1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass reassociates commutative expressions in an order that is designed 11 // to promote better constant propagation, GCSE, LICM, PRE, etc. 12 // 13 // For example: 4 + (x + 5) -> x + (4 + 5) 14 // 15 // In the implementation of this algorithm, constants are assigned rank = 0, 16 // function arguments are rank = 1, and other values are assigned ranks 17 // corresponding to the reverse post order traversal of current function 18 // (starting at 2), which effectively gives values in deep loops higher rank 19 // than values not in loops. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/Transforms/Scalar/Reassociate.h" 24 #include "llvm/ADT/APFloat.h" 25 #include "llvm/ADT/APInt.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/ADT/SetVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/Analysis/GlobalsModRef.h" 34 #include "llvm/Analysis/Utils/Local.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Argument.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/IRBuilder.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Operator.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/IR/PatternMatch.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/User.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/IR/ValueHandle.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Transforms/Scalar.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <utility> 63 64 using namespace llvm; 65 using namespace reassociate; 66 67 #define DEBUG_TYPE "reassociate" 68 69 STATISTIC(NumChanged, "Number of insts reassociated"); 70 STATISTIC(NumAnnihil, "Number of expr tree annihilated"); 71 STATISTIC(NumFactor , "Number of multiplies factored"); 72 73 #ifndef NDEBUG 74 /// Print out the expression identified in the Ops list. 75 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) { 76 Module *M = I->getModule(); 77 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " " 78 << *Ops[0].Op->getType() << '\t'; 79 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 80 dbgs() << "[ "; 81 Ops[i].Op->printAsOperand(dbgs(), false, M); 82 dbgs() << ", #" << Ops[i].Rank << "] "; 83 } 84 } 85 #endif 86 87 /// Utility class representing a non-constant Xor-operand. We classify 88 /// non-constant Xor-Operands into two categories: 89 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0 90 /// C2) 91 /// C2.1) The operand is in the form of "X | C", where C is a non-zero 92 /// constant. 93 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this 94 /// operand as "E | 0" 95 class llvm::reassociate::XorOpnd { 96 public: 97 XorOpnd(Value *V); 98 99 bool isInvalid() const { return SymbolicPart == nullptr; } 100 bool isOrExpr() const { return isOr; } 101 Value *getValue() const { return OrigVal; } 102 Value *getSymbolicPart() const { return SymbolicPart; } 103 unsigned getSymbolicRank() const { return SymbolicRank; } 104 const APInt &getConstPart() const { return ConstPart; } 105 106 void Invalidate() { SymbolicPart = OrigVal = nullptr; } 107 void setSymbolicRank(unsigned R) { SymbolicRank = R; } 108 109 private: 110 Value *OrigVal; 111 Value *SymbolicPart; 112 APInt ConstPart; 113 unsigned SymbolicRank; 114 bool isOr; 115 }; 116 117 XorOpnd::XorOpnd(Value *V) { 118 assert(!isa<ConstantInt>(V) && "No ConstantInt"); 119 OrigVal = V; 120 Instruction *I = dyn_cast<Instruction>(V); 121 SymbolicRank = 0; 122 123 if (I && (I->getOpcode() == Instruction::Or || 124 I->getOpcode() == Instruction::And)) { 125 Value *V0 = I->getOperand(0); 126 Value *V1 = I->getOperand(1); 127 const APInt *C; 128 if (match(V0, PatternMatch::m_APInt(C))) 129 std::swap(V0, V1); 130 131 if (match(V1, PatternMatch::m_APInt(C))) { 132 ConstPart = *C; 133 SymbolicPart = V0; 134 isOr = (I->getOpcode() == Instruction::Or); 135 return; 136 } 137 } 138 139 // view the operand as "V | 0" 140 SymbolicPart = V; 141 ConstPart = APInt::getNullValue(V->getType()->getScalarSizeInBits()); 142 isOr = true; 143 } 144 145 /// Return true if V is an instruction of the specified opcode and if it 146 /// only has one use. 147 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) { 148 auto *I = dyn_cast<Instruction>(V); 149 if (I && I->hasOneUse() && I->getOpcode() == Opcode) 150 if (!isa<FPMathOperator>(I) || I->isFast()) 151 return cast<BinaryOperator>(I); 152 return nullptr; 153 } 154 155 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1, 156 unsigned Opcode2) { 157 auto *I = dyn_cast<Instruction>(V); 158 if (I && I->hasOneUse() && 159 (I->getOpcode() == Opcode1 || I->getOpcode() == Opcode2)) 160 if (!isa<FPMathOperator>(I) || I->isFast()) 161 return cast<BinaryOperator>(I); 162 return nullptr; 163 } 164 165 void ReassociatePass::BuildRankMap(Function &F, 166 ReversePostOrderTraversal<Function*> &RPOT) { 167 unsigned Rank = 2; 168 169 // Assign distinct ranks to function arguments. 170 for (auto &Arg : F.args()) { 171 ValueRankMap[&Arg] = ++Rank; 172 DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank 173 << "\n"); 174 } 175 176 // Traverse basic blocks in ReversePostOrder 177 for (BasicBlock *BB : RPOT) { 178 unsigned BBRank = RankMap[BB] = ++Rank << 16; 179 180 // Walk the basic block, adding precomputed ranks for any instructions that 181 // we cannot move. This ensures that the ranks for these instructions are 182 // all different in the block. 183 for (Instruction &I : *BB) 184 if (mayBeMemoryDependent(I)) 185 ValueRankMap[&I] = ++BBRank; 186 } 187 } 188 189 unsigned ReassociatePass::getRank(Value *V) { 190 Instruction *I = dyn_cast<Instruction>(V); 191 if (!I) { 192 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument. 193 return 0; // Otherwise it's a global or constant, rank 0. 194 } 195 196 if (unsigned Rank = ValueRankMap[I]) 197 return Rank; // Rank already known? 198 199 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that 200 // we can reassociate expressions for code motion! Since we do not recurse 201 // for PHI nodes, we cannot have infinite recursion here, because there 202 // cannot be loops in the value graph that do not go through PHI nodes. 203 unsigned Rank = 0, MaxRank = RankMap[I->getParent()]; 204 for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i) 205 Rank = std::max(Rank, getRank(I->getOperand(i))); 206 207 // If this is a not or neg instruction, do not count it for rank. This 208 // assures us that X and ~X will have the same rank. 209 if (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) && 210 !BinaryOperator::isFNeg(I)) 211 ++Rank; 212 213 DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n"); 214 215 return ValueRankMap[I] = Rank; 216 } 217 218 // Canonicalize constants to RHS. Otherwise, sort the operands by rank. 219 void ReassociatePass::canonicalizeOperands(Instruction *I) { 220 assert(isa<BinaryOperator>(I) && "Expected binary operator."); 221 assert(I->isCommutative() && "Expected commutative operator."); 222 223 Value *LHS = I->getOperand(0); 224 Value *RHS = I->getOperand(1); 225 if (LHS == RHS || isa<Constant>(RHS)) 226 return; 227 if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS)) 228 cast<BinaryOperator>(I)->swapOperands(); 229 } 230 231 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name, 232 Instruction *InsertBefore, Value *FlagsOp) { 233 if (S1->getType()->isIntOrIntVectorTy()) 234 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore); 235 else { 236 BinaryOperator *Res = 237 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore); 238 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 239 return Res; 240 } 241 } 242 243 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name, 244 Instruction *InsertBefore, Value *FlagsOp) { 245 if (S1->getType()->isIntOrIntVectorTy()) 246 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore); 247 else { 248 BinaryOperator *Res = 249 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore); 250 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 251 return Res; 252 } 253 } 254 255 static BinaryOperator *CreateNeg(Value *S1, const Twine &Name, 256 Instruction *InsertBefore, Value *FlagsOp) { 257 if (S1->getType()->isIntOrIntVectorTy()) 258 return BinaryOperator::CreateNeg(S1, Name, InsertBefore); 259 else { 260 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore); 261 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 262 return Res; 263 } 264 } 265 266 /// Replace 0-X with X*-1. 267 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) { 268 Type *Ty = Neg->getType(); 269 Constant *NegOne = Ty->isIntOrIntVectorTy() ? 270 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0); 271 272 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg); 273 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op. 274 Res->takeName(Neg); 275 Neg->replaceAllUsesWith(Res); 276 Res->setDebugLoc(Neg->getDebugLoc()); 277 return Res; 278 } 279 280 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael 281 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for 282 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic. 283 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every 284 /// even x in Bitwidth-bit arithmetic. 285 static unsigned CarmichaelShift(unsigned Bitwidth) { 286 if (Bitwidth < 3) 287 return Bitwidth - 1; 288 return Bitwidth - 2; 289 } 290 291 /// Add the extra weight 'RHS' to the existing weight 'LHS', 292 /// reducing the combined weight using any special properties of the operation. 293 /// The existing weight LHS represents the computation X op X op ... op X where 294 /// X occurs LHS times. The combined weight represents X op X op ... op X with 295 /// X occurring LHS + RHS times. If op is "Xor" for example then the combined 296 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even; 297 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second. 298 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) { 299 // If we were working with infinite precision arithmetic then the combined 300 // weight would be LHS + RHS. But we are using finite precision arithmetic, 301 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct 302 // for nilpotent operations and addition, but not for idempotent operations 303 // and multiplication), so it is important to correctly reduce the combined 304 // weight back into range if wrapping would be wrong. 305 306 // If RHS is zero then the weight didn't change. 307 if (RHS.isMinValue()) 308 return; 309 // If LHS is zero then the combined weight is RHS. 310 if (LHS.isMinValue()) { 311 LHS = RHS; 312 return; 313 } 314 // From this point on we know that neither LHS nor RHS is zero. 315 316 if (Instruction::isIdempotent(Opcode)) { 317 // Idempotent means X op X === X, so any non-zero weight is equivalent to a 318 // weight of 1. Keeping weights at zero or one also means that wrapping is 319 // not a problem. 320 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 321 return; // Return a weight of 1. 322 } 323 if (Instruction::isNilpotent(Opcode)) { 324 // Nilpotent means X op X === 0, so reduce weights modulo 2. 325 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 326 LHS = 0; // 1 + 1 === 0 modulo 2. 327 return; 328 } 329 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) { 330 // TODO: Reduce the weight by exploiting nsw/nuw? 331 LHS += RHS; 332 return; 333 } 334 335 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) && 336 "Unknown associative operation!"); 337 unsigned Bitwidth = LHS.getBitWidth(); 338 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth 339 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth 340 // bit number x, since either x is odd in which case x^CM = 1, or x is even in 341 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples 342 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth) 343 // which by a happy accident means that they can always be represented using 344 // Bitwidth bits. 345 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than 346 // the Carmichael number). 347 if (Bitwidth > 3) { 348 /// CM - The value of Carmichael's lambda function. 349 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth)); 350 // Any weight W >= Threshold can be replaced with W - CM. 351 APInt Threshold = CM + Bitwidth; 352 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!"); 353 // For Bitwidth 4 or more the following sum does not overflow. 354 LHS += RHS; 355 while (LHS.uge(Threshold)) 356 LHS -= CM; 357 } else { 358 // To avoid problems with overflow do everything the same as above but using 359 // a larger type. 360 unsigned CM = 1U << CarmichaelShift(Bitwidth); 361 unsigned Threshold = CM + Bitwidth; 362 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold && 363 "Weights not reduced!"); 364 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue(); 365 while (Total >= Threshold) 366 Total -= CM; 367 LHS = Total; 368 } 369 } 370 371 using RepeatedValue = std::pair<Value*, APInt>; 372 373 /// Given an associative binary expression, return the leaf 374 /// nodes in Ops along with their weights (how many times the leaf occurs). The 375 /// original expression is the same as 376 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times 377 /// op 378 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times 379 /// op 380 /// ... 381 /// op 382 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times 383 /// 384 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct. 385 /// 386 /// This routine may modify the function, in which case it returns 'true'. The 387 /// changes it makes may well be destructive, changing the value computed by 'I' 388 /// to something completely different. Thus if the routine returns 'true' then 389 /// you MUST either replace I with a new expression computed from the Ops array, 390 /// or use RewriteExprTree to put the values back in. 391 /// 392 /// A leaf node is either not a binary operation of the same kind as the root 393 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different 394 /// opcode), or is the same kind of binary operator but has a use which either 395 /// does not belong to the expression, or does belong to the expression but is 396 /// a leaf node. Every leaf node has at least one use that is a non-leaf node 397 /// of the expression, while for non-leaf nodes (except for the root 'I') every 398 /// use is a non-leaf node of the expression. 399 /// 400 /// For example: 401 /// expression graph node names 402 /// 403 /// + | I 404 /// / \ | 405 /// + + | A, B 406 /// / \ / \ | 407 /// * + * | C, D, E 408 /// / \ / \ / \ | 409 /// + * | F, G 410 /// 411 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in 412 /// that order) (C, 1), (E, 1), (F, 2), (G, 2). 413 /// 414 /// The expression is maximal: if some instruction is a binary operator of the 415 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression, 416 /// then the instruction also belongs to the expression, is not a leaf node of 417 /// it, and its operands also belong to the expression (but may be leaf nodes). 418 /// 419 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in 420 /// order to ensure that every non-root node in the expression has *exactly one* 421 /// use by a non-leaf node of the expression. This destruction means that the 422 /// caller MUST either replace 'I' with a new expression or use something like 423 /// RewriteExprTree to put the values back in if the routine indicates that it 424 /// made a change by returning 'true'. 425 /// 426 /// In the above example either the right operand of A or the left operand of B 427 /// will be replaced by undef. If it is B's operand then this gives: 428 /// 429 /// + | I 430 /// / \ | 431 /// + + | A, B - operand of B replaced with undef 432 /// / \ \ | 433 /// * + * | C, D, E 434 /// / \ / \ / \ | 435 /// + * | F, G 436 /// 437 /// Note that such undef operands can only be reached by passing through 'I'. 438 /// For example, if you visit operands recursively starting from a leaf node 439 /// then you will never see such an undef operand unless you get back to 'I', 440 /// which requires passing through a phi node. 441 /// 442 /// Note that this routine may also mutate binary operators of the wrong type 443 /// that have all uses inside the expression (i.e. only used by non-leaf nodes 444 /// of the expression) if it can turn them into binary operators of the right 445 /// type and thus make the expression bigger. 446 static bool LinearizeExprTree(BinaryOperator *I, 447 SmallVectorImpl<RepeatedValue> &Ops) { 448 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n'); 449 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits(); 450 unsigned Opcode = I->getOpcode(); 451 assert(I->isAssociative() && I->isCommutative() && 452 "Expected an associative and commutative operation!"); 453 454 // Visit all operands of the expression, keeping track of their weight (the 455 // number of paths from the expression root to the operand, or if you like 456 // the number of times that operand occurs in the linearized expression). 457 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1 458 // while A has weight two. 459 460 // Worklist of non-leaf nodes (their operands are in the expression too) along 461 // with their weights, representing a certain number of paths to the operator. 462 // If an operator occurs in the worklist multiple times then we found multiple 463 // ways to get to it. 464 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight) 465 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1))); 466 bool Changed = false; 467 468 // Leaves of the expression are values that either aren't the right kind of 469 // operation (eg: a constant, or a multiply in an add tree), or are, but have 470 // some uses that are not inside the expression. For example, in I = X + X, 471 // X = A + B, the value X has two uses (by I) that are in the expression. If 472 // X has any other uses, for example in a return instruction, then we consider 473 // X to be a leaf, and won't analyze it further. When we first visit a value, 474 // if it has more than one use then at first we conservatively consider it to 475 // be a leaf. Later, as the expression is explored, we may discover some more 476 // uses of the value from inside the expression. If all uses turn out to be 477 // from within the expression (and the value is a binary operator of the right 478 // kind) then the value is no longer considered to be a leaf, and its operands 479 // are explored. 480 481 // Leaves - Keeps track of the set of putative leaves as well as the number of 482 // paths to each leaf seen so far. 483 using LeafMap = DenseMap<Value *, APInt>; 484 LeafMap Leaves; // Leaf -> Total weight so far. 485 SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order. 486 487 #ifndef NDEBUG 488 SmallPtrSet<Value *, 8> Visited; // For sanity checking the iteration scheme. 489 #endif 490 while (!Worklist.empty()) { 491 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val(); 492 I = P.first; // We examine the operands of this binary operator. 493 494 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands. 495 Value *Op = I->getOperand(OpIdx); 496 APInt Weight = P.second; // Number of paths to this operand. 497 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n"); 498 assert(!Op->use_empty() && "No uses, so how did we get to it?!"); 499 500 // If this is a binary operation of the right kind with only one use then 501 // add its operands to the expression. 502 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 503 assert(Visited.insert(Op).second && "Not first visit!"); 504 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n"); 505 Worklist.push_back(std::make_pair(BO, Weight)); 506 continue; 507 } 508 509 // Appears to be a leaf. Is the operand already in the set of leaves? 510 LeafMap::iterator It = Leaves.find(Op); 511 if (It == Leaves.end()) { 512 // Not in the leaf map. Must be the first time we saw this operand. 513 assert(Visited.insert(Op).second && "Not first visit!"); 514 if (!Op->hasOneUse()) { 515 // This value has uses not accounted for by the expression, so it is 516 // not safe to modify. Mark it as being a leaf. 517 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n"); 518 LeafOrder.push_back(Op); 519 Leaves[Op] = Weight; 520 continue; 521 } 522 // No uses outside the expression, try morphing it. 523 } else { 524 // Already in the leaf map. 525 assert(It != Leaves.end() && Visited.count(Op) && 526 "In leaf map but not visited!"); 527 528 // Update the number of paths to the leaf. 529 IncorporateWeight(It->second, Weight, Opcode); 530 531 #if 0 // TODO: Re-enable once PR13021 is fixed. 532 // The leaf already has one use from inside the expression. As we want 533 // exactly one such use, drop this new use of the leaf. 534 assert(!Op->hasOneUse() && "Only one use, but we got here twice!"); 535 I->setOperand(OpIdx, UndefValue::get(I->getType())); 536 Changed = true; 537 538 // If the leaf is a binary operation of the right kind and we now see 539 // that its multiple original uses were in fact all by nodes belonging 540 // to the expression, then no longer consider it to be a leaf and add 541 // its operands to the expression. 542 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 543 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n"); 544 Worklist.push_back(std::make_pair(BO, It->second)); 545 Leaves.erase(It); 546 continue; 547 } 548 #endif 549 550 // If we still have uses that are not accounted for by the expression 551 // then it is not safe to modify the value. 552 if (!Op->hasOneUse()) 553 continue; 554 555 // No uses outside the expression, try morphing it. 556 Weight = It->second; 557 Leaves.erase(It); // Since the value may be morphed below. 558 } 559 560 // At this point we have a value which, first of all, is not a binary 561 // expression of the right kind, and secondly, is only used inside the 562 // expression. This means that it can safely be modified. See if we 563 // can usefully morph it into an expression of the right kind. 564 assert((!isa<Instruction>(Op) || 565 cast<Instruction>(Op)->getOpcode() != Opcode 566 || (isa<FPMathOperator>(Op) && 567 !cast<Instruction>(Op)->isFast())) && 568 "Should have been handled above!"); 569 assert(Op->hasOneUse() && "Has uses outside the expression tree!"); 570 571 // If this is a multiply expression, turn any internal negations into 572 // multiplies by -1 so they can be reassociated. 573 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) 574 if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) || 575 (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) { 576 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO "); 577 BO = LowerNegateToMultiply(BO); 578 DEBUG(dbgs() << *BO << '\n'); 579 Worklist.push_back(std::make_pair(BO, Weight)); 580 Changed = true; 581 continue; 582 } 583 584 // Failed to morph into an expression of the right type. This really is 585 // a leaf. 586 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n"); 587 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?"); 588 LeafOrder.push_back(Op); 589 Leaves[Op] = Weight; 590 } 591 } 592 593 // The leaves, repeated according to their weights, represent the linearized 594 // form of the expression. 595 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) { 596 Value *V = LeafOrder[i]; 597 LeafMap::iterator It = Leaves.find(V); 598 if (It == Leaves.end()) 599 // Node initially thought to be a leaf wasn't. 600 continue; 601 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!"); 602 APInt Weight = It->second; 603 if (Weight.isMinValue()) 604 // Leaf already output or weight reduction eliminated it. 605 continue; 606 // Ensure the leaf is only output once. 607 It->second = 0; 608 Ops.push_back(std::make_pair(V, Weight)); 609 } 610 611 // For nilpotent operations or addition there may be no operands, for example 612 // because the expression was "X xor X" or consisted of 2^Bitwidth additions: 613 // in both cases the weight reduces to 0 causing the value to be skipped. 614 if (Ops.empty()) { 615 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType()); 616 assert(Identity && "Associative operation without identity!"); 617 Ops.emplace_back(Identity, APInt(Bitwidth, 1)); 618 } 619 620 return Changed; 621 } 622 623 /// Now that the operands for this expression tree are 624 /// linearized and optimized, emit them in-order. 625 void ReassociatePass::RewriteExprTree(BinaryOperator *I, 626 SmallVectorImpl<ValueEntry> &Ops) { 627 assert(Ops.size() > 1 && "Single values should be used directly!"); 628 629 // Since our optimizations should never increase the number of operations, the 630 // new expression can usually be written reusing the existing binary operators 631 // from the original expression tree, without creating any new instructions, 632 // though the rewritten expression may have a completely different topology. 633 // We take care to not change anything if the new expression will be the same 634 // as the original. If more than trivial changes (like commuting operands) 635 // were made then we are obliged to clear out any optional subclass data like 636 // nsw flags. 637 638 /// NodesToRewrite - Nodes from the original expression available for writing 639 /// the new expression into. 640 SmallVector<BinaryOperator*, 8> NodesToRewrite; 641 unsigned Opcode = I->getOpcode(); 642 BinaryOperator *Op = I; 643 644 /// NotRewritable - The operands being written will be the leaves of the new 645 /// expression and must not be used as inner nodes (via NodesToRewrite) by 646 /// mistake. Inner nodes are always reassociable, and usually leaves are not 647 /// (if they were they would have been incorporated into the expression and so 648 /// would not be leaves), so most of the time there is no danger of this. But 649 /// in rare cases a leaf may become reassociable if an optimization kills uses 650 /// of it, or it may momentarily become reassociable during rewriting (below) 651 /// due it being removed as an operand of one of its uses. Ensure that misuse 652 /// of leaf nodes as inner nodes cannot occur by remembering all of the future 653 /// leaves and refusing to reuse any of them as inner nodes. 654 SmallPtrSet<Value*, 8> NotRewritable; 655 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 656 NotRewritable.insert(Ops[i].Op); 657 658 // ExpressionChanged - Non-null if the rewritten expression differs from the 659 // original in some non-trivial way, requiring the clearing of optional flags. 660 // Flags are cleared from the operator in ExpressionChanged up to I inclusive. 661 BinaryOperator *ExpressionChanged = nullptr; 662 for (unsigned i = 0; ; ++i) { 663 // The last operation (which comes earliest in the IR) is special as both 664 // operands will come from Ops, rather than just one with the other being 665 // a subexpression. 666 if (i+2 == Ops.size()) { 667 Value *NewLHS = Ops[i].Op; 668 Value *NewRHS = Ops[i+1].Op; 669 Value *OldLHS = Op->getOperand(0); 670 Value *OldRHS = Op->getOperand(1); 671 672 if (NewLHS == OldLHS && NewRHS == OldRHS) 673 // Nothing changed, leave it alone. 674 break; 675 676 if (NewLHS == OldRHS && NewRHS == OldLHS) { 677 // The order of the operands was reversed. Swap them. 678 DEBUG(dbgs() << "RA: " << *Op << '\n'); 679 Op->swapOperands(); 680 DEBUG(dbgs() << "TO: " << *Op << '\n'); 681 MadeChange = true; 682 ++NumChanged; 683 break; 684 } 685 686 // The new operation differs non-trivially from the original. Overwrite 687 // the old operands with the new ones. 688 DEBUG(dbgs() << "RA: " << *Op << '\n'); 689 if (NewLHS != OldLHS) { 690 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode); 691 if (BO && !NotRewritable.count(BO)) 692 NodesToRewrite.push_back(BO); 693 Op->setOperand(0, NewLHS); 694 } 695 if (NewRHS != OldRHS) { 696 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode); 697 if (BO && !NotRewritable.count(BO)) 698 NodesToRewrite.push_back(BO); 699 Op->setOperand(1, NewRHS); 700 } 701 DEBUG(dbgs() << "TO: " << *Op << '\n'); 702 703 ExpressionChanged = Op; 704 MadeChange = true; 705 ++NumChanged; 706 707 break; 708 } 709 710 // Not the last operation. The left-hand side will be a sub-expression 711 // while the right-hand side will be the current element of Ops. 712 Value *NewRHS = Ops[i].Op; 713 if (NewRHS != Op->getOperand(1)) { 714 DEBUG(dbgs() << "RA: " << *Op << '\n'); 715 if (NewRHS == Op->getOperand(0)) { 716 // The new right-hand side was already present as the left operand. If 717 // we are lucky then swapping the operands will sort out both of them. 718 Op->swapOperands(); 719 } else { 720 // Overwrite with the new right-hand side. 721 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode); 722 if (BO && !NotRewritable.count(BO)) 723 NodesToRewrite.push_back(BO); 724 Op->setOperand(1, NewRHS); 725 ExpressionChanged = Op; 726 } 727 DEBUG(dbgs() << "TO: " << *Op << '\n'); 728 MadeChange = true; 729 ++NumChanged; 730 } 731 732 // Now deal with the left-hand side. If this is already an operation node 733 // from the original expression then just rewrite the rest of the expression 734 // into it. 735 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode); 736 if (BO && !NotRewritable.count(BO)) { 737 Op = BO; 738 continue; 739 } 740 741 // Otherwise, grab a spare node from the original expression and use that as 742 // the left-hand side. If there are no nodes left then the optimizers made 743 // an expression with more nodes than the original! This usually means that 744 // they did something stupid but it might mean that the problem was just too 745 // hard (finding the mimimal number of multiplications needed to realize a 746 // multiplication expression is NP-complete). Whatever the reason, smart or 747 // stupid, create a new node if there are none left. 748 BinaryOperator *NewOp; 749 if (NodesToRewrite.empty()) { 750 Constant *Undef = UndefValue::get(I->getType()); 751 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode), 752 Undef, Undef, "", I); 753 if (NewOp->getType()->isFPOrFPVectorTy()) 754 NewOp->setFastMathFlags(I->getFastMathFlags()); 755 } else { 756 NewOp = NodesToRewrite.pop_back_val(); 757 } 758 759 DEBUG(dbgs() << "RA: " << *Op << '\n'); 760 Op->setOperand(0, NewOp); 761 DEBUG(dbgs() << "TO: " << *Op << '\n'); 762 ExpressionChanged = Op; 763 MadeChange = true; 764 ++NumChanged; 765 Op = NewOp; 766 } 767 768 // If the expression changed non-trivially then clear out all subclass data 769 // starting from the operator specified in ExpressionChanged, and compactify 770 // the operators to just before the expression root to guarantee that the 771 // expression tree is dominated by all of Ops. 772 if (ExpressionChanged) 773 do { 774 // Preserve FastMathFlags. 775 if (isa<FPMathOperator>(I)) { 776 FastMathFlags Flags = I->getFastMathFlags(); 777 ExpressionChanged->clearSubclassOptionalData(); 778 ExpressionChanged->setFastMathFlags(Flags); 779 } else 780 ExpressionChanged->clearSubclassOptionalData(); 781 782 if (ExpressionChanged == I) 783 break; 784 785 // Discard any debug info related to the expressions that has changed (we 786 // can leave debug infor related to the root, since the result of the 787 // expression tree should be the same even after reassociation). 788 SmallVector<DbgInfoIntrinsic *, 1> DbgUsers; 789 findDbgUsers(DbgUsers, ExpressionChanged); 790 for (auto *DII : DbgUsers) { 791 Value *Undef = UndefValue::get(ExpressionChanged->getType()); 792 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 793 ValueAsMetadata::get(Undef))); 794 } 795 796 ExpressionChanged->moveBefore(I); 797 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin()); 798 } while (true); 799 800 // Throw away any left over nodes from the original expression. 801 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i) 802 RedoInsts.insert(NodesToRewrite[i]); 803 } 804 805 /// Insert instructions before the instruction pointed to by BI, 806 /// that computes the negative version of the value specified. The negative 807 /// version of the value is returned, and BI is left pointing at the instruction 808 /// that should be processed next by the reassociation pass. 809 /// Also add intermediate instructions to the redo list that are modified while 810 /// pushing the negates through adds. These will be revisited to see if 811 /// additional opportunities have been exposed. 812 static Value *NegateValue(Value *V, Instruction *BI, 813 ReassociatePass::OrderedSet &ToRedo) { 814 if (auto *C = dyn_cast<Constant>(V)) 815 return C->getType()->isFPOrFPVectorTy() ? ConstantExpr::getFNeg(C) : 816 ConstantExpr::getNeg(C); 817 818 // We are trying to expose opportunity for reassociation. One of the things 819 // that we want to do to achieve this is to push a negation as deep into an 820 // expression chain as possible, to expose the add instructions. In practice, 821 // this means that we turn this: 822 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D 823 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate 824 // the constants. We assume that instcombine will clean up the mess later if 825 // we introduce tons of unnecessary negation instructions. 826 // 827 if (BinaryOperator *I = 828 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) { 829 // Push the negates through the add. 830 I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo)); 831 I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo)); 832 if (I->getOpcode() == Instruction::Add) { 833 I->setHasNoUnsignedWrap(false); 834 I->setHasNoSignedWrap(false); 835 } 836 837 // We must move the add instruction here, because the neg instructions do 838 // not dominate the old add instruction in general. By moving it, we are 839 // assured that the neg instructions we just inserted dominate the 840 // instruction we are about to insert after them. 841 // 842 I->moveBefore(BI); 843 I->setName(I->getName()+".neg"); 844 845 // Add the intermediate negates to the redo list as processing them later 846 // could expose more reassociating opportunities. 847 ToRedo.insert(I); 848 return I; 849 } 850 851 // Okay, we need to materialize a negated version of V with an instruction. 852 // Scan the use lists of V to see if we have one already. 853 for (User *U : V->users()) { 854 if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U)) 855 continue; 856 857 // We found one! Now we have to make sure that the definition dominates 858 // this use. We do this by moving it to the entry block (if it is a 859 // non-instruction value) or right after the definition. These negates will 860 // be zapped by reassociate later, so we don't need much finesse here. 861 BinaryOperator *TheNeg = cast<BinaryOperator>(U); 862 863 // Verify that the negate is in this function, V might be a constant expr. 864 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent()) 865 continue; 866 867 BasicBlock::iterator InsertPt; 868 if (Instruction *InstInput = dyn_cast<Instruction>(V)) { 869 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) { 870 InsertPt = II->getNormalDest()->begin(); 871 } else { 872 InsertPt = ++InstInput->getIterator(); 873 } 874 while (isa<PHINode>(InsertPt)) ++InsertPt; 875 } else { 876 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin(); 877 } 878 TheNeg->moveBefore(&*InsertPt); 879 if (TheNeg->getOpcode() == Instruction::Sub) { 880 TheNeg->setHasNoUnsignedWrap(false); 881 TheNeg->setHasNoSignedWrap(false); 882 } else { 883 TheNeg->andIRFlags(BI); 884 } 885 ToRedo.insert(TheNeg); 886 return TheNeg; 887 } 888 889 // Insert a 'neg' instruction that subtracts the value from zero to get the 890 // negation. 891 BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI); 892 ToRedo.insert(NewNeg); 893 return NewNeg; 894 } 895 896 /// Return true if we should break up this subtract of X-Y into (X + -Y). 897 static bool ShouldBreakUpSubtract(Instruction *Sub) { 898 // If this is a negation, we can't split it up! 899 if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub)) 900 return false; 901 902 // Don't breakup X - undef. 903 if (isa<UndefValue>(Sub->getOperand(1))) 904 return false; 905 906 // Don't bother to break this up unless either the LHS is an associable add or 907 // subtract or if this is only used by one. 908 Value *V0 = Sub->getOperand(0); 909 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) || 910 isReassociableOp(V0, Instruction::Sub, Instruction::FSub)) 911 return true; 912 Value *V1 = Sub->getOperand(1); 913 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) || 914 isReassociableOp(V1, Instruction::Sub, Instruction::FSub)) 915 return true; 916 Value *VB = Sub->user_back(); 917 if (Sub->hasOneUse() && 918 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) || 919 isReassociableOp(VB, Instruction::Sub, Instruction::FSub))) 920 return true; 921 922 return false; 923 } 924 925 /// If we have (X-Y), and if either X is an add, or if this is only used by an 926 /// add, transform this into (X+(0-Y)) to promote better reassociation. 927 static BinaryOperator *BreakUpSubtract(Instruction *Sub, 928 ReassociatePass::OrderedSet &ToRedo) { 929 // Convert a subtract into an add and a neg instruction. This allows sub 930 // instructions to be commuted with other add instructions. 931 // 932 // Calculate the negative value of Operand 1 of the sub instruction, 933 // and set it as the RHS of the add instruction we just made. 934 Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo); 935 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub); 936 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op. 937 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op. 938 New->takeName(Sub); 939 940 // Everyone now refers to the add instruction. 941 Sub->replaceAllUsesWith(New); 942 New->setDebugLoc(Sub->getDebugLoc()); 943 944 DEBUG(dbgs() << "Negated: " << *New << '\n'); 945 return New; 946 } 947 948 /// If this is a shift of a reassociable multiply or is used by one, change 949 /// this into a multiply by a constant to assist with further reassociation. 950 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) { 951 Constant *MulCst = ConstantInt::get(Shl->getType(), 1); 952 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1))); 953 954 BinaryOperator *Mul = 955 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl); 956 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op. 957 Mul->takeName(Shl); 958 959 // Everyone now refers to the mul instruction. 960 Shl->replaceAllUsesWith(Mul); 961 Mul->setDebugLoc(Shl->getDebugLoc()); 962 963 // We can safely preserve the nuw flag in all cases. It's also safe to turn a 964 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special 965 // handling. 966 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap(); 967 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap(); 968 if (NSW && NUW) 969 Mul->setHasNoSignedWrap(true); 970 Mul->setHasNoUnsignedWrap(NUW); 971 return Mul; 972 } 973 974 /// Scan backwards and forwards among values with the same rank as element i 975 /// to see if X exists. If X does not exist, return i. This is useful when 976 /// scanning for 'x' when we see '-x' because they both get the same rank. 977 static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops, 978 unsigned i, Value *X) { 979 unsigned XRank = Ops[i].Rank; 980 unsigned e = Ops.size(); 981 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) { 982 if (Ops[j].Op == X) 983 return j; 984 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 985 if (Instruction *I2 = dyn_cast<Instruction>(X)) 986 if (I1->isIdenticalTo(I2)) 987 return j; 988 } 989 // Scan backwards. 990 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) { 991 if (Ops[j].Op == X) 992 return j; 993 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 994 if (Instruction *I2 = dyn_cast<Instruction>(X)) 995 if (I1->isIdenticalTo(I2)) 996 return j; 997 } 998 return i; 999 } 1000 1001 /// Emit a tree of add instructions, summing Ops together 1002 /// and returning the result. Insert the tree before I. 1003 static Value *EmitAddTreeOfValues(Instruction *I, 1004 SmallVectorImpl<WeakTrackingVH> &Ops) { 1005 if (Ops.size() == 1) return Ops.back(); 1006 1007 Value *V1 = Ops.back(); 1008 Ops.pop_back(); 1009 Value *V2 = EmitAddTreeOfValues(I, Ops); 1010 return CreateAdd(V2, V1, "reass.add", I, I); 1011 } 1012 1013 /// If V is an expression tree that is a multiplication sequence, 1014 /// and if this sequence contains a multiply by Factor, 1015 /// remove Factor from the tree and return the new tree. 1016 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) { 1017 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1018 if (!BO) 1019 return nullptr; 1020 1021 SmallVector<RepeatedValue, 8> Tree; 1022 MadeChange |= LinearizeExprTree(BO, Tree); 1023 SmallVector<ValueEntry, 8> Factors; 1024 Factors.reserve(Tree.size()); 1025 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 1026 RepeatedValue E = Tree[i]; 1027 Factors.append(E.second.getZExtValue(), 1028 ValueEntry(getRank(E.first), E.first)); 1029 } 1030 1031 bool FoundFactor = false; 1032 bool NeedsNegate = false; 1033 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1034 if (Factors[i].Op == Factor) { 1035 FoundFactor = true; 1036 Factors.erase(Factors.begin()+i); 1037 break; 1038 } 1039 1040 // If this is a negative version of this factor, remove it. 1041 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) { 1042 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op)) 1043 if (FC1->getValue() == -FC2->getValue()) { 1044 FoundFactor = NeedsNegate = true; 1045 Factors.erase(Factors.begin()+i); 1046 break; 1047 } 1048 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) { 1049 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) { 1050 const APFloat &F1 = FC1->getValueAPF(); 1051 APFloat F2(FC2->getValueAPF()); 1052 F2.changeSign(); 1053 if (F1.compare(F2) == APFloat::cmpEqual) { 1054 FoundFactor = NeedsNegate = true; 1055 Factors.erase(Factors.begin() + i); 1056 break; 1057 } 1058 } 1059 } 1060 } 1061 1062 if (!FoundFactor) { 1063 // Make sure to restore the operands to the expression tree. 1064 RewriteExprTree(BO, Factors); 1065 return nullptr; 1066 } 1067 1068 BasicBlock::iterator InsertPt = ++BO->getIterator(); 1069 1070 // If this was just a single multiply, remove the multiply and return the only 1071 // remaining operand. 1072 if (Factors.size() == 1) { 1073 RedoInsts.insert(BO); 1074 V = Factors[0].Op; 1075 } else { 1076 RewriteExprTree(BO, Factors); 1077 V = BO; 1078 } 1079 1080 if (NeedsNegate) 1081 V = CreateNeg(V, "neg", &*InsertPt, BO); 1082 1083 return V; 1084 } 1085 1086 /// If V is a single-use multiply, recursively add its operands as factors, 1087 /// otherwise add V to the list of factors. 1088 /// 1089 /// Ops is the top-level list of add operands we're trying to factor. 1090 static void FindSingleUseMultiplyFactors(Value *V, 1091 SmallVectorImpl<Value*> &Factors) { 1092 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1093 if (!BO) { 1094 Factors.push_back(V); 1095 return; 1096 } 1097 1098 // Otherwise, add the LHS and RHS to the list of factors. 1099 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors); 1100 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors); 1101 } 1102 1103 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction. 1104 /// This optimizes based on identities. If it can be reduced to a single Value, 1105 /// it is returned, otherwise the Ops list is mutated as necessary. 1106 static Value *OptimizeAndOrXor(unsigned Opcode, 1107 SmallVectorImpl<ValueEntry> &Ops) { 1108 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs. 1109 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1. 1110 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1111 // First, check for X and ~X in the operand list. 1112 assert(i < Ops.size()); 1113 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^. 1114 Value *X = BinaryOperator::getNotArgument(Ops[i].Op); 1115 unsigned FoundX = FindInOperandList(Ops, i, X); 1116 if (FoundX != i) { 1117 if (Opcode == Instruction::And) // ...&X&~X = 0 1118 return Constant::getNullValue(X->getType()); 1119 1120 if (Opcode == Instruction::Or) // ...|X|~X = -1 1121 return Constant::getAllOnesValue(X->getType()); 1122 } 1123 } 1124 1125 // Next, check for duplicate pairs of values, which we assume are next to 1126 // each other, due to our sorting criteria. 1127 assert(i < Ops.size()); 1128 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) { 1129 if (Opcode == Instruction::And || Opcode == Instruction::Or) { 1130 // Drop duplicate values for And and Or. 1131 Ops.erase(Ops.begin()+i); 1132 --i; --e; 1133 ++NumAnnihil; 1134 continue; 1135 } 1136 1137 // Drop pairs of values for Xor. 1138 assert(Opcode == Instruction::Xor); 1139 if (e == 2) 1140 return Constant::getNullValue(Ops[0].Op->getType()); 1141 1142 // Y ^ X^X -> Y 1143 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1144 i -= 1; e -= 2; 1145 ++NumAnnihil; 1146 } 1147 } 1148 return nullptr; 1149 } 1150 1151 /// Helper function of CombineXorOpnd(). It creates a bitwise-and 1152 /// instruction with the given two operands, and return the resulting 1153 /// instruction. There are two special cases: 1) if the constant operand is 0, 1154 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will 1155 /// be returned. 1156 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd, 1157 const APInt &ConstOpnd) { 1158 if (ConstOpnd.isNullValue()) 1159 return nullptr; 1160 1161 if (ConstOpnd.isAllOnesValue()) 1162 return Opnd; 1163 1164 Instruction *I = BinaryOperator::CreateAnd( 1165 Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra", 1166 InsertBefore); 1167 I->setDebugLoc(InsertBefore->getDebugLoc()); 1168 return I; 1169 } 1170 1171 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd" 1172 // into "R ^ C", where C would be 0, and R is a symbolic value. 1173 // 1174 // If it was successful, true is returned, and the "R" and "C" is returned 1175 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned, 1176 // and both "Res" and "ConstOpnd" remain unchanged. 1177 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1178 APInt &ConstOpnd, Value *&Res) { 1179 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2 1180 // = ((x | c1) ^ c1) ^ (c1 ^ c2) 1181 // = (x & ~c1) ^ (c1 ^ c2) 1182 // It is useful only when c1 == c2. 1183 if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isNullValue()) 1184 return false; 1185 1186 if (!Opnd1->getValue()->hasOneUse()) 1187 return false; 1188 1189 const APInt &C1 = Opnd1->getConstPart(); 1190 if (C1 != ConstOpnd) 1191 return false; 1192 1193 Value *X = Opnd1->getSymbolicPart(); 1194 Res = createAndInstr(I, X, ~C1); 1195 // ConstOpnd was C2, now C1 ^ C2. 1196 ConstOpnd ^= C1; 1197 1198 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1199 RedoInsts.insert(T); 1200 return true; 1201 } 1202 1203 // Helper function of OptimizeXor(). It tries to simplify 1204 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a 1205 // symbolic value. 1206 // 1207 // If it was successful, true is returned, and the "R" and "C" is returned 1208 // via "Res" and "ConstOpnd", respectively (If the entire expression is 1209 // evaluated to a constant, the Res is set to NULL); otherwise, false is 1210 // returned, and both "Res" and "ConstOpnd" remain unchanged. 1211 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1212 XorOpnd *Opnd2, APInt &ConstOpnd, 1213 Value *&Res) { 1214 Value *X = Opnd1->getSymbolicPart(); 1215 if (X != Opnd2->getSymbolicPart()) 1216 return false; 1217 1218 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.) 1219 int DeadInstNum = 1; 1220 if (Opnd1->getValue()->hasOneUse()) 1221 DeadInstNum++; 1222 if (Opnd2->getValue()->hasOneUse()) 1223 DeadInstNum++; 1224 1225 // Xor-Rule 2: 1226 // (x | c1) ^ (x & c2) 1227 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1 1228 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1 1229 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3 1230 // 1231 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) { 1232 if (Opnd2->isOrExpr()) 1233 std::swap(Opnd1, Opnd2); 1234 1235 const APInt &C1 = Opnd1->getConstPart(); 1236 const APInt &C2 = Opnd2->getConstPart(); 1237 APInt C3((~C1) ^ C2); 1238 1239 // Do not increase code size! 1240 if (!C3.isNullValue() && !C3.isAllOnesValue()) { 1241 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2; 1242 if (NewInstNum > DeadInstNum) 1243 return false; 1244 } 1245 1246 Res = createAndInstr(I, X, C3); 1247 ConstOpnd ^= C1; 1248 } else if (Opnd1->isOrExpr()) { 1249 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2 1250 // 1251 const APInt &C1 = Opnd1->getConstPart(); 1252 const APInt &C2 = Opnd2->getConstPart(); 1253 APInt C3 = C1 ^ C2; 1254 1255 // Do not increase code size 1256 if (!C3.isNullValue() && !C3.isAllOnesValue()) { 1257 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2; 1258 if (NewInstNum > DeadInstNum) 1259 return false; 1260 } 1261 1262 Res = createAndInstr(I, X, C3); 1263 ConstOpnd ^= C3; 1264 } else { 1265 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2)) 1266 // 1267 const APInt &C1 = Opnd1->getConstPart(); 1268 const APInt &C2 = Opnd2->getConstPart(); 1269 APInt C3 = C1 ^ C2; 1270 Res = createAndInstr(I, X, C3); 1271 } 1272 1273 // Put the original operands in the Redo list; hope they will be deleted 1274 // as dead code. 1275 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1276 RedoInsts.insert(T); 1277 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue())) 1278 RedoInsts.insert(T); 1279 1280 return true; 1281 } 1282 1283 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced 1284 /// to a single Value, it is returned, otherwise the Ops list is mutated as 1285 /// necessary. 1286 Value *ReassociatePass::OptimizeXor(Instruction *I, 1287 SmallVectorImpl<ValueEntry> &Ops) { 1288 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops)) 1289 return V; 1290 1291 if (Ops.size() == 1) 1292 return nullptr; 1293 1294 SmallVector<XorOpnd, 8> Opnds; 1295 SmallVector<XorOpnd*, 8> OpndPtrs; 1296 Type *Ty = Ops[0].Op->getType(); 1297 APInt ConstOpnd(Ty->getScalarSizeInBits(), 0); 1298 1299 // Step 1: Convert ValueEntry to XorOpnd 1300 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1301 Value *V = Ops[i].Op; 1302 const APInt *C; 1303 // TODO: Support non-splat vectors. 1304 if (match(V, PatternMatch::m_APInt(C))) { 1305 ConstOpnd ^= *C; 1306 } else { 1307 XorOpnd O(V); 1308 O.setSymbolicRank(getRank(O.getSymbolicPart())); 1309 Opnds.push_back(O); 1310 } 1311 } 1312 1313 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds". 1314 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate 1315 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop 1316 // with the previous loop --- the iterator of the "Opnds" may be invalidated 1317 // when new elements are added to the vector. 1318 for (unsigned i = 0, e = Opnds.size(); i != e; ++i) 1319 OpndPtrs.push_back(&Opnds[i]); 1320 1321 // Step 2: Sort the Xor-Operands in a way such that the operands containing 1322 // the same symbolic value cluster together. For instance, the input operand 1323 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into: 1324 // ("x | 123", "x & 789", "y & 456"). 1325 // 1326 // The purpose is twofold: 1327 // 1) Cluster together the operands sharing the same symbolic-value. 1328 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which 1329 // could potentially shorten crital path, and expose more loop-invariants. 1330 // Note that values' rank are basically defined in RPO order (FIXME). 1331 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier 1332 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2", 1333 // "z" in the order of X-Y-Z is better than any other orders. 1334 std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), 1335 [](XorOpnd *LHS, XorOpnd *RHS) { 1336 return LHS->getSymbolicRank() < RHS->getSymbolicRank(); 1337 }); 1338 1339 // Step 3: Combine adjacent operands 1340 XorOpnd *PrevOpnd = nullptr; 1341 bool Changed = false; 1342 for (unsigned i = 0, e = Opnds.size(); i < e; i++) { 1343 XorOpnd *CurrOpnd = OpndPtrs[i]; 1344 // The combined value 1345 Value *CV; 1346 1347 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd" 1348 if (!ConstOpnd.isNullValue() && 1349 CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) { 1350 Changed = true; 1351 if (CV) 1352 *CurrOpnd = XorOpnd(CV); 1353 else { 1354 CurrOpnd->Invalidate(); 1355 continue; 1356 } 1357 } 1358 1359 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) { 1360 PrevOpnd = CurrOpnd; 1361 continue; 1362 } 1363 1364 // step 3.2: When previous and current operands share the same symbolic 1365 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd" 1366 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) { 1367 // Remove previous operand 1368 PrevOpnd->Invalidate(); 1369 if (CV) { 1370 *CurrOpnd = XorOpnd(CV); 1371 PrevOpnd = CurrOpnd; 1372 } else { 1373 CurrOpnd->Invalidate(); 1374 PrevOpnd = nullptr; 1375 } 1376 Changed = true; 1377 } 1378 } 1379 1380 // Step 4: Reassemble the Ops 1381 if (Changed) { 1382 Ops.clear(); 1383 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) { 1384 XorOpnd &O = Opnds[i]; 1385 if (O.isInvalid()) 1386 continue; 1387 ValueEntry VE(getRank(O.getValue()), O.getValue()); 1388 Ops.push_back(VE); 1389 } 1390 if (!ConstOpnd.isNullValue()) { 1391 Value *C = ConstantInt::get(Ty, ConstOpnd); 1392 ValueEntry VE(getRank(C), C); 1393 Ops.push_back(VE); 1394 } 1395 unsigned Sz = Ops.size(); 1396 if (Sz == 1) 1397 return Ops.back().Op; 1398 if (Sz == 0) { 1399 assert(ConstOpnd.isNullValue()); 1400 return ConstantInt::get(Ty, ConstOpnd); 1401 } 1402 } 1403 1404 return nullptr; 1405 } 1406 1407 /// Optimize a series of operands to an 'add' instruction. This 1408 /// optimizes based on identities. If it can be reduced to a single Value, it 1409 /// is returned, otherwise the Ops list is mutated as necessary. 1410 Value *ReassociatePass::OptimizeAdd(Instruction *I, 1411 SmallVectorImpl<ValueEntry> &Ops) { 1412 // Scan the operand lists looking for X and -X pairs. If we find any, we 1413 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it, 1414 // scan for any 1415 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z. 1416 1417 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1418 Value *TheOp = Ops[i].Op; 1419 // Check to see if we've seen this operand before. If so, we factor all 1420 // instances of the operand together. Due to our sorting criteria, we know 1421 // that these need to be next to each other in the vector. 1422 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) { 1423 // Rescan the list, remove all instances of this operand from the expr. 1424 unsigned NumFound = 0; 1425 do { 1426 Ops.erase(Ops.begin()+i); 1427 ++NumFound; 1428 } while (i != Ops.size() && Ops[i].Op == TheOp); 1429 1430 DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n'); 1431 ++NumFactor; 1432 1433 // Insert a new multiply. 1434 Type *Ty = TheOp->getType(); 1435 Constant *C = Ty->isIntOrIntVectorTy() ? 1436 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound); 1437 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I); 1438 1439 // Now that we have inserted a multiply, optimize it. This allows us to 1440 // handle cases that require multiple factoring steps, such as this: 1441 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6 1442 RedoInsts.insert(Mul); 1443 1444 // If every add operand was a duplicate, return the multiply. 1445 if (Ops.empty()) 1446 return Mul; 1447 1448 // Otherwise, we had some input that didn't have the dupe, such as 1449 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of 1450 // things being added by this operation. 1451 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul)); 1452 1453 --i; 1454 e = Ops.size(); 1455 continue; 1456 } 1457 1458 // Check for X and -X or X and ~X in the operand list. 1459 if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) && 1460 !BinaryOperator::isNot(TheOp)) 1461 continue; 1462 1463 Value *X = nullptr; 1464 if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)) 1465 X = BinaryOperator::getNegArgument(TheOp); 1466 else if (BinaryOperator::isNot(TheOp)) 1467 X = BinaryOperator::getNotArgument(TheOp); 1468 1469 unsigned FoundX = FindInOperandList(Ops, i, X); 1470 if (FoundX == i) 1471 continue; 1472 1473 // Remove X and -X from the operand list. 1474 if (Ops.size() == 2 && 1475 (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))) 1476 return Constant::getNullValue(X->getType()); 1477 1478 // Remove X and ~X from the operand list. 1479 if (Ops.size() == 2 && BinaryOperator::isNot(TheOp)) 1480 return Constant::getAllOnesValue(X->getType()); 1481 1482 Ops.erase(Ops.begin()+i); 1483 if (i < FoundX) 1484 --FoundX; 1485 else 1486 --i; // Need to back up an extra one. 1487 Ops.erase(Ops.begin()+FoundX); 1488 ++NumAnnihil; 1489 --i; // Revisit element. 1490 e -= 2; // Removed two elements. 1491 1492 // if X and ~X we append -1 to the operand list. 1493 if (BinaryOperator::isNot(TheOp)) { 1494 Value *V = Constant::getAllOnesValue(X->getType()); 1495 Ops.insert(Ops.end(), ValueEntry(getRank(V), V)); 1496 e += 1; 1497 } 1498 } 1499 1500 // Scan the operand list, checking to see if there are any common factors 1501 // between operands. Consider something like A*A+A*B*C+D. We would like to 1502 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies. 1503 // To efficiently find this, we count the number of times a factor occurs 1504 // for any ADD operands that are MULs. 1505 DenseMap<Value*, unsigned> FactorOccurrences; 1506 1507 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4) 1508 // where they are actually the same multiply. 1509 unsigned MaxOcc = 0; 1510 Value *MaxOccVal = nullptr; 1511 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1512 BinaryOperator *BOp = 1513 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1514 if (!BOp) 1515 continue; 1516 1517 // Compute all of the factors of this added value. 1518 SmallVector<Value*, 8> Factors; 1519 FindSingleUseMultiplyFactors(BOp, Factors); 1520 assert(Factors.size() > 1 && "Bad linearize!"); 1521 1522 // Add one to FactorOccurrences for each unique factor in this op. 1523 SmallPtrSet<Value*, 8> Duplicates; 1524 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1525 Value *Factor = Factors[i]; 1526 if (!Duplicates.insert(Factor).second) 1527 continue; 1528 1529 unsigned Occ = ++FactorOccurrences[Factor]; 1530 if (Occ > MaxOcc) { 1531 MaxOcc = Occ; 1532 MaxOccVal = Factor; 1533 } 1534 1535 // If Factor is a negative constant, add the negated value as a factor 1536 // because we can percolate the negate out. Watch for minint, which 1537 // cannot be positivified. 1538 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) { 1539 if (CI->isNegative() && !CI->isMinValue(true)) { 1540 Factor = ConstantInt::get(CI->getContext(), -CI->getValue()); 1541 if (!Duplicates.insert(Factor).second) 1542 continue; 1543 unsigned Occ = ++FactorOccurrences[Factor]; 1544 if (Occ > MaxOcc) { 1545 MaxOcc = Occ; 1546 MaxOccVal = Factor; 1547 } 1548 } 1549 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) { 1550 if (CF->isNegative()) { 1551 APFloat F(CF->getValueAPF()); 1552 F.changeSign(); 1553 Factor = ConstantFP::get(CF->getContext(), F); 1554 if (!Duplicates.insert(Factor).second) 1555 continue; 1556 unsigned Occ = ++FactorOccurrences[Factor]; 1557 if (Occ > MaxOcc) { 1558 MaxOcc = Occ; 1559 MaxOccVal = Factor; 1560 } 1561 } 1562 } 1563 } 1564 } 1565 1566 // If any factor occurred more than one time, we can pull it out. 1567 if (MaxOcc > 1) { 1568 DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n'); 1569 ++NumFactor; 1570 1571 // Create a new instruction that uses the MaxOccVal twice. If we don't do 1572 // this, we could otherwise run into situations where removing a factor 1573 // from an expression will drop a use of maxocc, and this can cause 1574 // RemoveFactorFromExpression on successive values to behave differently. 1575 Instruction *DummyInst = 1576 I->getType()->isIntOrIntVectorTy() 1577 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal) 1578 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal); 1579 1580 SmallVector<WeakTrackingVH, 4> NewMulOps; 1581 for (unsigned i = 0; i != Ops.size(); ++i) { 1582 // Only try to remove factors from expressions we're allowed to. 1583 BinaryOperator *BOp = 1584 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1585 if (!BOp) 1586 continue; 1587 1588 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) { 1589 // The factorized operand may occur several times. Convert them all in 1590 // one fell swoop. 1591 for (unsigned j = Ops.size(); j != i;) { 1592 --j; 1593 if (Ops[j].Op == Ops[i].Op) { 1594 NewMulOps.push_back(V); 1595 Ops.erase(Ops.begin()+j); 1596 } 1597 } 1598 --i; 1599 } 1600 } 1601 1602 // No need for extra uses anymore. 1603 DummyInst->deleteValue(); 1604 1605 unsigned NumAddedValues = NewMulOps.size(); 1606 Value *V = EmitAddTreeOfValues(I, NewMulOps); 1607 1608 // Now that we have inserted the add tree, optimize it. This allows us to 1609 // handle cases that require multiple factoring steps, such as this: 1610 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C)) 1611 assert(NumAddedValues > 1 && "Each occurrence should contribute a value"); 1612 (void)NumAddedValues; 1613 if (Instruction *VI = dyn_cast<Instruction>(V)) 1614 RedoInsts.insert(VI); 1615 1616 // Create the multiply. 1617 Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I); 1618 1619 // Rerun associate on the multiply in case the inner expression turned into 1620 // a multiply. We want to make sure that we keep things in canonical form. 1621 RedoInsts.insert(V2); 1622 1623 // If every add operand included the factor (e.g. "A*B + A*C"), then the 1624 // entire result expression is just the multiply "A*(B+C)". 1625 if (Ops.empty()) 1626 return V2; 1627 1628 // Otherwise, we had some input that didn't have the factor, such as 1629 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of 1630 // things being added by this operation. 1631 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2)); 1632 } 1633 1634 return nullptr; 1635 } 1636 1637 /// Build up a vector of value/power pairs factoring a product. 1638 /// 1639 /// Given a series of multiplication operands, build a vector of factors and 1640 /// the powers each is raised to when forming the final product. Sort them in 1641 /// the order of descending power. 1642 /// 1643 /// (x*x) -> [(x, 2)] 1644 /// ((x*x)*x) -> [(x, 3)] 1645 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)] 1646 /// 1647 /// \returns Whether any factors have a power greater than one. 1648 static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, 1649 SmallVectorImpl<Factor> &Factors) { 1650 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this. 1651 // Compute the sum of powers of simplifiable factors. 1652 unsigned FactorPowerSum = 0; 1653 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) { 1654 Value *Op = Ops[Idx-1].Op; 1655 1656 // Count the number of occurrences of this value. 1657 unsigned Count = 1; 1658 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx) 1659 ++Count; 1660 // Track for simplification all factors which occur 2 or more times. 1661 if (Count > 1) 1662 FactorPowerSum += Count; 1663 } 1664 1665 // We can only simplify factors if the sum of the powers of our simplifiable 1666 // factors is 4 or higher. When that is the case, we will *always* have 1667 // a simplification. This is an important invariant to prevent cyclicly 1668 // trying to simplify already minimal formations. 1669 if (FactorPowerSum < 4) 1670 return false; 1671 1672 // Now gather the simplifiable factors, removing them from Ops. 1673 FactorPowerSum = 0; 1674 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) { 1675 Value *Op = Ops[Idx-1].Op; 1676 1677 // Count the number of occurrences of this value. 1678 unsigned Count = 1; 1679 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx) 1680 ++Count; 1681 if (Count == 1) 1682 continue; 1683 // Move an even number of occurrences to Factors. 1684 Count &= ~1U; 1685 Idx -= Count; 1686 FactorPowerSum += Count; 1687 Factors.push_back(Factor(Op, Count)); 1688 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count); 1689 } 1690 1691 // None of the adjustments above should have reduced the sum of factor powers 1692 // below our mininum of '4'. 1693 assert(FactorPowerSum >= 4); 1694 1695 std::stable_sort(Factors.begin(), Factors.end(), 1696 [](const Factor &LHS, const Factor &RHS) { 1697 return LHS.Power > RHS.Power; 1698 }); 1699 return true; 1700 } 1701 1702 /// Build a tree of multiplies, computing the product of Ops. 1703 static Value *buildMultiplyTree(IRBuilder<> &Builder, 1704 SmallVectorImpl<Value*> &Ops) { 1705 if (Ops.size() == 1) 1706 return Ops.back(); 1707 1708 Value *LHS = Ops.pop_back_val(); 1709 do { 1710 if (LHS->getType()->isIntOrIntVectorTy()) 1711 LHS = Builder.CreateMul(LHS, Ops.pop_back_val()); 1712 else 1713 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val()); 1714 } while (!Ops.empty()); 1715 1716 return LHS; 1717 } 1718 1719 /// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*... 1720 /// 1721 /// Given a vector of values raised to various powers, where no two values are 1722 /// equal and the powers are sorted in decreasing order, compute the minimal 1723 /// DAG of multiplies to compute the final product, and return that product 1724 /// value. 1725 Value * 1726 ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder, 1727 SmallVectorImpl<Factor> &Factors) { 1728 assert(Factors[0].Power); 1729 SmallVector<Value *, 4> OuterProduct; 1730 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size(); 1731 Idx < Size && Factors[Idx].Power > 0; ++Idx) { 1732 if (Factors[Idx].Power != Factors[LastIdx].Power) { 1733 LastIdx = Idx; 1734 continue; 1735 } 1736 1737 // We want to multiply across all the factors with the same power so that 1738 // we can raise them to that power as a single entity. Build a mini tree 1739 // for that. 1740 SmallVector<Value *, 4> InnerProduct; 1741 InnerProduct.push_back(Factors[LastIdx].Base); 1742 do { 1743 InnerProduct.push_back(Factors[Idx].Base); 1744 ++Idx; 1745 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power); 1746 1747 // Reset the base value of the first factor to the new expression tree. 1748 // We'll remove all the factors with the same power in a second pass. 1749 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct); 1750 if (Instruction *MI = dyn_cast<Instruction>(M)) 1751 RedoInsts.insert(MI); 1752 1753 LastIdx = Idx; 1754 } 1755 // Unique factors with equal powers -- we've folded them into the first one's 1756 // base. 1757 Factors.erase(std::unique(Factors.begin(), Factors.end(), 1758 [](const Factor &LHS, const Factor &RHS) { 1759 return LHS.Power == RHS.Power; 1760 }), 1761 Factors.end()); 1762 1763 // Iteratively collect the base of each factor with an add power into the 1764 // outer product, and halve each power in preparation for squaring the 1765 // expression. 1766 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) { 1767 if (Factors[Idx].Power & 1) 1768 OuterProduct.push_back(Factors[Idx].Base); 1769 Factors[Idx].Power >>= 1; 1770 } 1771 if (Factors[0].Power) { 1772 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors); 1773 OuterProduct.push_back(SquareRoot); 1774 OuterProduct.push_back(SquareRoot); 1775 } 1776 if (OuterProduct.size() == 1) 1777 return OuterProduct.front(); 1778 1779 Value *V = buildMultiplyTree(Builder, OuterProduct); 1780 return V; 1781 } 1782 1783 Value *ReassociatePass::OptimizeMul(BinaryOperator *I, 1784 SmallVectorImpl<ValueEntry> &Ops) { 1785 // We can only optimize the multiplies when there is a chain of more than 1786 // three, such that a balanced tree might require fewer total multiplies. 1787 if (Ops.size() < 4) 1788 return nullptr; 1789 1790 // Try to turn linear trees of multiplies without other uses of the 1791 // intermediate stages into minimal multiply DAGs with perfect sub-expression 1792 // re-use. 1793 SmallVector<Factor, 4> Factors; 1794 if (!collectMultiplyFactors(Ops, Factors)) 1795 return nullptr; // All distinct factors, so nothing left for us to do. 1796 1797 IRBuilder<> Builder(I); 1798 // The reassociate transformation for FP operations is performed only 1799 // if unsafe algebra is permitted by FastMathFlags. Propagate those flags 1800 // to the newly generated operations. 1801 if (auto FPI = dyn_cast<FPMathOperator>(I)) 1802 Builder.setFastMathFlags(FPI->getFastMathFlags()); 1803 1804 Value *V = buildMinimalMultiplyDAG(Builder, Factors); 1805 if (Ops.empty()) 1806 return V; 1807 1808 ValueEntry NewEntry = ValueEntry(getRank(V), V); 1809 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry); 1810 return nullptr; 1811 } 1812 1813 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I, 1814 SmallVectorImpl<ValueEntry> &Ops) { 1815 // Now that we have the linearized expression tree, try to optimize it. 1816 // Start by folding any constants that we found. 1817 Constant *Cst = nullptr; 1818 unsigned Opcode = I->getOpcode(); 1819 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) { 1820 Constant *C = cast<Constant>(Ops.pop_back_val().Op); 1821 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C; 1822 } 1823 // If there was nothing but constants then we are done. 1824 if (Ops.empty()) 1825 return Cst; 1826 1827 // Put the combined constant back at the end of the operand list, except if 1828 // there is no point. For example, an add of 0 gets dropped here, while a 1829 // multiplication by zero turns the whole expression into zero. 1830 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) { 1831 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType())) 1832 return Cst; 1833 Ops.push_back(ValueEntry(0, Cst)); 1834 } 1835 1836 if (Ops.size() == 1) return Ops[0].Op; 1837 1838 // Handle destructive annihilation due to identities between elements in the 1839 // argument list here. 1840 unsigned NumOps = Ops.size(); 1841 switch (Opcode) { 1842 default: break; 1843 case Instruction::And: 1844 case Instruction::Or: 1845 if (Value *Result = OptimizeAndOrXor(Opcode, Ops)) 1846 return Result; 1847 break; 1848 1849 case Instruction::Xor: 1850 if (Value *Result = OptimizeXor(I, Ops)) 1851 return Result; 1852 break; 1853 1854 case Instruction::Add: 1855 case Instruction::FAdd: 1856 if (Value *Result = OptimizeAdd(I, Ops)) 1857 return Result; 1858 break; 1859 1860 case Instruction::Mul: 1861 case Instruction::FMul: 1862 if (Value *Result = OptimizeMul(I, Ops)) 1863 return Result; 1864 break; 1865 } 1866 1867 if (Ops.size() != NumOps) 1868 return OptimizeExpression(I, Ops); 1869 return nullptr; 1870 } 1871 1872 // Remove dead instructions and if any operands are trivially dead add them to 1873 // Insts so they will be removed as well. 1874 void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I, 1875 OrderedSet &Insts) { 1876 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1877 SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end()); 1878 ValueRankMap.erase(I); 1879 Insts.remove(I); 1880 RedoInsts.remove(I); 1881 I->eraseFromParent(); 1882 for (auto Op : Ops) 1883 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1884 if (OpInst->use_empty()) 1885 Insts.insert(OpInst); 1886 } 1887 1888 /// Zap the given instruction, adding interesting operands to the work list. 1889 void ReassociatePass::EraseInst(Instruction *I) { 1890 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1891 DEBUG(dbgs() << "Erasing dead inst: "; I->dump()); 1892 1893 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 1894 // Erase the dead instruction. 1895 ValueRankMap.erase(I); 1896 RedoInsts.remove(I); 1897 I->eraseFromParent(); 1898 // Optimize its operands. 1899 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes. 1900 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1901 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) { 1902 // If this is a node in an expression tree, climb to the expression root 1903 // and add that since that's where optimization actually happens. 1904 unsigned Opcode = Op->getOpcode(); 1905 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode && 1906 Visited.insert(Op).second) 1907 Op = Op->user_back(); 1908 RedoInsts.insert(Op); 1909 } 1910 1911 MadeChange = true; 1912 } 1913 1914 // Canonicalize expressions of the following form: 1915 // x + (-Constant * y) -> x - (Constant * y) 1916 // x - (-Constant * y) -> x + (Constant * y) 1917 Instruction *ReassociatePass::canonicalizeNegConstExpr(Instruction *I) { 1918 if (!I->hasOneUse() || I->getType()->isVectorTy()) 1919 return nullptr; 1920 1921 // Must be a fmul or fdiv instruction. 1922 unsigned Opcode = I->getOpcode(); 1923 if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv) 1924 return nullptr; 1925 1926 auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0)); 1927 auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1)); 1928 1929 // Both operands are constant, let it get constant folded away. 1930 if (C0 && C1) 1931 return nullptr; 1932 1933 ConstantFP *CF = C0 ? C0 : C1; 1934 1935 // Must have one constant operand. 1936 if (!CF) 1937 return nullptr; 1938 1939 // Must be a negative ConstantFP. 1940 if (!CF->isNegative()) 1941 return nullptr; 1942 1943 // User must be a binary operator with one or more uses. 1944 Instruction *User = I->user_back(); 1945 if (!isa<BinaryOperator>(User) || User->use_empty()) 1946 return nullptr; 1947 1948 unsigned UserOpcode = User->getOpcode(); 1949 if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub) 1950 return nullptr; 1951 1952 // Subtraction is not commutative. Explicitly, the following transform is 1953 // not valid: (-Constant * y) - x -> x + (Constant * y) 1954 if (!User->isCommutative() && User->getOperand(1) != I) 1955 return nullptr; 1956 1957 // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the 1958 // resulting subtract will be broken up later. This can get us into an 1959 // infinite loop during reassociation. 1960 if (UserOpcode == Instruction::FAdd && ShouldBreakUpSubtract(User)) 1961 return nullptr; 1962 1963 // Change the sign of the constant. 1964 APFloat Val = CF->getValueAPF(); 1965 Val.changeSign(); 1966 I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val)); 1967 1968 // Canonicalize I to RHS to simplify the next bit of logic. E.g., 1969 // ((-Const*y) + x) -> (x + (-Const*y)). 1970 if (User->getOperand(0) == I && User->isCommutative()) 1971 cast<BinaryOperator>(User)->swapOperands(); 1972 1973 Value *Op0 = User->getOperand(0); 1974 Value *Op1 = User->getOperand(1); 1975 BinaryOperator *NI; 1976 switch (UserOpcode) { 1977 default: 1978 llvm_unreachable("Unexpected Opcode!"); 1979 case Instruction::FAdd: 1980 NI = BinaryOperator::CreateFSub(Op0, Op1); 1981 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags()); 1982 break; 1983 case Instruction::FSub: 1984 NI = BinaryOperator::CreateFAdd(Op0, Op1); 1985 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags()); 1986 break; 1987 } 1988 1989 NI->insertBefore(User); 1990 NI->setName(User->getName()); 1991 User->replaceAllUsesWith(NI); 1992 NI->setDebugLoc(I->getDebugLoc()); 1993 RedoInsts.insert(I); 1994 MadeChange = true; 1995 return NI; 1996 } 1997 1998 /// Inspect and optimize the given instruction. Note that erasing 1999 /// instructions is not allowed. 2000 void ReassociatePass::OptimizeInst(Instruction *I) { 2001 // Only consider operations that we understand. 2002 if (!isa<BinaryOperator>(I)) 2003 return; 2004 2005 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1))) 2006 // If an operand of this shift is a reassociable multiply, or if the shift 2007 // is used by a reassociable multiply or add, turn into a multiply. 2008 if (isReassociableOp(I->getOperand(0), Instruction::Mul) || 2009 (I->hasOneUse() && 2010 (isReassociableOp(I->user_back(), Instruction::Mul) || 2011 isReassociableOp(I->user_back(), Instruction::Add)))) { 2012 Instruction *NI = ConvertShiftToMul(I); 2013 RedoInsts.insert(I); 2014 MadeChange = true; 2015 I = NI; 2016 } 2017 2018 // Canonicalize negative constants out of expressions. 2019 if (Instruction *Res = canonicalizeNegConstExpr(I)) 2020 I = Res; 2021 2022 // Commute binary operators, to canonicalize the order of their operands. 2023 // This can potentially expose more CSE opportunities, and makes writing other 2024 // transformations simpler. 2025 if (I->isCommutative()) 2026 canonicalizeOperands(I); 2027 2028 // Don't optimize floating-point instructions unless they are 'fast'. 2029 if (I->getType()->isFPOrFPVectorTy() && !I->isFast()) 2030 return; 2031 2032 // Do not reassociate boolean (i1) expressions. We want to preserve the 2033 // original order of evaluation for short-circuited comparisons that 2034 // SimplifyCFG has folded to AND/OR expressions. If the expression 2035 // is not further optimized, it is likely to be transformed back to a 2036 // short-circuited form for code gen, and the source order may have been 2037 // optimized for the most likely conditions. 2038 if (I->getType()->isIntegerTy(1)) 2039 return; 2040 2041 // If this is a subtract instruction which is not already in negate form, 2042 // see if we can convert it to X+-Y. 2043 if (I->getOpcode() == Instruction::Sub) { 2044 if (ShouldBreakUpSubtract(I)) { 2045 Instruction *NI = BreakUpSubtract(I, RedoInsts); 2046 RedoInsts.insert(I); 2047 MadeChange = true; 2048 I = NI; 2049 } else if (BinaryOperator::isNeg(I)) { 2050 // Otherwise, this is a negation. See if the operand is a multiply tree 2051 // and if this is not an inner node of a multiply tree. 2052 if (isReassociableOp(I->getOperand(1), Instruction::Mul) && 2053 (!I->hasOneUse() || 2054 !isReassociableOp(I->user_back(), Instruction::Mul))) { 2055 Instruction *NI = LowerNegateToMultiply(I); 2056 // If the negate was simplified, revisit the users to see if we can 2057 // reassociate further. 2058 for (User *U : NI->users()) { 2059 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U)) 2060 RedoInsts.insert(Tmp); 2061 } 2062 RedoInsts.insert(I); 2063 MadeChange = true; 2064 I = NI; 2065 } 2066 } 2067 } else if (I->getOpcode() == Instruction::FSub) { 2068 if (ShouldBreakUpSubtract(I)) { 2069 Instruction *NI = BreakUpSubtract(I, RedoInsts); 2070 RedoInsts.insert(I); 2071 MadeChange = true; 2072 I = NI; 2073 } else if (BinaryOperator::isFNeg(I)) { 2074 // Otherwise, this is a negation. See if the operand is a multiply tree 2075 // and if this is not an inner node of a multiply tree. 2076 if (isReassociableOp(I->getOperand(1), Instruction::FMul) && 2077 (!I->hasOneUse() || 2078 !isReassociableOp(I->user_back(), Instruction::FMul))) { 2079 // If the negate was simplified, revisit the users to see if we can 2080 // reassociate further. 2081 Instruction *NI = LowerNegateToMultiply(I); 2082 for (User *U : NI->users()) { 2083 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U)) 2084 RedoInsts.insert(Tmp); 2085 } 2086 RedoInsts.insert(I); 2087 MadeChange = true; 2088 I = NI; 2089 } 2090 } 2091 } 2092 2093 // If this instruction is an associative binary operator, process it. 2094 if (!I->isAssociative()) return; 2095 BinaryOperator *BO = cast<BinaryOperator>(I); 2096 2097 // If this is an interior node of a reassociable tree, ignore it until we 2098 // get to the root of the tree, to avoid N^2 analysis. 2099 unsigned Opcode = BO->getOpcode(); 2100 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) { 2101 // During the initial run we will get to the root of the tree. 2102 // But if we get here while we are redoing instructions, there is no 2103 // guarantee that the root will be visited. So Redo later 2104 if (BO->user_back() != BO && 2105 BO->getParent() == BO->user_back()->getParent()) 2106 RedoInsts.insert(BO->user_back()); 2107 return; 2108 } 2109 2110 // If this is an add tree that is used by a sub instruction, ignore it 2111 // until we process the subtract. 2112 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add && 2113 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub) 2114 return; 2115 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd && 2116 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub) 2117 return; 2118 2119 ReassociateExpression(BO); 2120 } 2121 2122 void ReassociatePass::ReassociateExpression(BinaryOperator *I) { 2123 // First, walk the expression tree, linearizing the tree, collecting the 2124 // operand information. 2125 SmallVector<RepeatedValue, 8> Tree; 2126 MadeChange |= LinearizeExprTree(I, Tree); 2127 SmallVector<ValueEntry, 8> Ops; 2128 Ops.reserve(Tree.size()); 2129 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 2130 RepeatedValue E = Tree[i]; 2131 Ops.append(E.second.getZExtValue(), 2132 ValueEntry(getRank(E.first), E.first)); 2133 } 2134 2135 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2136 2137 // Now that we have linearized the tree to a list and have gathered all of 2138 // the operands and their ranks, sort the operands by their rank. Use a 2139 // stable_sort so that values with equal ranks will have their relative 2140 // positions maintained (and so the compiler is deterministic). Note that 2141 // this sorts so that the highest ranking values end up at the beginning of 2142 // the vector. 2143 std::stable_sort(Ops.begin(), Ops.end()); 2144 2145 // Now that we have the expression tree in a convenient 2146 // sorted form, optimize it globally if possible. 2147 if (Value *V = OptimizeExpression(I, Ops)) { 2148 if (V == I) 2149 // Self-referential expression in unreachable code. 2150 return; 2151 // This expression tree simplified to something that isn't a tree, 2152 // eliminate it. 2153 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n'); 2154 I->replaceAllUsesWith(V); 2155 if (Instruction *VI = dyn_cast<Instruction>(V)) 2156 if (I->getDebugLoc()) 2157 VI->setDebugLoc(I->getDebugLoc()); 2158 RedoInsts.insert(I); 2159 ++NumAnnihil; 2160 return; 2161 } 2162 2163 // We want to sink immediates as deeply as possible except in the case where 2164 // this is a multiply tree used only by an add, and the immediate is a -1. 2165 // In this case we reassociate to put the negation on the outside so that we 2166 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y 2167 if (I->hasOneUse()) { 2168 if (I->getOpcode() == Instruction::Mul && 2169 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add && 2170 isa<ConstantInt>(Ops.back().Op) && 2171 cast<ConstantInt>(Ops.back().Op)->isMinusOne()) { 2172 ValueEntry Tmp = Ops.pop_back_val(); 2173 Ops.insert(Ops.begin(), Tmp); 2174 } else if (I->getOpcode() == Instruction::FMul && 2175 cast<Instruction>(I->user_back())->getOpcode() == 2176 Instruction::FAdd && 2177 isa<ConstantFP>(Ops.back().Op) && 2178 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) { 2179 ValueEntry Tmp = Ops.pop_back_val(); 2180 Ops.insert(Ops.begin(), Tmp); 2181 } 2182 } 2183 2184 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2185 2186 if (Ops.size() == 1) { 2187 if (Ops[0].Op == I) 2188 // Self-referential expression in unreachable code. 2189 return; 2190 2191 // This expression tree simplified to something that isn't a tree, 2192 // eliminate it. 2193 I->replaceAllUsesWith(Ops[0].Op); 2194 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op)) 2195 OI->setDebugLoc(I->getDebugLoc()); 2196 RedoInsts.insert(I); 2197 return; 2198 } 2199 2200 if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) { 2201 // Find the pair with the highest count in the pairmap and move it to the 2202 // back of the list so that it can later be CSE'd. 2203 // example: 2204 // a*b*c*d*e 2205 // if c*e is the most "popular" pair, we can express this as 2206 // (((c*e)*d)*b)*a 2207 unsigned Max = 1; 2208 unsigned BestRank = 0; 2209 std::pair<unsigned, unsigned> BestPair; 2210 unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin; 2211 for (unsigned i = 0; i < Ops.size() - 1; ++i) 2212 for (unsigned j = i + 1; j < Ops.size(); ++j) { 2213 unsigned Score = 0; 2214 Value *Op0 = Ops[i].Op; 2215 Value *Op1 = Ops[j].Op; 2216 if (std::less<Value *>()(Op1, Op0)) 2217 std::swap(Op0, Op1); 2218 auto it = PairMap[Idx].find({Op0, Op1}); 2219 if (it != PairMap[Idx].end()) 2220 Score += it->second; 2221 2222 unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank); 2223 if (Score > Max || (Score == Max && MaxRank < BestRank)) { 2224 BestPair = {i, j}; 2225 Max = Score; 2226 BestRank = MaxRank; 2227 } 2228 } 2229 if (Max > 1) { 2230 auto Op0 = Ops[BestPair.first]; 2231 auto Op1 = Ops[BestPair.second]; 2232 Ops.erase(&Ops[BestPair.second]); 2233 Ops.erase(&Ops[BestPair.first]); 2234 Ops.push_back(Op0); 2235 Ops.push_back(Op1); 2236 } 2237 } 2238 // Now that we ordered and optimized the expressions, splat them back into 2239 // the expression tree, removing any unneeded nodes. 2240 RewriteExprTree(I, Ops); 2241 } 2242 2243 void 2244 ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) { 2245 // Make a "pairmap" of how often each operand pair occurs. 2246 for (BasicBlock *BI : RPOT) { 2247 for (Instruction &I : *BI) { 2248 if (!I.isAssociative()) 2249 continue; 2250 2251 // Ignore nodes that aren't at the root of trees. 2252 if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode()) 2253 continue; 2254 2255 // Collect all operands in a single reassociable expression. 2256 // Since Reassociate has already been run once, we can assume things 2257 // are already canonical according to Reassociation's regime. 2258 SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) }; 2259 SmallVector<Value *, 8> Ops; 2260 while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) { 2261 Value *Op = Worklist.pop_back_val(); 2262 Instruction *OpI = dyn_cast<Instruction>(Op); 2263 if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) { 2264 Ops.push_back(Op); 2265 continue; 2266 } 2267 // Be paranoid about self-referencing expressions in unreachable code. 2268 if (OpI->getOperand(0) != OpI) 2269 Worklist.push_back(OpI->getOperand(0)); 2270 if (OpI->getOperand(1) != OpI) 2271 Worklist.push_back(OpI->getOperand(1)); 2272 } 2273 // Skip extremely long expressions. 2274 if (Ops.size() > GlobalReassociateLimit) 2275 continue; 2276 2277 // Add all pairwise combinations of operands to the pair map. 2278 unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin; 2279 SmallSet<std::pair<Value *, Value*>, 32> Visited; 2280 for (unsigned i = 0; i < Ops.size() - 1; ++i) { 2281 for (unsigned j = i + 1; j < Ops.size(); ++j) { 2282 // Canonicalize operand orderings. 2283 Value *Op0 = Ops[i]; 2284 Value *Op1 = Ops[j]; 2285 if (std::less<Value *>()(Op1, Op0)) 2286 std::swap(Op0, Op1); 2287 if (!Visited.insert({Op0, Op1}).second) 2288 continue; 2289 auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, 1}); 2290 if (!res.second) 2291 ++res.first->second; 2292 } 2293 } 2294 } 2295 } 2296 } 2297 2298 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) { 2299 // Get the functions basic blocks in Reverse Post Order. This order is used by 2300 // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic 2301 // blocks (it has been seen that the analysis in this pass could hang when 2302 // analysing dead basic blocks). 2303 ReversePostOrderTraversal<Function *> RPOT(&F); 2304 2305 // Calculate the rank map for F. 2306 BuildRankMap(F, RPOT); 2307 2308 // Build the pair map before running reassociate. 2309 // Technically this would be more accurate if we did it after one round 2310 // of reassociation, but in practice it doesn't seem to help much on 2311 // real-world code, so don't waste the compile time running reassociate 2312 // twice. 2313 // If a user wants, they could expicitly run reassociate twice in their 2314 // pass pipeline for further potential gains. 2315 // It might also be possible to update the pair map during runtime, but the 2316 // overhead of that may be large if there's many reassociable chains. 2317 BuildPairMap(RPOT); 2318 2319 MadeChange = false; 2320 2321 // Traverse the same blocks that were analysed by BuildRankMap. 2322 for (BasicBlock *BI : RPOT) { 2323 assert(RankMap.count(&*BI) && "BB should be ranked."); 2324 // Optimize every instruction in the basic block. 2325 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;) 2326 if (isInstructionTriviallyDead(&*II)) { 2327 EraseInst(&*II++); 2328 } else { 2329 OptimizeInst(&*II); 2330 assert(II->getParent() == &*BI && "Moved to a different block!"); 2331 ++II; 2332 } 2333 2334 // Make a copy of all the instructions to be redone so we can remove dead 2335 // instructions. 2336 OrderedSet ToRedo(RedoInsts); 2337 // Iterate over all instructions to be reevaluated and remove trivially dead 2338 // instructions. If any operand of the trivially dead instruction becomes 2339 // dead mark it for deletion as well. Continue this process until all 2340 // trivially dead instructions have been removed. 2341 while (!ToRedo.empty()) { 2342 Instruction *I = ToRedo.pop_back_val(); 2343 if (isInstructionTriviallyDead(I)) { 2344 RecursivelyEraseDeadInsts(I, ToRedo); 2345 MadeChange = true; 2346 } 2347 } 2348 2349 // Now that we have removed dead instructions, we can reoptimize the 2350 // remaining instructions. 2351 while (!RedoInsts.empty()) { 2352 Instruction *I = RedoInsts.front(); 2353 RedoInsts.erase(RedoInsts.begin()); 2354 if (isInstructionTriviallyDead(I)) 2355 EraseInst(I); 2356 else 2357 OptimizeInst(I); 2358 } 2359 } 2360 2361 // We are done with the rank map and pair map. 2362 RankMap.clear(); 2363 ValueRankMap.clear(); 2364 for (auto &Entry : PairMap) 2365 Entry.clear(); 2366 2367 if (MadeChange) { 2368 PreservedAnalyses PA; 2369 PA.preserveSet<CFGAnalyses>(); 2370 PA.preserve<GlobalsAA>(); 2371 return PA; 2372 } 2373 2374 return PreservedAnalyses::all(); 2375 } 2376 2377 namespace { 2378 2379 class ReassociateLegacyPass : public FunctionPass { 2380 ReassociatePass Impl; 2381 2382 public: 2383 static char ID; // Pass identification, replacement for typeid 2384 2385 ReassociateLegacyPass() : FunctionPass(ID) { 2386 initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry()); 2387 } 2388 2389 bool runOnFunction(Function &F) override { 2390 if (skipFunction(F)) 2391 return false; 2392 2393 FunctionAnalysisManager DummyFAM; 2394 auto PA = Impl.run(F, DummyFAM); 2395 return !PA.areAllPreserved(); 2396 } 2397 2398 void getAnalysisUsage(AnalysisUsage &AU) const override { 2399 AU.setPreservesCFG(); 2400 AU.addPreserved<GlobalsAAWrapperPass>(); 2401 } 2402 }; 2403 2404 } // end anonymous namespace 2405 2406 char ReassociateLegacyPass::ID = 0; 2407 2408 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate", 2409 "Reassociate expressions", false, false) 2410 2411 // Public interface to the Reassociate pass 2412 FunctionPass *llvm::createReassociatePass() { 2413 return new ReassociateLegacyPass(); 2414 } 2415