     Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1806   }
1807 
1808   // None of the adjustments above should have reduced the sum of factor powers
1809   // below our mininum of '4'.
1810   assert(FactorPowerSum >= 4);
1811 
1812   llvm::stable_sort(Factors, [](const Factor &LHS, const Factor &RHS) {
1813     return LHS.Power > RHS.Power;
1814   });
1815   return true;
1816 }
1817 
1818 /// Build a tree of multiplies, computing the product of Ops.
1819 static Value *buildMultiplyTree(IRBuilderBase &Builder,
1820                                 SmallVectorImpl<Value*> &Ops) {
1821   if (Ops.size() == 1)
1822     return Ops.back();
1823 
1824   Value *LHS = Ops.pop_back_val();
1825   do {
1826     if (LHS->getType()->isIntOrIntVectorTy())
1827       LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1828     else
1829       LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
1830   } while (!Ops.empty());
1831 
1832   return LHS;
1833 }
1834 
1835 /// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1836 ///
1837 /// Given a vector of values raised to various powers, where no two values are
1838 /// equal and the powers are sorted in decreasing order, compute the minimal
1839 /// DAG of multiplies to compute the final product, and return that product
1840 /// value.
1841 Value *
1842 ReassociatePass::buildMinimalMultiplyDAG(IRBuilderBase &Builder,
1843                                          SmallVectorImpl<Factor> &Factors) {
1844   assert(Factors[0].Power);
1845   SmallVector<Value *, 4> OuterProduct;
1846   for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1847        Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1848     if (Factors[Idx].Power != Factors[LastIdx].Power) {
1849       LastIdx = Idx;
1850       continue;
1851     }
1852 
1853     // We want to multiply across all the factors with the same power so that
1854     // we can raise them to that power as a single entity. Build a mini tree
1855     // for that.
1856     SmallVector<Value *, 4> InnerProduct;
1857     InnerProduct.push_back(Factors[LastIdx].Base);
1858     do {
1859       InnerProduct.push_back(Factors[Idx].Base);
1860       ++Idx;
1861     } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1862 
1863     // Reset the base value of the first factor to the new expression tree.
1864     // We'll remove all the factors with the same power in a second pass.
1865     Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1866     if (Instruction *MI = dyn_cast<Instruction>(M))
1867       RedoInsts.insert(MI);
1868 
1869     LastIdx = Idx;
1870   }
1871   // Unique factors with equal powers -- we've folded them into the first one's
1872   // base.
1873   Factors.erase(std::unique(Factors.begin(), Factors.end(),
1874                             [](const Factor &LHS, const Factor &RHS) {
1875                               return LHS.Power == RHS.Power;
1876                             }),
1877                 Factors.end());
1878 
1879   // Iteratively collect the base of each factor with an add power into the
1880   // outer product, and halve each power in preparation for squaring the
1881   // expression.
1882   for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1883     if (Factors[Idx].Power & 1)
1884       OuterProduct.push_back(Factors[Idx].Base);
1885     Factors[Idx].Power >>= 1;
1886   }
1887   if (Factors[0].Power) {
1888     Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1889     OuterProduct.push_back(SquareRoot);
1890     OuterProduct.push_back(SquareRoot);
1891   }
1892   if (OuterProduct.size() == 1)
1893     return OuterProduct.front();
1894 
1895   Value *V = buildMultiplyTree(Builder, OuterProduct);
1896   return V;
1897 }
1898 
1899 Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
1900                                     SmallVectorImpl<ValueEntry> &Ops) {
1901   // We can only optimize the multiplies when there is a chain of more than
1902   // three, such that a balanced tree might require fewer total multiplies.
1903   if (Ops.size() < 4)
1904     return nullptr;
1905 
1906   // Try to turn linear trees of multiplies without other uses of the
1907   // intermediate stages into minimal multiply DAGs with perfect sub-expression
1908   // re-use.
1909   SmallVector<Factor, 4> Factors;
1910   if (!collectMultiplyFactors(Ops, Factors))
1911     return nullptr; // All distinct factors, so nothing left for us to do.
1912 
1913   IRBuilder<> Builder(I);
1914   // The reassociate transformation for FP operations is performed only
1915   // if unsafe algebra is permitted by FastMathFlags. Propagate those flags
1916   // to the newly generated operations.
1917   if (auto FPI = dyn_cast<FPMathOperator>(I))
1918     Builder.setFastMathFlags(FPI->getFastMathFlags());
1919 
1920   Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1921   if (Ops.empty())
1922     return V;
1923 
1924   ValueEntry NewEntry = ValueEntry(getRank(V), V);
1925   Ops.insert(llvm::lower_bound(Ops, NewEntry), NewEntry);
1926   return nullptr;
1927 }
1928 
1929 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
1930                                            SmallVectorImpl<ValueEntry> &Ops) {
1931   // Now that we have the linearized expression tree, try to optimize it.
1932   // Start by folding any constants that we found.
1933   const DataLayout &DL = I->getModule()->getDataLayout();
1934   Constant *Cst = nullptr;
1935   unsigned Opcode = I->getOpcode();
1936   while (!Ops.empty()) {
1937     if (auto *C = dyn_cast<Constant>(Ops.back().Op)) {
1938       if (!Cst) {
1939         Ops.pop_back();
1940         Cst = C;
1941         continue;
1942       }
1943       if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, C, Cst, DL)) {
1944         Ops.pop_back();
1945         Cst = Res;
1946         continue;
1947       }
1948     }
1949     break;
1950   }
1951   // If there was nothing but constants then we are done.
1952   if (Ops.empty())
1953     return Cst;
1954 
1955   // Put the combined constant back at the end of the operand list, except if
1956   // there is no point.  For example, an add of 0 gets dropped here, while a
1957   // multiplication by zero turns the whole expression into zero.
1958   if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1959     if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1960       return Cst;
1961     Ops.push_back(ValueEntry(0, Cst));
1962   }
1963 
1964   if (Ops.size() == 1) return Ops[0].Op;
1965 
1966   // Handle destructive annihilation due to identities between elements in the
1967   // argument list here.
1968   unsigned NumOps = Ops.size();
1969   switch (Opcode) {
1970   default: break;
1971   case Instruction::And:
1972   case Instruction::Or:
1973     if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1974       return Result;
1975     break;
1976 
1977   case Instruction::Xor:
1978     if (Value *Result = OptimizeXor(I, Ops))
1979       return Result;
1980     break;
1981 
1982   case Instruction::Add:
1983   case Instruction::FAdd:
1984     if (Value *Result = OptimizeAdd(I, Ops))
1985       return Result;
1986     break;
1987 
1988   case Instruction::Mul:
1989   case Instruction::FMul:
1990     if (Value *Result = OptimizeMul(I, Ops))
1991       return Result;
1992     break;
1993   }
1994 
1995   if (Ops.size() != NumOps)
1996     return OptimizeExpression(I, Ops);
1997   return nullptr;
1998 }
1999 
2000 // Remove dead instructions and if any operands are trivially dead add them to
2001 // Insts so they will be removed as well.
2002 void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I,
2003                                                 OrderedSet &Insts) {
2004   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
2005   SmallVector<Value *, 4> Ops(I->operands());
2006   ValueRankMap.erase(I);
2007   Insts.remove(I);
2008   RedoInsts.remove(I);
2009   llvm::salvageDebugInfo(*I);
2010   I->eraseFromParent();
2011   for (auto Op : Ops)
2012     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
2013       if (OpInst->use_empty())
2014         Insts.insert(OpInst);
2015 }
2016 
2017 /// Zap the given instruction, adding interesting operands to the work list.
2018 void ReassociatePass::EraseInst(Instruction *I) {
2019   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
2020   LLVM_DEBUG(dbgs() << "Erasing dead inst: "; I->dump());
2021 
2022   SmallVector<Value *, 8> Ops(I->operands());
2023   // Erase the dead instruction.
2024   ValueRankMap.erase(I);
2025   RedoInsts.remove(I);
2026   llvm::salvageDebugInfo(*I);
2027   I->eraseFromParent();
2028   // Optimize its operands.
2029   SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
2030   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2031     if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
2032       // If this is a node in an expression tree, climb to the expression root
2033       // and add that since that's where optimization actually happens.
2034       unsigned Opcode = Op->getOpcode();
2035       while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
2036              Visited.insert(Op).second)
2037         Op = Op->user_back();
2038 
2039       // The instruction we're going to push may be coming from a
2040       // dead block, and Reassociate skips the processing of unreachable
2041       // blocks because it's a waste of time and also because it can
2042       // lead to infinite loop due to LLVM's non-standard definition
2043       // of dominance.
2044       if (ValueRankMap.find(Op) != ValueRankMap.end())
2045         RedoInsts.insert(Op);
2046     }
2047 
2048   MadeChange = true;
2049 }
2050 
2051 /// Recursively analyze an expression to build a list of instructions that have
2052 /// negative floating-point constant operands. The caller can then transform
2053 /// the list to create positive constants for better reassociation and CSE.
2054 static void getNegatibleInsts(Value *V,
2055                               SmallVectorImpl<Instruction *> &Candidates) {
2056   // Handle only one-use instructions. Combining negations does not justify
2057   // replicating instructions.
2058   Instruction *I;
2059   if (!match(V, m_OneUse(m_Instruction(I))))
2060     return;
2061 
2062   // Handle expressions of multiplications and divisions.
2063   // TODO: This could look through floating-point casts.
2064   const APFloat *C;
2065   switch (I->getOpcode()) {
2066     case Instruction::FMul:
2067       // Not expecting non-canonical code here. Bail out and wait.
2068       if (match(I->getOperand(0), m_Constant()))
2069         break;
2070 
2071       if (match(I->getOperand(1), m_APFloat(C)) && C->isNegative()) {
2072         Candidates.push_back(I);
2073         LLVM_DEBUG(dbgs() << "FMul with negative constant: " << *I << '\n');
2074       }
2075       getNegatibleInsts(I->getOperand(0), Candidates);
2076       getNegatibleInsts(I->getOperand(1), Candidates);
2077       break;
2078     case Instruction::FDiv:
2079       // Not expecting non-canonical code here. Bail out and wait.
2080       if (match(I->getOperand(0), m_Constant()) &&
2081           match(I->getOperand(1), m_Constant()))
2082         break;
2083 
2084       if ((match(I->getOperand(0), m_APFloat(C)) && C->isNegative()) ||
2085           (match(I->getOperand(1), m_APFloat(C)) && C->isNegative())) {
2086         Candidates.push_back(I);
2087         LLVM_DEBUG(dbgs() << "FDiv with negative constant: " << *I << '\n');
2088       }
2089       getNegatibleInsts(I->getOperand(0), Candidates);
2090       getNegatibleInsts(I->getOperand(1), Candidates);
2091       break;
2092     default:
2093       break;
2094   }
2095 }
2096 
2097 /// Given an fadd/fsub with an operand that is a one-use instruction
2098 /// (the fadd/fsub), try to change negative floating-point constants into
2099 /// positive constants to increase potential for reassociation and CSE.
2100 Instruction *ReassociatePass::canonicalizeNegFPConstantsForOp(Instruction *I,
2101                                                               Instruction *Op,
2102                                                               Value *OtherOp) {
2103   assert((I->getOpcode() == Instruction::FAdd ||
2104           I->getOpcode() == Instruction::FSub) && "Expected fadd/fsub");
2105 
2106   // Collect instructions with negative FP constants from the subtree that ends
2107   // in Op.
2108   SmallVector<Instruction *, 4> Candidates;
2109   getNegatibleInsts(Op, Candidates);
2110   if (Candidates.empty())
2111     return nullptr;
2112 
2113   // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the
2114   // resulting subtract will be broken up later.  This can get us into an
2115   // infinite loop during reassociation.
2116   bool IsFSub = I->getOpcode() == Instruction::FSub;
2117   bool NeedsSubtract = !IsFSub && Candidates.size() % 2 == 1;
2118   if (NeedsSubtract && ShouldBreakUpSubtract(I))
2119     return nullptr;
2120 
2121   for (Instruction *Negatible : Candidates) {
2122     const APFloat *C;
2123     if (match(Negatible->getOperand(0), m_APFloat(C))) {
2124       assert(!match(Negatible->getOperand(1), m_Constant()) &&
2125              "Expecting only 1 constant operand");
2126       assert(C->isNegative() && "Expected negative FP constant");
2127       Negatible->setOperand(0, ConstantFP::get(Negatible->getType(), abs(*C)));
2128       MadeChange = true;
2129     }
2130     if (match(Negatible->getOperand(1), m_APFloat(C))) {
2131       assert(!match(Negatible->getOperand(0), m_Constant()) &&
2132              "Expecting only 1 constant operand");
2133       assert(C->isNegative() && "Expected negative FP constant");
2134       Negatible->setOperand(1, ConstantFP::get(Negatible->getType(), abs(*C)));
2135       MadeChange = true;
2136     }
2137   }
2138   assert(MadeChange == true && "Negative constant candidate was not changed");
2139 
2140   // Negations cancelled out.
2141   if (Candidates.size() % 2 == 0)
2142     return I;
2143 
2144   // Negate the final operand in the expression by flipping the opcode of this
2145   // fadd/fsub.
2146   assert(Candidates.size() % 2 == 1 && "Expected odd number");
2147   IRBuilder<> Builder(I);
2148   Value *NewInst = IsFSub ? Builder.CreateFAddFMF(OtherOp, Op, I)
2149                           : Builder.CreateFSubFMF(OtherOp, Op, I);
2150   I->replaceAllUsesWith(NewInst);
2151   RedoInsts.insert(I);
2152   return dyn_cast<Instruction>(NewInst);
2153 }
2154 
2155 /// Canonicalize expressions that contain a negative floating-point constant
2156 /// of the following form:
2157 ///   OtherOp + (subtree) -> OtherOp {+/-} (canonical subtree)
2158 ///   (subtree) + OtherOp -> OtherOp {+/-} (canonical subtree)
2159 ///   OtherOp - (subtree) -> OtherOp {+/-} (canonical subtree)
2160 ///
2161 /// The fadd/fsub opcode may be switched to allow folding a negation into the
2162 /// input instruction.
2163 Instruction *ReassociatePass::canonicalizeNegFPConstants(Instruction *I) {
2164   LLVM_DEBUG(dbgs() << "Combine negations for: " << *I << '\n');
2165   Value *X;
2166   Instruction *Op;
2167   if (match(I, m_FAdd(m_Value(X), m_OneUse(m_Instruction(Op)))))
2168     if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
2169       I = R;
2170   if (match(I, m_FAdd(m_OneUse(m_Instruction(Op)), m_Value(X))))
2171     if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
2172       I = R;
2173   if (match(I, m_FSub(m_Value(X), m_OneUse(m_Instruction(Op)))))
2174     if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
2175       I = R;
2176   return I;
2177 }
2178 
2179 /// Inspect and optimize the given instruction. Note that erasing
2180 /// instructions is not allowed.
2181 void ReassociatePass::OptimizeInst(Instruction *I) {
2182   // Only consider operations that we understand.
2183   if (!isa<UnaryOperator>(I) && !isa<BinaryOperator>(I))
2184     return;
2185 
2186   if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
2187     // If an operand of this shift is a reassociable multiply, or if the shift
2188     // is used by a reassociable multiply or add, turn into a multiply.
2189     if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
2190         (I->hasOneUse() &&
2191          (isReassociableOp(I->user_back(), Instruction::Mul) ||
2192           isReassociableOp(I->user_back(), Instruction::Add)))) {
2193       Instruction *NI = ConvertShiftToMul(I);
2194       RedoInsts.insert(I);
2195       MadeChange = true;
2196       I = NI;
2197     }
2198 
2199   // Commute binary operators, to canonicalize the order of their operands.
2200   // This can potentially expose more CSE opportunities, and makes writing other
2201   // transformations simpler.
2202   if (I->isCommutative())
2203     canonicalizeOperands(I);
2204 
2205   // Canonicalize negative constants out of expressions.
2206   if (Instruction *Res = canonicalizeNegFPConstants(I))
2207     I = Res;
2208 
2209   // Don't optimize floating-point instructions unless they are 'fast'.
2210   if (I->getType()->isFPOrFPVectorTy() && !I->isFast())
2211     return;
2212 
2213   // Do not reassociate boolean (i1) expressions.  We want to preserve the
2214   // original order of evaluation for short-circuited comparisons that
2215   // SimplifyCFG has folded to AND/OR expressions.  If the expression
2216   // is not further optimized, it is likely to be transformed back to a
2217   // short-circuited form for code gen, and the source order may have been
2218   // optimized for the most likely conditions.
2219   if (I->getType()->isIntegerTy(1))
2220     return;
2221 
2222   // If this is a bitwise or instruction of operands
2223   // with no common bits set, convert it to X+Y.
2224   if (I->getOpcode() == Instruction::Or &&
2225       shouldConvertOrWithNoCommonBitsToAdd(I) && !isLoadCombineCandidate(I) &&
2226       haveNoCommonBitsSet(I->getOperand(0), I->getOperand(1),
2227                           I->getModule()->getDataLayout(), /*AC=*/nullptr, I,
2228                           /*DT=*/nullptr)) {
2229     Instruction *NI = convertOrWithNoCommonBitsToAdd(I);
2230     RedoInsts.insert(I);
2231     MadeChange = true;
2232     I = NI;
2233   }
2234 
2235   // If this is a subtract instruction which is not already in negate form,
2236   // see if we can convert it to X+-Y.
2237   if (I->getOpcode() == Instruction::Sub) {
2238     if (ShouldBreakUpSubtract(I)) {
2239       Instruction *NI = BreakUpSubtract(I, RedoInsts);
2240       RedoInsts.insert(I);
2241       MadeChange = true;
2242       I = NI;
2243     } else if (match(I, m_Neg(m_Value()))) {
2244       // Otherwise, this is a negation.  See if the operand is a multiply tree
2245       // and if this is not an inner node of a multiply tree.
2246       if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2247           (!I->hasOneUse() ||
2248            !isReassociableOp(I->user_back(), Instruction::Mul))) {
2249         Instruction *NI = LowerNegateToMultiply(I);
2250         // If the negate was simplified, revisit the users to see if we can
2251         // reassociate further.
2252         for (User *U : NI->users()) {
2253           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2254             RedoInsts.insert(Tmp);
2255         }
2256         RedoInsts.insert(I);
2257         MadeChange = true;
2258         I = NI;
2259       }
2260     }
2261   } else if (I->getOpcode() == Instruction::FNeg ||
2262              I->getOpcode() == Instruction::FSub) {
2263     if (ShouldBreakUpSubtract(I)) {
2264       Instruction *NI = BreakUpSubtract(I, RedoInsts);
2265       RedoInsts.insert(I);
2266       MadeChange = true;
2267       I = NI;
2268     } else if (match(I, m_FNeg(m_Value()))) {
2269       // Otherwise, this is a negation.  See if the operand is a multiply tree
2270       // and if this is not an inner node of a multiply tree.
2271       Value *Op = isa<BinaryOperator>(I) ? I->getOperand(1) :
2272                                            I->getOperand(0);
2273       if (isReassociableOp(Op, Instruction::FMul) &&
2274           (!I->hasOneUse() ||
2275            !isReassociableOp(I->user_back(), Instruction::FMul))) {
2276         // If the negate was simplified, revisit the users to see if we can
2277         // reassociate further.
2278         Instruction *NI = LowerNegateToMultiply(I);
2279         for (User *U : NI->users()) {
2280           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2281             RedoInsts.insert(Tmp);
2282         }
2283         RedoInsts.insert(I);
2284         MadeChange = true;
2285         I = NI;
2286       }
2287     }
2288   }
2289 
2290   // If this instruction is an associative binary operator, process it.
2291   if (!I->isAssociative()) return;
2292   BinaryOperator *BO = cast<BinaryOperator>(I);
2293 
2294   // If this is an interior node of a reassociable tree, ignore it until we
2295   // get to the root of the tree, to avoid N^2 analysis.
2296   unsigned Opcode = BO->getOpcode();
2297   if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2298     // During the initial run we will get to the root of the tree.
2299     // But if we get here while we are redoing instructions, there is no
2300     // guarantee that the root will be visited. So Redo later
2301     if (BO->user_back() != BO &&
2302         BO->getParent() == BO->user_back()->getParent())
2303       RedoInsts.insert(BO->user_back());
2304     return;
2305   }
2306 
2307   // If this is an add tree that is used by a sub instruction, ignore it
2308   // until we process the subtract.
2309   if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
2310       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
2311     return;
2312   if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2313       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2314     return;
2315 
2316   ReassociateExpression(BO);
2317 }
2318 
2319 void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
2320   // First, walk the expression tree, linearizing the tree, collecting the
2321   // operand information.
2322   SmallVector<RepeatedValue, 8> Tree;
2323   MadeChange |= LinearizeExprTree(I, Tree);
2324   SmallVector<ValueEntry, 8> Ops;
2325   Ops.reserve(Tree.size());
2326   for (const RepeatedValue &E : Tree)
2327     Ops.append(E.second.getZExtValue(), ValueEntry(getRank(E.first), E.first));
2328 
2329   LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2330 
2331   // Now that we have linearized the tree to a list and have gathered all of
2332   // the operands and their ranks, sort the operands by their rank.  Use a
2333   // stable_sort so that values with equal ranks will have their relative
2334   // positions maintained (and so the compiler is deterministic).  Note that
2335   // this sorts so that the highest ranking values end up at the beginning of
2336   // the vector.
2337   llvm::stable_sort(Ops);
2338 
2339   // Now that we have the expression tree in a convenient
2340   // sorted form, optimize it globally if possible.
2341   if (Value *V = OptimizeExpression(I, Ops)) {
2342     if (V == I)
2343       // Self-referential expression in unreachable code.
2344       return;
2345     // This expression tree simplified to something that isn't a tree,
2346     // eliminate it.
2347     LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
2348     I->replaceAllUsesWith(V);
2349     if (Instruction *VI = dyn_cast<Instruction>(V))
2350       if (I->getDebugLoc())
2351         VI->setDebugLoc(I->getDebugLoc());
2352     RedoInsts.insert(I);
2353     ++NumAnnihil;
2354     return;
2355   }
2356 
2357   // We want to sink immediates as deeply as possible except in the case where
2358   // this is a multiply tree used only by an add, and the immediate is a -1.
2359   // In this case we reassociate to put the negation on the outside so that we
2360   // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
2361   if (I->hasOneUse()) {
2362     if (I->getOpcode() == Instruction::Mul &&
2363         cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2364         isa<ConstantInt>(Ops.back().Op) &&
2365         cast<ConstantInt>(Ops.back().Op)->isMinusOne()) {
2366       ValueEntry Tmp = Ops.pop_back_val();
2367       Ops.insert(Ops.begin(), Tmp);
2368     } else if (I->getOpcode() == Instruction::FMul &&
2369                cast<Instruction>(I->user_back())->getOpcode() ==
2370                    Instruction::FAdd &&
2371                isa<ConstantFP>(Ops.back().Op) &&
2372                cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2373       ValueEntry Tmp = Ops.pop_back_val();
2374       Ops.insert(Ops.begin(), Tmp);
2375     }
2376   }
2377 
2378   LLVM_DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
2379 
2380   if (Ops.size() == 1) {
2381     if (Ops[0].Op == I)
2382       // Self-referential expression in unreachable code.
2383       return;
2384 
2385     // This expression tree simplified to something that isn't a tree,
2386     // eliminate it.
2387     I->replaceAllUsesWith(Ops[0].Op);
2388     if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2389       OI->setDebugLoc(I->getDebugLoc());
2390     RedoInsts.insert(I);
2391     return;
2392   }
2393 
2394   if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) {
2395     // Find the pair with the highest count in the pairmap and move it to the
2396     // back of the list so that it can later be CSE'd.
2397     // example:
2398     //   a*b*c*d*e
2399     // if c*e is the most "popular" pair, we can express this as
2400     //   (((c*e)*d)*b)*a
2401     unsigned Max = 1;
2402     unsigned BestRank = 0;
2403     std::pair<unsigned, unsigned> BestPair;
2404     unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin;
2405     for (unsigned i = 0; i < Ops.size() - 1; ++i)
2406       for (unsigned j = i + 1; j < Ops.size(); ++j) {
2407         unsigned Score = 0;
2408         Value *Op0 = Ops[i].Op;
2409         Value *Op1 = Ops[j].Op;
2410         if (std::less<Value *>()(Op1, Op0))
2411           std::swap(Op0, Op1);
2412         auto it = PairMap[Idx].find({Op0, Op1});
2413         if (it != PairMap[Idx].end()) {
2414           // Functions like BreakUpSubtract() can erase the Values we're using
2415           // as keys and create new Values after we built the PairMap. There's a
2416           // small chance that the new nodes can have the same address as
2417           // something already in the table. We shouldn't accumulate the stored
2418           // score in that case as it refers to the wrong Value.
2419           if (it->second.isValid())
2420             Score += it->second.Score;
2421         }
2422 
2423         unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank);
2424         if (Score > Max || (Score == Max && MaxRank < BestRank)) {
2425           BestPair = {i, j};
2426           Max = Score;
2427           BestRank = MaxRank;
2428         }
2429       }
2430     if (Max > 1) {
2431       auto Op0 = Ops[BestPair.first];
2432       auto Op1 = Ops[BestPair.second];
2433       Ops.erase(&Ops[BestPair.second]);
2434       Ops.erase(&Ops[BestPair.first]);
2435       Ops.push_back(Op0);
2436       Ops.push_back(Op1);
2437     }
2438   }
2439   // Now that we ordered and optimized the expressions, splat them back into
2440   // the expression tree, removing any unneeded nodes.
2441   RewriteExprTree(I, Ops);
2442 }
2443 
2444 void
2445 ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) {
2446   // Make a "pairmap" of how often each operand pair occurs.
2447   for (BasicBlock *BI : RPOT) {
2448     for (Instruction &I : *BI) {
2449       if (!I.isAssociative())
2450         continue;
2451 
2452       // Ignore nodes that aren't at the root of trees.
2453       if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode())
2454         continue;
2455 
2456       // Collect all operands in a single reassociable expression.
2457       // Since Reassociate has already been run once, we can assume things
2458       // are already canonical according to Reassociation's regime.
2459       SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) };
2460       SmallVector<Value *, 8> Ops;
2461       while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) {
2462         Value *Op = Worklist.pop_back_val();
2463         Instruction *OpI = dyn_cast<Instruction>(Op);
2464         if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) {
2465           Ops.push_back(Op);
2466           continue;
2467         }
2468         // Be paranoid about self-referencing expressions in unreachable code.
2469         if (OpI->getOperand(0) != OpI)
2470           Worklist.push_back(OpI->getOperand(0));
2471         if (OpI->getOperand(1) != OpI)
2472           Worklist.push_back(OpI->getOperand(1));
2473       }
2474       // Skip extremely long expressions.
2475       if (Ops.size() > GlobalReassociateLimit)
2476         continue;
2477 
2478       // Add all pairwise combinations of operands to the pair map.
2479       unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin;
2480       SmallSet<std::pair<Value *, Value*>, 32> Visited;
2481       for (unsigned i = 0; i < Ops.size() - 1; ++i) {
2482         for (unsigned j = i + 1; j < Ops.size(); ++j) {
2483           // Canonicalize operand orderings.
2484           Value *Op0 = Ops[i];
2485           Value *Op1 = Ops[j];
2486           if (std::less<Value *>()(Op1, Op0))
2487             std::swap(Op0, Op1);
2488           if (!Visited.insert({Op0, Op1}).second)
2489             continue;
2490           auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, {Op0, Op1, 1}});
2491           if (!res.second) {
2492             // If either key value has been erased then we've got the same
2493             // address by coincidence. That can't happen here because nothing is
2494             // erasing values but it can happen by the time we're querying the
2495             // map.
2496             assert(res.first->second.isValid() && "WeakVH invalidated");
2497             ++res.first->second.Score;
2498           }
2499         }
2500       }
2501     }
2502   }
2503 }
2504 
2505 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
2506   // Get the functions basic blocks in Reverse Post Order. This order is used by
2507   // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic
2508   // blocks (it has been seen that the analysis in this pass could hang when
2509   // analysing dead basic blocks).
2510   ReversePostOrderTraversal<Function *> RPOT(&F);
2511 
2512   // Calculate the rank map for F.
2513   BuildRankMap(F, RPOT);
2514 
2515   // Build the pair map before running reassociate.
2516   // Technically this would be more accurate if we did it after one round
2517   // of reassociation, but in practice it doesn't seem to help much on
2518   // real-world code, so don't waste the compile time running reassociate
2519   // twice.
2520   // If a user wants, they could expicitly run reassociate twice in their
2521   // pass pipeline for further potential gains.
2522   // It might also be possible to update the pair map during runtime, but the
2523   // overhead of that may be large if there's many reassociable chains.
2524   BuildPairMap(RPOT);
2525 
2526   MadeChange = false;
2527 
2528   // Traverse the same blocks that were analysed by BuildRankMap.
2529   for (BasicBlock *BI : RPOT) {
2530     assert(RankMap.count(&*BI) && "BB should be ranked.");
2531     // Optimize every instruction in the basic block.
2532     for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;)
2533       if (isInstructionTriviallyDead(&*II)) {
2534         EraseInst(&*II++);
2535       } else {
2536         OptimizeInst(&*II);
2537         assert(II->getParent() == &*BI && "Moved to a different block!");
2538         ++II;
2539       }
2540 
2541     // Make a copy of all the instructions to be redone so we can remove dead
2542     // instructions.
2543     OrderedSet ToRedo(RedoInsts);
2544     // Iterate over all instructions to be reevaluated and remove trivially dead
2545     // instructions. If any operand of the trivially dead instruction becomes
2546     // dead mark it for deletion as well. Continue this process until all
2547     // trivially dead instructions have been removed.
2548     while (!ToRedo.empty()) {
2549       Instruction *I = ToRedo.pop_back_val();
2550       if (isInstructionTriviallyDead(I)) {
2551         RecursivelyEraseDeadInsts(I, ToRedo);
2552         MadeChange = true;
2553       }
2554     }
2555 
2556     // Now that we have removed dead instructions, we can reoptimize the
2557     // remaining instructions.
2558     while (!RedoInsts.empty()) {
2559       Instruction *I = RedoInsts.front();
2560       RedoInsts.erase(RedoInsts.begin());
2561       if (isInstructionTriviallyDead(I))
2562         EraseInst(I);
2563       else
2564         OptimizeInst(I);
2565     }
2566   }
2567 
2568   // We are done with the rank map and pair map.
2569   RankMap.clear();
2570   ValueRankMap.clear();
2571   for (auto &Entry : PairMap)
2572     Entry.clear();
2573 
2574   if (MadeChange) {
2575     PreservedAnalyses PA;
2576     PA.preserveSet<CFGAnalyses>();
2577     return PA;
2578   }
2579 
2580   return PreservedAnalyses::all();
2581 }
2582 
2583 namespace {
2584 
2585   class ReassociateLegacyPass : public FunctionPass {
2586     ReassociatePass Impl;
2587 
2588   public:
2589     static char ID; // Pass identification, replacement for typeid
2590 
2591     ReassociateLegacyPass() : FunctionPass(ID) {
2592       initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
2593     }
2594 
2595     bool runOnFunction(Function &F) override {
2596       if (skipFunction(F))
2597         return false;
2598 
2599       FunctionAnalysisManager DummyFAM;
2600       auto PA = Impl.run(F, DummyFAM);
2601       return !PA.areAllPreserved();
2602     }
2603 
2604     void getAnalysisUsage(AnalysisUsage &AU) const override {
2605       AU.setPreservesCFG();
2606       AU.addPreserved<AAResultsWrapperPass>();
2607       AU.addPreserved<BasicAAWrapperPass>();
2608       AU.addPreserved<GlobalsAAWrapperPass>();
2609     }
2610   };
2611 
2612 } // end anonymous namespace
2613 
2614 char ReassociateLegacyPass::ID = 0;
2615 
2616 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
2617                 "Reassociate expressions", false, false)
2618 
2619 // Public interface to the Reassociate pass
2620 FunctionPass *llvm::createReassociatePass() {
2621   return new ReassociateLegacyPass();
2622 }
2623