1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass reassociates commutative expressions in an order that is designed 11 // to promote better constant propagation, GCSE, LICM, PRE, etc. 12 // 13 // For example: 4 + (x + 5) -> x + (4 + 5) 14 // 15 // In the implementation of this algorithm, constants are assigned rank = 0, 16 // function arguments are rank = 1, and other values are assigned ranks 17 // corresponding to the reverse post order traversal of current function 18 // (starting at 2), which effectively gives values in deep loops higher rank 19 // than values not in loops. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/Transforms/Scalar/Reassociate.h" 24 #include "llvm/ADT/APFloat.h" 25 #include "llvm/ADT/APInt.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/ADT/SetVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/GlobalsModRef.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/CFG.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/IRBuilder.h" 41 #include "llvm/IR/InstrTypes.h" 42 #include "llvm/IR/Instruction.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/IR/PassManager.h" 46 #include "llvm/IR/PatternMatch.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/IR/User.h" 49 #include "llvm/IR/Value.h" 50 #include "llvm/IR/ValueHandle.h" 51 #include "llvm/Pass.h" 52 #include "llvm/Support/Casting.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Transforms/Scalar.h" 57 #include "llvm/Transforms/Utils/Local.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <utility> 61 62 using namespace llvm; 63 using namespace reassociate; 64 65 #define DEBUG_TYPE "reassociate" 66 67 STATISTIC(NumChanged, "Number of insts reassociated"); 68 STATISTIC(NumAnnihil, "Number of expr tree annihilated"); 69 STATISTIC(NumFactor , "Number of multiplies factored"); 70 71 #ifndef NDEBUG 72 /// Print out the expression identified in the Ops list. 73 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) { 74 Module *M = I->getModule(); 75 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " " 76 << *Ops[0].Op->getType() << '\t'; 77 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 78 dbgs() << "[ "; 79 Ops[i].Op->printAsOperand(dbgs(), false, M); 80 dbgs() << ", #" << Ops[i].Rank << "] "; 81 } 82 } 83 #endif 84 85 /// Utility class representing a non-constant Xor-operand. We classify 86 /// non-constant Xor-Operands into two categories: 87 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0 88 /// C2) 89 /// C2.1) The operand is in the form of "X | C", where C is a non-zero 90 /// constant. 91 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this 92 /// operand as "E | 0" 93 class llvm::reassociate::XorOpnd { 94 public: 95 XorOpnd(Value *V); 96 97 bool isInvalid() const { return SymbolicPart == nullptr; } 98 bool isOrExpr() const { return isOr; } 99 Value *getValue() const { return OrigVal; } 100 Value *getSymbolicPart() const { return SymbolicPart; } 101 unsigned getSymbolicRank() const { return SymbolicRank; } 102 const APInt &getConstPart() const { return ConstPart; } 103 104 void Invalidate() { SymbolicPart = OrigVal = nullptr; } 105 void setSymbolicRank(unsigned R) { SymbolicRank = R; } 106 107 private: 108 Value *OrigVal; 109 Value *SymbolicPart; 110 APInt ConstPart; 111 unsigned SymbolicRank; 112 bool isOr; 113 }; 114 115 XorOpnd::XorOpnd(Value *V) { 116 assert(!isa<ConstantInt>(V) && "No ConstantInt"); 117 OrigVal = V; 118 Instruction *I = dyn_cast<Instruction>(V); 119 SymbolicRank = 0; 120 121 if (I && (I->getOpcode() == Instruction::Or || 122 I->getOpcode() == Instruction::And)) { 123 Value *V0 = I->getOperand(0); 124 Value *V1 = I->getOperand(1); 125 const APInt *C; 126 if (match(V0, PatternMatch::m_APInt(C))) 127 std::swap(V0, V1); 128 129 if (match(V1, PatternMatch::m_APInt(C))) { 130 ConstPart = *C; 131 SymbolicPart = V0; 132 isOr = (I->getOpcode() == Instruction::Or); 133 return; 134 } 135 } 136 137 // view the operand as "V | 0" 138 SymbolicPart = V; 139 ConstPart = APInt::getNullValue(V->getType()->getScalarSizeInBits()); 140 isOr = true; 141 } 142 143 /// Return true if V is an instruction of the specified opcode and if it 144 /// only has one use. 145 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) { 146 auto *I = dyn_cast<Instruction>(V); 147 if (I && I->hasOneUse() && I->getOpcode() == Opcode) 148 if (!isa<FPMathOperator>(I) || I->isFast()) 149 return cast<BinaryOperator>(I); 150 return nullptr; 151 } 152 153 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1, 154 unsigned Opcode2) { 155 auto *I = dyn_cast<Instruction>(V); 156 if (I && I->hasOneUse() && 157 (I->getOpcode() == Opcode1 || I->getOpcode() == Opcode2)) 158 if (!isa<FPMathOperator>(I) || I->isFast()) 159 return cast<BinaryOperator>(I); 160 return nullptr; 161 } 162 163 void ReassociatePass::BuildRankMap(Function &F, 164 ReversePostOrderTraversal<Function*> &RPOT) { 165 unsigned Rank = 2; 166 167 // Assign distinct ranks to function arguments. 168 for (auto &Arg : F.args()) { 169 ValueRankMap[&Arg] = ++Rank; 170 DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank 171 << "\n"); 172 } 173 174 // Traverse basic blocks in ReversePostOrder 175 for (BasicBlock *BB : RPOT) { 176 unsigned BBRank = RankMap[BB] = ++Rank << 16; 177 178 // Walk the basic block, adding precomputed ranks for any instructions that 179 // we cannot move. This ensures that the ranks for these instructions are 180 // all different in the block. 181 for (Instruction &I : *BB) 182 if (mayBeMemoryDependent(I)) 183 ValueRankMap[&I] = ++BBRank; 184 } 185 } 186 187 unsigned ReassociatePass::getRank(Value *V) { 188 Instruction *I = dyn_cast<Instruction>(V); 189 if (!I) { 190 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument. 191 return 0; // Otherwise it's a global or constant, rank 0. 192 } 193 194 if (unsigned Rank = ValueRankMap[I]) 195 return Rank; // Rank already known? 196 197 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that 198 // we can reassociate expressions for code motion! Since we do not recurse 199 // for PHI nodes, we cannot have infinite recursion here, because there 200 // cannot be loops in the value graph that do not go through PHI nodes. 201 unsigned Rank = 0, MaxRank = RankMap[I->getParent()]; 202 for (unsigned i = 0, e = I->getNumOperands(); 203 i != e && Rank != MaxRank; ++i) 204 Rank = std::max(Rank, getRank(I->getOperand(i))); 205 206 // If this is a not or neg instruction, do not count it for rank. This 207 // assures us that X and ~X will have the same rank. 208 if (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) && 209 !BinaryOperator::isFNeg(I)) 210 ++Rank; 211 212 DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n"); 213 214 return ValueRankMap[I] = Rank; 215 } 216 217 // Canonicalize constants to RHS. Otherwise, sort the operands by rank. 218 void ReassociatePass::canonicalizeOperands(Instruction *I) { 219 assert(isa<BinaryOperator>(I) && "Expected binary operator."); 220 assert(I->isCommutative() && "Expected commutative operator."); 221 222 Value *LHS = I->getOperand(0); 223 Value *RHS = I->getOperand(1); 224 if (LHS == RHS || isa<Constant>(RHS)) 225 return; 226 if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS)) 227 cast<BinaryOperator>(I)->swapOperands(); 228 } 229 230 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name, 231 Instruction *InsertBefore, Value *FlagsOp) { 232 if (S1->getType()->isIntOrIntVectorTy()) 233 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore); 234 else { 235 BinaryOperator *Res = 236 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore); 237 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 238 return Res; 239 } 240 } 241 242 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name, 243 Instruction *InsertBefore, Value *FlagsOp) { 244 if (S1->getType()->isIntOrIntVectorTy()) 245 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore); 246 else { 247 BinaryOperator *Res = 248 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore); 249 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 250 return Res; 251 } 252 } 253 254 static BinaryOperator *CreateNeg(Value *S1, const Twine &Name, 255 Instruction *InsertBefore, Value *FlagsOp) { 256 if (S1->getType()->isIntOrIntVectorTy()) 257 return BinaryOperator::CreateNeg(S1, Name, InsertBefore); 258 else { 259 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore); 260 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 261 return Res; 262 } 263 } 264 265 /// Replace 0-X with X*-1. 266 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) { 267 Type *Ty = Neg->getType(); 268 Constant *NegOne = Ty->isIntOrIntVectorTy() ? 269 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0); 270 271 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg); 272 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op. 273 Res->takeName(Neg); 274 Neg->replaceAllUsesWith(Res); 275 Res->setDebugLoc(Neg->getDebugLoc()); 276 return Res; 277 } 278 279 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael 280 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for 281 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic. 282 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every 283 /// even x in Bitwidth-bit arithmetic. 284 static unsigned CarmichaelShift(unsigned Bitwidth) { 285 if (Bitwidth < 3) 286 return Bitwidth - 1; 287 return Bitwidth - 2; 288 } 289 290 /// Add the extra weight 'RHS' to the existing weight 'LHS', 291 /// reducing the combined weight using any special properties of the operation. 292 /// The existing weight LHS represents the computation X op X op ... op X where 293 /// X occurs LHS times. The combined weight represents X op X op ... op X with 294 /// X occurring LHS + RHS times. If op is "Xor" for example then the combined 295 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even; 296 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second. 297 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) { 298 // If we were working with infinite precision arithmetic then the combined 299 // weight would be LHS + RHS. But we are using finite precision arithmetic, 300 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct 301 // for nilpotent operations and addition, but not for idempotent operations 302 // and multiplication), so it is important to correctly reduce the combined 303 // weight back into range if wrapping would be wrong. 304 305 // If RHS is zero then the weight didn't change. 306 if (RHS.isMinValue()) 307 return; 308 // If LHS is zero then the combined weight is RHS. 309 if (LHS.isMinValue()) { 310 LHS = RHS; 311 return; 312 } 313 // From this point on we know that neither LHS nor RHS is zero. 314 315 if (Instruction::isIdempotent(Opcode)) { 316 // Idempotent means X op X === X, so any non-zero weight is equivalent to a 317 // weight of 1. Keeping weights at zero or one also means that wrapping is 318 // not a problem. 319 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 320 return; // Return a weight of 1. 321 } 322 if (Instruction::isNilpotent(Opcode)) { 323 // Nilpotent means X op X === 0, so reduce weights modulo 2. 324 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 325 LHS = 0; // 1 + 1 === 0 modulo 2. 326 return; 327 } 328 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) { 329 // TODO: Reduce the weight by exploiting nsw/nuw? 330 LHS += RHS; 331 return; 332 } 333 334 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) && 335 "Unknown associative operation!"); 336 unsigned Bitwidth = LHS.getBitWidth(); 337 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth 338 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth 339 // bit number x, since either x is odd in which case x^CM = 1, or x is even in 340 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples 341 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth) 342 // which by a happy accident means that they can always be represented using 343 // Bitwidth bits. 344 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than 345 // the Carmichael number). 346 if (Bitwidth > 3) { 347 /// CM - The value of Carmichael's lambda function. 348 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth)); 349 // Any weight W >= Threshold can be replaced with W - CM. 350 APInt Threshold = CM + Bitwidth; 351 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!"); 352 // For Bitwidth 4 or more the following sum does not overflow. 353 LHS += RHS; 354 while (LHS.uge(Threshold)) 355 LHS -= CM; 356 } else { 357 // To avoid problems with overflow do everything the same as above but using 358 // a larger type. 359 unsigned CM = 1U << CarmichaelShift(Bitwidth); 360 unsigned Threshold = CM + Bitwidth; 361 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold && 362 "Weights not reduced!"); 363 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue(); 364 while (Total >= Threshold) 365 Total -= CM; 366 LHS = Total; 367 } 368 } 369 370 using RepeatedValue = std::pair<Value*, APInt>; 371 372 /// Given an associative binary expression, return the leaf 373 /// nodes in Ops along with their weights (how many times the leaf occurs). The 374 /// original expression is the same as 375 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times 376 /// op 377 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times 378 /// op 379 /// ... 380 /// op 381 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times 382 /// 383 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct. 384 /// 385 /// This routine may modify the function, in which case it returns 'true'. The 386 /// changes it makes may well be destructive, changing the value computed by 'I' 387 /// to something completely different. Thus if the routine returns 'true' then 388 /// you MUST either replace I with a new expression computed from the Ops array, 389 /// or use RewriteExprTree to put the values back in. 390 /// 391 /// A leaf node is either not a binary operation of the same kind as the root 392 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different 393 /// opcode), or is the same kind of binary operator but has a use which either 394 /// does not belong to the expression, or does belong to the expression but is 395 /// a leaf node. Every leaf node has at least one use that is a non-leaf node 396 /// of the expression, while for non-leaf nodes (except for the root 'I') every 397 /// use is a non-leaf node of the expression. 398 /// 399 /// For example: 400 /// expression graph node names 401 /// 402 /// + | I 403 /// / \ | 404 /// + + | A, B 405 /// / \ / \ | 406 /// * + * | C, D, E 407 /// / \ / \ / \ | 408 /// + * | F, G 409 /// 410 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in 411 /// that order) (C, 1), (E, 1), (F, 2), (G, 2). 412 /// 413 /// The expression is maximal: if some instruction is a binary operator of the 414 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression, 415 /// then the instruction also belongs to the expression, is not a leaf node of 416 /// it, and its operands also belong to the expression (but may be leaf nodes). 417 /// 418 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in 419 /// order to ensure that every non-root node in the expression has *exactly one* 420 /// use by a non-leaf node of the expression. This destruction means that the 421 /// caller MUST either replace 'I' with a new expression or use something like 422 /// RewriteExprTree to put the values back in if the routine indicates that it 423 /// made a change by returning 'true'. 424 /// 425 /// In the above example either the right operand of A or the left operand of B 426 /// will be replaced by undef. If it is B's operand then this gives: 427 /// 428 /// + | I 429 /// / \ | 430 /// + + | A, B - operand of B replaced with undef 431 /// / \ \ | 432 /// * + * | C, D, E 433 /// / \ / \ / \ | 434 /// + * | F, G 435 /// 436 /// Note that such undef operands can only be reached by passing through 'I'. 437 /// For example, if you visit operands recursively starting from a leaf node 438 /// then you will never see such an undef operand unless you get back to 'I', 439 /// which requires passing through a phi node. 440 /// 441 /// Note that this routine may also mutate binary operators of the wrong type 442 /// that have all uses inside the expression (i.e. only used by non-leaf nodes 443 /// of the expression) if it can turn them into binary operators of the right 444 /// type and thus make the expression bigger. 445 static bool LinearizeExprTree(BinaryOperator *I, 446 SmallVectorImpl<RepeatedValue> &Ops) { 447 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n'); 448 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits(); 449 unsigned Opcode = I->getOpcode(); 450 assert(I->isAssociative() && I->isCommutative() && 451 "Expected an associative and commutative operation!"); 452 453 // Visit all operands of the expression, keeping track of their weight (the 454 // number of paths from the expression root to the operand, or if you like 455 // the number of times that operand occurs in the linearized expression). 456 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1 457 // while A has weight two. 458 459 // Worklist of non-leaf nodes (their operands are in the expression too) along 460 // with their weights, representing a certain number of paths to the operator. 461 // If an operator occurs in the worklist multiple times then we found multiple 462 // ways to get to it. 463 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight) 464 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1))); 465 bool Changed = false; 466 467 // Leaves of the expression are values that either aren't the right kind of 468 // operation (eg: a constant, or a multiply in an add tree), or are, but have 469 // some uses that are not inside the expression. For example, in I = X + X, 470 // X = A + B, the value X has two uses (by I) that are in the expression. If 471 // X has any other uses, for example in a return instruction, then we consider 472 // X to be a leaf, and won't analyze it further. When we first visit a value, 473 // if it has more than one use then at first we conservatively consider it to 474 // be a leaf. Later, as the expression is explored, we may discover some more 475 // uses of the value from inside the expression. If all uses turn out to be 476 // from within the expression (and the value is a binary operator of the right 477 // kind) then the value is no longer considered to be a leaf, and its operands 478 // are explored. 479 480 // Leaves - Keeps track of the set of putative leaves as well as the number of 481 // paths to each leaf seen so far. 482 using LeafMap = DenseMap<Value *, APInt>; 483 LeafMap Leaves; // Leaf -> Total weight so far. 484 SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order. 485 486 #ifndef NDEBUG 487 SmallPtrSet<Value *, 8> Visited; // For sanity checking the iteration scheme. 488 #endif 489 while (!Worklist.empty()) { 490 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val(); 491 I = P.first; // We examine the operands of this binary operator. 492 493 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands. 494 Value *Op = I->getOperand(OpIdx); 495 APInt Weight = P.second; // Number of paths to this operand. 496 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n"); 497 assert(!Op->use_empty() && "No uses, so how did we get to it?!"); 498 499 // If this is a binary operation of the right kind with only one use then 500 // add its operands to the expression. 501 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 502 assert(Visited.insert(Op).second && "Not first visit!"); 503 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n"); 504 Worklist.push_back(std::make_pair(BO, Weight)); 505 continue; 506 } 507 508 // Appears to be a leaf. Is the operand already in the set of leaves? 509 LeafMap::iterator It = Leaves.find(Op); 510 if (It == Leaves.end()) { 511 // Not in the leaf map. Must be the first time we saw this operand. 512 assert(Visited.insert(Op).second && "Not first visit!"); 513 if (!Op->hasOneUse()) { 514 // This value has uses not accounted for by the expression, so it is 515 // not safe to modify. Mark it as being a leaf. 516 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n"); 517 LeafOrder.push_back(Op); 518 Leaves[Op] = Weight; 519 continue; 520 } 521 // No uses outside the expression, try morphing it. 522 } else { 523 // Already in the leaf map. 524 assert(It != Leaves.end() && Visited.count(Op) && 525 "In leaf map but not visited!"); 526 527 // Update the number of paths to the leaf. 528 IncorporateWeight(It->second, Weight, Opcode); 529 530 #if 0 // TODO: Re-enable once PR13021 is fixed. 531 // The leaf already has one use from inside the expression. As we want 532 // exactly one such use, drop this new use of the leaf. 533 assert(!Op->hasOneUse() && "Only one use, but we got here twice!"); 534 I->setOperand(OpIdx, UndefValue::get(I->getType())); 535 Changed = true; 536 537 // If the leaf is a binary operation of the right kind and we now see 538 // that its multiple original uses were in fact all by nodes belonging 539 // to the expression, then no longer consider it to be a leaf and add 540 // its operands to the expression. 541 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 542 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n"); 543 Worklist.push_back(std::make_pair(BO, It->second)); 544 Leaves.erase(It); 545 continue; 546 } 547 #endif 548 549 // If we still have uses that are not accounted for by the expression 550 // then it is not safe to modify the value. 551 if (!Op->hasOneUse()) 552 continue; 553 554 // No uses outside the expression, try morphing it. 555 Weight = It->second; 556 Leaves.erase(It); // Since the value may be morphed below. 557 } 558 559 // At this point we have a value which, first of all, is not a binary 560 // expression of the right kind, and secondly, is only used inside the 561 // expression. This means that it can safely be modified. See if we 562 // can usefully morph it into an expression of the right kind. 563 assert((!isa<Instruction>(Op) || 564 cast<Instruction>(Op)->getOpcode() != Opcode 565 || (isa<FPMathOperator>(Op) && 566 !cast<Instruction>(Op)->isFast())) && 567 "Should have been handled above!"); 568 assert(Op->hasOneUse() && "Has uses outside the expression tree!"); 569 570 // If this is a multiply expression, turn any internal negations into 571 // multiplies by -1 so they can be reassociated. 572 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) 573 if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) || 574 (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) { 575 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO "); 576 BO = LowerNegateToMultiply(BO); 577 DEBUG(dbgs() << *BO << '\n'); 578 Worklist.push_back(std::make_pair(BO, Weight)); 579 Changed = true; 580 continue; 581 } 582 583 // Failed to morph into an expression of the right type. This really is 584 // a leaf. 585 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n"); 586 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?"); 587 LeafOrder.push_back(Op); 588 Leaves[Op] = Weight; 589 } 590 } 591 592 // The leaves, repeated according to their weights, represent the linearized 593 // form of the expression. 594 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) { 595 Value *V = LeafOrder[i]; 596 LeafMap::iterator It = Leaves.find(V); 597 if (It == Leaves.end()) 598 // Node initially thought to be a leaf wasn't. 599 continue; 600 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!"); 601 APInt Weight = It->second; 602 if (Weight.isMinValue()) 603 // Leaf already output or weight reduction eliminated it. 604 continue; 605 // Ensure the leaf is only output once. 606 It->second = 0; 607 Ops.push_back(std::make_pair(V, Weight)); 608 } 609 610 // For nilpotent operations or addition there may be no operands, for example 611 // because the expression was "X xor X" or consisted of 2^Bitwidth additions: 612 // in both cases the weight reduces to 0 causing the value to be skipped. 613 if (Ops.empty()) { 614 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType()); 615 assert(Identity && "Associative operation without identity!"); 616 Ops.emplace_back(Identity, APInt(Bitwidth, 1)); 617 } 618 619 return Changed; 620 } 621 622 /// Now that the operands for this expression tree are 623 /// linearized and optimized, emit them in-order. 624 void ReassociatePass::RewriteExprTree(BinaryOperator *I, 625 SmallVectorImpl<ValueEntry> &Ops) { 626 assert(Ops.size() > 1 && "Single values should be used directly!"); 627 628 // Since our optimizations should never increase the number of operations, the 629 // new expression can usually be written reusing the existing binary operators 630 // from the original expression tree, without creating any new instructions, 631 // though the rewritten expression may have a completely different topology. 632 // We take care to not change anything if the new expression will be the same 633 // as the original. If more than trivial changes (like commuting operands) 634 // were made then we are obliged to clear out any optional subclass data like 635 // nsw flags. 636 637 /// NodesToRewrite - Nodes from the original expression available for writing 638 /// the new expression into. 639 SmallVector<BinaryOperator*, 8> NodesToRewrite; 640 unsigned Opcode = I->getOpcode(); 641 BinaryOperator *Op = I; 642 643 /// NotRewritable - The operands being written will be the leaves of the new 644 /// expression and must not be used as inner nodes (via NodesToRewrite) by 645 /// mistake. Inner nodes are always reassociable, and usually leaves are not 646 /// (if they were they would have been incorporated into the expression and so 647 /// would not be leaves), so most of the time there is no danger of this. But 648 /// in rare cases a leaf may become reassociable if an optimization kills uses 649 /// of it, or it may momentarily become reassociable during rewriting (below) 650 /// due it being removed as an operand of one of its uses. Ensure that misuse 651 /// of leaf nodes as inner nodes cannot occur by remembering all of the future 652 /// leaves and refusing to reuse any of them as inner nodes. 653 SmallPtrSet<Value*, 8> NotRewritable; 654 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 655 NotRewritable.insert(Ops[i].Op); 656 657 // ExpressionChanged - Non-null if the rewritten expression differs from the 658 // original in some non-trivial way, requiring the clearing of optional flags. 659 // Flags are cleared from the operator in ExpressionChanged up to I inclusive. 660 BinaryOperator *ExpressionChanged = nullptr; 661 for (unsigned i = 0; ; ++i) { 662 // The last operation (which comes earliest in the IR) is special as both 663 // operands will come from Ops, rather than just one with the other being 664 // a subexpression. 665 if (i+2 == Ops.size()) { 666 Value *NewLHS = Ops[i].Op; 667 Value *NewRHS = Ops[i+1].Op; 668 Value *OldLHS = Op->getOperand(0); 669 Value *OldRHS = Op->getOperand(1); 670 671 if (NewLHS == OldLHS && NewRHS == OldRHS) 672 // Nothing changed, leave it alone. 673 break; 674 675 if (NewLHS == OldRHS && NewRHS == OldLHS) { 676 // The order of the operands was reversed. Swap them. 677 DEBUG(dbgs() << "RA: " << *Op << '\n'); 678 Op->swapOperands(); 679 DEBUG(dbgs() << "TO: " << *Op << '\n'); 680 MadeChange = true; 681 ++NumChanged; 682 break; 683 } 684 685 // The new operation differs non-trivially from the original. Overwrite 686 // the old operands with the new ones. 687 DEBUG(dbgs() << "RA: " << *Op << '\n'); 688 if (NewLHS != OldLHS) { 689 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode); 690 if (BO && !NotRewritable.count(BO)) 691 NodesToRewrite.push_back(BO); 692 Op->setOperand(0, NewLHS); 693 } 694 if (NewRHS != OldRHS) { 695 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode); 696 if (BO && !NotRewritable.count(BO)) 697 NodesToRewrite.push_back(BO); 698 Op->setOperand(1, NewRHS); 699 } 700 DEBUG(dbgs() << "TO: " << *Op << '\n'); 701 702 ExpressionChanged = Op; 703 MadeChange = true; 704 ++NumChanged; 705 706 break; 707 } 708 709 // Not the last operation. The left-hand side will be a sub-expression 710 // while the right-hand side will be the current element of Ops. 711 Value *NewRHS = Ops[i].Op; 712 if (NewRHS != Op->getOperand(1)) { 713 DEBUG(dbgs() << "RA: " << *Op << '\n'); 714 if (NewRHS == Op->getOperand(0)) { 715 // The new right-hand side was already present as the left operand. If 716 // we are lucky then swapping the operands will sort out both of them. 717 Op->swapOperands(); 718 } else { 719 // Overwrite with the new right-hand side. 720 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode); 721 if (BO && !NotRewritable.count(BO)) 722 NodesToRewrite.push_back(BO); 723 Op->setOperand(1, NewRHS); 724 ExpressionChanged = Op; 725 } 726 DEBUG(dbgs() << "TO: " << *Op << '\n'); 727 MadeChange = true; 728 ++NumChanged; 729 } 730 731 // Now deal with the left-hand side. If this is already an operation node 732 // from the original expression then just rewrite the rest of the expression 733 // into it. 734 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode); 735 if (BO && !NotRewritable.count(BO)) { 736 Op = BO; 737 continue; 738 } 739 740 // Otherwise, grab a spare node from the original expression and use that as 741 // the left-hand side. If there are no nodes left then the optimizers made 742 // an expression with more nodes than the original! This usually means that 743 // they did something stupid but it might mean that the problem was just too 744 // hard (finding the mimimal number of multiplications needed to realize a 745 // multiplication expression is NP-complete). Whatever the reason, smart or 746 // stupid, create a new node if there are none left. 747 BinaryOperator *NewOp; 748 if (NodesToRewrite.empty()) { 749 Constant *Undef = UndefValue::get(I->getType()); 750 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode), 751 Undef, Undef, "", I); 752 if (NewOp->getType()->isFPOrFPVectorTy()) 753 NewOp->setFastMathFlags(I->getFastMathFlags()); 754 } else { 755 NewOp = NodesToRewrite.pop_back_val(); 756 } 757 758 DEBUG(dbgs() << "RA: " << *Op << '\n'); 759 Op->setOperand(0, NewOp); 760 DEBUG(dbgs() << "TO: " << *Op << '\n'); 761 ExpressionChanged = Op; 762 MadeChange = true; 763 ++NumChanged; 764 Op = NewOp; 765 } 766 767 // If the expression changed non-trivially then clear out all subclass data 768 // starting from the operator specified in ExpressionChanged, and compactify 769 // the operators to just before the expression root to guarantee that the 770 // expression tree is dominated by all of Ops. 771 if (ExpressionChanged) 772 do { 773 // Preserve FastMathFlags. 774 if (isa<FPMathOperator>(I)) { 775 FastMathFlags Flags = I->getFastMathFlags(); 776 ExpressionChanged->clearSubclassOptionalData(); 777 ExpressionChanged->setFastMathFlags(Flags); 778 } else 779 ExpressionChanged->clearSubclassOptionalData(); 780 781 if (ExpressionChanged == I) 782 break; 783 ExpressionChanged->moveBefore(I); 784 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin()); 785 } while (true); 786 787 // Throw away any left over nodes from the original expression. 788 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i) 789 RedoInsts.insert(NodesToRewrite[i]); 790 } 791 792 /// Insert instructions before the instruction pointed to by BI, 793 /// that computes the negative version of the value specified. The negative 794 /// version of the value is returned, and BI is left pointing at the instruction 795 /// that should be processed next by the reassociation pass. 796 /// Also add intermediate instructions to the redo list that are modified while 797 /// pushing the negates through adds. These will be revisited to see if 798 /// additional opportunities have been exposed. 799 static Value *NegateValue(Value *V, Instruction *BI, 800 SetVector<AssertingVH<Instruction>> &ToRedo) { 801 if (Constant *C = dyn_cast<Constant>(V)) { 802 if (C->getType()->isFPOrFPVectorTy()) { 803 return ConstantExpr::getFNeg(C); 804 } 805 return ConstantExpr::getNeg(C); 806 } 807 808 // We are trying to expose opportunity for reassociation. One of the things 809 // that we want to do to achieve this is to push a negation as deep into an 810 // expression chain as possible, to expose the add instructions. In practice, 811 // this means that we turn this: 812 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D 813 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate 814 // the constants. We assume that instcombine will clean up the mess later if 815 // we introduce tons of unnecessary negation instructions. 816 // 817 if (BinaryOperator *I = 818 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) { 819 // Push the negates through the add. 820 I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo)); 821 I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo)); 822 if (I->getOpcode() == Instruction::Add) { 823 I->setHasNoUnsignedWrap(false); 824 I->setHasNoSignedWrap(false); 825 } 826 827 // We must move the add instruction here, because the neg instructions do 828 // not dominate the old add instruction in general. By moving it, we are 829 // assured that the neg instructions we just inserted dominate the 830 // instruction we are about to insert after them. 831 // 832 I->moveBefore(BI); 833 I->setName(I->getName()+".neg"); 834 835 // Add the intermediate negates to the redo list as processing them later 836 // could expose more reassociating opportunities. 837 ToRedo.insert(I); 838 return I; 839 } 840 841 // Okay, we need to materialize a negated version of V with an instruction. 842 // Scan the use lists of V to see if we have one already. 843 for (User *U : V->users()) { 844 if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U)) 845 continue; 846 847 // We found one! Now we have to make sure that the definition dominates 848 // this use. We do this by moving it to the entry block (if it is a 849 // non-instruction value) or right after the definition. These negates will 850 // be zapped by reassociate later, so we don't need much finesse here. 851 BinaryOperator *TheNeg = cast<BinaryOperator>(U); 852 853 // Verify that the negate is in this function, V might be a constant expr. 854 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent()) 855 continue; 856 857 BasicBlock::iterator InsertPt; 858 if (Instruction *InstInput = dyn_cast<Instruction>(V)) { 859 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) { 860 InsertPt = II->getNormalDest()->begin(); 861 } else { 862 InsertPt = ++InstInput->getIterator(); 863 } 864 while (isa<PHINode>(InsertPt)) ++InsertPt; 865 } else { 866 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin(); 867 } 868 TheNeg->moveBefore(&*InsertPt); 869 if (TheNeg->getOpcode() == Instruction::Sub) { 870 TheNeg->setHasNoUnsignedWrap(false); 871 TheNeg->setHasNoSignedWrap(false); 872 } else { 873 TheNeg->andIRFlags(BI); 874 } 875 ToRedo.insert(TheNeg); 876 return TheNeg; 877 } 878 879 // Insert a 'neg' instruction that subtracts the value from zero to get the 880 // negation. 881 BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI); 882 ToRedo.insert(NewNeg); 883 return NewNeg; 884 } 885 886 /// Return true if we should break up this subtract of X-Y into (X + -Y). 887 static bool ShouldBreakUpSubtract(Instruction *Sub) { 888 // If this is a negation, we can't split it up! 889 if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub)) 890 return false; 891 892 // Don't breakup X - undef. 893 if (isa<UndefValue>(Sub->getOperand(1))) 894 return false; 895 896 // Don't bother to break this up unless either the LHS is an associable add or 897 // subtract or if this is only used by one. 898 Value *V0 = Sub->getOperand(0); 899 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) || 900 isReassociableOp(V0, Instruction::Sub, Instruction::FSub)) 901 return true; 902 Value *V1 = Sub->getOperand(1); 903 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) || 904 isReassociableOp(V1, Instruction::Sub, Instruction::FSub)) 905 return true; 906 Value *VB = Sub->user_back(); 907 if (Sub->hasOneUse() && 908 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) || 909 isReassociableOp(VB, Instruction::Sub, Instruction::FSub))) 910 return true; 911 912 return false; 913 } 914 915 /// If we have (X-Y), and if either X is an add, or if this is only used by an 916 /// add, transform this into (X+(0-Y)) to promote better reassociation. 917 static BinaryOperator * 918 BreakUpSubtract(Instruction *Sub, SetVector<AssertingVH<Instruction>> &ToRedo) { 919 // Convert a subtract into an add and a neg instruction. This allows sub 920 // instructions to be commuted with other add instructions. 921 // 922 // Calculate the negative value of Operand 1 of the sub instruction, 923 // and set it as the RHS of the add instruction we just made. 924 Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo); 925 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub); 926 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op. 927 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op. 928 New->takeName(Sub); 929 930 // Everyone now refers to the add instruction. 931 Sub->replaceAllUsesWith(New); 932 New->setDebugLoc(Sub->getDebugLoc()); 933 934 DEBUG(dbgs() << "Negated: " << *New << '\n'); 935 return New; 936 } 937 938 /// If this is a shift of a reassociable multiply or is used by one, change 939 /// this into a multiply by a constant to assist with further reassociation. 940 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) { 941 Constant *MulCst = ConstantInt::get(Shl->getType(), 1); 942 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1))); 943 944 BinaryOperator *Mul = 945 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl); 946 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op. 947 Mul->takeName(Shl); 948 949 // Everyone now refers to the mul instruction. 950 Shl->replaceAllUsesWith(Mul); 951 Mul->setDebugLoc(Shl->getDebugLoc()); 952 953 // We can safely preserve the nuw flag in all cases. It's also safe to turn a 954 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special 955 // handling. 956 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap(); 957 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap(); 958 if (NSW && NUW) 959 Mul->setHasNoSignedWrap(true); 960 Mul->setHasNoUnsignedWrap(NUW); 961 return Mul; 962 } 963 964 /// Scan backwards and forwards among values with the same rank as element i 965 /// to see if X exists. If X does not exist, return i. This is useful when 966 /// scanning for 'x' when we see '-x' because they both get the same rank. 967 static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops, 968 unsigned i, Value *X) { 969 unsigned XRank = Ops[i].Rank; 970 unsigned e = Ops.size(); 971 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) { 972 if (Ops[j].Op == X) 973 return j; 974 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 975 if (Instruction *I2 = dyn_cast<Instruction>(X)) 976 if (I1->isIdenticalTo(I2)) 977 return j; 978 } 979 // Scan backwards. 980 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) { 981 if (Ops[j].Op == X) 982 return j; 983 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 984 if (Instruction *I2 = dyn_cast<Instruction>(X)) 985 if (I1->isIdenticalTo(I2)) 986 return j; 987 } 988 return i; 989 } 990 991 /// Emit a tree of add instructions, summing Ops together 992 /// and returning the result. Insert the tree before I. 993 static Value *EmitAddTreeOfValues(Instruction *I, 994 SmallVectorImpl<WeakTrackingVH> &Ops) { 995 if (Ops.size() == 1) return Ops.back(); 996 997 Value *V1 = Ops.back(); 998 Ops.pop_back(); 999 Value *V2 = EmitAddTreeOfValues(I, Ops); 1000 return CreateAdd(V2, V1, "reass.add", I, I); 1001 } 1002 1003 /// If V is an expression tree that is a multiplication sequence, 1004 /// and if this sequence contains a multiply by Factor, 1005 /// remove Factor from the tree and return the new tree. 1006 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) { 1007 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1008 if (!BO) 1009 return nullptr; 1010 1011 SmallVector<RepeatedValue, 8> Tree; 1012 MadeChange |= LinearizeExprTree(BO, Tree); 1013 SmallVector<ValueEntry, 8> Factors; 1014 Factors.reserve(Tree.size()); 1015 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 1016 RepeatedValue E = Tree[i]; 1017 Factors.append(E.second.getZExtValue(), 1018 ValueEntry(getRank(E.first), E.first)); 1019 } 1020 1021 bool FoundFactor = false; 1022 bool NeedsNegate = false; 1023 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1024 if (Factors[i].Op == Factor) { 1025 FoundFactor = true; 1026 Factors.erase(Factors.begin()+i); 1027 break; 1028 } 1029 1030 // If this is a negative version of this factor, remove it. 1031 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) { 1032 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op)) 1033 if (FC1->getValue() == -FC2->getValue()) { 1034 FoundFactor = NeedsNegate = true; 1035 Factors.erase(Factors.begin()+i); 1036 break; 1037 } 1038 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) { 1039 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) { 1040 const APFloat &F1 = FC1->getValueAPF(); 1041 APFloat F2(FC2->getValueAPF()); 1042 F2.changeSign(); 1043 if (F1.compare(F2) == APFloat::cmpEqual) { 1044 FoundFactor = NeedsNegate = true; 1045 Factors.erase(Factors.begin() + i); 1046 break; 1047 } 1048 } 1049 } 1050 } 1051 1052 if (!FoundFactor) { 1053 // Make sure to restore the operands to the expression tree. 1054 RewriteExprTree(BO, Factors); 1055 return nullptr; 1056 } 1057 1058 BasicBlock::iterator InsertPt = ++BO->getIterator(); 1059 1060 // If this was just a single multiply, remove the multiply and return the only 1061 // remaining operand. 1062 if (Factors.size() == 1) { 1063 RedoInsts.insert(BO); 1064 V = Factors[0].Op; 1065 } else { 1066 RewriteExprTree(BO, Factors); 1067 V = BO; 1068 } 1069 1070 if (NeedsNegate) 1071 V = CreateNeg(V, "neg", &*InsertPt, BO); 1072 1073 return V; 1074 } 1075 1076 /// If V is a single-use multiply, recursively add its operands as factors, 1077 /// otherwise add V to the list of factors. 1078 /// 1079 /// Ops is the top-level list of add operands we're trying to factor. 1080 static void FindSingleUseMultiplyFactors(Value *V, 1081 SmallVectorImpl<Value*> &Factors) { 1082 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1083 if (!BO) { 1084 Factors.push_back(V); 1085 return; 1086 } 1087 1088 // Otherwise, add the LHS and RHS to the list of factors. 1089 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors); 1090 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors); 1091 } 1092 1093 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction. 1094 /// This optimizes based on identities. If it can be reduced to a single Value, 1095 /// it is returned, otherwise the Ops list is mutated as necessary. 1096 static Value *OptimizeAndOrXor(unsigned Opcode, 1097 SmallVectorImpl<ValueEntry> &Ops) { 1098 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs. 1099 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1. 1100 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1101 // First, check for X and ~X in the operand list. 1102 assert(i < Ops.size()); 1103 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^. 1104 Value *X = BinaryOperator::getNotArgument(Ops[i].Op); 1105 unsigned FoundX = FindInOperandList(Ops, i, X); 1106 if (FoundX != i) { 1107 if (Opcode == Instruction::And) // ...&X&~X = 0 1108 return Constant::getNullValue(X->getType()); 1109 1110 if (Opcode == Instruction::Or) // ...|X|~X = -1 1111 return Constant::getAllOnesValue(X->getType()); 1112 } 1113 } 1114 1115 // Next, check for duplicate pairs of values, which we assume are next to 1116 // each other, due to our sorting criteria. 1117 assert(i < Ops.size()); 1118 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) { 1119 if (Opcode == Instruction::And || Opcode == Instruction::Or) { 1120 // Drop duplicate values for And and Or. 1121 Ops.erase(Ops.begin()+i); 1122 --i; --e; 1123 ++NumAnnihil; 1124 continue; 1125 } 1126 1127 // Drop pairs of values for Xor. 1128 assert(Opcode == Instruction::Xor); 1129 if (e == 2) 1130 return Constant::getNullValue(Ops[0].Op->getType()); 1131 1132 // Y ^ X^X -> Y 1133 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1134 i -= 1; e -= 2; 1135 ++NumAnnihil; 1136 } 1137 } 1138 return nullptr; 1139 } 1140 1141 /// Helper function of CombineXorOpnd(). It creates a bitwise-and 1142 /// instruction with the given two operands, and return the resulting 1143 /// instruction. There are two special cases: 1) if the constant operand is 0, 1144 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will 1145 /// be returned. 1146 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd, 1147 const APInt &ConstOpnd) { 1148 if (ConstOpnd.isNullValue()) 1149 return nullptr; 1150 1151 if (ConstOpnd.isAllOnesValue()) 1152 return Opnd; 1153 1154 Instruction *I = BinaryOperator::CreateAnd( 1155 Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra", 1156 InsertBefore); 1157 I->setDebugLoc(InsertBefore->getDebugLoc()); 1158 return I; 1159 } 1160 1161 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd" 1162 // into "R ^ C", where C would be 0, and R is a symbolic value. 1163 // 1164 // If it was successful, true is returned, and the "R" and "C" is returned 1165 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned, 1166 // and both "Res" and "ConstOpnd" remain unchanged. 1167 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1168 APInt &ConstOpnd, Value *&Res) { 1169 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2 1170 // = ((x | c1) ^ c1) ^ (c1 ^ c2) 1171 // = (x & ~c1) ^ (c1 ^ c2) 1172 // It is useful only when c1 == c2. 1173 if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isNullValue()) 1174 return false; 1175 1176 if (!Opnd1->getValue()->hasOneUse()) 1177 return false; 1178 1179 const APInt &C1 = Opnd1->getConstPart(); 1180 if (C1 != ConstOpnd) 1181 return false; 1182 1183 Value *X = Opnd1->getSymbolicPart(); 1184 Res = createAndInstr(I, X, ~C1); 1185 // ConstOpnd was C2, now C1 ^ C2. 1186 ConstOpnd ^= C1; 1187 1188 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1189 RedoInsts.insert(T); 1190 return true; 1191 } 1192 1193 // Helper function of OptimizeXor(). It tries to simplify 1194 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a 1195 // symbolic value. 1196 // 1197 // If it was successful, true is returned, and the "R" and "C" is returned 1198 // via "Res" and "ConstOpnd", respectively (If the entire expression is 1199 // evaluated to a constant, the Res is set to NULL); otherwise, false is 1200 // returned, and both "Res" and "ConstOpnd" remain unchanged. 1201 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1202 XorOpnd *Opnd2, APInt &ConstOpnd, 1203 Value *&Res) { 1204 Value *X = Opnd1->getSymbolicPart(); 1205 if (X != Opnd2->getSymbolicPart()) 1206 return false; 1207 1208 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.) 1209 int DeadInstNum = 1; 1210 if (Opnd1->getValue()->hasOneUse()) 1211 DeadInstNum++; 1212 if (Opnd2->getValue()->hasOneUse()) 1213 DeadInstNum++; 1214 1215 // Xor-Rule 2: 1216 // (x | c1) ^ (x & c2) 1217 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1 1218 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1 1219 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3 1220 // 1221 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) { 1222 if (Opnd2->isOrExpr()) 1223 std::swap(Opnd1, Opnd2); 1224 1225 const APInt &C1 = Opnd1->getConstPart(); 1226 const APInt &C2 = Opnd2->getConstPart(); 1227 APInt C3((~C1) ^ C2); 1228 1229 // Do not increase code size! 1230 if (!C3.isNullValue() && !C3.isAllOnesValue()) { 1231 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2; 1232 if (NewInstNum > DeadInstNum) 1233 return false; 1234 } 1235 1236 Res = createAndInstr(I, X, C3); 1237 ConstOpnd ^= C1; 1238 } else if (Opnd1->isOrExpr()) { 1239 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2 1240 // 1241 const APInt &C1 = Opnd1->getConstPart(); 1242 const APInt &C2 = Opnd2->getConstPart(); 1243 APInt C3 = C1 ^ C2; 1244 1245 // Do not increase code size 1246 if (!C3.isNullValue() && !C3.isAllOnesValue()) { 1247 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2; 1248 if (NewInstNum > DeadInstNum) 1249 return false; 1250 } 1251 1252 Res = createAndInstr(I, X, C3); 1253 ConstOpnd ^= C3; 1254 } else { 1255 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2)) 1256 // 1257 const APInt &C1 = Opnd1->getConstPart(); 1258 const APInt &C2 = Opnd2->getConstPart(); 1259 APInt C3 = C1 ^ C2; 1260 Res = createAndInstr(I, X, C3); 1261 } 1262 1263 // Put the original operands in the Redo list; hope they will be deleted 1264 // as dead code. 1265 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1266 RedoInsts.insert(T); 1267 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue())) 1268 RedoInsts.insert(T); 1269 1270 return true; 1271 } 1272 1273 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced 1274 /// to a single Value, it is returned, otherwise the Ops list is mutated as 1275 /// necessary. 1276 Value *ReassociatePass::OptimizeXor(Instruction *I, 1277 SmallVectorImpl<ValueEntry> &Ops) { 1278 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops)) 1279 return V; 1280 1281 if (Ops.size() == 1) 1282 return nullptr; 1283 1284 SmallVector<XorOpnd, 8> Opnds; 1285 SmallVector<XorOpnd*, 8> OpndPtrs; 1286 Type *Ty = Ops[0].Op->getType(); 1287 APInt ConstOpnd(Ty->getScalarSizeInBits(), 0); 1288 1289 // Step 1: Convert ValueEntry to XorOpnd 1290 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1291 Value *V = Ops[i].Op; 1292 const APInt *C; 1293 // TODO: Support non-splat vectors. 1294 if (match(V, PatternMatch::m_APInt(C))) { 1295 ConstOpnd ^= *C; 1296 } else { 1297 XorOpnd O(V); 1298 O.setSymbolicRank(getRank(O.getSymbolicPart())); 1299 Opnds.push_back(O); 1300 } 1301 } 1302 1303 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds". 1304 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate 1305 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop 1306 // with the previous loop --- the iterator of the "Opnds" may be invalidated 1307 // when new elements are added to the vector. 1308 for (unsigned i = 0, e = Opnds.size(); i != e; ++i) 1309 OpndPtrs.push_back(&Opnds[i]); 1310 1311 // Step 2: Sort the Xor-Operands in a way such that the operands containing 1312 // the same symbolic value cluster together. For instance, the input operand 1313 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into: 1314 // ("x | 123", "x & 789", "y & 456"). 1315 // 1316 // The purpose is twofold: 1317 // 1) Cluster together the operands sharing the same symbolic-value. 1318 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which 1319 // could potentially shorten crital path, and expose more loop-invariants. 1320 // Note that values' rank are basically defined in RPO order (FIXME). 1321 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier 1322 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2", 1323 // "z" in the order of X-Y-Z is better than any other orders. 1324 std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), 1325 [](XorOpnd *LHS, XorOpnd *RHS) { 1326 return LHS->getSymbolicRank() < RHS->getSymbolicRank(); 1327 }); 1328 1329 // Step 3: Combine adjacent operands 1330 XorOpnd *PrevOpnd = nullptr; 1331 bool Changed = false; 1332 for (unsigned i = 0, e = Opnds.size(); i < e; i++) { 1333 XorOpnd *CurrOpnd = OpndPtrs[i]; 1334 // The combined value 1335 Value *CV; 1336 1337 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd" 1338 if (!ConstOpnd.isNullValue() && 1339 CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) { 1340 Changed = true; 1341 if (CV) 1342 *CurrOpnd = XorOpnd(CV); 1343 else { 1344 CurrOpnd->Invalidate(); 1345 continue; 1346 } 1347 } 1348 1349 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) { 1350 PrevOpnd = CurrOpnd; 1351 continue; 1352 } 1353 1354 // step 3.2: When previous and current operands share the same symbolic 1355 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd" 1356 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) { 1357 // Remove previous operand 1358 PrevOpnd->Invalidate(); 1359 if (CV) { 1360 *CurrOpnd = XorOpnd(CV); 1361 PrevOpnd = CurrOpnd; 1362 } else { 1363 CurrOpnd->Invalidate(); 1364 PrevOpnd = nullptr; 1365 } 1366 Changed = true; 1367 } 1368 } 1369 1370 // Step 4: Reassemble the Ops 1371 if (Changed) { 1372 Ops.clear(); 1373 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) { 1374 XorOpnd &O = Opnds[i]; 1375 if (O.isInvalid()) 1376 continue; 1377 ValueEntry VE(getRank(O.getValue()), O.getValue()); 1378 Ops.push_back(VE); 1379 } 1380 if (!ConstOpnd.isNullValue()) { 1381 Value *C = ConstantInt::get(Ty, ConstOpnd); 1382 ValueEntry VE(getRank(C), C); 1383 Ops.push_back(VE); 1384 } 1385 unsigned Sz = Ops.size(); 1386 if (Sz == 1) 1387 return Ops.back().Op; 1388 if (Sz == 0) { 1389 assert(ConstOpnd.isNullValue()); 1390 return ConstantInt::get(Ty, ConstOpnd); 1391 } 1392 } 1393 1394 return nullptr; 1395 } 1396 1397 /// Optimize a series of operands to an 'add' instruction. This 1398 /// optimizes based on identities. If it can be reduced to a single Value, it 1399 /// is returned, otherwise the Ops list is mutated as necessary. 1400 Value *ReassociatePass::OptimizeAdd(Instruction *I, 1401 SmallVectorImpl<ValueEntry> &Ops) { 1402 // Scan the operand lists looking for X and -X pairs. If we find any, we 1403 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it, 1404 // scan for any 1405 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z. 1406 1407 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1408 Value *TheOp = Ops[i].Op; 1409 // Check to see if we've seen this operand before. If so, we factor all 1410 // instances of the operand together. Due to our sorting criteria, we know 1411 // that these need to be next to each other in the vector. 1412 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) { 1413 // Rescan the list, remove all instances of this operand from the expr. 1414 unsigned NumFound = 0; 1415 do { 1416 Ops.erase(Ops.begin()+i); 1417 ++NumFound; 1418 } while (i != Ops.size() && Ops[i].Op == TheOp); 1419 1420 DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n'); 1421 ++NumFactor; 1422 1423 // Insert a new multiply. 1424 Type *Ty = TheOp->getType(); 1425 Constant *C = Ty->isIntOrIntVectorTy() ? 1426 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound); 1427 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I); 1428 1429 // Now that we have inserted a multiply, optimize it. This allows us to 1430 // handle cases that require multiple factoring steps, such as this: 1431 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6 1432 RedoInsts.insert(Mul); 1433 1434 // If every add operand was a duplicate, return the multiply. 1435 if (Ops.empty()) 1436 return Mul; 1437 1438 // Otherwise, we had some input that didn't have the dupe, such as 1439 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of 1440 // things being added by this operation. 1441 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul)); 1442 1443 --i; 1444 e = Ops.size(); 1445 continue; 1446 } 1447 1448 // Check for X and -X or X and ~X in the operand list. 1449 if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) && 1450 !BinaryOperator::isNot(TheOp)) 1451 continue; 1452 1453 Value *X = nullptr; 1454 if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)) 1455 X = BinaryOperator::getNegArgument(TheOp); 1456 else if (BinaryOperator::isNot(TheOp)) 1457 X = BinaryOperator::getNotArgument(TheOp); 1458 1459 unsigned FoundX = FindInOperandList(Ops, i, X); 1460 if (FoundX == i) 1461 continue; 1462 1463 // Remove X and -X from the operand list. 1464 if (Ops.size() == 2 && 1465 (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))) 1466 return Constant::getNullValue(X->getType()); 1467 1468 // Remove X and ~X from the operand list. 1469 if (Ops.size() == 2 && BinaryOperator::isNot(TheOp)) 1470 return Constant::getAllOnesValue(X->getType()); 1471 1472 Ops.erase(Ops.begin()+i); 1473 if (i < FoundX) 1474 --FoundX; 1475 else 1476 --i; // Need to back up an extra one. 1477 Ops.erase(Ops.begin()+FoundX); 1478 ++NumAnnihil; 1479 --i; // Revisit element. 1480 e -= 2; // Removed two elements. 1481 1482 // if X and ~X we append -1 to the operand list. 1483 if (BinaryOperator::isNot(TheOp)) { 1484 Value *V = Constant::getAllOnesValue(X->getType()); 1485 Ops.insert(Ops.end(), ValueEntry(getRank(V), V)); 1486 e += 1; 1487 } 1488 } 1489 1490 // Scan the operand list, checking to see if there are any common factors 1491 // between operands. Consider something like A*A+A*B*C+D. We would like to 1492 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies. 1493 // To efficiently find this, we count the number of times a factor occurs 1494 // for any ADD operands that are MULs. 1495 DenseMap<Value*, unsigned> FactorOccurrences; 1496 1497 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4) 1498 // where they are actually the same multiply. 1499 unsigned MaxOcc = 0; 1500 Value *MaxOccVal = nullptr; 1501 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1502 BinaryOperator *BOp = 1503 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1504 if (!BOp) 1505 continue; 1506 1507 // Compute all of the factors of this added value. 1508 SmallVector<Value*, 8> Factors; 1509 FindSingleUseMultiplyFactors(BOp, Factors); 1510 assert(Factors.size() > 1 && "Bad linearize!"); 1511 1512 // Add one to FactorOccurrences for each unique factor in this op. 1513 SmallPtrSet<Value*, 8> Duplicates; 1514 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1515 Value *Factor = Factors[i]; 1516 if (!Duplicates.insert(Factor).second) 1517 continue; 1518 1519 unsigned Occ = ++FactorOccurrences[Factor]; 1520 if (Occ > MaxOcc) { 1521 MaxOcc = Occ; 1522 MaxOccVal = Factor; 1523 } 1524 1525 // If Factor is a negative constant, add the negated value as a factor 1526 // because we can percolate the negate out. Watch for minint, which 1527 // cannot be positivified. 1528 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) { 1529 if (CI->isNegative() && !CI->isMinValue(true)) { 1530 Factor = ConstantInt::get(CI->getContext(), -CI->getValue()); 1531 if (!Duplicates.insert(Factor).second) 1532 continue; 1533 unsigned Occ = ++FactorOccurrences[Factor]; 1534 if (Occ > MaxOcc) { 1535 MaxOcc = Occ; 1536 MaxOccVal = Factor; 1537 } 1538 } 1539 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) { 1540 if (CF->isNegative()) { 1541 APFloat F(CF->getValueAPF()); 1542 F.changeSign(); 1543 Factor = ConstantFP::get(CF->getContext(), F); 1544 if (!Duplicates.insert(Factor).second) 1545 continue; 1546 unsigned Occ = ++FactorOccurrences[Factor]; 1547 if (Occ > MaxOcc) { 1548 MaxOcc = Occ; 1549 MaxOccVal = Factor; 1550 } 1551 } 1552 } 1553 } 1554 } 1555 1556 // If any factor occurred more than one time, we can pull it out. 1557 if (MaxOcc > 1) { 1558 DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n'); 1559 ++NumFactor; 1560 1561 // Create a new instruction that uses the MaxOccVal twice. If we don't do 1562 // this, we could otherwise run into situations where removing a factor 1563 // from an expression will drop a use of maxocc, and this can cause 1564 // RemoveFactorFromExpression on successive values to behave differently. 1565 Instruction *DummyInst = 1566 I->getType()->isIntOrIntVectorTy() 1567 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal) 1568 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal); 1569 1570 SmallVector<WeakTrackingVH, 4> NewMulOps; 1571 for (unsigned i = 0; i != Ops.size(); ++i) { 1572 // Only try to remove factors from expressions we're allowed to. 1573 BinaryOperator *BOp = 1574 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1575 if (!BOp) 1576 continue; 1577 1578 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) { 1579 // The factorized operand may occur several times. Convert them all in 1580 // one fell swoop. 1581 for (unsigned j = Ops.size(); j != i;) { 1582 --j; 1583 if (Ops[j].Op == Ops[i].Op) { 1584 NewMulOps.push_back(V); 1585 Ops.erase(Ops.begin()+j); 1586 } 1587 } 1588 --i; 1589 } 1590 } 1591 1592 // No need for extra uses anymore. 1593 DummyInst->deleteValue(); 1594 1595 unsigned NumAddedValues = NewMulOps.size(); 1596 Value *V = EmitAddTreeOfValues(I, NewMulOps); 1597 1598 // Now that we have inserted the add tree, optimize it. This allows us to 1599 // handle cases that require multiple factoring steps, such as this: 1600 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C)) 1601 assert(NumAddedValues > 1 && "Each occurrence should contribute a value"); 1602 (void)NumAddedValues; 1603 if (Instruction *VI = dyn_cast<Instruction>(V)) 1604 RedoInsts.insert(VI); 1605 1606 // Create the multiply. 1607 Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I); 1608 1609 // Rerun associate on the multiply in case the inner expression turned into 1610 // a multiply. We want to make sure that we keep things in canonical form. 1611 RedoInsts.insert(V2); 1612 1613 // If every add operand included the factor (e.g. "A*B + A*C"), then the 1614 // entire result expression is just the multiply "A*(B+C)". 1615 if (Ops.empty()) 1616 return V2; 1617 1618 // Otherwise, we had some input that didn't have the factor, such as 1619 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of 1620 // things being added by this operation. 1621 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2)); 1622 } 1623 1624 return nullptr; 1625 } 1626 1627 /// \brief Build up a vector of value/power pairs factoring a product. 1628 /// 1629 /// Given a series of multiplication operands, build a vector of factors and 1630 /// the powers each is raised to when forming the final product. Sort them in 1631 /// the order of descending power. 1632 /// 1633 /// (x*x) -> [(x, 2)] 1634 /// ((x*x)*x) -> [(x, 3)] 1635 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)] 1636 /// 1637 /// \returns Whether any factors have a power greater than one. 1638 static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, 1639 SmallVectorImpl<Factor> &Factors) { 1640 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this. 1641 // Compute the sum of powers of simplifiable factors. 1642 unsigned FactorPowerSum = 0; 1643 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) { 1644 Value *Op = Ops[Idx-1].Op; 1645 1646 // Count the number of occurrences of this value. 1647 unsigned Count = 1; 1648 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx) 1649 ++Count; 1650 // Track for simplification all factors which occur 2 or more times. 1651 if (Count > 1) 1652 FactorPowerSum += Count; 1653 } 1654 1655 // We can only simplify factors if the sum of the powers of our simplifiable 1656 // factors is 4 or higher. When that is the case, we will *always* have 1657 // a simplification. This is an important invariant to prevent cyclicly 1658 // trying to simplify already minimal formations. 1659 if (FactorPowerSum < 4) 1660 return false; 1661 1662 // Now gather the simplifiable factors, removing them from Ops. 1663 FactorPowerSum = 0; 1664 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) { 1665 Value *Op = Ops[Idx-1].Op; 1666 1667 // Count the number of occurrences of this value. 1668 unsigned Count = 1; 1669 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx) 1670 ++Count; 1671 if (Count == 1) 1672 continue; 1673 // Move an even number of occurrences to Factors. 1674 Count &= ~1U; 1675 Idx -= Count; 1676 FactorPowerSum += Count; 1677 Factors.push_back(Factor(Op, Count)); 1678 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count); 1679 } 1680 1681 // None of the adjustments above should have reduced the sum of factor powers 1682 // below our mininum of '4'. 1683 assert(FactorPowerSum >= 4); 1684 1685 std::stable_sort(Factors.begin(), Factors.end(), 1686 [](const Factor &LHS, const Factor &RHS) { 1687 return LHS.Power > RHS.Power; 1688 }); 1689 return true; 1690 } 1691 1692 /// \brief Build a tree of multiplies, computing the product of Ops. 1693 static Value *buildMultiplyTree(IRBuilder<> &Builder, 1694 SmallVectorImpl<Value*> &Ops) { 1695 if (Ops.size() == 1) 1696 return Ops.back(); 1697 1698 Value *LHS = Ops.pop_back_val(); 1699 do { 1700 if (LHS->getType()->isIntOrIntVectorTy()) 1701 LHS = Builder.CreateMul(LHS, Ops.pop_back_val()); 1702 else 1703 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val()); 1704 } while (!Ops.empty()); 1705 1706 return LHS; 1707 } 1708 1709 /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*... 1710 /// 1711 /// Given a vector of values raised to various powers, where no two values are 1712 /// equal and the powers are sorted in decreasing order, compute the minimal 1713 /// DAG of multiplies to compute the final product, and return that product 1714 /// value. 1715 Value * 1716 ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder, 1717 SmallVectorImpl<Factor> &Factors) { 1718 assert(Factors[0].Power); 1719 SmallVector<Value *, 4> OuterProduct; 1720 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size(); 1721 Idx < Size && Factors[Idx].Power > 0; ++Idx) { 1722 if (Factors[Idx].Power != Factors[LastIdx].Power) { 1723 LastIdx = Idx; 1724 continue; 1725 } 1726 1727 // We want to multiply across all the factors with the same power so that 1728 // we can raise them to that power as a single entity. Build a mini tree 1729 // for that. 1730 SmallVector<Value *, 4> InnerProduct; 1731 InnerProduct.push_back(Factors[LastIdx].Base); 1732 do { 1733 InnerProduct.push_back(Factors[Idx].Base); 1734 ++Idx; 1735 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power); 1736 1737 // Reset the base value of the first factor to the new expression tree. 1738 // We'll remove all the factors with the same power in a second pass. 1739 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct); 1740 if (Instruction *MI = dyn_cast<Instruction>(M)) 1741 RedoInsts.insert(MI); 1742 1743 LastIdx = Idx; 1744 } 1745 // Unique factors with equal powers -- we've folded them into the first one's 1746 // base. 1747 Factors.erase(std::unique(Factors.begin(), Factors.end(), 1748 [](const Factor &LHS, const Factor &RHS) { 1749 return LHS.Power == RHS.Power; 1750 }), 1751 Factors.end()); 1752 1753 // Iteratively collect the base of each factor with an add power into the 1754 // outer product, and halve each power in preparation for squaring the 1755 // expression. 1756 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) { 1757 if (Factors[Idx].Power & 1) 1758 OuterProduct.push_back(Factors[Idx].Base); 1759 Factors[Idx].Power >>= 1; 1760 } 1761 if (Factors[0].Power) { 1762 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors); 1763 OuterProduct.push_back(SquareRoot); 1764 OuterProduct.push_back(SquareRoot); 1765 } 1766 if (OuterProduct.size() == 1) 1767 return OuterProduct.front(); 1768 1769 Value *V = buildMultiplyTree(Builder, OuterProduct); 1770 return V; 1771 } 1772 1773 Value *ReassociatePass::OptimizeMul(BinaryOperator *I, 1774 SmallVectorImpl<ValueEntry> &Ops) { 1775 // We can only optimize the multiplies when there is a chain of more than 1776 // three, such that a balanced tree might require fewer total multiplies. 1777 if (Ops.size() < 4) 1778 return nullptr; 1779 1780 // Try to turn linear trees of multiplies without other uses of the 1781 // intermediate stages into minimal multiply DAGs with perfect sub-expression 1782 // re-use. 1783 SmallVector<Factor, 4> Factors; 1784 if (!collectMultiplyFactors(Ops, Factors)) 1785 return nullptr; // All distinct factors, so nothing left for us to do. 1786 1787 IRBuilder<> Builder(I); 1788 // The reassociate transformation for FP operations is performed only 1789 // if unsafe algebra is permitted by FastMathFlags. Propagate those flags 1790 // to the newly generated operations. 1791 if (auto FPI = dyn_cast<FPMathOperator>(I)) 1792 Builder.setFastMathFlags(FPI->getFastMathFlags()); 1793 1794 Value *V = buildMinimalMultiplyDAG(Builder, Factors); 1795 if (Ops.empty()) 1796 return V; 1797 1798 ValueEntry NewEntry = ValueEntry(getRank(V), V); 1799 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry); 1800 return nullptr; 1801 } 1802 1803 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I, 1804 SmallVectorImpl<ValueEntry> &Ops) { 1805 // Now that we have the linearized expression tree, try to optimize it. 1806 // Start by folding any constants that we found. 1807 Constant *Cst = nullptr; 1808 unsigned Opcode = I->getOpcode(); 1809 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) { 1810 Constant *C = cast<Constant>(Ops.pop_back_val().Op); 1811 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C; 1812 } 1813 // If there was nothing but constants then we are done. 1814 if (Ops.empty()) 1815 return Cst; 1816 1817 // Put the combined constant back at the end of the operand list, except if 1818 // there is no point. For example, an add of 0 gets dropped here, while a 1819 // multiplication by zero turns the whole expression into zero. 1820 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) { 1821 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType())) 1822 return Cst; 1823 Ops.push_back(ValueEntry(0, Cst)); 1824 } 1825 1826 if (Ops.size() == 1) return Ops[0].Op; 1827 1828 // Handle destructive annihilation due to identities between elements in the 1829 // argument list here. 1830 unsigned NumOps = Ops.size(); 1831 switch (Opcode) { 1832 default: break; 1833 case Instruction::And: 1834 case Instruction::Or: 1835 if (Value *Result = OptimizeAndOrXor(Opcode, Ops)) 1836 return Result; 1837 break; 1838 1839 case Instruction::Xor: 1840 if (Value *Result = OptimizeXor(I, Ops)) 1841 return Result; 1842 break; 1843 1844 case Instruction::Add: 1845 case Instruction::FAdd: 1846 if (Value *Result = OptimizeAdd(I, Ops)) 1847 return Result; 1848 break; 1849 1850 case Instruction::Mul: 1851 case Instruction::FMul: 1852 if (Value *Result = OptimizeMul(I, Ops)) 1853 return Result; 1854 break; 1855 } 1856 1857 if (Ops.size() != NumOps) 1858 return OptimizeExpression(I, Ops); 1859 return nullptr; 1860 } 1861 1862 // Remove dead instructions and if any operands are trivially dead add them to 1863 // Insts so they will be removed as well. 1864 void ReassociatePass::RecursivelyEraseDeadInsts( 1865 Instruction *I, SetVector<AssertingVH<Instruction>> &Insts) { 1866 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1867 SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end()); 1868 ValueRankMap.erase(I); 1869 Insts.remove(I); 1870 RedoInsts.remove(I); 1871 I->eraseFromParent(); 1872 for (auto Op : Ops) 1873 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1874 if (OpInst->use_empty()) 1875 Insts.insert(OpInst); 1876 } 1877 1878 /// Zap the given instruction, adding interesting operands to the work list. 1879 void ReassociatePass::EraseInst(Instruction *I) { 1880 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1881 DEBUG(dbgs() << "Erasing dead inst: "; I->dump()); 1882 1883 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 1884 // Erase the dead instruction. 1885 ValueRankMap.erase(I); 1886 RedoInsts.remove(I); 1887 I->eraseFromParent(); 1888 // Optimize its operands. 1889 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes. 1890 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1891 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) { 1892 // If this is a node in an expression tree, climb to the expression root 1893 // and add that since that's where optimization actually happens. 1894 unsigned Opcode = Op->getOpcode(); 1895 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode && 1896 Visited.insert(Op).second) 1897 Op = Op->user_back(); 1898 RedoInsts.insert(Op); 1899 } 1900 1901 MadeChange = true; 1902 } 1903 1904 // Canonicalize expressions of the following form: 1905 // x + (-Constant * y) -> x - (Constant * y) 1906 // x - (-Constant * y) -> x + (Constant * y) 1907 Instruction *ReassociatePass::canonicalizeNegConstExpr(Instruction *I) { 1908 if (!I->hasOneUse() || I->getType()->isVectorTy()) 1909 return nullptr; 1910 1911 // Must be a fmul or fdiv instruction. 1912 unsigned Opcode = I->getOpcode(); 1913 if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv) 1914 return nullptr; 1915 1916 auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0)); 1917 auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1)); 1918 1919 // Both operands are constant, let it get constant folded away. 1920 if (C0 && C1) 1921 return nullptr; 1922 1923 ConstantFP *CF = C0 ? C0 : C1; 1924 1925 // Must have one constant operand. 1926 if (!CF) 1927 return nullptr; 1928 1929 // Must be a negative ConstantFP. 1930 if (!CF->isNegative()) 1931 return nullptr; 1932 1933 // User must be a binary operator with one or more uses. 1934 Instruction *User = I->user_back(); 1935 if (!isa<BinaryOperator>(User) || User->use_empty()) 1936 return nullptr; 1937 1938 unsigned UserOpcode = User->getOpcode(); 1939 if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub) 1940 return nullptr; 1941 1942 // Subtraction is not commutative. Explicitly, the following transform is 1943 // not valid: (-Constant * y) - x -> x + (Constant * y) 1944 if (!User->isCommutative() && User->getOperand(1) != I) 1945 return nullptr; 1946 1947 // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the 1948 // resulting subtract will be broken up later. This can get us into an 1949 // infinite loop during reassociation. 1950 if (UserOpcode == Instruction::FAdd && ShouldBreakUpSubtract(User)) 1951 return nullptr; 1952 1953 // Change the sign of the constant. 1954 APFloat Val = CF->getValueAPF(); 1955 Val.changeSign(); 1956 I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val)); 1957 1958 // Canonicalize I to RHS to simplify the next bit of logic. E.g., 1959 // ((-Const*y) + x) -> (x + (-Const*y)). 1960 if (User->getOperand(0) == I && User->isCommutative()) 1961 cast<BinaryOperator>(User)->swapOperands(); 1962 1963 Value *Op0 = User->getOperand(0); 1964 Value *Op1 = User->getOperand(1); 1965 BinaryOperator *NI; 1966 switch (UserOpcode) { 1967 default: 1968 llvm_unreachable("Unexpected Opcode!"); 1969 case Instruction::FAdd: 1970 NI = BinaryOperator::CreateFSub(Op0, Op1); 1971 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags()); 1972 break; 1973 case Instruction::FSub: 1974 NI = BinaryOperator::CreateFAdd(Op0, Op1); 1975 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags()); 1976 break; 1977 } 1978 1979 NI->insertBefore(User); 1980 NI->setName(User->getName()); 1981 User->replaceAllUsesWith(NI); 1982 NI->setDebugLoc(I->getDebugLoc()); 1983 RedoInsts.insert(I); 1984 MadeChange = true; 1985 return NI; 1986 } 1987 1988 /// Inspect and optimize the given instruction. Note that erasing 1989 /// instructions is not allowed. 1990 void ReassociatePass::OptimizeInst(Instruction *I) { 1991 // Only consider operations that we understand. 1992 if (!isa<BinaryOperator>(I)) 1993 return; 1994 1995 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1))) 1996 // If an operand of this shift is a reassociable multiply, or if the shift 1997 // is used by a reassociable multiply or add, turn into a multiply. 1998 if (isReassociableOp(I->getOperand(0), Instruction::Mul) || 1999 (I->hasOneUse() && 2000 (isReassociableOp(I->user_back(), Instruction::Mul) || 2001 isReassociableOp(I->user_back(), Instruction::Add)))) { 2002 Instruction *NI = ConvertShiftToMul(I); 2003 RedoInsts.insert(I); 2004 MadeChange = true; 2005 I = NI; 2006 } 2007 2008 // Canonicalize negative constants out of expressions. 2009 if (Instruction *Res = canonicalizeNegConstExpr(I)) 2010 I = Res; 2011 2012 // Commute binary operators, to canonicalize the order of their operands. 2013 // This can potentially expose more CSE opportunities, and makes writing other 2014 // transformations simpler. 2015 if (I->isCommutative()) 2016 canonicalizeOperands(I); 2017 2018 // Don't optimize floating-point instructions unless they are 'fast'. 2019 if (I->getType()->isFPOrFPVectorTy() && !I->isFast()) 2020 return; 2021 2022 // Do not reassociate boolean (i1) expressions. We want to preserve the 2023 // original order of evaluation for short-circuited comparisons that 2024 // SimplifyCFG has folded to AND/OR expressions. If the expression 2025 // is not further optimized, it is likely to be transformed back to a 2026 // short-circuited form for code gen, and the source order may have been 2027 // optimized for the most likely conditions. 2028 if (I->getType()->isIntegerTy(1)) 2029 return; 2030 2031 // If this is a subtract instruction which is not already in negate form, 2032 // see if we can convert it to X+-Y. 2033 if (I->getOpcode() == Instruction::Sub) { 2034 if (ShouldBreakUpSubtract(I)) { 2035 Instruction *NI = BreakUpSubtract(I, RedoInsts); 2036 RedoInsts.insert(I); 2037 MadeChange = true; 2038 I = NI; 2039 } else if (BinaryOperator::isNeg(I)) { 2040 // Otherwise, this is a negation. See if the operand is a multiply tree 2041 // and if this is not an inner node of a multiply tree. 2042 if (isReassociableOp(I->getOperand(1), Instruction::Mul) && 2043 (!I->hasOneUse() || 2044 !isReassociableOp(I->user_back(), Instruction::Mul))) { 2045 Instruction *NI = LowerNegateToMultiply(I); 2046 // If the negate was simplified, revisit the users to see if we can 2047 // reassociate further. 2048 for (User *U : NI->users()) { 2049 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U)) 2050 RedoInsts.insert(Tmp); 2051 } 2052 RedoInsts.insert(I); 2053 MadeChange = true; 2054 I = NI; 2055 } 2056 } 2057 } else if (I->getOpcode() == Instruction::FSub) { 2058 if (ShouldBreakUpSubtract(I)) { 2059 Instruction *NI = BreakUpSubtract(I, RedoInsts); 2060 RedoInsts.insert(I); 2061 MadeChange = true; 2062 I = NI; 2063 } else if (BinaryOperator::isFNeg(I)) { 2064 // Otherwise, this is a negation. See if the operand is a multiply tree 2065 // and if this is not an inner node of a multiply tree. 2066 if (isReassociableOp(I->getOperand(1), Instruction::FMul) && 2067 (!I->hasOneUse() || 2068 !isReassociableOp(I->user_back(), Instruction::FMul))) { 2069 // If the negate was simplified, revisit the users to see if we can 2070 // reassociate further. 2071 Instruction *NI = LowerNegateToMultiply(I); 2072 for (User *U : NI->users()) { 2073 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U)) 2074 RedoInsts.insert(Tmp); 2075 } 2076 RedoInsts.insert(I); 2077 MadeChange = true; 2078 I = NI; 2079 } 2080 } 2081 } 2082 2083 // If this instruction is an associative binary operator, process it. 2084 if (!I->isAssociative()) return; 2085 BinaryOperator *BO = cast<BinaryOperator>(I); 2086 2087 // If this is an interior node of a reassociable tree, ignore it until we 2088 // get to the root of the tree, to avoid N^2 analysis. 2089 unsigned Opcode = BO->getOpcode(); 2090 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) { 2091 // During the initial run we will get to the root of the tree. 2092 // But if we get here while we are redoing instructions, there is no 2093 // guarantee that the root will be visited. So Redo later 2094 if (BO->user_back() != BO && 2095 BO->getParent() == BO->user_back()->getParent()) 2096 RedoInsts.insert(BO->user_back()); 2097 return; 2098 } 2099 2100 // If this is an add tree that is used by a sub instruction, ignore it 2101 // until we process the subtract. 2102 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add && 2103 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub) 2104 return; 2105 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd && 2106 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub) 2107 return; 2108 2109 ReassociateExpression(BO); 2110 } 2111 2112 void ReassociatePass::ReassociateExpression(BinaryOperator *I) { 2113 // First, walk the expression tree, linearizing the tree, collecting the 2114 // operand information. 2115 SmallVector<RepeatedValue, 8> Tree; 2116 MadeChange |= LinearizeExprTree(I, Tree); 2117 SmallVector<ValueEntry, 8> Ops; 2118 Ops.reserve(Tree.size()); 2119 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 2120 RepeatedValue E = Tree[i]; 2121 Ops.append(E.second.getZExtValue(), 2122 ValueEntry(getRank(E.first), E.first)); 2123 } 2124 2125 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2126 2127 // Now that we have linearized the tree to a list and have gathered all of 2128 // the operands and their ranks, sort the operands by their rank. Use a 2129 // stable_sort so that values with equal ranks will have their relative 2130 // positions maintained (and so the compiler is deterministic). Note that 2131 // this sorts so that the highest ranking values end up at the beginning of 2132 // the vector. 2133 std::stable_sort(Ops.begin(), Ops.end()); 2134 2135 // Now that we have the expression tree in a convenient 2136 // sorted form, optimize it globally if possible. 2137 if (Value *V = OptimizeExpression(I, Ops)) { 2138 if (V == I) 2139 // Self-referential expression in unreachable code. 2140 return; 2141 // This expression tree simplified to something that isn't a tree, 2142 // eliminate it. 2143 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n'); 2144 I->replaceAllUsesWith(V); 2145 if (Instruction *VI = dyn_cast<Instruction>(V)) 2146 if (I->getDebugLoc()) 2147 VI->setDebugLoc(I->getDebugLoc()); 2148 RedoInsts.insert(I); 2149 ++NumAnnihil; 2150 return; 2151 } 2152 2153 // We want to sink immediates as deeply as possible except in the case where 2154 // this is a multiply tree used only by an add, and the immediate is a -1. 2155 // In this case we reassociate to put the negation on the outside so that we 2156 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y 2157 if (I->hasOneUse()) { 2158 if (I->getOpcode() == Instruction::Mul && 2159 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add && 2160 isa<ConstantInt>(Ops.back().Op) && 2161 cast<ConstantInt>(Ops.back().Op)->isMinusOne()) { 2162 ValueEntry Tmp = Ops.pop_back_val(); 2163 Ops.insert(Ops.begin(), Tmp); 2164 } else if (I->getOpcode() == Instruction::FMul && 2165 cast<Instruction>(I->user_back())->getOpcode() == 2166 Instruction::FAdd && 2167 isa<ConstantFP>(Ops.back().Op) && 2168 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) { 2169 ValueEntry Tmp = Ops.pop_back_val(); 2170 Ops.insert(Ops.begin(), Tmp); 2171 } 2172 } 2173 2174 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2175 2176 if (Ops.size() == 1) { 2177 if (Ops[0].Op == I) 2178 // Self-referential expression in unreachable code. 2179 return; 2180 2181 // This expression tree simplified to something that isn't a tree, 2182 // eliminate it. 2183 I->replaceAllUsesWith(Ops[0].Op); 2184 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op)) 2185 OI->setDebugLoc(I->getDebugLoc()); 2186 RedoInsts.insert(I); 2187 return; 2188 } 2189 2190 // Now that we ordered and optimized the expressions, splat them back into 2191 // the expression tree, removing any unneeded nodes. 2192 RewriteExprTree(I, Ops); 2193 } 2194 2195 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) { 2196 // Get the functions basic blocks in Reverse Post Order. This order is used by 2197 // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic 2198 // blocks (it has been seen that the analysis in this pass could hang when 2199 // analysing dead basic blocks). 2200 ReversePostOrderTraversal<Function *> RPOT(&F); 2201 2202 // Calculate the rank map for F. 2203 BuildRankMap(F, RPOT); 2204 2205 MadeChange = false; 2206 // Traverse the same blocks that was analysed by BuildRankMap. 2207 for (BasicBlock *BI : RPOT) { 2208 assert(RankMap.count(&*BI) && "BB should be ranked."); 2209 // Optimize every instruction in the basic block. 2210 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;) 2211 if (isInstructionTriviallyDead(&*II)) { 2212 EraseInst(&*II++); 2213 } else { 2214 OptimizeInst(&*II); 2215 assert(II->getParent() == &*BI && "Moved to a different block!"); 2216 ++II; 2217 } 2218 2219 // Make a copy of all the instructions to be redone so we can remove dead 2220 // instructions. 2221 SetVector<AssertingVH<Instruction>> ToRedo(RedoInsts); 2222 // Iterate over all instructions to be reevaluated and remove trivially dead 2223 // instructions. If any operand of the trivially dead instruction becomes 2224 // dead mark it for deletion as well. Continue this process until all 2225 // trivially dead instructions have been removed. 2226 while (!ToRedo.empty()) { 2227 Instruction *I = ToRedo.pop_back_val(); 2228 if (isInstructionTriviallyDead(I)) { 2229 RecursivelyEraseDeadInsts(I, ToRedo); 2230 MadeChange = true; 2231 } 2232 } 2233 2234 // Now that we have removed dead instructions, we can reoptimize the 2235 // remaining instructions. 2236 while (!RedoInsts.empty()) { 2237 Instruction *I = RedoInsts.pop_back_val(); 2238 if (isInstructionTriviallyDead(I)) 2239 EraseInst(I); 2240 else 2241 OptimizeInst(I); 2242 } 2243 } 2244 2245 // We are done with the rank map. 2246 RankMap.clear(); 2247 ValueRankMap.clear(); 2248 2249 if (MadeChange) { 2250 PreservedAnalyses PA; 2251 PA.preserveSet<CFGAnalyses>(); 2252 PA.preserve<GlobalsAA>(); 2253 return PA; 2254 } 2255 2256 return PreservedAnalyses::all(); 2257 } 2258 2259 namespace { 2260 2261 class ReassociateLegacyPass : public FunctionPass { 2262 ReassociatePass Impl; 2263 2264 public: 2265 static char ID; // Pass identification, replacement for typeid 2266 2267 ReassociateLegacyPass() : FunctionPass(ID) { 2268 initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry()); 2269 } 2270 2271 bool runOnFunction(Function &F) override { 2272 if (skipFunction(F)) 2273 return false; 2274 2275 FunctionAnalysisManager DummyFAM; 2276 auto PA = Impl.run(F, DummyFAM); 2277 return !PA.areAllPreserved(); 2278 } 2279 2280 void getAnalysisUsage(AnalysisUsage &AU) const override { 2281 AU.setPreservesCFG(); 2282 AU.addPreserved<GlobalsAAWrapperPass>(); 2283 } 2284 }; 2285 2286 } // end anonymous namespace 2287 2288 char ReassociateLegacyPass::ID = 0; 2289 2290 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate", 2291 "Reassociate expressions", false, false) 2292 2293 // Public interface to the Reassociate pass 2294 FunctionPass *llvm::createReassociatePass() { 2295 return new ReassociateLegacyPass(); 2296 } 2297