1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass reassociates commutative expressions in an order that is designed
11 // to promote better constant propagation, GCSE, LICM, PRE, etc.
12 //
13 // For example: 4 + (x + 5) -> x + (4 + 5)
14 //
15 // In the implementation of this algorithm, constants are assigned rank = 0,
16 // function arguments are rank = 1, and other values are assigned ranks
17 // corresponding to the reverse post order traversal of current function
18 // (starting at 2), which effectively gives values in deep loops higher rank
19 // than values not in loops.
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/Transforms/Scalar/Reassociate.h"
24 #include "llvm/ADT/APFloat.h"
25 #include "llvm/ADT/APInt.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/SetVector.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/Analysis/GlobalsModRef.h"
34 #include "llvm/Analysis/Utils/Local.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/Argument.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/IRBuilder.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Operator.h"
48 #include "llvm/IR/PassManager.h"
49 #include "llvm/IR/PatternMatch.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/User.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/IR/ValueHandle.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Transforms/Scalar.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <utility>
63 
64 using namespace llvm;
65 using namespace reassociate;
66 
67 #define DEBUG_TYPE "reassociate"
68 
69 STATISTIC(NumChanged, "Number of insts reassociated");
70 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
71 STATISTIC(NumFactor , "Number of multiplies factored");
72 
73 #ifndef NDEBUG
74 /// Print out the expression identified in the Ops list.
75 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
76   Module *M = I->getModule();
77   dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
78        << *Ops[0].Op->getType() << '\t';
79   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
80     dbgs() << "[ ";
81     Ops[i].Op->printAsOperand(dbgs(), false, M);
82     dbgs() << ", #" << Ops[i].Rank << "] ";
83   }
84 }
85 #endif
86 
87 /// Utility class representing a non-constant Xor-operand. We classify
88 /// non-constant Xor-Operands into two categories:
89 ///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
90 ///  C2)
91 ///    C2.1) The operand is in the form of "X | C", where C is a non-zero
92 ///          constant.
93 ///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
94 ///          operand as "E | 0"
95 class llvm::reassociate::XorOpnd {
96 public:
97   XorOpnd(Value *V);
98 
99   bool isInvalid() const { return SymbolicPart == nullptr; }
100   bool isOrExpr() const { return isOr; }
101   Value *getValue() const { return OrigVal; }
102   Value *getSymbolicPart() const { return SymbolicPart; }
103   unsigned getSymbolicRank() const { return SymbolicRank; }
104   const APInt &getConstPart() const { return ConstPart; }
105 
106   void Invalidate() { SymbolicPart = OrigVal = nullptr; }
107   void setSymbolicRank(unsigned R) { SymbolicRank = R; }
108 
109 private:
110   Value *OrigVal;
111   Value *SymbolicPart;
112   APInt ConstPart;
113   unsigned SymbolicRank;
114   bool isOr;
115 };
116 
117 XorOpnd::XorOpnd(Value *V) {
118   assert(!isa<ConstantInt>(V) && "No ConstantInt");
119   OrigVal = V;
120   Instruction *I = dyn_cast<Instruction>(V);
121   SymbolicRank = 0;
122 
123   if (I && (I->getOpcode() == Instruction::Or ||
124             I->getOpcode() == Instruction::And)) {
125     Value *V0 = I->getOperand(0);
126     Value *V1 = I->getOperand(1);
127     const APInt *C;
128     if (match(V0, PatternMatch::m_APInt(C)))
129       std::swap(V0, V1);
130 
131     if (match(V1, PatternMatch::m_APInt(C))) {
132       ConstPart = *C;
133       SymbolicPart = V0;
134       isOr = (I->getOpcode() == Instruction::Or);
135       return;
136     }
137   }
138 
139   // view the operand as "V | 0"
140   SymbolicPart = V;
141   ConstPart = APInt::getNullValue(V->getType()->getScalarSizeInBits());
142   isOr = true;
143 }
144 
145 /// Return true if V is an instruction of the specified opcode and if it
146 /// only has one use.
147 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
148   auto *I = dyn_cast<Instruction>(V);
149   if (I && I->hasOneUse() && I->getOpcode() == Opcode)
150     if (!isa<FPMathOperator>(I) || I->isFast())
151       return cast<BinaryOperator>(I);
152   return nullptr;
153 }
154 
155 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
156                                         unsigned Opcode2) {
157   auto *I = dyn_cast<Instruction>(V);
158   if (I && I->hasOneUse() &&
159       (I->getOpcode() == Opcode1 || I->getOpcode() == Opcode2))
160     if (!isa<FPMathOperator>(I) || I->isFast())
161       return cast<BinaryOperator>(I);
162   return nullptr;
163 }
164 
165 void ReassociatePass::BuildRankMap(Function &F,
166                                    ReversePostOrderTraversal<Function*> &RPOT) {
167   unsigned Rank = 2;
168 
169   // Assign distinct ranks to function arguments.
170   for (auto &Arg : F.args()) {
171     ValueRankMap[&Arg] = ++Rank;
172     DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank
173                  << "\n");
174   }
175 
176   // Traverse basic blocks in ReversePostOrder
177   for (BasicBlock *BB : RPOT) {
178     unsigned BBRank = RankMap[BB] = ++Rank << 16;
179 
180     // Walk the basic block, adding precomputed ranks for any instructions that
181     // we cannot move.  This ensures that the ranks for these instructions are
182     // all different in the block.
183     for (Instruction &I : *BB)
184       if (mayBeMemoryDependent(I))
185         ValueRankMap[&I] = ++BBRank;
186   }
187 }
188 
189 unsigned ReassociatePass::getRank(Value *V) {
190   Instruction *I = dyn_cast<Instruction>(V);
191   if (!I) {
192     if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
193     return 0;  // Otherwise it's a global or constant, rank 0.
194   }
195 
196   if (unsigned Rank = ValueRankMap[I])
197     return Rank;    // Rank already known?
198 
199   // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
200   // we can reassociate expressions for code motion!  Since we do not recurse
201   // for PHI nodes, we cannot have infinite recursion here, because there
202   // cannot be loops in the value graph that do not go through PHI nodes.
203   unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
204   for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i)
205     Rank = std::max(Rank, getRank(I->getOperand(i)));
206 
207   // If this is a not or neg instruction, do not count it for rank.  This
208   // assures us that X and ~X will have the same rank.
209   if (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
210       !BinaryOperator::isFNeg(I))
211     ++Rank;
212 
213   DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n");
214 
215   return ValueRankMap[I] = Rank;
216 }
217 
218 // Canonicalize constants to RHS.  Otherwise, sort the operands by rank.
219 void ReassociatePass::canonicalizeOperands(Instruction *I) {
220   assert(isa<BinaryOperator>(I) && "Expected binary operator.");
221   assert(I->isCommutative() && "Expected commutative operator.");
222 
223   Value *LHS = I->getOperand(0);
224   Value *RHS = I->getOperand(1);
225   if (LHS == RHS || isa<Constant>(RHS))
226     return;
227   if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS))
228     cast<BinaryOperator>(I)->swapOperands();
229 }
230 
231 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
232                                  Instruction *InsertBefore, Value *FlagsOp) {
233   if (S1->getType()->isIntOrIntVectorTy())
234     return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
235   else {
236     BinaryOperator *Res =
237         BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
238     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
239     return Res;
240   }
241 }
242 
243 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
244                                  Instruction *InsertBefore, Value *FlagsOp) {
245   if (S1->getType()->isIntOrIntVectorTy())
246     return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
247   else {
248     BinaryOperator *Res =
249       BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
250     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
251     return Res;
252   }
253 }
254 
255 static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
256                                  Instruction *InsertBefore, Value *FlagsOp) {
257   if (S1->getType()->isIntOrIntVectorTy())
258     return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
259   else {
260     BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
261     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
262     return Res;
263   }
264 }
265 
266 /// Replace 0-X with X*-1.
267 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
268   Type *Ty = Neg->getType();
269   Constant *NegOne = Ty->isIntOrIntVectorTy() ?
270     ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
271 
272   BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
273   Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
274   Res->takeName(Neg);
275   Neg->replaceAllUsesWith(Res);
276   Res->setDebugLoc(Neg->getDebugLoc());
277   return Res;
278 }
279 
280 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
281 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
282 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
283 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
284 /// even x in Bitwidth-bit arithmetic.
285 static unsigned CarmichaelShift(unsigned Bitwidth) {
286   if (Bitwidth < 3)
287     return Bitwidth - 1;
288   return Bitwidth - 2;
289 }
290 
291 /// Add the extra weight 'RHS' to the existing weight 'LHS',
292 /// reducing the combined weight using any special properties of the operation.
293 /// The existing weight LHS represents the computation X op X op ... op X where
294 /// X occurs LHS times.  The combined weight represents  X op X op ... op X with
295 /// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
296 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
297 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
298 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
299   // If we were working with infinite precision arithmetic then the combined
300   // weight would be LHS + RHS.  But we are using finite precision arithmetic,
301   // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
302   // for nilpotent operations and addition, but not for idempotent operations
303   // and multiplication), so it is important to correctly reduce the combined
304   // weight back into range if wrapping would be wrong.
305 
306   // If RHS is zero then the weight didn't change.
307   if (RHS.isMinValue())
308     return;
309   // If LHS is zero then the combined weight is RHS.
310   if (LHS.isMinValue()) {
311     LHS = RHS;
312     return;
313   }
314   // From this point on we know that neither LHS nor RHS is zero.
315 
316   if (Instruction::isIdempotent(Opcode)) {
317     // Idempotent means X op X === X, so any non-zero weight is equivalent to a
318     // weight of 1.  Keeping weights at zero or one also means that wrapping is
319     // not a problem.
320     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
321     return; // Return a weight of 1.
322   }
323   if (Instruction::isNilpotent(Opcode)) {
324     // Nilpotent means X op X === 0, so reduce weights modulo 2.
325     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
326     LHS = 0; // 1 + 1 === 0 modulo 2.
327     return;
328   }
329   if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
330     // TODO: Reduce the weight by exploiting nsw/nuw?
331     LHS += RHS;
332     return;
333   }
334 
335   assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
336          "Unknown associative operation!");
337   unsigned Bitwidth = LHS.getBitWidth();
338   // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
339   // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
340   // bit number x, since either x is odd in which case x^CM = 1, or x is even in
341   // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
342   // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
343   // which by a happy accident means that they can always be represented using
344   // Bitwidth bits.
345   // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
346   // the Carmichael number).
347   if (Bitwidth > 3) {
348     /// CM - The value of Carmichael's lambda function.
349     APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
350     // Any weight W >= Threshold can be replaced with W - CM.
351     APInt Threshold = CM + Bitwidth;
352     assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
353     // For Bitwidth 4 or more the following sum does not overflow.
354     LHS += RHS;
355     while (LHS.uge(Threshold))
356       LHS -= CM;
357   } else {
358     // To avoid problems with overflow do everything the same as above but using
359     // a larger type.
360     unsigned CM = 1U << CarmichaelShift(Bitwidth);
361     unsigned Threshold = CM + Bitwidth;
362     assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
363            "Weights not reduced!");
364     unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
365     while (Total >= Threshold)
366       Total -= CM;
367     LHS = Total;
368   }
369 }
370 
371 using RepeatedValue = std::pair<Value*, APInt>;
372 
373 /// Given an associative binary expression, return the leaf
374 /// nodes in Ops along with their weights (how many times the leaf occurs).  The
375 /// original expression is the same as
376 ///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
377 /// op
378 ///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
379 /// op
380 ///   ...
381 /// op
382 ///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
383 ///
384 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
385 ///
386 /// This routine may modify the function, in which case it returns 'true'.  The
387 /// changes it makes may well be destructive, changing the value computed by 'I'
388 /// to something completely different.  Thus if the routine returns 'true' then
389 /// you MUST either replace I with a new expression computed from the Ops array,
390 /// or use RewriteExprTree to put the values back in.
391 ///
392 /// A leaf node is either not a binary operation of the same kind as the root
393 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
394 /// opcode), or is the same kind of binary operator but has a use which either
395 /// does not belong to the expression, or does belong to the expression but is
396 /// a leaf node.  Every leaf node has at least one use that is a non-leaf node
397 /// of the expression, while for non-leaf nodes (except for the root 'I') every
398 /// use is a non-leaf node of the expression.
399 ///
400 /// For example:
401 ///           expression graph        node names
402 ///
403 ///                     +        |        I
404 ///                    / \       |
405 ///                   +   +      |      A,  B
406 ///                  / \ / \     |
407 ///                 *   +   *    |    C,  D,  E
408 ///                / \ / \ / \   |
409 ///                   +   *      |      F,  G
410 ///
411 /// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
412 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
413 ///
414 /// The expression is maximal: if some instruction is a binary operator of the
415 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
416 /// then the instruction also belongs to the expression, is not a leaf node of
417 /// it, and its operands also belong to the expression (but may be leaf nodes).
418 ///
419 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
420 /// order to ensure that every non-root node in the expression has *exactly one*
421 /// use by a non-leaf node of the expression.  This destruction means that the
422 /// caller MUST either replace 'I' with a new expression or use something like
423 /// RewriteExprTree to put the values back in if the routine indicates that it
424 /// made a change by returning 'true'.
425 ///
426 /// In the above example either the right operand of A or the left operand of B
427 /// will be replaced by undef.  If it is B's operand then this gives:
428 ///
429 ///                     +        |        I
430 ///                    / \       |
431 ///                   +   +      |      A,  B - operand of B replaced with undef
432 ///                  / \   \     |
433 ///                 *   +   *    |    C,  D,  E
434 ///                / \ / \ / \   |
435 ///                   +   *      |      F,  G
436 ///
437 /// Note that such undef operands can only be reached by passing through 'I'.
438 /// For example, if you visit operands recursively starting from a leaf node
439 /// then you will never see such an undef operand unless you get back to 'I',
440 /// which requires passing through a phi node.
441 ///
442 /// Note that this routine may also mutate binary operators of the wrong type
443 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
444 /// of the expression) if it can turn them into binary operators of the right
445 /// type and thus make the expression bigger.
446 static bool LinearizeExprTree(BinaryOperator *I,
447                               SmallVectorImpl<RepeatedValue> &Ops) {
448   DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
449   unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
450   unsigned Opcode = I->getOpcode();
451   assert(I->isAssociative() && I->isCommutative() &&
452          "Expected an associative and commutative operation!");
453 
454   // Visit all operands of the expression, keeping track of their weight (the
455   // number of paths from the expression root to the operand, or if you like
456   // the number of times that operand occurs in the linearized expression).
457   // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
458   // while A has weight two.
459 
460   // Worklist of non-leaf nodes (their operands are in the expression too) along
461   // with their weights, representing a certain number of paths to the operator.
462   // If an operator occurs in the worklist multiple times then we found multiple
463   // ways to get to it.
464   SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
465   Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
466   bool Changed = false;
467 
468   // Leaves of the expression are values that either aren't the right kind of
469   // operation (eg: a constant, or a multiply in an add tree), or are, but have
470   // some uses that are not inside the expression.  For example, in I = X + X,
471   // X = A + B, the value X has two uses (by I) that are in the expression.  If
472   // X has any other uses, for example in a return instruction, then we consider
473   // X to be a leaf, and won't analyze it further.  When we first visit a value,
474   // if it has more than one use then at first we conservatively consider it to
475   // be a leaf.  Later, as the expression is explored, we may discover some more
476   // uses of the value from inside the expression.  If all uses turn out to be
477   // from within the expression (and the value is a binary operator of the right
478   // kind) then the value is no longer considered to be a leaf, and its operands
479   // are explored.
480 
481   // Leaves - Keeps track of the set of putative leaves as well as the number of
482   // paths to each leaf seen so far.
483   using LeafMap = DenseMap<Value *, APInt>;
484   LeafMap Leaves; // Leaf -> Total weight so far.
485   SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order.
486 
487 #ifndef NDEBUG
488   SmallPtrSet<Value *, 8> Visited; // For sanity checking the iteration scheme.
489 #endif
490   while (!Worklist.empty()) {
491     std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
492     I = P.first; // We examine the operands of this binary operator.
493 
494     for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
495       Value *Op = I->getOperand(OpIdx);
496       APInt Weight = P.second; // Number of paths to this operand.
497       DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
498       assert(!Op->use_empty() && "No uses, so how did we get to it?!");
499 
500       // If this is a binary operation of the right kind with only one use then
501       // add its operands to the expression.
502       if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
503         assert(Visited.insert(Op).second && "Not first visit!");
504         DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
505         Worklist.push_back(std::make_pair(BO, Weight));
506         continue;
507       }
508 
509       // Appears to be a leaf.  Is the operand already in the set of leaves?
510       LeafMap::iterator It = Leaves.find(Op);
511       if (It == Leaves.end()) {
512         // Not in the leaf map.  Must be the first time we saw this operand.
513         assert(Visited.insert(Op).second && "Not first visit!");
514         if (!Op->hasOneUse()) {
515           // This value has uses not accounted for by the expression, so it is
516           // not safe to modify.  Mark it as being a leaf.
517           DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
518           LeafOrder.push_back(Op);
519           Leaves[Op] = Weight;
520           continue;
521         }
522         // No uses outside the expression, try morphing it.
523       } else {
524         // Already in the leaf map.
525         assert(It != Leaves.end() && Visited.count(Op) &&
526                "In leaf map but not visited!");
527 
528         // Update the number of paths to the leaf.
529         IncorporateWeight(It->second, Weight, Opcode);
530 
531 #if 0   // TODO: Re-enable once PR13021 is fixed.
532         // The leaf already has one use from inside the expression.  As we want
533         // exactly one such use, drop this new use of the leaf.
534         assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
535         I->setOperand(OpIdx, UndefValue::get(I->getType()));
536         Changed = true;
537 
538         // If the leaf is a binary operation of the right kind and we now see
539         // that its multiple original uses were in fact all by nodes belonging
540         // to the expression, then no longer consider it to be a leaf and add
541         // its operands to the expression.
542         if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
543           DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
544           Worklist.push_back(std::make_pair(BO, It->second));
545           Leaves.erase(It);
546           continue;
547         }
548 #endif
549 
550         // If we still have uses that are not accounted for by the expression
551         // then it is not safe to modify the value.
552         if (!Op->hasOneUse())
553           continue;
554 
555         // No uses outside the expression, try morphing it.
556         Weight = It->second;
557         Leaves.erase(It); // Since the value may be morphed below.
558       }
559 
560       // At this point we have a value which, first of all, is not a binary
561       // expression of the right kind, and secondly, is only used inside the
562       // expression.  This means that it can safely be modified.  See if we
563       // can usefully morph it into an expression of the right kind.
564       assert((!isa<Instruction>(Op) ||
565               cast<Instruction>(Op)->getOpcode() != Opcode
566               || (isa<FPMathOperator>(Op) &&
567                   !cast<Instruction>(Op)->isFast())) &&
568              "Should have been handled above!");
569       assert(Op->hasOneUse() && "Has uses outside the expression tree!");
570 
571       // If this is a multiply expression, turn any internal negations into
572       // multiplies by -1 so they can be reassociated.
573       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
574         if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) ||
575             (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) {
576           DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
577           BO = LowerNegateToMultiply(BO);
578           DEBUG(dbgs() << *BO << '\n');
579           Worklist.push_back(std::make_pair(BO, Weight));
580           Changed = true;
581           continue;
582         }
583 
584       // Failed to morph into an expression of the right type.  This really is
585       // a leaf.
586       DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
587       assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
588       LeafOrder.push_back(Op);
589       Leaves[Op] = Weight;
590     }
591   }
592 
593   // The leaves, repeated according to their weights, represent the linearized
594   // form of the expression.
595   for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
596     Value *V = LeafOrder[i];
597     LeafMap::iterator It = Leaves.find(V);
598     if (It == Leaves.end())
599       // Node initially thought to be a leaf wasn't.
600       continue;
601     assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
602     APInt Weight = It->second;
603     if (Weight.isMinValue())
604       // Leaf already output or weight reduction eliminated it.
605       continue;
606     // Ensure the leaf is only output once.
607     It->second = 0;
608     Ops.push_back(std::make_pair(V, Weight));
609   }
610 
611   // For nilpotent operations or addition there may be no operands, for example
612   // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
613   // in both cases the weight reduces to 0 causing the value to be skipped.
614   if (Ops.empty()) {
615     Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
616     assert(Identity && "Associative operation without identity!");
617     Ops.emplace_back(Identity, APInt(Bitwidth, 1));
618   }
619 
620   return Changed;
621 }
622 
623 /// Now that the operands for this expression tree are
624 /// linearized and optimized, emit them in-order.
625 void ReassociatePass::RewriteExprTree(BinaryOperator *I,
626                                       SmallVectorImpl<ValueEntry> &Ops) {
627   assert(Ops.size() > 1 && "Single values should be used directly!");
628 
629   // Since our optimizations should never increase the number of operations, the
630   // new expression can usually be written reusing the existing binary operators
631   // from the original expression tree, without creating any new instructions,
632   // though the rewritten expression may have a completely different topology.
633   // We take care to not change anything if the new expression will be the same
634   // as the original.  If more than trivial changes (like commuting operands)
635   // were made then we are obliged to clear out any optional subclass data like
636   // nsw flags.
637 
638   /// NodesToRewrite - Nodes from the original expression available for writing
639   /// the new expression into.
640   SmallVector<BinaryOperator*, 8> NodesToRewrite;
641   unsigned Opcode = I->getOpcode();
642   BinaryOperator *Op = I;
643 
644   /// NotRewritable - The operands being written will be the leaves of the new
645   /// expression and must not be used as inner nodes (via NodesToRewrite) by
646   /// mistake.  Inner nodes are always reassociable, and usually leaves are not
647   /// (if they were they would have been incorporated into the expression and so
648   /// would not be leaves), so most of the time there is no danger of this.  But
649   /// in rare cases a leaf may become reassociable if an optimization kills uses
650   /// of it, or it may momentarily become reassociable during rewriting (below)
651   /// due it being removed as an operand of one of its uses.  Ensure that misuse
652   /// of leaf nodes as inner nodes cannot occur by remembering all of the future
653   /// leaves and refusing to reuse any of them as inner nodes.
654   SmallPtrSet<Value*, 8> NotRewritable;
655   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
656     NotRewritable.insert(Ops[i].Op);
657 
658   // ExpressionChanged - Non-null if the rewritten expression differs from the
659   // original in some non-trivial way, requiring the clearing of optional flags.
660   // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
661   BinaryOperator *ExpressionChanged = nullptr;
662   for (unsigned i = 0; ; ++i) {
663     // The last operation (which comes earliest in the IR) is special as both
664     // operands will come from Ops, rather than just one with the other being
665     // a subexpression.
666     if (i+2 == Ops.size()) {
667       Value *NewLHS = Ops[i].Op;
668       Value *NewRHS = Ops[i+1].Op;
669       Value *OldLHS = Op->getOperand(0);
670       Value *OldRHS = Op->getOperand(1);
671 
672       if (NewLHS == OldLHS && NewRHS == OldRHS)
673         // Nothing changed, leave it alone.
674         break;
675 
676       if (NewLHS == OldRHS && NewRHS == OldLHS) {
677         // The order of the operands was reversed.  Swap them.
678         DEBUG(dbgs() << "RA: " << *Op << '\n');
679         Op->swapOperands();
680         DEBUG(dbgs() << "TO: " << *Op << '\n');
681         MadeChange = true;
682         ++NumChanged;
683         break;
684       }
685 
686       // The new operation differs non-trivially from the original. Overwrite
687       // the old operands with the new ones.
688       DEBUG(dbgs() << "RA: " << *Op << '\n');
689       if (NewLHS != OldLHS) {
690         BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
691         if (BO && !NotRewritable.count(BO))
692           NodesToRewrite.push_back(BO);
693         Op->setOperand(0, NewLHS);
694       }
695       if (NewRHS != OldRHS) {
696         BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
697         if (BO && !NotRewritable.count(BO))
698           NodesToRewrite.push_back(BO);
699         Op->setOperand(1, NewRHS);
700       }
701       DEBUG(dbgs() << "TO: " << *Op << '\n');
702 
703       ExpressionChanged = Op;
704       MadeChange = true;
705       ++NumChanged;
706 
707       break;
708     }
709 
710     // Not the last operation.  The left-hand side will be a sub-expression
711     // while the right-hand side will be the current element of Ops.
712     Value *NewRHS = Ops[i].Op;
713     if (NewRHS != Op->getOperand(1)) {
714       DEBUG(dbgs() << "RA: " << *Op << '\n');
715       if (NewRHS == Op->getOperand(0)) {
716         // The new right-hand side was already present as the left operand.  If
717         // we are lucky then swapping the operands will sort out both of them.
718         Op->swapOperands();
719       } else {
720         // Overwrite with the new right-hand side.
721         BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
722         if (BO && !NotRewritable.count(BO))
723           NodesToRewrite.push_back(BO);
724         Op->setOperand(1, NewRHS);
725         ExpressionChanged = Op;
726       }
727       DEBUG(dbgs() << "TO: " << *Op << '\n');
728       MadeChange = true;
729       ++NumChanged;
730     }
731 
732     // Now deal with the left-hand side.  If this is already an operation node
733     // from the original expression then just rewrite the rest of the expression
734     // into it.
735     BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
736     if (BO && !NotRewritable.count(BO)) {
737       Op = BO;
738       continue;
739     }
740 
741     // Otherwise, grab a spare node from the original expression and use that as
742     // the left-hand side.  If there are no nodes left then the optimizers made
743     // an expression with more nodes than the original!  This usually means that
744     // they did something stupid but it might mean that the problem was just too
745     // hard (finding the mimimal number of multiplications needed to realize a
746     // multiplication expression is NP-complete).  Whatever the reason, smart or
747     // stupid, create a new node if there are none left.
748     BinaryOperator *NewOp;
749     if (NodesToRewrite.empty()) {
750       Constant *Undef = UndefValue::get(I->getType());
751       NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
752                                      Undef, Undef, "", I);
753       if (NewOp->getType()->isFPOrFPVectorTy())
754         NewOp->setFastMathFlags(I->getFastMathFlags());
755     } else {
756       NewOp = NodesToRewrite.pop_back_val();
757     }
758 
759     DEBUG(dbgs() << "RA: " << *Op << '\n');
760     Op->setOperand(0, NewOp);
761     DEBUG(dbgs() << "TO: " << *Op << '\n');
762     ExpressionChanged = Op;
763     MadeChange = true;
764     ++NumChanged;
765     Op = NewOp;
766   }
767 
768   // If the expression changed non-trivially then clear out all subclass data
769   // starting from the operator specified in ExpressionChanged, and compactify
770   // the operators to just before the expression root to guarantee that the
771   // expression tree is dominated by all of Ops.
772   if (ExpressionChanged)
773     do {
774       // Preserve FastMathFlags.
775       if (isa<FPMathOperator>(I)) {
776         FastMathFlags Flags = I->getFastMathFlags();
777         ExpressionChanged->clearSubclassOptionalData();
778         ExpressionChanged->setFastMathFlags(Flags);
779       } else
780         ExpressionChanged->clearSubclassOptionalData();
781 
782       if (ExpressionChanged == I)
783         break;
784 
785       // Discard any debug info related to the expressions that has changed (we
786       // can leave debug infor related to the root, since the result of the
787       // expression tree should be the same even after reassociation).
788       SmallVector<DbgInfoIntrinsic *, 1> DbgUsers;
789       findDbgUsers(DbgUsers, ExpressionChanged);
790       for (auto *DII : DbgUsers) {
791         Value *Undef = UndefValue::get(ExpressionChanged->getType());
792         DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
793                                                 ValueAsMetadata::get(Undef)));
794       }
795 
796       ExpressionChanged->moveBefore(I);
797       ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
798     } while (true);
799 
800   // Throw away any left over nodes from the original expression.
801   for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
802     RedoInsts.insert(NodesToRewrite[i]);
803 }
804 
805 /// Insert instructions before the instruction pointed to by BI,
806 /// that computes the negative version of the value specified.  The negative
807 /// version of the value is returned, and BI is left pointing at the instruction
808 /// that should be processed next by the reassociation pass.
809 /// Also add intermediate instructions to the redo list that are modified while
810 /// pushing the negates through adds.  These will be revisited to see if
811 /// additional opportunities have been exposed.
812 static Value *NegateValue(Value *V, Instruction *BI,
813                           ReassociatePass::OrderedSet &ToRedo) {
814   if (auto *C = dyn_cast<Constant>(V))
815     return C->getType()->isFPOrFPVectorTy() ? ConstantExpr::getFNeg(C) :
816                                               ConstantExpr::getNeg(C);
817 
818   // We are trying to expose opportunity for reassociation.  One of the things
819   // that we want to do to achieve this is to push a negation as deep into an
820   // expression chain as possible, to expose the add instructions.  In practice,
821   // this means that we turn this:
822   //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
823   // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
824   // the constants.  We assume that instcombine will clean up the mess later if
825   // we introduce tons of unnecessary negation instructions.
826   //
827   if (BinaryOperator *I =
828           isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
829     // Push the negates through the add.
830     I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
831     I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
832     if (I->getOpcode() == Instruction::Add) {
833       I->setHasNoUnsignedWrap(false);
834       I->setHasNoSignedWrap(false);
835     }
836 
837     // We must move the add instruction here, because the neg instructions do
838     // not dominate the old add instruction in general.  By moving it, we are
839     // assured that the neg instructions we just inserted dominate the
840     // instruction we are about to insert after them.
841     //
842     I->moveBefore(BI);
843     I->setName(I->getName()+".neg");
844 
845     // Add the intermediate negates to the redo list as processing them later
846     // could expose more reassociating opportunities.
847     ToRedo.insert(I);
848     return I;
849   }
850 
851   // Okay, we need to materialize a negated version of V with an instruction.
852   // Scan the use lists of V to see if we have one already.
853   for (User *U : V->users()) {
854     if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U))
855       continue;
856 
857     // We found one!  Now we have to make sure that the definition dominates
858     // this use.  We do this by moving it to the entry block (if it is a
859     // non-instruction value) or right after the definition.  These negates will
860     // be zapped by reassociate later, so we don't need much finesse here.
861     BinaryOperator *TheNeg = cast<BinaryOperator>(U);
862 
863     // Verify that the negate is in this function, V might be a constant expr.
864     if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
865       continue;
866 
867     BasicBlock::iterator InsertPt;
868     if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
869       if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
870         InsertPt = II->getNormalDest()->begin();
871       } else {
872         InsertPt = ++InstInput->getIterator();
873       }
874       while (isa<PHINode>(InsertPt)) ++InsertPt;
875     } else {
876       InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
877     }
878     TheNeg->moveBefore(&*InsertPt);
879     if (TheNeg->getOpcode() == Instruction::Sub) {
880       TheNeg->setHasNoUnsignedWrap(false);
881       TheNeg->setHasNoSignedWrap(false);
882     } else {
883       TheNeg->andIRFlags(BI);
884     }
885     ToRedo.insert(TheNeg);
886     return TheNeg;
887   }
888 
889   // Insert a 'neg' instruction that subtracts the value from zero to get the
890   // negation.
891   BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
892   ToRedo.insert(NewNeg);
893   return NewNeg;
894 }
895 
896 /// Return true if we should break up this subtract of X-Y into (X + -Y).
897 static bool ShouldBreakUpSubtract(Instruction *Sub) {
898   // If this is a negation, we can't split it up!
899   if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub))
900     return false;
901 
902   // Don't breakup X - undef.
903   if (isa<UndefValue>(Sub->getOperand(1)))
904     return false;
905 
906   // Don't bother to break this up unless either the LHS is an associable add or
907   // subtract or if this is only used by one.
908   Value *V0 = Sub->getOperand(0);
909   if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
910       isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
911     return true;
912   Value *V1 = Sub->getOperand(1);
913   if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
914       isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
915     return true;
916   Value *VB = Sub->user_back();
917   if (Sub->hasOneUse() &&
918       (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
919        isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
920     return true;
921 
922   return false;
923 }
924 
925 /// If we have (X-Y), and if either X is an add, or if this is only used by an
926 /// add, transform this into (X+(0-Y)) to promote better reassociation.
927 static BinaryOperator *BreakUpSubtract(Instruction *Sub,
928                                        ReassociatePass::OrderedSet &ToRedo) {
929   // Convert a subtract into an add and a neg instruction. This allows sub
930   // instructions to be commuted with other add instructions.
931   //
932   // Calculate the negative value of Operand 1 of the sub instruction,
933   // and set it as the RHS of the add instruction we just made.
934   Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
935   BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
936   Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
937   Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
938   New->takeName(Sub);
939 
940   // Everyone now refers to the add instruction.
941   Sub->replaceAllUsesWith(New);
942   New->setDebugLoc(Sub->getDebugLoc());
943 
944   DEBUG(dbgs() << "Negated: " << *New << '\n');
945   return New;
946 }
947 
948 /// If this is a shift of a reassociable multiply or is used by one, change
949 /// this into a multiply by a constant to assist with further reassociation.
950 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
951   Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
952   MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
953 
954   BinaryOperator *Mul =
955     BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
956   Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
957   Mul->takeName(Shl);
958 
959   // Everyone now refers to the mul instruction.
960   Shl->replaceAllUsesWith(Mul);
961   Mul->setDebugLoc(Shl->getDebugLoc());
962 
963   // We can safely preserve the nuw flag in all cases.  It's also safe to turn a
964   // nuw nsw shl into a nuw nsw mul.  However, nsw in isolation requires special
965   // handling.
966   bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
967   bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
968   if (NSW && NUW)
969     Mul->setHasNoSignedWrap(true);
970   Mul->setHasNoUnsignedWrap(NUW);
971   return Mul;
972 }
973 
974 /// Scan backwards and forwards among values with the same rank as element i
975 /// to see if X exists.  If X does not exist, return i.  This is useful when
976 /// scanning for 'x' when we see '-x' because they both get the same rank.
977 static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops,
978                                   unsigned i, Value *X) {
979   unsigned XRank = Ops[i].Rank;
980   unsigned e = Ops.size();
981   for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
982     if (Ops[j].Op == X)
983       return j;
984     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
985       if (Instruction *I2 = dyn_cast<Instruction>(X))
986         if (I1->isIdenticalTo(I2))
987           return j;
988   }
989   // Scan backwards.
990   for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
991     if (Ops[j].Op == X)
992       return j;
993     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
994       if (Instruction *I2 = dyn_cast<Instruction>(X))
995         if (I1->isIdenticalTo(I2))
996           return j;
997   }
998   return i;
999 }
1000 
1001 /// Emit a tree of add instructions, summing Ops together
1002 /// and returning the result.  Insert the tree before I.
1003 static Value *EmitAddTreeOfValues(Instruction *I,
1004                                   SmallVectorImpl<WeakTrackingVH> &Ops) {
1005   if (Ops.size() == 1) return Ops.back();
1006 
1007   Value *V1 = Ops.back();
1008   Ops.pop_back();
1009   Value *V2 = EmitAddTreeOfValues(I, Ops);
1010   return CreateAdd(V2, V1, "reass.add", I, I);
1011 }
1012 
1013 /// If V is an expression tree that is a multiplication sequence,
1014 /// and if this sequence contains a multiply by Factor,
1015 /// remove Factor from the tree and return the new tree.
1016 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
1017   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1018   if (!BO)
1019     return nullptr;
1020 
1021   SmallVector<RepeatedValue, 8> Tree;
1022   MadeChange |= LinearizeExprTree(BO, Tree);
1023   SmallVector<ValueEntry, 8> Factors;
1024   Factors.reserve(Tree.size());
1025   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1026     RepeatedValue E = Tree[i];
1027     Factors.append(E.second.getZExtValue(),
1028                    ValueEntry(getRank(E.first), E.first));
1029   }
1030 
1031   bool FoundFactor = false;
1032   bool NeedsNegate = false;
1033   for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1034     if (Factors[i].Op == Factor) {
1035       FoundFactor = true;
1036       Factors.erase(Factors.begin()+i);
1037       break;
1038     }
1039 
1040     // If this is a negative version of this factor, remove it.
1041     if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
1042       if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1043         if (FC1->getValue() == -FC2->getValue()) {
1044           FoundFactor = NeedsNegate = true;
1045           Factors.erase(Factors.begin()+i);
1046           break;
1047         }
1048     } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1049       if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
1050         const APFloat &F1 = FC1->getValueAPF();
1051         APFloat F2(FC2->getValueAPF());
1052         F2.changeSign();
1053         if (F1.compare(F2) == APFloat::cmpEqual) {
1054           FoundFactor = NeedsNegate = true;
1055           Factors.erase(Factors.begin() + i);
1056           break;
1057         }
1058       }
1059     }
1060   }
1061 
1062   if (!FoundFactor) {
1063     // Make sure to restore the operands to the expression tree.
1064     RewriteExprTree(BO, Factors);
1065     return nullptr;
1066   }
1067 
1068   BasicBlock::iterator InsertPt = ++BO->getIterator();
1069 
1070   // If this was just a single multiply, remove the multiply and return the only
1071   // remaining operand.
1072   if (Factors.size() == 1) {
1073     RedoInsts.insert(BO);
1074     V = Factors[0].Op;
1075   } else {
1076     RewriteExprTree(BO, Factors);
1077     V = BO;
1078   }
1079 
1080   if (NeedsNegate)
1081     V = CreateNeg(V, "neg", &*InsertPt, BO);
1082 
1083   return V;
1084 }
1085 
1086 /// If V is a single-use multiply, recursively add its operands as factors,
1087 /// otherwise add V to the list of factors.
1088 ///
1089 /// Ops is the top-level list of add operands we're trying to factor.
1090 static void FindSingleUseMultiplyFactors(Value *V,
1091                                          SmallVectorImpl<Value*> &Factors) {
1092   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1093   if (!BO) {
1094     Factors.push_back(V);
1095     return;
1096   }
1097 
1098   // Otherwise, add the LHS and RHS to the list of factors.
1099   FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
1100   FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
1101 }
1102 
1103 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1104 /// This optimizes based on identities.  If it can be reduced to a single Value,
1105 /// it is returned, otherwise the Ops list is mutated as necessary.
1106 static Value *OptimizeAndOrXor(unsigned Opcode,
1107                                SmallVectorImpl<ValueEntry> &Ops) {
1108   // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1109   // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1110   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1111     // First, check for X and ~X in the operand list.
1112     assert(i < Ops.size());
1113     if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
1114       Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1115       unsigned FoundX = FindInOperandList(Ops, i, X);
1116       if (FoundX != i) {
1117         if (Opcode == Instruction::And)   // ...&X&~X = 0
1118           return Constant::getNullValue(X->getType());
1119 
1120         if (Opcode == Instruction::Or)    // ...|X|~X = -1
1121           return Constant::getAllOnesValue(X->getType());
1122       }
1123     }
1124 
1125     // Next, check for duplicate pairs of values, which we assume are next to
1126     // each other, due to our sorting criteria.
1127     assert(i < Ops.size());
1128     if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1129       if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1130         // Drop duplicate values for And and Or.
1131         Ops.erase(Ops.begin()+i);
1132         --i; --e;
1133         ++NumAnnihil;
1134         continue;
1135       }
1136 
1137       // Drop pairs of values for Xor.
1138       assert(Opcode == Instruction::Xor);
1139       if (e == 2)
1140         return Constant::getNullValue(Ops[0].Op->getType());
1141 
1142       // Y ^ X^X -> Y
1143       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1144       i -= 1; e -= 2;
1145       ++NumAnnihil;
1146     }
1147   }
1148   return nullptr;
1149 }
1150 
1151 /// Helper function of CombineXorOpnd(). It creates a bitwise-and
1152 /// instruction with the given two operands, and return the resulting
1153 /// instruction. There are two special cases: 1) if the constant operand is 0,
1154 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1155 /// be returned.
1156 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1157                              const APInt &ConstOpnd) {
1158   if (ConstOpnd.isNullValue())
1159     return nullptr;
1160 
1161   if (ConstOpnd.isAllOnesValue())
1162     return Opnd;
1163 
1164   Instruction *I = BinaryOperator::CreateAnd(
1165       Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra",
1166       InsertBefore);
1167   I->setDebugLoc(InsertBefore->getDebugLoc());
1168   return I;
1169 }
1170 
1171 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1172 // into "R ^ C", where C would be 0, and R is a symbolic value.
1173 //
1174 // If it was successful, true is returned, and the "R" and "C" is returned
1175 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1176 // and both "Res" and "ConstOpnd" remain unchanged.
1177 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1178                                      APInt &ConstOpnd, Value *&Res) {
1179   // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1180   //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
1181   //                       = (x & ~c1) ^ (c1 ^ c2)
1182   // It is useful only when c1 == c2.
1183   if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isNullValue())
1184     return false;
1185 
1186   if (!Opnd1->getValue()->hasOneUse())
1187     return false;
1188 
1189   const APInt &C1 = Opnd1->getConstPart();
1190   if (C1 != ConstOpnd)
1191     return false;
1192 
1193   Value *X = Opnd1->getSymbolicPart();
1194   Res = createAndInstr(I, X, ~C1);
1195   // ConstOpnd was C2, now C1 ^ C2.
1196   ConstOpnd ^= C1;
1197 
1198   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1199     RedoInsts.insert(T);
1200   return true;
1201 }
1202 
1203 // Helper function of OptimizeXor(). It tries to simplify
1204 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1205 // symbolic value.
1206 //
1207 // If it was successful, true is returned, and the "R" and "C" is returned
1208 // via "Res" and "ConstOpnd", respectively (If the entire expression is
1209 // evaluated to a constant, the Res is set to NULL); otherwise, false is
1210 // returned, and both "Res" and "ConstOpnd" remain unchanged.
1211 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1212                                      XorOpnd *Opnd2, APInt &ConstOpnd,
1213                                      Value *&Res) {
1214   Value *X = Opnd1->getSymbolicPart();
1215   if (X != Opnd2->getSymbolicPart())
1216     return false;
1217 
1218   // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1219   int DeadInstNum = 1;
1220   if (Opnd1->getValue()->hasOneUse())
1221     DeadInstNum++;
1222   if (Opnd2->getValue()->hasOneUse())
1223     DeadInstNum++;
1224 
1225   // Xor-Rule 2:
1226   //  (x | c1) ^ (x & c2)
1227   //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1228   //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
1229   //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
1230   //
1231   if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1232     if (Opnd2->isOrExpr())
1233       std::swap(Opnd1, Opnd2);
1234 
1235     const APInt &C1 = Opnd1->getConstPart();
1236     const APInt &C2 = Opnd2->getConstPart();
1237     APInt C3((~C1) ^ C2);
1238 
1239     // Do not increase code size!
1240     if (!C3.isNullValue() && !C3.isAllOnesValue()) {
1241       int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1242       if (NewInstNum > DeadInstNum)
1243         return false;
1244     }
1245 
1246     Res = createAndInstr(I, X, C3);
1247     ConstOpnd ^= C1;
1248   } else if (Opnd1->isOrExpr()) {
1249     // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1250     //
1251     const APInt &C1 = Opnd1->getConstPart();
1252     const APInt &C2 = Opnd2->getConstPart();
1253     APInt C3 = C1 ^ C2;
1254 
1255     // Do not increase code size
1256     if (!C3.isNullValue() && !C3.isAllOnesValue()) {
1257       int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1258       if (NewInstNum > DeadInstNum)
1259         return false;
1260     }
1261 
1262     Res = createAndInstr(I, X, C3);
1263     ConstOpnd ^= C3;
1264   } else {
1265     // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1266     //
1267     const APInt &C1 = Opnd1->getConstPart();
1268     const APInt &C2 = Opnd2->getConstPart();
1269     APInt C3 = C1 ^ C2;
1270     Res = createAndInstr(I, X, C3);
1271   }
1272 
1273   // Put the original operands in the Redo list; hope they will be deleted
1274   // as dead code.
1275   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1276     RedoInsts.insert(T);
1277   if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1278     RedoInsts.insert(T);
1279 
1280   return true;
1281 }
1282 
1283 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1284 /// to a single Value, it is returned, otherwise the Ops list is mutated as
1285 /// necessary.
1286 Value *ReassociatePass::OptimizeXor(Instruction *I,
1287                                     SmallVectorImpl<ValueEntry> &Ops) {
1288   if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1289     return V;
1290 
1291   if (Ops.size() == 1)
1292     return nullptr;
1293 
1294   SmallVector<XorOpnd, 8> Opnds;
1295   SmallVector<XorOpnd*, 8> OpndPtrs;
1296   Type *Ty = Ops[0].Op->getType();
1297   APInt ConstOpnd(Ty->getScalarSizeInBits(), 0);
1298 
1299   // Step 1: Convert ValueEntry to XorOpnd
1300   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1301     Value *V = Ops[i].Op;
1302     const APInt *C;
1303     // TODO: Support non-splat vectors.
1304     if (match(V, PatternMatch::m_APInt(C))) {
1305       ConstOpnd ^= *C;
1306     } else {
1307       XorOpnd O(V);
1308       O.setSymbolicRank(getRank(O.getSymbolicPart()));
1309       Opnds.push_back(O);
1310     }
1311   }
1312 
1313   // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1314   //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1315   //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1316   //  with the previous loop --- the iterator of the "Opnds" may be invalidated
1317   //  when new elements are added to the vector.
1318   for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1319     OpndPtrs.push_back(&Opnds[i]);
1320 
1321   // Step 2: Sort the Xor-Operands in a way such that the operands containing
1322   //  the same symbolic value cluster together. For instance, the input operand
1323   //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1324   //  ("x | 123", "x & 789", "y & 456").
1325   //
1326   //  The purpose is twofold:
1327   //  1) Cluster together the operands sharing the same symbolic-value.
1328   //  2) Operand having smaller symbolic-value-rank is permuted earlier, which
1329   //     could potentially shorten crital path, and expose more loop-invariants.
1330   //     Note that values' rank are basically defined in RPO order (FIXME).
1331   //     So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
1332   //     than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
1333   //     "z" in the order of X-Y-Z is better than any other orders.
1334   std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(),
1335                    [](XorOpnd *LHS, XorOpnd *RHS) {
1336     return LHS->getSymbolicRank() < RHS->getSymbolicRank();
1337   });
1338 
1339   // Step 3: Combine adjacent operands
1340   XorOpnd *PrevOpnd = nullptr;
1341   bool Changed = false;
1342   for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
1343     XorOpnd *CurrOpnd = OpndPtrs[i];
1344     // The combined value
1345     Value *CV;
1346 
1347     // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1348     if (!ConstOpnd.isNullValue() &&
1349         CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1350       Changed = true;
1351       if (CV)
1352         *CurrOpnd = XorOpnd(CV);
1353       else {
1354         CurrOpnd->Invalidate();
1355         continue;
1356       }
1357     }
1358 
1359     if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1360       PrevOpnd = CurrOpnd;
1361       continue;
1362     }
1363 
1364     // step 3.2: When previous and current operands share the same symbolic
1365     //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1366     if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1367       // Remove previous operand
1368       PrevOpnd->Invalidate();
1369       if (CV) {
1370         *CurrOpnd = XorOpnd(CV);
1371         PrevOpnd = CurrOpnd;
1372       } else {
1373         CurrOpnd->Invalidate();
1374         PrevOpnd = nullptr;
1375       }
1376       Changed = true;
1377     }
1378   }
1379 
1380   // Step 4: Reassemble the Ops
1381   if (Changed) {
1382     Ops.clear();
1383     for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1384       XorOpnd &O = Opnds[i];
1385       if (O.isInvalid())
1386         continue;
1387       ValueEntry VE(getRank(O.getValue()), O.getValue());
1388       Ops.push_back(VE);
1389     }
1390     if (!ConstOpnd.isNullValue()) {
1391       Value *C = ConstantInt::get(Ty, ConstOpnd);
1392       ValueEntry VE(getRank(C), C);
1393       Ops.push_back(VE);
1394     }
1395     unsigned Sz = Ops.size();
1396     if (Sz == 1)
1397       return Ops.back().Op;
1398     if (Sz == 0) {
1399       assert(ConstOpnd.isNullValue());
1400       return ConstantInt::get(Ty, ConstOpnd);
1401     }
1402   }
1403 
1404   return nullptr;
1405 }
1406 
1407 /// Optimize a series of operands to an 'add' instruction.  This
1408 /// optimizes based on identities.  If it can be reduced to a single Value, it
1409 /// is returned, otherwise the Ops list is mutated as necessary.
1410 Value *ReassociatePass::OptimizeAdd(Instruction *I,
1411                                     SmallVectorImpl<ValueEntry> &Ops) {
1412   // Scan the operand lists looking for X and -X pairs.  If we find any, we
1413   // can simplify expressions like X+-X == 0 and X+~X ==-1.  While we're at it,
1414   // scan for any
1415   // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1416 
1417   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1418     Value *TheOp = Ops[i].Op;
1419     // Check to see if we've seen this operand before.  If so, we factor all
1420     // instances of the operand together.  Due to our sorting criteria, we know
1421     // that these need to be next to each other in the vector.
1422     if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1423       // Rescan the list, remove all instances of this operand from the expr.
1424       unsigned NumFound = 0;
1425       do {
1426         Ops.erase(Ops.begin()+i);
1427         ++NumFound;
1428       } while (i != Ops.size() && Ops[i].Op == TheOp);
1429 
1430       DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
1431       ++NumFactor;
1432 
1433       // Insert a new multiply.
1434       Type *Ty = TheOp->getType();
1435       Constant *C = Ty->isIntOrIntVectorTy() ?
1436         ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
1437       Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
1438 
1439       // Now that we have inserted a multiply, optimize it. This allows us to
1440       // handle cases that require multiple factoring steps, such as this:
1441       // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1442       RedoInsts.insert(Mul);
1443 
1444       // If every add operand was a duplicate, return the multiply.
1445       if (Ops.empty())
1446         return Mul;
1447 
1448       // Otherwise, we had some input that didn't have the dupe, such as
1449       // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
1450       // things being added by this operation.
1451       Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1452 
1453       --i;
1454       e = Ops.size();
1455       continue;
1456     }
1457 
1458     // Check for X and -X or X and ~X in the operand list.
1459     if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) &&
1460         !BinaryOperator::isNot(TheOp))
1461       continue;
1462 
1463     Value *X = nullptr;
1464     if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))
1465       X = BinaryOperator::getNegArgument(TheOp);
1466     else if (BinaryOperator::isNot(TheOp))
1467       X = BinaryOperator::getNotArgument(TheOp);
1468 
1469     unsigned FoundX = FindInOperandList(Ops, i, X);
1470     if (FoundX == i)
1471       continue;
1472 
1473     // Remove X and -X from the operand list.
1474     if (Ops.size() == 2 &&
1475         (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)))
1476       return Constant::getNullValue(X->getType());
1477 
1478     // Remove X and ~X from the operand list.
1479     if (Ops.size() == 2 && BinaryOperator::isNot(TheOp))
1480       return Constant::getAllOnesValue(X->getType());
1481 
1482     Ops.erase(Ops.begin()+i);
1483     if (i < FoundX)
1484       --FoundX;
1485     else
1486       --i;   // Need to back up an extra one.
1487     Ops.erase(Ops.begin()+FoundX);
1488     ++NumAnnihil;
1489     --i;     // Revisit element.
1490     e -= 2;  // Removed two elements.
1491 
1492     // if X and ~X we append -1 to the operand list.
1493     if (BinaryOperator::isNot(TheOp)) {
1494       Value *V = Constant::getAllOnesValue(X->getType());
1495       Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1496       e += 1;
1497     }
1498   }
1499 
1500   // Scan the operand list, checking to see if there are any common factors
1501   // between operands.  Consider something like A*A+A*B*C+D.  We would like to
1502   // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1503   // To efficiently find this, we count the number of times a factor occurs
1504   // for any ADD operands that are MULs.
1505   DenseMap<Value*, unsigned> FactorOccurrences;
1506 
1507   // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1508   // where they are actually the same multiply.
1509   unsigned MaxOcc = 0;
1510   Value *MaxOccVal = nullptr;
1511   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1512     BinaryOperator *BOp =
1513         isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1514     if (!BOp)
1515       continue;
1516 
1517     // Compute all of the factors of this added value.
1518     SmallVector<Value*, 8> Factors;
1519     FindSingleUseMultiplyFactors(BOp, Factors);
1520     assert(Factors.size() > 1 && "Bad linearize!");
1521 
1522     // Add one to FactorOccurrences for each unique factor in this op.
1523     SmallPtrSet<Value*, 8> Duplicates;
1524     for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1525       Value *Factor = Factors[i];
1526       if (!Duplicates.insert(Factor).second)
1527         continue;
1528 
1529       unsigned Occ = ++FactorOccurrences[Factor];
1530       if (Occ > MaxOcc) {
1531         MaxOcc = Occ;
1532         MaxOccVal = Factor;
1533       }
1534 
1535       // If Factor is a negative constant, add the negated value as a factor
1536       // because we can percolate the negate out.  Watch for minint, which
1537       // cannot be positivified.
1538       if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
1539         if (CI->isNegative() && !CI->isMinValue(true)) {
1540           Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1541           if (!Duplicates.insert(Factor).second)
1542             continue;
1543           unsigned Occ = ++FactorOccurrences[Factor];
1544           if (Occ > MaxOcc) {
1545             MaxOcc = Occ;
1546             MaxOccVal = Factor;
1547           }
1548         }
1549       } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1550         if (CF->isNegative()) {
1551           APFloat F(CF->getValueAPF());
1552           F.changeSign();
1553           Factor = ConstantFP::get(CF->getContext(), F);
1554           if (!Duplicates.insert(Factor).second)
1555             continue;
1556           unsigned Occ = ++FactorOccurrences[Factor];
1557           if (Occ > MaxOcc) {
1558             MaxOcc = Occ;
1559             MaxOccVal = Factor;
1560           }
1561         }
1562       }
1563     }
1564   }
1565 
1566   // If any factor occurred more than one time, we can pull it out.
1567   if (MaxOcc > 1) {
1568     DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
1569     ++NumFactor;
1570 
1571     // Create a new instruction that uses the MaxOccVal twice.  If we don't do
1572     // this, we could otherwise run into situations where removing a factor
1573     // from an expression will drop a use of maxocc, and this can cause
1574     // RemoveFactorFromExpression on successive values to behave differently.
1575     Instruction *DummyInst =
1576         I->getType()->isIntOrIntVectorTy()
1577             ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1578             : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1579 
1580     SmallVector<WeakTrackingVH, 4> NewMulOps;
1581     for (unsigned i = 0; i != Ops.size(); ++i) {
1582       // Only try to remove factors from expressions we're allowed to.
1583       BinaryOperator *BOp =
1584           isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1585       if (!BOp)
1586         continue;
1587 
1588       if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1589         // The factorized operand may occur several times.  Convert them all in
1590         // one fell swoop.
1591         for (unsigned j = Ops.size(); j != i;) {
1592           --j;
1593           if (Ops[j].Op == Ops[i].Op) {
1594             NewMulOps.push_back(V);
1595             Ops.erase(Ops.begin()+j);
1596           }
1597         }
1598         --i;
1599       }
1600     }
1601 
1602     // No need for extra uses anymore.
1603     DummyInst->deleteValue();
1604 
1605     unsigned NumAddedValues = NewMulOps.size();
1606     Value *V = EmitAddTreeOfValues(I, NewMulOps);
1607 
1608     // Now that we have inserted the add tree, optimize it. This allows us to
1609     // handle cases that require multiple factoring steps, such as this:
1610     // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
1611     assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1612     (void)NumAddedValues;
1613     if (Instruction *VI = dyn_cast<Instruction>(V))
1614       RedoInsts.insert(VI);
1615 
1616     // Create the multiply.
1617     Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I);
1618 
1619     // Rerun associate on the multiply in case the inner expression turned into
1620     // a multiply.  We want to make sure that we keep things in canonical form.
1621     RedoInsts.insert(V2);
1622 
1623     // If every add operand included the factor (e.g. "A*B + A*C"), then the
1624     // entire result expression is just the multiply "A*(B+C)".
1625     if (Ops.empty())
1626       return V2;
1627 
1628     // Otherwise, we had some input that didn't have the factor, such as
1629     // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
1630     // things being added by this operation.
1631     Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1632   }
1633 
1634   return nullptr;
1635 }
1636 
1637 /// Build up a vector of value/power pairs factoring a product.
1638 ///
1639 /// Given a series of multiplication operands, build a vector of factors and
1640 /// the powers each is raised to when forming the final product. Sort them in
1641 /// the order of descending power.
1642 ///
1643 ///      (x*x)          -> [(x, 2)]
1644 ///     ((x*x)*x)       -> [(x, 3)]
1645 ///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1646 ///
1647 /// \returns Whether any factors have a power greater than one.
1648 static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1649                                    SmallVectorImpl<Factor> &Factors) {
1650   // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1651   // Compute the sum of powers of simplifiable factors.
1652   unsigned FactorPowerSum = 0;
1653   for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1654     Value *Op = Ops[Idx-1].Op;
1655 
1656     // Count the number of occurrences of this value.
1657     unsigned Count = 1;
1658     for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1659       ++Count;
1660     // Track for simplification all factors which occur 2 or more times.
1661     if (Count > 1)
1662       FactorPowerSum += Count;
1663   }
1664 
1665   // We can only simplify factors if the sum of the powers of our simplifiable
1666   // factors is 4 or higher. When that is the case, we will *always* have
1667   // a simplification. This is an important invariant to prevent cyclicly
1668   // trying to simplify already minimal formations.
1669   if (FactorPowerSum < 4)
1670     return false;
1671 
1672   // Now gather the simplifiable factors, removing them from Ops.
1673   FactorPowerSum = 0;
1674   for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1675     Value *Op = Ops[Idx-1].Op;
1676 
1677     // Count the number of occurrences of this value.
1678     unsigned Count = 1;
1679     for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1680       ++Count;
1681     if (Count == 1)
1682       continue;
1683     // Move an even number of occurrences to Factors.
1684     Count &= ~1U;
1685     Idx -= Count;
1686     FactorPowerSum += Count;
1687     Factors.push_back(Factor(Op, Count));
1688     Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1689   }
1690 
1691   // None of the adjustments above should have reduced the sum of factor powers
1692   // below our mininum of '4'.
1693   assert(FactorPowerSum >= 4);
1694 
1695   std::stable_sort(Factors.begin(), Factors.end(),
1696                    [](const Factor &LHS, const Factor &RHS) {
1697     return LHS.Power > RHS.Power;
1698   });
1699   return true;
1700 }
1701 
1702 /// Build a tree of multiplies, computing the product of Ops.
1703 static Value *buildMultiplyTree(IRBuilder<> &Builder,
1704                                 SmallVectorImpl<Value*> &Ops) {
1705   if (Ops.size() == 1)
1706     return Ops.back();
1707 
1708   Value *LHS = Ops.pop_back_val();
1709   do {
1710     if (LHS->getType()->isIntOrIntVectorTy())
1711       LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1712     else
1713       LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
1714   } while (!Ops.empty());
1715 
1716   return LHS;
1717 }
1718 
1719 /// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1720 ///
1721 /// Given a vector of values raised to various powers, where no two values are
1722 /// equal and the powers are sorted in decreasing order, compute the minimal
1723 /// DAG of multiplies to compute the final product, and return that product
1724 /// value.
1725 Value *
1726 ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1727                                          SmallVectorImpl<Factor> &Factors) {
1728   assert(Factors[0].Power);
1729   SmallVector<Value *, 4> OuterProduct;
1730   for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1731        Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1732     if (Factors[Idx].Power != Factors[LastIdx].Power) {
1733       LastIdx = Idx;
1734       continue;
1735     }
1736 
1737     // We want to multiply across all the factors with the same power so that
1738     // we can raise them to that power as a single entity. Build a mini tree
1739     // for that.
1740     SmallVector<Value *, 4> InnerProduct;
1741     InnerProduct.push_back(Factors[LastIdx].Base);
1742     do {
1743       InnerProduct.push_back(Factors[Idx].Base);
1744       ++Idx;
1745     } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1746 
1747     // Reset the base value of the first factor to the new expression tree.
1748     // We'll remove all the factors with the same power in a second pass.
1749     Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1750     if (Instruction *MI = dyn_cast<Instruction>(M))
1751       RedoInsts.insert(MI);
1752 
1753     LastIdx = Idx;
1754   }
1755   // Unique factors with equal powers -- we've folded them into the first one's
1756   // base.
1757   Factors.erase(std::unique(Factors.begin(), Factors.end(),
1758                             [](const Factor &LHS, const Factor &RHS) {
1759                               return LHS.Power == RHS.Power;
1760                             }),
1761                 Factors.end());
1762 
1763   // Iteratively collect the base of each factor with an add power into the
1764   // outer product, and halve each power in preparation for squaring the
1765   // expression.
1766   for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1767     if (Factors[Idx].Power & 1)
1768       OuterProduct.push_back(Factors[Idx].Base);
1769     Factors[Idx].Power >>= 1;
1770   }
1771   if (Factors[0].Power) {
1772     Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1773     OuterProduct.push_back(SquareRoot);
1774     OuterProduct.push_back(SquareRoot);
1775   }
1776   if (OuterProduct.size() == 1)
1777     return OuterProduct.front();
1778 
1779   Value *V = buildMultiplyTree(Builder, OuterProduct);
1780   return V;
1781 }
1782 
1783 Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
1784                                     SmallVectorImpl<ValueEntry> &Ops) {
1785   // We can only optimize the multiplies when there is a chain of more than
1786   // three, such that a balanced tree might require fewer total multiplies.
1787   if (Ops.size() < 4)
1788     return nullptr;
1789 
1790   // Try to turn linear trees of multiplies without other uses of the
1791   // intermediate stages into minimal multiply DAGs with perfect sub-expression
1792   // re-use.
1793   SmallVector<Factor, 4> Factors;
1794   if (!collectMultiplyFactors(Ops, Factors))
1795     return nullptr; // All distinct factors, so nothing left for us to do.
1796 
1797   IRBuilder<> Builder(I);
1798   // The reassociate transformation for FP operations is performed only
1799   // if unsafe algebra is permitted by FastMathFlags. Propagate those flags
1800   // to the newly generated operations.
1801   if (auto FPI = dyn_cast<FPMathOperator>(I))
1802     Builder.setFastMathFlags(FPI->getFastMathFlags());
1803 
1804   Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1805   if (Ops.empty())
1806     return V;
1807 
1808   ValueEntry NewEntry = ValueEntry(getRank(V), V);
1809   Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
1810   return nullptr;
1811 }
1812 
1813 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
1814                                            SmallVectorImpl<ValueEntry> &Ops) {
1815   // Now that we have the linearized expression tree, try to optimize it.
1816   // Start by folding any constants that we found.
1817   Constant *Cst = nullptr;
1818   unsigned Opcode = I->getOpcode();
1819   while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1820     Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1821     Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1822   }
1823   // If there was nothing but constants then we are done.
1824   if (Ops.empty())
1825     return Cst;
1826 
1827   // Put the combined constant back at the end of the operand list, except if
1828   // there is no point.  For example, an add of 0 gets dropped here, while a
1829   // multiplication by zero turns the whole expression into zero.
1830   if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1831     if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1832       return Cst;
1833     Ops.push_back(ValueEntry(0, Cst));
1834   }
1835 
1836   if (Ops.size() == 1) return Ops[0].Op;
1837 
1838   // Handle destructive annihilation due to identities between elements in the
1839   // argument list here.
1840   unsigned NumOps = Ops.size();
1841   switch (Opcode) {
1842   default: break;
1843   case Instruction::And:
1844   case Instruction::Or:
1845     if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1846       return Result;
1847     break;
1848 
1849   case Instruction::Xor:
1850     if (Value *Result = OptimizeXor(I, Ops))
1851       return Result;
1852     break;
1853 
1854   case Instruction::Add:
1855   case Instruction::FAdd:
1856     if (Value *Result = OptimizeAdd(I, Ops))
1857       return Result;
1858     break;
1859 
1860   case Instruction::Mul:
1861   case Instruction::FMul:
1862     if (Value *Result = OptimizeMul(I, Ops))
1863       return Result;
1864     break;
1865   }
1866 
1867   if (Ops.size() != NumOps)
1868     return OptimizeExpression(I, Ops);
1869   return nullptr;
1870 }
1871 
1872 // Remove dead instructions and if any operands are trivially dead add them to
1873 // Insts so they will be removed as well.
1874 void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I,
1875                                                 OrderedSet &Insts) {
1876   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1877   SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end());
1878   ValueRankMap.erase(I);
1879   Insts.remove(I);
1880   RedoInsts.remove(I);
1881   I->eraseFromParent();
1882   for (auto Op : Ops)
1883     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1884       if (OpInst->use_empty())
1885         Insts.insert(OpInst);
1886 }
1887 
1888 /// Zap the given instruction, adding interesting operands to the work list.
1889 void ReassociatePass::EraseInst(Instruction *I) {
1890   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1891   DEBUG(dbgs() << "Erasing dead inst: "; I->dump());
1892 
1893   SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1894   // Erase the dead instruction.
1895   ValueRankMap.erase(I);
1896   RedoInsts.remove(I);
1897   I->eraseFromParent();
1898   // Optimize its operands.
1899   SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
1900   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1901     if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1902       // If this is a node in an expression tree, climb to the expression root
1903       // and add that since that's where optimization actually happens.
1904       unsigned Opcode = Op->getOpcode();
1905       while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
1906              Visited.insert(Op).second)
1907         Op = Op->user_back();
1908       RedoInsts.insert(Op);
1909     }
1910 
1911   MadeChange = true;
1912 }
1913 
1914 // Canonicalize expressions of the following form:
1915 //  x + (-Constant * y) -> x - (Constant * y)
1916 //  x - (-Constant * y) -> x + (Constant * y)
1917 Instruction *ReassociatePass::canonicalizeNegConstExpr(Instruction *I) {
1918   if (!I->hasOneUse() || I->getType()->isVectorTy())
1919     return nullptr;
1920 
1921   // Must be a fmul or fdiv instruction.
1922   unsigned Opcode = I->getOpcode();
1923   if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv)
1924     return nullptr;
1925 
1926   auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
1927   auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
1928 
1929   // Both operands are constant, let it get constant folded away.
1930   if (C0 && C1)
1931     return nullptr;
1932 
1933   ConstantFP *CF = C0 ? C0 : C1;
1934 
1935   // Must have one constant operand.
1936   if (!CF)
1937     return nullptr;
1938 
1939   // Must be a negative ConstantFP.
1940   if (!CF->isNegative())
1941     return nullptr;
1942 
1943   // User must be a binary operator with one or more uses.
1944   Instruction *User = I->user_back();
1945   if (!isa<BinaryOperator>(User) || User->use_empty())
1946     return nullptr;
1947 
1948   unsigned UserOpcode = User->getOpcode();
1949   if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub)
1950     return nullptr;
1951 
1952   // Subtraction is not commutative. Explicitly, the following transform is
1953   // not valid: (-Constant * y) - x  -> x + (Constant * y)
1954   if (!User->isCommutative() && User->getOperand(1) != I)
1955     return nullptr;
1956 
1957   // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the
1958   // resulting subtract will be broken up later.  This can get us into an
1959   // infinite loop during reassociation.
1960   if (UserOpcode == Instruction::FAdd && ShouldBreakUpSubtract(User))
1961     return nullptr;
1962 
1963   // Change the sign of the constant.
1964   APFloat Val = CF->getValueAPF();
1965   Val.changeSign();
1966   I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val));
1967 
1968   // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
1969   // ((-Const*y) + x) -> (x + (-Const*y)).
1970   if (User->getOperand(0) == I && User->isCommutative())
1971     cast<BinaryOperator>(User)->swapOperands();
1972 
1973   Value *Op0 = User->getOperand(0);
1974   Value *Op1 = User->getOperand(1);
1975   BinaryOperator *NI;
1976   switch (UserOpcode) {
1977   default:
1978     llvm_unreachable("Unexpected Opcode!");
1979   case Instruction::FAdd:
1980     NI = BinaryOperator::CreateFSub(Op0, Op1);
1981     NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1982     break;
1983   case Instruction::FSub:
1984     NI = BinaryOperator::CreateFAdd(Op0, Op1);
1985     NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1986     break;
1987   }
1988 
1989   NI->insertBefore(User);
1990   NI->setName(User->getName());
1991   User->replaceAllUsesWith(NI);
1992   NI->setDebugLoc(I->getDebugLoc());
1993   RedoInsts.insert(I);
1994   MadeChange = true;
1995   return NI;
1996 }
1997 
1998 /// Inspect and optimize the given instruction. Note that erasing
1999 /// instructions is not allowed.
2000 void ReassociatePass::OptimizeInst(Instruction *I) {
2001   // Only consider operations that we understand.
2002   if (!isa<BinaryOperator>(I))
2003     return;
2004 
2005   if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
2006     // If an operand of this shift is a reassociable multiply, or if the shift
2007     // is used by a reassociable multiply or add, turn into a multiply.
2008     if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
2009         (I->hasOneUse() &&
2010          (isReassociableOp(I->user_back(), Instruction::Mul) ||
2011           isReassociableOp(I->user_back(), Instruction::Add)))) {
2012       Instruction *NI = ConvertShiftToMul(I);
2013       RedoInsts.insert(I);
2014       MadeChange = true;
2015       I = NI;
2016     }
2017 
2018   // Canonicalize negative constants out of expressions.
2019   if (Instruction *Res = canonicalizeNegConstExpr(I))
2020     I = Res;
2021 
2022   // Commute binary operators, to canonicalize the order of their operands.
2023   // This can potentially expose more CSE opportunities, and makes writing other
2024   // transformations simpler.
2025   if (I->isCommutative())
2026     canonicalizeOperands(I);
2027 
2028   // Don't optimize floating-point instructions unless they are 'fast'.
2029   if (I->getType()->isFPOrFPVectorTy() && !I->isFast())
2030     return;
2031 
2032   // Do not reassociate boolean (i1) expressions.  We want to preserve the
2033   // original order of evaluation for short-circuited comparisons that
2034   // SimplifyCFG has folded to AND/OR expressions.  If the expression
2035   // is not further optimized, it is likely to be transformed back to a
2036   // short-circuited form for code gen, and the source order may have been
2037   // optimized for the most likely conditions.
2038   if (I->getType()->isIntegerTy(1))
2039     return;
2040 
2041   // If this is a subtract instruction which is not already in negate form,
2042   // see if we can convert it to X+-Y.
2043   if (I->getOpcode() == Instruction::Sub) {
2044     if (ShouldBreakUpSubtract(I)) {
2045       Instruction *NI = BreakUpSubtract(I, RedoInsts);
2046       RedoInsts.insert(I);
2047       MadeChange = true;
2048       I = NI;
2049     } else if (BinaryOperator::isNeg(I)) {
2050       // Otherwise, this is a negation.  See if the operand is a multiply tree
2051       // and if this is not an inner node of a multiply tree.
2052       if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2053           (!I->hasOneUse() ||
2054            !isReassociableOp(I->user_back(), Instruction::Mul))) {
2055         Instruction *NI = LowerNegateToMultiply(I);
2056         // If the negate was simplified, revisit the users to see if we can
2057         // reassociate further.
2058         for (User *U : NI->users()) {
2059           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2060             RedoInsts.insert(Tmp);
2061         }
2062         RedoInsts.insert(I);
2063         MadeChange = true;
2064         I = NI;
2065       }
2066     }
2067   } else if (I->getOpcode() == Instruction::FSub) {
2068     if (ShouldBreakUpSubtract(I)) {
2069       Instruction *NI = BreakUpSubtract(I, RedoInsts);
2070       RedoInsts.insert(I);
2071       MadeChange = true;
2072       I = NI;
2073     } else if (BinaryOperator::isFNeg(I)) {
2074       // Otherwise, this is a negation.  See if the operand is a multiply tree
2075       // and if this is not an inner node of a multiply tree.
2076       if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
2077           (!I->hasOneUse() ||
2078            !isReassociableOp(I->user_back(), Instruction::FMul))) {
2079         // If the negate was simplified, revisit the users to see if we can
2080         // reassociate further.
2081         Instruction *NI = LowerNegateToMultiply(I);
2082         for (User *U : NI->users()) {
2083           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2084             RedoInsts.insert(Tmp);
2085         }
2086         RedoInsts.insert(I);
2087         MadeChange = true;
2088         I = NI;
2089       }
2090     }
2091   }
2092 
2093   // If this instruction is an associative binary operator, process it.
2094   if (!I->isAssociative()) return;
2095   BinaryOperator *BO = cast<BinaryOperator>(I);
2096 
2097   // If this is an interior node of a reassociable tree, ignore it until we
2098   // get to the root of the tree, to avoid N^2 analysis.
2099   unsigned Opcode = BO->getOpcode();
2100   if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2101     // During the initial run we will get to the root of the tree.
2102     // But if we get here while we are redoing instructions, there is no
2103     // guarantee that the root will be visited. So Redo later
2104     if (BO->user_back() != BO &&
2105         BO->getParent() == BO->user_back()->getParent())
2106       RedoInsts.insert(BO->user_back());
2107     return;
2108   }
2109 
2110   // If this is an add tree that is used by a sub instruction, ignore it
2111   // until we process the subtract.
2112   if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
2113       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
2114     return;
2115   if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2116       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2117     return;
2118 
2119   ReassociateExpression(BO);
2120 }
2121 
2122 void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
2123   // First, walk the expression tree, linearizing the tree, collecting the
2124   // operand information.
2125   SmallVector<RepeatedValue, 8> Tree;
2126   MadeChange |= LinearizeExprTree(I, Tree);
2127   SmallVector<ValueEntry, 8> Ops;
2128   Ops.reserve(Tree.size());
2129   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
2130     RepeatedValue E = Tree[i];
2131     Ops.append(E.second.getZExtValue(),
2132                ValueEntry(getRank(E.first), E.first));
2133   }
2134 
2135   DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2136 
2137   // Now that we have linearized the tree to a list and have gathered all of
2138   // the operands and their ranks, sort the operands by their rank.  Use a
2139   // stable_sort so that values with equal ranks will have their relative
2140   // positions maintained (and so the compiler is deterministic).  Note that
2141   // this sorts so that the highest ranking values end up at the beginning of
2142   // the vector.
2143   std::stable_sort(Ops.begin(), Ops.end());
2144 
2145   // Now that we have the expression tree in a convenient
2146   // sorted form, optimize it globally if possible.
2147   if (Value *V = OptimizeExpression(I, Ops)) {
2148     if (V == I)
2149       // Self-referential expression in unreachable code.
2150       return;
2151     // This expression tree simplified to something that isn't a tree,
2152     // eliminate it.
2153     DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
2154     I->replaceAllUsesWith(V);
2155     if (Instruction *VI = dyn_cast<Instruction>(V))
2156       if (I->getDebugLoc())
2157         VI->setDebugLoc(I->getDebugLoc());
2158     RedoInsts.insert(I);
2159     ++NumAnnihil;
2160     return;
2161   }
2162 
2163   // We want to sink immediates as deeply as possible except in the case where
2164   // this is a multiply tree used only by an add, and the immediate is a -1.
2165   // In this case we reassociate to put the negation on the outside so that we
2166   // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
2167   if (I->hasOneUse()) {
2168     if (I->getOpcode() == Instruction::Mul &&
2169         cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2170         isa<ConstantInt>(Ops.back().Op) &&
2171         cast<ConstantInt>(Ops.back().Op)->isMinusOne()) {
2172       ValueEntry Tmp = Ops.pop_back_val();
2173       Ops.insert(Ops.begin(), Tmp);
2174     } else if (I->getOpcode() == Instruction::FMul &&
2175                cast<Instruction>(I->user_back())->getOpcode() ==
2176                    Instruction::FAdd &&
2177                isa<ConstantFP>(Ops.back().Op) &&
2178                cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2179       ValueEntry Tmp = Ops.pop_back_val();
2180       Ops.insert(Ops.begin(), Tmp);
2181     }
2182   }
2183 
2184   DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
2185 
2186   if (Ops.size() == 1) {
2187     if (Ops[0].Op == I)
2188       // Self-referential expression in unreachable code.
2189       return;
2190 
2191     // This expression tree simplified to something that isn't a tree,
2192     // eliminate it.
2193     I->replaceAllUsesWith(Ops[0].Op);
2194     if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2195       OI->setDebugLoc(I->getDebugLoc());
2196     RedoInsts.insert(I);
2197     return;
2198   }
2199 
2200   if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) {
2201     // Find the pair with the highest count in the pairmap and move it to the
2202     // back of the list so that it can later be CSE'd.
2203     // example:
2204     //   a*b*c*d*e
2205     // if c*e is the most "popular" pair, we can express this as
2206     //   (((c*e)*d)*b)*a
2207     unsigned Max = 1;
2208     unsigned BestRank = 0;
2209     std::pair<unsigned, unsigned> BestPair;
2210     unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin;
2211     for (unsigned i = 0; i < Ops.size() - 1; ++i)
2212       for (unsigned j = i + 1; j < Ops.size(); ++j) {
2213         unsigned Score = 0;
2214         Value *Op0 = Ops[i].Op;
2215         Value *Op1 = Ops[j].Op;
2216         if (std::less<Value *>()(Op1, Op0))
2217           std::swap(Op0, Op1);
2218         auto it = PairMap[Idx].find({Op0, Op1});
2219         if (it != PairMap[Idx].end())
2220           Score += it->second;
2221 
2222         unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank);
2223         if (Score > Max || (Score == Max && MaxRank < BestRank)) {
2224           BestPair = {i, j};
2225           Max = Score;
2226           BestRank = MaxRank;
2227         }
2228       }
2229     if (Max > 1) {
2230       auto Op0 = Ops[BestPair.first];
2231       auto Op1 = Ops[BestPair.second];
2232       Ops.erase(&Ops[BestPair.second]);
2233       Ops.erase(&Ops[BestPair.first]);
2234       Ops.push_back(Op0);
2235       Ops.push_back(Op1);
2236     }
2237   }
2238   // Now that we ordered and optimized the expressions, splat them back into
2239   // the expression tree, removing any unneeded nodes.
2240   RewriteExprTree(I, Ops);
2241 }
2242 
2243 void
2244 ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) {
2245   // Make a "pairmap" of how often each operand pair occurs.
2246   for (BasicBlock *BI : RPOT) {
2247     for (Instruction &I : *BI) {
2248       if (!I.isAssociative())
2249         continue;
2250 
2251       // Ignore nodes that aren't at the root of trees.
2252       if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode())
2253         continue;
2254 
2255       // Collect all operands in a single reassociable expression.
2256       // Since Reassociate has already been run once, we can assume things
2257       // are already canonical according to Reassociation's regime.
2258       SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) };
2259       SmallVector<Value *, 8> Ops;
2260       while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) {
2261         Value *Op = Worklist.pop_back_val();
2262         Instruction *OpI = dyn_cast<Instruction>(Op);
2263         if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) {
2264           Ops.push_back(Op);
2265           continue;
2266         }
2267         // Be paranoid about self-referencing expressions in unreachable code.
2268         if (OpI->getOperand(0) != OpI)
2269           Worklist.push_back(OpI->getOperand(0));
2270         if (OpI->getOperand(1) != OpI)
2271           Worklist.push_back(OpI->getOperand(1));
2272       }
2273       // Skip extremely long expressions.
2274       if (Ops.size() > GlobalReassociateLimit)
2275         continue;
2276 
2277       // Add all pairwise combinations of operands to the pair map.
2278       unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin;
2279       SmallSet<std::pair<Value *, Value*>, 32> Visited;
2280       for (unsigned i = 0; i < Ops.size() - 1; ++i) {
2281         for (unsigned j = i + 1; j < Ops.size(); ++j) {
2282           // Canonicalize operand orderings.
2283           Value *Op0 = Ops[i];
2284           Value *Op1 = Ops[j];
2285           if (std::less<Value *>()(Op1, Op0))
2286             std::swap(Op0, Op1);
2287           if (!Visited.insert({Op0, Op1}).second)
2288             continue;
2289           auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, 1});
2290           if (!res.second)
2291             ++res.first->second;
2292         }
2293       }
2294     }
2295   }
2296 }
2297 
2298 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
2299   // Get the functions basic blocks in Reverse Post Order. This order is used by
2300   // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic
2301   // blocks (it has been seen that the analysis in this pass could hang when
2302   // analysing dead basic blocks).
2303   ReversePostOrderTraversal<Function *> RPOT(&F);
2304 
2305   // Calculate the rank map for F.
2306   BuildRankMap(F, RPOT);
2307 
2308   // Build the pair map before running reassociate.
2309   // Technically this would be more accurate if we did it after one round
2310   // of reassociation, but in practice it doesn't seem to help much on
2311   // real-world code, so don't waste the compile time running reassociate
2312   // twice.
2313   // If a user wants, they could expicitly run reassociate twice in their
2314   // pass pipeline for further potential gains.
2315   // It might also be possible to update the pair map during runtime, but the
2316   // overhead of that may be large if there's many reassociable chains.
2317   BuildPairMap(RPOT);
2318 
2319   MadeChange = false;
2320 
2321   // Traverse the same blocks that were analysed by BuildRankMap.
2322   for (BasicBlock *BI : RPOT) {
2323     assert(RankMap.count(&*BI) && "BB should be ranked.");
2324     // Optimize every instruction in the basic block.
2325     for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;)
2326       if (isInstructionTriviallyDead(&*II)) {
2327         EraseInst(&*II++);
2328       } else {
2329         OptimizeInst(&*II);
2330         assert(II->getParent() == &*BI && "Moved to a different block!");
2331         ++II;
2332       }
2333 
2334     // Make a copy of all the instructions to be redone so we can remove dead
2335     // instructions.
2336     OrderedSet ToRedo(RedoInsts);
2337     // Iterate over all instructions to be reevaluated and remove trivially dead
2338     // instructions. If any operand of the trivially dead instruction becomes
2339     // dead mark it for deletion as well. Continue this process until all
2340     // trivially dead instructions have been removed.
2341     while (!ToRedo.empty()) {
2342       Instruction *I = ToRedo.pop_back_val();
2343       if (isInstructionTriviallyDead(I)) {
2344         RecursivelyEraseDeadInsts(I, ToRedo);
2345         MadeChange = true;
2346       }
2347     }
2348 
2349     // Now that we have removed dead instructions, we can reoptimize the
2350     // remaining instructions.
2351     while (!RedoInsts.empty()) {
2352       Instruction *I = RedoInsts.front();
2353       RedoInsts.erase(RedoInsts.begin());
2354       if (isInstructionTriviallyDead(I))
2355         EraseInst(I);
2356       else
2357         OptimizeInst(I);
2358     }
2359   }
2360 
2361   // We are done with the rank map and pair map.
2362   RankMap.clear();
2363   ValueRankMap.clear();
2364   for (auto &Entry : PairMap)
2365     Entry.clear();
2366 
2367   if (MadeChange) {
2368     PreservedAnalyses PA;
2369     PA.preserveSet<CFGAnalyses>();
2370     PA.preserve<GlobalsAA>();
2371     return PA;
2372   }
2373 
2374   return PreservedAnalyses::all();
2375 }
2376 
2377 namespace {
2378 
2379   class ReassociateLegacyPass : public FunctionPass {
2380     ReassociatePass Impl;
2381 
2382   public:
2383     static char ID; // Pass identification, replacement for typeid
2384 
2385     ReassociateLegacyPass() : FunctionPass(ID) {
2386       initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
2387     }
2388 
2389     bool runOnFunction(Function &F) override {
2390       if (skipFunction(F))
2391         return false;
2392 
2393       FunctionAnalysisManager DummyFAM;
2394       auto PA = Impl.run(F, DummyFAM);
2395       return !PA.areAllPreserved();
2396     }
2397 
2398     void getAnalysisUsage(AnalysisUsage &AU) const override {
2399       AU.setPreservesCFG();
2400       AU.addPreserved<GlobalsAAWrapperPass>();
2401     }
2402   };
2403 
2404 } // end anonymous namespace
2405 
2406 char ReassociateLegacyPass::ID = 0;
2407 
2408 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
2409                 "Reassociate expressions", false, false)
2410 
2411 // Public interface to the Reassociate pass
2412 FunctionPass *llvm::createReassociatePass() {
2413   return new ReassociateLegacyPass();
2414 }
2415