1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass reassociates commutative expressions in an order that is designed
11 // to promote better constant propagation, GCSE, LICM, PRE, etc.
12 //
13 // For example: 4 + (x + 5) -> x + (4 + 5)
14 //
15 // In the implementation of this algorithm, constants are assigned rank = 0,
16 // function arguments are rank = 1, and other values are assigned ranks
17 // corresponding to the reverse post order traversal of current function
18 // (starting at 2), which effectively gives values in deep loops higher rank
19 // than values not in loops.
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/Transforms/Scalar/Reassociate.h"
24 #include "llvm/ADT/APFloat.h"
25 #include "llvm/ADT/APInt.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/SetVector.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/GlobalsModRef.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Argument.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/IRBuilder.h"
41 #include "llvm/IR/InstrTypes.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/IR/PassManager.h"
46 #include "llvm/IR/PatternMatch.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/User.h"
49 #include "llvm/IR/Value.h"
50 #include "llvm/IR/ValueHandle.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Transforms/Scalar.h"
57 #include "llvm/Transforms/Utils/Local.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <utility>
61 
62 using namespace llvm;
63 using namespace reassociate;
64 
65 #define DEBUG_TYPE "reassociate"
66 
67 STATISTIC(NumChanged, "Number of insts reassociated");
68 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
69 STATISTIC(NumFactor , "Number of multiplies factored");
70 
71 #ifndef NDEBUG
72 /// Print out the expression identified in the Ops list.
73 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
74   Module *M = I->getModule();
75   dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
76        << *Ops[0].Op->getType() << '\t';
77   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
78     dbgs() << "[ ";
79     Ops[i].Op->printAsOperand(dbgs(), false, M);
80     dbgs() << ", #" << Ops[i].Rank << "] ";
81   }
82 }
83 #endif
84 
85 /// Utility class representing a non-constant Xor-operand. We classify
86 /// non-constant Xor-Operands into two categories:
87 ///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
88 ///  C2)
89 ///    C2.1) The operand is in the form of "X | C", where C is a non-zero
90 ///          constant.
91 ///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
92 ///          operand as "E | 0"
93 class llvm::reassociate::XorOpnd {
94 public:
95   XorOpnd(Value *V);
96 
97   bool isInvalid() const { return SymbolicPart == nullptr; }
98   bool isOrExpr() const { return isOr; }
99   Value *getValue() const { return OrigVal; }
100   Value *getSymbolicPart() const { return SymbolicPart; }
101   unsigned getSymbolicRank() const { return SymbolicRank; }
102   const APInt &getConstPart() const { return ConstPart; }
103 
104   void Invalidate() { SymbolicPart = OrigVal = nullptr; }
105   void setSymbolicRank(unsigned R) { SymbolicRank = R; }
106 
107 private:
108   Value *OrigVal;
109   Value *SymbolicPart;
110   APInt ConstPart;
111   unsigned SymbolicRank;
112   bool isOr;
113 };
114 
115 XorOpnd::XorOpnd(Value *V) {
116   assert(!isa<ConstantInt>(V) && "No ConstantInt");
117   OrigVal = V;
118   Instruction *I = dyn_cast<Instruction>(V);
119   SymbolicRank = 0;
120 
121   if (I && (I->getOpcode() == Instruction::Or ||
122             I->getOpcode() == Instruction::And)) {
123     Value *V0 = I->getOperand(0);
124     Value *V1 = I->getOperand(1);
125     const APInt *C;
126     if (match(V0, PatternMatch::m_APInt(C)))
127       std::swap(V0, V1);
128 
129     if (match(V1, PatternMatch::m_APInt(C))) {
130       ConstPart = *C;
131       SymbolicPart = V0;
132       isOr = (I->getOpcode() == Instruction::Or);
133       return;
134     }
135   }
136 
137   // view the operand as "V | 0"
138   SymbolicPart = V;
139   ConstPart = APInt::getNullValue(V->getType()->getScalarSizeInBits());
140   isOr = true;
141 }
142 
143 /// Return true if V is an instruction of the specified opcode and if it
144 /// only has one use.
145 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
146   auto *I = dyn_cast<Instruction>(V);
147   if (I && I->hasOneUse() && I->getOpcode() == Opcode)
148     if (!isa<FPMathOperator>(I) || I->isFast())
149       return cast<BinaryOperator>(I);
150   return nullptr;
151 }
152 
153 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
154                                         unsigned Opcode2) {
155   auto *I = dyn_cast<Instruction>(V);
156   if (I && I->hasOneUse() &&
157       (I->getOpcode() == Opcode1 || I->getOpcode() == Opcode2))
158     if (!isa<FPMathOperator>(I) || I->isFast())
159       return cast<BinaryOperator>(I);
160   return nullptr;
161 }
162 
163 void ReassociatePass::BuildRankMap(Function &F,
164                                    ReversePostOrderTraversal<Function*> &RPOT) {
165   unsigned Rank = 2;
166 
167   // Assign distinct ranks to function arguments.
168   for (auto &Arg : F.args()) {
169     ValueRankMap[&Arg] = ++Rank;
170     DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank
171                  << "\n");
172   }
173 
174   // Traverse basic blocks in ReversePostOrder
175   for (BasicBlock *BB : RPOT) {
176     unsigned BBRank = RankMap[BB] = ++Rank << 16;
177 
178     // Walk the basic block, adding precomputed ranks for any instructions that
179     // we cannot move.  This ensures that the ranks for these instructions are
180     // all different in the block.
181     for (Instruction &I : *BB)
182       if (mayBeMemoryDependent(I))
183         ValueRankMap[&I] = ++BBRank;
184   }
185 }
186 
187 unsigned ReassociatePass::getRank(Value *V) {
188   Instruction *I = dyn_cast<Instruction>(V);
189   if (!I) {
190     if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
191     return 0;  // Otherwise it's a global or constant, rank 0.
192   }
193 
194   if (unsigned Rank = ValueRankMap[I])
195     return Rank;    // Rank already known?
196 
197   // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
198   // we can reassociate expressions for code motion!  Since we do not recurse
199   // for PHI nodes, we cannot have infinite recursion here, because there
200   // cannot be loops in the value graph that do not go through PHI nodes.
201   unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
202   for (unsigned i = 0, e = I->getNumOperands();
203        i != e && Rank != MaxRank; ++i)
204     Rank = std::max(Rank, getRank(I->getOperand(i)));
205 
206   // If this is a not or neg instruction, do not count it for rank.  This
207   // assures us that X and ~X will have the same rank.
208   if  (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
209        !BinaryOperator::isFNeg(I))
210     ++Rank;
211 
212   DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n");
213 
214   return ValueRankMap[I] = Rank;
215 }
216 
217 // Canonicalize constants to RHS.  Otherwise, sort the operands by rank.
218 void ReassociatePass::canonicalizeOperands(Instruction *I) {
219   assert(isa<BinaryOperator>(I) && "Expected binary operator.");
220   assert(I->isCommutative() && "Expected commutative operator.");
221 
222   Value *LHS = I->getOperand(0);
223   Value *RHS = I->getOperand(1);
224   if (LHS == RHS || isa<Constant>(RHS))
225     return;
226   if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS))
227     cast<BinaryOperator>(I)->swapOperands();
228 }
229 
230 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
231                                  Instruction *InsertBefore, Value *FlagsOp) {
232   if (S1->getType()->isIntOrIntVectorTy())
233     return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
234   else {
235     BinaryOperator *Res =
236         BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
237     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
238     return Res;
239   }
240 }
241 
242 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
243                                  Instruction *InsertBefore, Value *FlagsOp) {
244   if (S1->getType()->isIntOrIntVectorTy())
245     return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
246   else {
247     BinaryOperator *Res =
248       BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
249     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
250     return Res;
251   }
252 }
253 
254 static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
255                                  Instruction *InsertBefore, Value *FlagsOp) {
256   if (S1->getType()->isIntOrIntVectorTy())
257     return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
258   else {
259     BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
260     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
261     return Res;
262   }
263 }
264 
265 /// Replace 0-X with X*-1.
266 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
267   Type *Ty = Neg->getType();
268   Constant *NegOne = Ty->isIntOrIntVectorTy() ?
269     ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
270 
271   BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
272   Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
273   Res->takeName(Neg);
274   Neg->replaceAllUsesWith(Res);
275   Res->setDebugLoc(Neg->getDebugLoc());
276   return Res;
277 }
278 
279 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
280 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
281 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
282 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
283 /// even x in Bitwidth-bit arithmetic.
284 static unsigned CarmichaelShift(unsigned Bitwidth) {
285   if (Bitwidth < 3)
286     return Bitwidth - 1;
287   return Bitwidth - 2;
288 }
289 
290 /// Add the extra weight 'RHS' to the existing weight 'LHS',
291 /// reducing the combined weight using any special properties of the operation.
292 /// The existing weight LHS represents the computation X op X op ... op X where
293 /// X occurs LHS times.  The combined weight represents  X op X op ... op X with
294 /// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
295 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
296 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
297 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
298   // If we were working with infinite precision arithmetic then the combined
299   // weight would be LHS + RHS.  But we are using finite precision arithmetic,
300   // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
301   // for nilpotent operations and addition, but not for idempotent operations
302   // and multiplication), so it is important to correctly reduce the combined
303   // weight back into range if wrapping would be wrong.
304 
305   // If RHS is zero then the weight didn't change.
306   if (RHS.isMinValue())
307     return;
308   // If LHS is zero then the combined weight is RHS.
309   if (LHS.isMinValue()) {
310     LHS = RHS;
311     return;
312   }
313   // From this point on we know that neither LHS nor RHS is zero.
314 
315   if (Instruction::isIdempotent(Opcode)) {
316     // Idempotent means X op X === X, so any non-zero weight is equivalent to a
317     // weight of 1.  Keeping weights at zero or one also means that wrapping is
318     // not a problem.
319     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
320     return; // Return a weight of 1.
321   }
322   if (Instruction::isNilpotent(Opcode)) {
323     // Nilpotent means X op X === 0, so reduce weights modulo 2.
324     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
325     LHS = 0; // 1 + 1 === 0 modulo 2.
326     return;
327   }
328   if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
329     // TODO: Reduce the weight by exploiting nsw/nuw?
330     LHS += RHS;
331     return;
332   }
333 
334   assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
335          "Unknown associative operation!");
336   unsigned Bitwidth = LHS.getBitWidth();
337   // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
338   // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
339   // bit number x, since either x is odd in which case x^CM = 1, or x is even in
340   // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
341   // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
342   // which by a happy accident means that they can always be represented using
343   // Bitwidth bits.
344   // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
345   // the Carmichael number).
346   if (Bitwidth > 3) {
347     /// CM - The value of Carmichael's lambda function.
348     APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
349     // Any weight W >= Threshold can be replaced with W - CM.
350     APInt Threshold = CM + Bitwidth;
351     assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
352     // For Bitwidth 4 or more the following sum does not overflow.
353     LHS += RHS;
354     while (LHS.uge(Threshold))
355       LHS -= CM;
356   } else {
357     // To avoid problems with overflow do everything the same as above but using
358     // a larger type.
359     unsigned CM = 1U << CarmichaelShift(Bitwidth);
360     unsigned Threshold = CM + Bitwidth;
361     assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
362            "Weights not reduced!");
363     unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
364     while (Total >= Threshold)
365       Total -= CM;
366     LHS = Total;
367   }
368 }
369 
370 using RepeatedValue = std::pair<Value*, APInt>;
371 
372 /// Given an associative binary expression, return the leaf
373 /// nodes in Ops along with their weights (how many times the leaf occurs).  The
374 /// original expression is the same as
375 ///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
376 /// op
377 ///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
378 /// op
379 ///   ...
380 /// op
381 ///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
382 ///
383 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
384 ///
385 /// This routine may modify the function, in which case it returns 'true'.  The
386 /// changes it makes may well be destructive, changing the value computed by 'I'
387 /// to something completely different.  Thus if the routine returns 'true' then
388 /// you MUST either replace I with a new expression computed from the Ops array,
389 /// or use RewriteExprTree to put the values back in.
390 ///
391 /// A leaf node is either not a binary operation of the same kind as the root
392 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
393 /// opcode), or is the same kind of binary operator but has a use which either
394 /// does not belong to the expression, or does belong to the expression but is
395 /// a leaf node.  Every leaf node has at least one use that is a non-leaf node
396 /// of the expression, while for non-leaf nodes (except for the root 'I') every
397 /// use is a non-leaf node of the expression.
398 ///
399 /// For example:
400 ///           expression graph        node names
401 ///
402 ///                     +        |        I
403 ///                    / \       |
404 ///                   +   +      |      A,  B
405 ///                  / \ / \     |
406 ///                 *   +   *    |    C,  D,  E
407 ///                / \ / \ / \   |
408 ///                   +   *      |      F,  G
409 ///
410 /// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
411 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
412 ///
413 /// The expression is maximal: if some instruction is a binary operator of the
414 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
415 /// then the instruction also belongs to the expression, is not a leaf node of
416 /// it, and its operands also belong to the expression (but may be leaf nodes).
417 ///
418 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
419 /// order to ensure that every non-root node in the expression has *exactly one*
420 /// use by a non-leaf node of the expression.  This destruction means that the
421 /// caller MUST either replace 'I' with a new expression or use something like
422 /// RewriteExprTree to put the values back in if the routine indicates that it
423 /// made a change by returning 'true'.
424 ///
425 /// In the above example either the right operand of A or the left operand of B
426 /// will be replaced by undef.  If it is B's operand then this gives:
427 ///
428 ///                     +        |        I
429 ///                    / \       |
430 ///                   +   +      |      A,  B - operand of B replaced with undef
431 ///                  / \   \     |
432 ///                 *   +   *    |    C,  D,  E
433 ///                / \ / \ / \   |
434 ///                   +   *      |      F,  G
435 ///
436 /// Note that such undef operands can only be reached by passing through 'I'.
437 /// For example, if you visit operands recursively starting from a leaf node
438 /// then you will never see such an undef operand unless you get back to 'I',
439 /// which requires passing through a phi node.
440 ///
441 /// Note that this routine may also mutate binary operators of the wrong type
442 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
443 /// of the expression) if it can turn them into binary operators of the right
444 /// type and thus make the expression bigger.
445 static bool LinearizeExprTree(BinaryOperator *I,
446                               SmallVectorImpl<RepeatedValue> &Ops) {
447   DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
448   unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
449   unsigned Opcode = I->getOpcode();
450   assert(I->isAssociative() && I->isCommutative() &&
451          "Expected an associative and commutative operation!");
452 
453   // Visit all operands of the expression, keeping track of their weight (the
454   // number of paths from the expression root to the operand, or if you like
455   // the number of times that operand occurs in the linearized expression).
456   // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
457   // while A has weight two.
458 
459   // Worklist of non-leaf nodes (their operands are in the expression too) along
460   // with their weights, representing a certain number of paths to the operator.
461   // If an operator occurs in the worklist multiple times then we found multiple
462   // ways to get to it.
463   SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
464   Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
465   bool Changed = false;
466 
467   // Leaves of the expression are values that either aren't the right kind of
468   // operation (eg: a constant, or a multiply in an add tree), or are, but have
469   // some uses that are not inside the expression.  For example, in I = X + X,
470   // X = A + B, the value X has two uses (by I) that are in the expression.  If
471   // X has any other uses, for example in a return instruction, then we consider
472   // X to be a leaf, and won't analyze it further.  When we first visit a value,
473   // if it has more than one use then at first we conservatively consider it to
474   // be a leaf.  Later, as the expression is explored, we may discover some more
475   // uses of the value from inside the expression.  If all uses turn out to be
476   // from within the expression (and the value is a binary operator of the right
477   // kind) then the value is no longer considered to be a leaf, and its operands
478   // are explored.
479 
480   // Leaves - Keeps track of the set of putative leaves as well as the number of
481   // paths to each leaf seen so far.
482   using LeafMap = DenseMap<Value *, APInt>;
483   LeafMap Leaves; // Leaf -> Total weight so far.
484   SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order.
485 
486 #ifndef NDEBUG
487   SmallPtrSet<Value *, 8> Visited; // For sanity checking the iteration scheme.
488 #endif
489   while (!Worklist.empty()) {
490     std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
491     I = P.first; // We examine the operands of this binary operator.
492 
493     for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
494       Value *Op = I->getOperand(OpIdx);
495       APInt Weight = P.second; // Number of paths to this operand.
496       DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
497       assert(!Op->use_empty() && "No uses, so how did we get to it?!");
498 
499       // If this is a binary operation of the right kind with only one use then
500       // add its operands to the expression.
501       if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
502         assert(Visited.insert(Op).second && "Not first visit!");
503         DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
504         Worklist.push_back(std::make_pair(BO, Weight));
505         continue;
506       }
507 
508       // Appears to be a leaf.  Is the operand already in the set of leaves?
509       LeafMap::iterator It = Leaves.find(Op);
510       if (It == Leaves.end()) {
511         // Not in the leaf map.  Must be the first time we saw this operand.
512         assert(Visited.insert(Op).second && "Not first visit!");
513         if (!Op->hasOneUse()) {
514           // This value has uses not accounted for by the expression, so it is
515           // not safe to modify.  Mark it as being a leaf.
516           DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
517           LeafOrder.push_back(Op);
518           Leaves[Op] = Weight;
519           continue;
520         }
521         // No uses outside the expression, try morphing it.
522       } else {
523         // Already in the leaf map.
524         assert(It != Leaves.end() && Visited.count(Op) &&
525                "In leaf map but not visited!");
526 
527         // Update the number of paths to the leaf.
528         IncorporateWeight(It->second, Weight, Opcode);
529 
530 #if 0   // TODO: Re-enable once PR13021 is fixed.
531         // The leaf already has one use from inside the expression.  As we want
532         // exactly one such use, drop this new use of the leaf.
533         assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
534         I->setOperand(OpIdx, UndefValue::get(I->getType()));
535         Changed = true;
536 
537         // If the leaf is a binary operation of the right kind and we now see
538         // that its multiple original uses were in fact all by nodes belonging
539         // to the expression, then no longer consider it to be a leaf and add
540         // its operands to the expression.
541         if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
542           DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
543           Worklist.push_back(std::make_pair(BO, It->second));
544           Leaves.erase(It);
545           continue;
546         }
547 #endif
548 
549         // If we still have uses that are not accounted for by the expression
550         // then it is not safe to modify the value.
551         if (!Op->hasOneUse())
552           continue;
553 
554         // No uses outside the expression, try morphing it.
555         Weight = It->second;
556         Leaves.erase(It); // Since the value may be morphed below.
557       }
558 
559       // At this point we have a value which, first of all, is not a binary
560       // expression of the right kind, and secondly, is only used inside the
561       // expression.  This means that it can safely be modified.  See if we
562       // can usefully morph it into an expression of the right kind.
563       assert((!isa<Instruction>(Op) ||
564               cast<Instruction>(Op)->getOpcode() != Opcode
565               || (isa<FPMathOperator>(Op) &&
566                   !cast<Instruction>(Op)->isFast())) &&
567              "Should have been handled above!");
568       assert(Op->hasOneUse() && "Has uses outside the expression tree!");
569 
570       // If this is a multiply expression, turn any internal negations into
571       // multiplies by -1 so they can be reassociated.
572       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
573         if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) ||
574             (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) {
575           DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
576           BO = LowerNegateToMultiply(BO);
577           DEBUG(dbgs() << *BO << '\n');
578           Worklist.push_back(std::make_pair(BO, Weight));
579           Changed = true;
580           continue;
581         }
582 
583       // Failed to morph into an expression of the right type.  This really is
584       // a leaf.
585       DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
586       assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
587       LeafOrder.push_back(Op);
588       Leaves[Op] = Weight;
589     }
590   }
591 
592   // The leaves, repeated according to their weights, represent the linearized
593   // form of the expression.
594   for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
595     Value *V = LeafOrder[i];
596     LeafMap::iterator It = Leaves.find(V);
597     if (It == Leaves.end())
598       // Node initially thought to be a leaf wasn't.
599       continue;
600     assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
601     APInt Weight = It->second;
602     if (Weight.isMinValue())
603       // Leaf already output or weight reduction eliminated it.
604       continue;
605     // Ensure the leaf is only output once.
606     It->second = 0;
607     Ops.push_back(std::make_pair(V, Weight));
608   }
609 
610   // For nilpotent operations or addition there may be no operands, for example
611   // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
612   // in both cases the weight reduces to 0 causing the value to be skipped.
613   if (Ops.empty()) {
614     Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
615     assert(Identity && "Associative operation without identity!");
616     Ops.emplace_back(Identity, APInt(Bitwidth, 1));
617   }
618 
619   return Changed;
620 }
621 
622 /// Now that the operands for this expression tree are
623 /// linearized and optimized, emit them in-order.
624 void ReassociatePass::RewriteExprTree(BinaryOperator *I,
625                                       SmallVectorImpl<ValueEntry> &Ops) {
626   assert(Ops.size() > 1 && "Single values should be used directly!");
627 
628   // Since our optimizations should never increase the number of operations, the
629   // new expression can usually be written reusing the existing binary operators
630   // from the original expression tree, without creating any new instructions,
631   // though the rewritten expression may have a completely different topology.
632   // We take care to not change anything if the new expression will be the same
633   // as the original.  If more than trivial changes (like commuting operands)
634   // were made then we are obliged to clear out any optional subclass data like
635   // nsw flags.
636 
637   /// NodesToRewrite - Nodes from the original expression available for writing
638   /// the new expression into.
639   SmallVector<BinaryOperator*, 8> NodesToRewrite;
640   unsigned Opcode = I->getOpcode();
641   BinaryOperator *Op = I;
642 
643   /// NotRewritable - The operands being written will be the leaves of the new
644   /// expression and must not be used as inner nodes (via NodesToRewrite) by
645   /// mistake.  Inner nodes are always reassociable, and usually leaves are not
646   /// (if they were they would have been incorporated into the expression and so
647   /// would not be leaves), so most of the time there is no danger of this.  But
648   /// in rare cases a leaf may become reassociable if an optimization kills uses
649   /// of it, or it may momentarily become reassociable during rewriting (below)
650   /// due it being removed as an operand of one of its uses.  Ensure that misuse
651   /// of leaf nodes as inner nodes cannot occur by remembering all of the future
652   /// leaves and refusing to reuse any of them as inner nodes.
653   SmallPtrSet<Value*, 8> NotRewritable;
654   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
655     NotRewritable.insert(Ops[i].Op);
656 
657   // ExpressionChanged - Non-null if the rewritten expression differs from the
658   // original in some non-trivial way, requiring the clearing of optional flags.
659   // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
660   BinaryOperator *ExpressionChanged = nullptr;
661   for (unsigned i = 0; ; ++i) {
662     // The last operation (which comes earliest in the IR) is special as both
663     // operands will come from Ops, rather than just one with the other being
664     // a subexpression.
665     if (i+2 == Ops.size()) {
666       Value *NewLHS = Ops[i].Op;
667       Value *NewRHS = Ops[i+1].Op;
668       Value *OldLHS = Op->getOperand(0);
669       Value *OldRHS = Op->getOperand(1);
670 
671       if (NewLHS == OldLHS && NewRHS == OldRHS)
672         // Nothing changed, leave it alone.
673         break;
674 
675       if (NewLHS == OldRHS && NewRHS == OldLHS) {
676         // The order of the operands was reversed.  Swap them.
677         DEBUG(dbgs() << "RA: " << *Op << '\n');
678         Op->swapOperands();
679         DEBUG(dbgs() << "TO: " << *Op << '\n');
680         MadeChange = true;
681         ++NumChanged;
682         break;
683       }
684 
685       // The new operation differs non-trivially from the original. Overwrite
686       // the old operands with the new ones.
687       DEBUG(dbgs() << "RA: " << *Op << '\n');
688       if (NewLHS != OldLHS) {
689         BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
690         if (BO && !NotRewritable.count(BO))
691           NodesToRewrite.push_back(BO);
692         Op->setOperand(0, NewLHS);
693       }
694       if (NewRHS != OldRHS) {
695         BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
696         if (BO && !NotRewritable.count(BO))
697           NodesToRewrite.push_back(BO);
698         Op->setOperand(1, NewRHS);
699       }
700       DEBUG(dbgs() << "TO: " << *Op << '\n');
701 
702       ExpressionChanged = Op;
703       MadeChange = true;
704       ++NumChanged;
705 
706       break;
707     }
708 
709     // Not the last operation.  The left-hand side will be a sub-expression
710     // while the right-hand side will be the current element of Ops.
711     Value *NewRHS = Ops[i].Op;
712     if (NewRHS != Op->getOperand(1)) {
713       DEBUG(dbgs() << "RA: " << *Op << '\n');
714       if (NewRHS == Op->getOperand(0)) {
715         // The new right-hand side was already present as the left operand.  If
716         // we are lucky then swapping the operands will sort out both of them.
717         Op->swapOperands();
718       } else {
719         // Overwrite with the new right-hand side.
720         BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
721         if (BO && !NotRewritable.count(BO))
722           NodesToRewrite.push_back(BO);
723         Op->setOperand(1, NewRHS);
724         ExpressionChanged = Op;
725       }
726       DEBUG(dbgs() << "TO: " << *Op << '\n');
727       MadeChange = true;
728       ++NumChanged;
729     }
730 
731     // Now deal with the left-hand side.  If this is already an operation node
732     // from the original expression then just rewrite the rest of the expression
733     // into it.
734     BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
735     if (BO && !NotRewritable.count(BO)) {
736       Op = BO;
737       continue;
738     }
739 
740     // Otherwise, grab a spare node from the original expression and use that as
741     // the left-hand side.  If there are no nodes left then the optimizers made
742     // an expression with more nodes than the original!  This usually means that
743     // they did something stupid but it might mean that the problem was just too
744     // hard (finding the mimimal number of multiplications needed to realize a
745     // multiplication expression is NP-complete).  Whatever the reason, smart or
746     // stupid, create a new node if there are none left.
747     BinaryOperator *NewOp;
748     if (NodesToRewrite.empty()) {
749       Constant *Undef = UndefValue::get(I->getType());
750       NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
751                                      Undef, Undef, "", I);
752       if (NewOp->getType()->isFPOrFPVectorTy())
753         NewOp->setFastMathFlags(I->getFastMathFlags());
754     } else {
755       NewOp = NodesToRewrite.pop_back_val();
756     }
757 
758     DEBUG(dbgs() << "RA: " << *Op << '\n');
759     Op->setOperand(0, NewOp);
760     DEBUG(dbgs() << "TO: " << *Op << '\n');
761     ExpressionChanged = Op;
762     MadeChange = true;
763     ++NumChanged;
764     Op = NewOp;
765   }
766 
767   // If the expression changed non-trivially then clear out all subclass data
768   // starting from the operator specified in ExpressionChanged, and compactify
769   // the operators to just before the expression root to guarantee that the
770   // expression tree is dominated by all of Ops.
771   if (ExpressionChanged)
772     do {
773       // Preserve FastMathFlags.
774       if (isa<FPMathOperator>(I)) {
775         FastMathFlags Flags = I->getFastMathFlags();
776         ExpressionChanged->clearSubclassOptionalData();
777         ExpressionChanged->setFastMathFlags(Flags);
778       } else
779         ExpressionChanged->clearSubclassOptionalData();
780 
781       if (ExpressionChanged == I)
782         break;
783       ExpressionChanged->moveBefore(I);
784       ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
785     } while (true);
786 
787   // Throw away any left over nodes from the original expression.
788   for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
789     RedoInsts.insert(NodesToRewrite[i]);
790 }
791 
792 /// Insert instructions before the instruction pointed to by BI,
793 /// that computes the negative version of the value specified.  The negative
794 /// version of the value is returned, and BI is left pointing at the instruction
795 /// that should be processed next by the reassociation pass.
796 /// Also add intermediate instructions to the redo list that are modified while
797 /// pushing the negates through adds.  These will be revisited to see if
798 /// additional opportunities have been exposed.
799 static Value *NegateValue(Value *V, Instruction *BI,
800                           SetVector<AssertingVH<Instruction>> &ToRedo) {
801   if (Constant *C = dyn_cast<Constant>(V)) {
802     if (C->getType()->isFPOrFPVectorTy()) {
803       return ConstantExpr::getFNeg(C);
804     }
805     return ConstantExpr::getNeg(C);
806   }
807 
808   // We are trying to expose opportunity for reassociation.  One of the things
809   // that we want to do to achieve this is to push a negation as deep into an
810   // expression chain as possible, to expose the add instructions.  In practice,
811   // this means that we turn this:
812   //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
813   // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
814   // the constants.  We assume that instcombine will clean up the mess later if
815   // we introduce tons of unnecessary negation instructions.
816   //
817   if (BinaryOperator *I =
818           isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
819     // Push the negates through the add.
820     I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
821     I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
822     if (I->getOpcode() == Instruction::Add) {
823       I->setHasNoUnsignedWrap(false);
824       I->setHasNoSignedWrap(false);
825     }
826 
827     // We must move the add instruction here, because the neg instructions do
828     // not dominate the old add instruction in general.  By moving it, we are
829     // assured that the neg instructions we just inserted dominate the
830     // instruction we are about to insert after them.
831     //
832     I->moveBefore(BI);
833     I->setName(I->getName()+".neg");
834 
835     // Add the intermediate negates to the redo list as processing them later
836     // could expose more reassociating opportunities.
837     ToRedo.insert(I);
838     return I;
839   }
840 
841   // Okay, we need to materialize a negated version of V with an instruction.
842   // Scan the use lists of V to see if we have one already.
843   for (User *U : V->users()) {
844     if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U))
845       continue;
846 
847     // We found one!  Now we have to make sure that the definition dominates
848     // this use.  We do this by moving it to the entry block (if it is a
849     // non-instruction value) or right after the definition.  These negates will
850     // be zapped by reassociate later, so we don't need much finesse here.
851     BinaryOperator *TheNeg = cast<BinaryOperator>(U);
852 
853     // Verify that the negate is in this function, V might be a constant expr.
854     if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
855       continue;
856 
857     BasicBlock::iterator InsertPt;
858     if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
859       if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
860         InsertPt = II->getNormalDest()->begin();
861       } else {
862         InsertPt = ++InstInput->getIterator();
863       }
864       while (isa<PHINode>(InsertPt)) ++InsertPt;
865     } else {
866       InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
867     }
868     TheNeg->moveBefore(&*InsertPt);
869     if (TheNeg->getOpcode() == Instruction::Sub) {
870       TheNeg->setHasNoUnsignedWrap(false);
871       TheNeg->setHasNoSignedWrap(false);
872     } else {
873       TheNeg->andIRFlags(BI);
874     }
875     ToRedo.insert(TheNeg);
876     return TheNeg;
877   }
878 
879   // Insert a 'neg' instruction that subtracts the value from zero to get the
880   // negation.
881   BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
882   ToRedo.insert(NewNeg);
883   return NewNeg;
884 }
885 
886 /// Return true if we should break up this subtract of X-Y into (X + -Y).
887 static bool ShouldBreakUpSubtract(Instruction *Sub) {
888   // If this is a negation, we can't split it up!
889   if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub))
890     return false;
891 
892   // Don't breakup X - undef.
893   if (isa<UndefValue>(Sub->getOperand(1)))
894     return false;
895 
896   // Don't bother to break this up unless either the LHS is an associable add or
897   // subtract or if this is only used by one.
898   Value *V0 = Sub->getOperand(0);
899   if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
900       isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
901     return true;
902   Value *V1 = Sub->getOperand(1);
903   if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
904       isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
905     return true;
906   Value *VB = Sub->user_back();
907   if (Sub->hasOneUse() &&
908       (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
909        isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
910     return true;
911 
912   return false;
913 }
914 
915 /// If we have (X-Y), and if either X is an add, or if this is only used by an
916 /// add, transform this into (X+(0-Y)) to promote better reassociation.
917 static BinaryOperator *
918 BreakUpSubtract(Instruction *Sub, SetVector<AssertingVH<Instruction>> &ToRedo) {
919   // Convert a subtract into an add and a neg instruction. This allows sub
920   // instructions to be commuted with other add instructions.
921   //
922   // Calculate the negative value of Operand 1 of the sub instruction,
923   // and set it as the RHS of the add instruction we just made.
924   Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
925   BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
926   Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
927   Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
928   New->takeName(Sub);
929 
930   // Everyone now refers to the add instruction.
931   Sub->replaceAllUsesWith(New);
932   New->setDebugLoc(Sub->getDebugLoc());
933 
934   DEBUG(dbgs() << "Negated: " << *New << '\n');
935   return New;
936 }
937 
938 /// If this is a shift of a reassociable multiply or is used by one, change
939 /// this into a multiply by a constant to assist with further reassociation.
940 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
941   Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
942   MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
943 
944   BinaryOperator *Mul =
945     BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
946   Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
947   Mul->takeName(Shl);
948 
949   // Everyone now refers to the mul instruction.
950   Shl->replaceAllUsesWith(Mul);
951   Mul->setDebugLoc(Shl->getDebugLoc());
952 
953   // We can safely preserve the nuw flag in all cases.  It's also safe to turn a
954   // nuw nsw shl into a nuw nsw mul.  However, nsw in isolation requires special
955   // handling.
956   bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
957   bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
958   if (NSW && NUW)
959     Mul->setHasNoSignedWrap(true);
960   Mul->setHasNoUnsignedWrap(NUW);
961   return Mul;
962 }
963 
964 /// Scan backwards and forwards among values with the same rank as element i
965 /// to see if X exists.  If X does not exist, return i.  This is useful when
966 /// scanning for 'x' when we see '-x' because they both get the same rank.
967 static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops,
968                                   unsigned i, Value *X) {
969   unsigned XRank = Ops[i].Rank;
970   unsigned e = Ops.size();
971   for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
972     if (Ops[j].Op == X)
973       return j;
974     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
975       if (Instruction *I2 = dyn_cast<Instruction>(X))
976         if (I1->isIdenticalTo(I2))
977           return j;
978   }
979   // Scan backwards.
980   for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
981     if (Ops[j].Op == X)
982       return j;
983     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
984       if (Instruction *I2 = dyn_cast<Instruction>(X))
985         if (I1->isIdenticalTo(I2))
986           return j;
987   }
988   return i;
989 }
990 
991 /// Emit a tree of add instructions, summing Ops together
992 /// and returning the result.  Insert the tree before I.
993 static Value *EmitAddTreeOfValues(Instruction *I,
994                                   SmallVectorImpl<WeakTrackingVH> &Ops) {
995   if (Ops.size() == 1) return Ops.back();
996 
997   Value *V1 = Ops.back();
998   Ops.pop_back();
999   Value *V2 = EmitAddTreeOfValues(I, Ops);
1000   return CreateAdd(V2, V1, "reass.add", I, I);
1001 }
1002 
1003 /// If V is an expression tree that is a multiplication sequence,
1004 /// and if this sequence contains a multiply by Factor,
1005 /// remove Factor from the tree and return the new tree.
1006 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
1007   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1008   if (!BO)
1009     return nullptr;
1010 
1011   SmallVector<RepeatedValue, 8> Tree;
1012   MadeChange |= LinearizeExprTree(BO, Tree);
1013   SmallVector<ValueEntry, 8> Factors;
1014   Factors.reserve(Tree.size());
1015   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1016     RepeatedValue E = Tree[i];
1017     Factors.append(E.second.getZExtValue(),
1018                    ValueEntry(getRank(E.first), E.first));
1019   }
1020 
1021   bool FoundFactor = false;
1022   bool NeedsNegate = false;
1023   for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1024     if (Factors[i].Op == Factor) {
1025       FoundFactor = true;
1026       Factors.erase(Factors.begin()+i);
1027       break;
1028     }
1029 
1030     // If this is a negative version of this factor, remove it.
1031     if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
1032       if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1033         if (FC1->getValue() == -FC2->getValue()) {
1034           FoundFactor = NeedsNegate = true;
1035           Factors.erase(Factors.begin()+i);
1036           break;
1037         }
1038     } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1039       if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
1040         const APFloat &F1 = FC1->getValueAPF();
1041         APFloat F2(FC2->getValueAPF());
1042         F2.changeSign();
1043         if (F1.compare(F2) == APFloat::cmpEqual) {
1044           FoundFactor = NeedsNegate = true;
1045           Factors.erase(Factors.begin() + i);
1046           break;
1047         }
1048       }
1049     }
1050   }
1051 
1052   if (!FoundFactor) {
1053     // Make sure to restore the operands to the expression tree.
1054     RewriteExprTree(BO, Factors);
1055     return nullptr;
1056   }
1057 
1058   BasicBlock::iterator InsertPt = ++BO->getIterator();
1059 
1060   // If this was just a single multiply, remove the multiply and return the only
1061   // remaining operand.
1062   if (Factors.size() == 1) {
1063     RedoInsts.insert(BO);
1064     V = Factors[0].Op;
1065   } else {
1066     RewriteExprTree(BO, Factors);
1067     V = BO;
1068   }
1069 
1070   if (NeedsNegate)
1071     V = CreateNeg(V, "neg", &*InsertPt, BO);
1072 
1073   return V;
1074 }
1075 
1076 /// If V is a single-use multiply, recursively add its operands as factors,
1077 /// otherwise add V to the list of factors.
1078 ///
1079 /// Ops is the top-level list of add operands we're trying to factor.
1080 static void FindSingleUseMultiplyFactors(Value *V,
1081                                          SmallVectorImpl<Value*> &Factors) {
1082   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1083   if (!BO) {
1084     Factors.push_back(V);
1085     return;
1086   }
1087 
1088   // Otherwise, add the LHS and RHS to the list of factors.
1089   FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
1090   FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
1091 }
1092 
1093 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1094 /// This optimizes based on identities.  If it can be reduced to a single Value,
1095 /// it is returned, otherwise the Ops list is mutated as necessary.
1096 static Value *OptimizeAndOrXor(unsigned Opcode,
1097                                SmallVectorImpl<ValueEntry> &Ops) {
1098   // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1099   // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1100   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1101     // First, check for X and ~X in the operand list.
1102     assert(i < Ops.size());
1103     if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
1104       Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1105       unsigned FoundX = FindInOperandList(Ops, i, X);
1106       if (FoundX != i) {
1107         if (Opcode == Instruction::And)   // ...&X&~X = 0
1108           return Constant::getNullValue(X->getType());
1109 
1110         if (Opcode == Instruction::Or)    // ...|X|~X = -1
1111           return Constant::getAllOnesValue(X->getType());
1112       }
1113     }
1114 
1115     // Next, check for duplicate pairs of values, which we assume are next to
1116     // each other, due to our sorting criteria.
1117     assert(i < Ops.size());
1118     if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1119       if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1120         // Drop duplicate values for And and Or.
1121         Ops.erase(Ops.begin()+i);
1122         --i; --e;
1123         ++NumAnnihil;
1124         continue;
1125       }
1126 
1127       // Drop pairs of values for Xor.
1128       assert(Opcode == Instruction::Xor);
1129       if (e == 2)
1130         return Constant::getNullValue(Ops[0].Op->getType());
1131 
1132       // Y ^ X^X -> Y
1133       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1134       i -= 1; e -= 2;
1135       ++NumAnnihil;
1136     }
1137   }
1138   return nullptr;
1139 }
1140 
1141 /// Helper function of CombineXorOpnd(). It creates a bitwise-and
1142 /// instruction with the given two operands, and return the resulting
1143 /// instruction. There are two special cases: 1) if the constant operand is 0,
1144 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1145 /// be returned.
1146 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1147                              const APInt &ConstOpnd) {
1148   if (ConstOpnd.isNullValue())
1149     return nullptr;
1150 
1151   if (ConstOpnd.isAllOnesValue())
1152     return Opnd;
1153 
1154   Instruction *I = BinaryOperator::CreateAnd(
1155       Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra",
1156       InsertBefore);
1157   I->setDebugLoc(InsertBefore->getDebugLoc());
1158   return I;
1159 }
1160 
1161 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1162 // into "R ^ C", where C would be 0, and R is a symbolic value.
1163 //
1164 // If it was successful, true is returned, and the "R" and "C" is returned
1165 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1166 // and both "Res" and "ConstOpnd" remain unchanged.
1167 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1168                                      APInt &ConstOpnd, Value *&Res) {
1169   // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1170   //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
1171   //                       = (x & ~c1) ^ (c1 ^ c2)
1172   // It is useful only when c1 == c2.
1173   if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isNullValue())
1174     return false;
1175 
1176   if (!Opnd1->getValue()->hasOneUse())
1177     return false;
1178 
1179   const APInt &C1 = Opnd1->getConstPart();
1180   if (C1 != ConstOpnd)
1181     return false;
1182 
1183   Value *X = Opnd1->getSymbolicPart();
1184   Res = createAndInstr(I, X, ~C1);
1185   // ConstOpnd was C2, now C1 ^ C2.
1186   ConstOpnd ^= C1;
1187 
1188   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1189     RedoInsts.insert(T);
1190   return true;
1191 }
1192 
1193 // Helper function of OptimizeXor(). It tries to simplify
1194 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1195 // symbolic value.
1196 //
1197 // If it was successful, true is returned, and the "R" and "C" is returned
1198 // via "Res" and "ConstOpnd", respectively (If the entire expression is
1199 // evaluated to a constant, the Res is set to NULL); otherwise, false is
1200 // returned, and both "Res" and "ConstOpnd" remain unchanged.
1201 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1202                                      XorOpnd *Opnd2, APInt &ConstOpnd,
1203                                      Value *&Res) {
1204   Value *X = Opnd1->getSymbolicPart();
1205   if (X != Opnd2->getSymbolicPart())
1206     return false;
1207 
1208   // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1209   int DeadInstNum = 1;
1210   if (Opnd1->getValue()->hasOneUse())
1211     DeadInstNum++;
1212   if (Opnd2->getValue()->hasOneUse())
1213     DeadInstNum++;
1214 
1215   // Xor-Rule 2:
1216   //  (x | c1) ^ (x & c2)
1217   //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1218   //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
1219   //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
1220   //
1221   if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1222     if (Opnd2->isOrExpr())
1223       std::swap(Opnd1, Opnd2);
1224 
1225     const APInt &C1 = Opnd1->getConstPart();
1226     const APInt &C2 = Opnd2->getConstPart();
1227     APInt C3((~C1) ^ C2);
1228 
1229     // Do not increase code size!
1230     if (!C3.isNullValue() && !C3.isAllOnesValue()) {
1231       int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1232       if (NewInstNum > DeadInstNum)
1233         return false;
1234     }
1235 
1236     Res = createAndInstr(I, X, C3);
1237     ConstOpnd ^= C1;
1238   } else if (Opnd1->isOrExpr()) {
1239     // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1240     //
1241     const APInt &C1 = Opnd1->getConstPart();
1242     const APInt &C2 = Opnd2->getConstPart();
1243     APInt C3 = C1 ^ C2;
1244 
1245     // Do not increase code size
1246     if (!C3.isNullValue() && !C3.isAllOnesValue()) {
1247       int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1248       if (NewInstNum > DeadInstNum)
1249         return false;
1250     }
1251 
1252     Res = createAndInstr(I, X, C3);
1253     ConstOpnd ^= C3;
1254   } else {
1255     // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1256     //
1257     const APInt &C1 = Opnd1->getConstPart();
1258     const APInt &C2 = Opnd2->getConstPart();
1259     APInt C3 = C1 ^ C2;
1260     Res = createAndInstr(I, X, C3);
1261   }
1262 
1263   // Put the original operands in the Redo list; hope they will be deleted
1264   // as dead code.
1265   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1266     RedoInsts.insert(T);
1267   if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1268     RedoInsts.insert(T);
1269 
1270   return true;
1271 }
1272 
1273 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1274 /// to a single Value, it is returned, otherwise the Ops list is mutated as
1275 /// necessary.
1276 Value *ReassociatePass::OptimizeXor(Instruction *I,
1277                                     SmallVectorImpl<ValueEntry> &Ops) {
1278   if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1279     return V;
1280 
1281   if (Ops.size() == 1)
1282     return nullptr;
1283 
1284   SmallVector<XorOpnd, 8> Opnds;
1285   SmallVector<XorOpnd*, 8> OpndPtrs;
1286   Type *Ty = Ops[0].Op->getType();
1287   APInt ConstOpnd(Ty->getScalarSizeInBits(), 0);
1288 
1289   // Step 1: Convert ValueEntry to XorOpnd
1290   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1291     Value *V = Ops[i].Op;
1292     const APInt *C;
1293     // TODO: Support non-splat vectors.
1294     if (match(V, PatternMatch::m_APInt(C))) {
1295       ConstOpnd ^= *C;
1296     } else {
1297       XorOpnd O(V);
1298       O.setSymbolicRank(getRank(O.getSymbolicPart()));
1299       Opnds.push_back(O);
1300     }
1301   }
1302 
1303   // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1304   //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1305   //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1306   //  with the previous loop --- the iterator of the "Opnds" may be invalidated
1307   //  when new elements are added to the vector.
1308   for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1309     OpndPtrs.push_back(&Opnds[i]);
1310 
1311   // Step 2: Sort the Xor-Operands in a way such that the operands containing
1312   //  the same symbolic value cluster together. For instance, the input operand
1313   //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1314   //  ("x | 123", "x & 789", "y & 456").
1315   //
1316   //  The purpose is twofold:
1317   //  1) Cluster together the operands sharing the same symbolic-value.
1318   //  2) Operand having smaller symbolic-value-rank is permuted earlier, which
1319   //     could potentially shorten crital path, and expose more loop-invariants.
1320   //     Note that values' rank are basically defined in RPO order (FIXME).
1321   //     So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
1322   //     than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
1323   //     "z" in the order of X-Y-Z is better than any other orders.
1324   std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(),
1325                    [](XorOpnd *LHS, XorOpnd *RHS) {
1326     return LHS->getSymbolicRank() < RHS->getSymbolicRank();
1327   });
1328 
1329   // Step 3: Combine adjacent operands
1330   XorOpnd *PrevOpnd = nullptr;
1331   bool Changed = false;
1332   for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
1333     XorOpnd *CurrOpnd = OpndPtrs[i];
1334     // The combined value
1335     Value *CV;
1336 
1337     // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1338     if (!ConstOpnd.isNullValue() &&
1339         CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1340       Changed = true;
1341       if (CV)
1342         *CurrOpnd = XorOpnd(CV);
1343       else {
1344         CurrOpnd->Invalidate();
1345         continue;
1346       }
1347     }
1348 
1349     if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1350       PrevOpnd = CurrOpnd;
1351       continue;
1352     }
1353 
1354     // step 3.2: When previous and current operands share the same symbolic
1355     //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1356     if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1357       // Remove previous operand
1358       PrevOpnd->Invalidate();
1359       if (CV) {
1360         *CurrOpnd = XorOpnd(CV);
1361         PrevOpnd = CurrOpnd;
1362       } else {
1363         CurrOpnd->Invalidate();
1364         PrevOpnd = nullptr;
1365       }
1366       Changed = true;
1367     }
1368   }
1369 
1370   // Step 4: Reassemble the Ops
1371   if (Changed) {
1372     Ops.clear();
1373     for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1374       XorOpnd &O = Opnds[i];
1375       if (O.isInvalid())
1376         continue;
1377       ValueEntry VE(getRank(O.getValue()), O.getValue());
1378       Ops.push_back(VE);
1379     }
1380     if (!ConstOpnd.isNullValue()) {
1381       Value *C = ConstantInt::get(Ty, ConstOpnd);
1382       ValueEntry VE(getRank(C), C);
1383       Ops.push_back(VE);
1384     }
1385     unsigned Sz = Ops.size();
1386     if (Sz == 1)
1387       return Ops.back().Op;
1388     if (Sz == 0) {
1389       assert(ConstOpnd.isNullValue());
1390       return ConstantInt::get(Ty, ConstOpnd);
1391     }
1392   }
1393 
1394   return nullptr;
1395 }
1396 
1397 /// Optimize a series of operands to an 'add' instruction.  This
1398 /// optimizes based on identities.  If it can be reduced to a single Value, it
1399 /// is returned, otherwise the Ops list is mutated as necessary.
1400 Value *ReassociatePass::OptimizeAdd(Instruction *I,
1401                                     SmallVectorImpl<ValueEntry> &Ops) {
1402   // Scan the operand lists looking for X and -X pairs.  If we find any, we
1403   // can simplify expressions like X+-X == 0 and X+~X ==-1.  While we're at it,
1404   // scan for any
1405   // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1406 
1407   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1408     Value *TheOp = Ops[i].Op;
1409     // Check to see if we've seen this operand before.  If so, we factor all
1410     // instances of the operand together.  Due to our sorting criteria, we know
1411     // that these need to be next to each other in the vector.
1412     if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1413       // Rescan the list, remove all instances of this operand from the expr.
1414       unsigned NumFound = 0;
1415       do {
1416         Ops.erase(Ops.begin()+i);
1417         ++NumFound;
1418       } while (i != Ops.size() && Ops[i].Op == TheOp);
1419 
1420       DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
1421       ++NumFactor;
1422 
1423       // Insert a new multiply.
1424       Type *Ty = TheOp->getType();
1425       Constant *C = Ty->isIntOrIntVectorTy() ?
1426         ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
1427       Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
1428 
1429       // Now that we have inserted a multiply, optimize it. This allows us to
1430       // handle cases that require multiple factoring steps, such as this:
1431       // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1432       RedoInsts.insert(Mul);
1433 
1434       // If every add operand was a duplicate, return the multiply.
1435       if (Ops.empty())
1436         return Mul;
1437 
1438       // Otherwise, we had some input that didn't have the dupe, such as
1439       // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
1440       // things being added by this operation.
1441       Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1442 
1443       --i;
1444       e = Ops.size();
1445       continue;
1446     }
1447 
1448     // Check for X and -X or X and ~X in the operand list.
1449     if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) &&
1450         !BinaryOperator::isNot(TheOp))
1451       continue;
1452 
1453     Value *X = nullptr;
1454     if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))
1455       X = BinaryOperator::getNegArgument(TheOp);
1456     else if (BinaryOperator::isNot(TheOp))
1457       X = BinaryOperator::getNotArgument(TheOp);
1458 
1459     unsigned FoundX = FindInOperandList(Ops, i, X);
1460     if (FoundX == i)
1461       continue;
1462 
1463     // Remove X and -X from the operand list.
1464     if (Ops.size() == 2 &&
1465         (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)))
1466       return Constant::getNullValue(X->getType());
1467 
1468     // Remove X and ~X from the operand list.
1469     if (Ops.size() == 2 && BinaryOperator::isNot(TheOp))
1470       return Constant::getAllOnesValue(X->getType());
1471 
1472     Ops.erase(Ops.begin()+i);
1473     if (i < FoundX)
1474       --FoundX;
1475     else
1476       --i;   // Need to back up an extra one.
1477     Ops.erase(Ops.begin()+FoundX);
1478     ++NumAnnihil;
1479     --i;     // Revisit element.
1480     e -= 2;  // Removed two elements.
1481 
1482     // if X and ~X we append -1 to the operand list.
1483     if (BinaryOperator::isNot(TheOp)) {
1484       Value *V = Constant::getAllOnesValue(X->getType());
1485       Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1486       e += 1;
1487     }
1488   }
1489 
1490   // Scan the operand list, checking to see if there are any common factors
1491   // between operands.  Consider something like A*A+A*B*C+D.  We would like to
1492   // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1493   // To efficiently find this, we count the number of times a factor occurs
1494   // for any ADD operands that are MULs.
1495   DenseMap<Value*, unsigned> FactorOccurrences;
1496 
1497   // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1498   // where they are actually the same multiply.
1499   unsigned MaxOcc = 0;
1500   Value *MaxOccVal = nullptr;
1501   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1502     BinaryOperator *BOp =
1503         isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1504     if (!BOp)
1505       continue;
1506 
1507     // Compute all of the factors of this added value.
1508     SmallVector<Value*, 8> Factors;
1509     FindSingleUseMultiplyFactors(BOp, Factors);
1510     assert(Factors.size() > 1 && "Bad linearize!");
1511 
1512     // Add one to FactorOccurrences for each unique factor in this op.
1513     SmallPtrSet<Value*, 8> Duplicates;
1514     for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1515       Value *Factor = Factors[i];
1516       if (!Duplicates.insert(Factor).second)
1517         continue;
1518 
1519       unsigned Occ = ++FactorOccurrences[Factor];
1520       if (Occ > MaxOcc) {
1521         MaxOcc = Occ;
1522         MaxOccVal = Factor;
1523       }
1524 
1525       // If Factor is a negative constant, add the negated value as a factor
1526       // because we can percolate the negate out.  Watch for minint, which
1527       // cannot be positivified.
1528       if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
1529         if (CI->isNegative() && !CI->isMinValue(true)) {
1530           Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1531           if (!Duplicates.insert(Factor).second)
1532             continue;
1533           unsigned Occ = ++FactorOccurrences[Factor];
1534           if (Occ > MaxOcc) {
1535             MaxOcc = Occ;
1536             MaxOccVal = Factor;
1537           }
1538         }
1539       } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1540         if (CF->isNegative()) {
1541           APFloat F(CF->getValueAPF());
1542           F.changeSign();
1543           Factor = ConstantFP::get(CF->getContext(), F);
1544           if (!Duplicates.insert(Factor).second)
1545             continue;
1546           unsigned Occ = ++FactorOccurrences[Factor];
1547           if (Occ > MaxOcc) {
1548             MaxOcc = Occ;
1549             MaxOccVal = Factor;
1550           }
1551         }
1552       }
1553     }
1554   }
1555 
1556   // If any factor occurred more than one time, we can pull it out.
1557   if (MaxOcc > 1) {
1558     DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
1559     ++NumFactor;
1560 
1561     // Create a new instruction that uses the MaxOccVal twice.  If we don't do
1562     // this, we could otherwise run into situations where removing a factor
1563     // from an expression will drop a use of maxocc, and this can cause
1564     // RemoveFactorFromExpression on successive values to behave differently.
1565     Instruction *DummyInst =
1566         I->getType()->isIntOrIntVectorTy()
1567             ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1568             : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1569 
1570     SmallVector<WeakTrackingVH, 4> NewMulOps;
1571     for (unsigned i = 0; i != Ops.size(); ++i) {
1572       // Only try to remove factors from expressions we're allowed to.
1573       BinaryOperator *BOp =
1574           isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1575       if (!BOp)
1576         continue;
1577 
1578       if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1579         // The factorized operand may occur several times.  Convert them all in
1580         // one fell swoop.
1581         for (unsigned j = Ops.size(); j != i;) {
1582           --j;
1583           if (Ops[j].Op == Ops[i].Op) {
1584             NewMulOps.push_back(V);
1585             Ops.erase(Ops.begin()+j);
1586           }
1587         }
1588         --i;
1589       }
1590     }
1591 
1592     // No need for extra uses anymore.
1593     DummyInst->deleteValue();
1594 
1595     unsigned NumAddedValues = NewMulOps.size();
1596     Value *V = EmitAddTreeOfValues(I, NewMulOps);
1597 
1598     // Now that we have inserted the add tree, optimize it. This allows us to
1599     // handle cases that require multiple factoring steps, such as this:
1600     // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
1601     assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1602     (void)NumAddedValues;
1603     if (Instruction *VI = dyn_cast<Instruction>(V))
1604       RedoInsts.insert(VI);
1605 
1606     // Create the multiply.
1607     Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I);
1608 
1609     // Rerun associate on the multiply in case the inner expression turned into
1610     // a multiply.  We want to make sure that we keep things in canonical form.
1611     RedoInsts.insert(V2);
1612 
1613     // If every add operand included the factor (e.g. "A*B + A*C"), then the
1614     // entire result expression is just the multiply "A*(B+C)".
1615     if (Ops.empty())
1616       return V2;
1617 
1618     // Otherwise, we had some input that didn't have the factor, such as
1619     // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
1620     // things being added by this operation.
1621     Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1622   }
1623 
1624   return nullptr;
1625 }
1626 
1627 /// \brief Build up a vector of value/power pairs factoring a product.
1628 ///
1629 /// Given a series of multiplication operands, build a vector of factors and
1630 /// the powers each is raised to when forming the final product. Sort them in
1631 /// the order of descending power.
1632 ///
1633 ///      (x*x)          -> [(x, 2)]
1634 ///     ((x*x)*x)       -> [(x, 3)]
1635 ///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1636 ///
1637 /// \returns Whether any factors have a power greater than one.
1638 static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1639                                    SmallVectorImpl<Factor> &Factors) {
1640   // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1641   // Compute the sum of powers of simplifiable factors.
1642   unsigned FactorPowerSum = 0;
1643   for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1644     Value *Op = Ops[Idx-1].Op;
1645 
1646     // Count the number of occurrences of this value.
1647     unsigned Count = 1;
1648     for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1649       ++Count;
1650     // Track for simplification all factors which occur 2 or more times.
1651     if (Count > 1)
1652       FactorPowerSum += Count;
1653   }
1654 
1655   // We can only simplify factors if the sum of the powers of our simplifiable
1656   // factors is 4 or higher. When that is the case, we will *always* have
1657   // a simplification. This is an important invariant to prevent cyclicly
1658   // trying to simplify already minimal formations.
1659   if (FactorPowerSum < 4)
1660     return false;
1661 
1662   // Now gather the simplifiable factors, removing them from Ops.
1663   FactorPowerSum = 0;
1664   for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1665     Value *Op = Ops[Idx-1].Op;
1666 
1667     // Count the number of occurrences of this value.
1668     unsigned Count = 1;
1669     for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1670       ++Count;
1671     if (Count == 1)
1672       continue;
1673     // Move an even number of occurrences to Factors.
1674     Count &= ~1U;
1675     Idx -= Count;
1676     FactorPowerSum += Count;
1677     Factors.push_back(Factor(Op, Count));
1678     Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1679   }
1680 
1681   // None of the adjustments above should have reduced the sum of factor powers
1682   // below our mininum of '4'.
1683   assert(FactorPowerSum >= 4);
1684 
1685   std::stable_sort(Factors.begin(), Factors.end(),
1686                    [](const Factor &LHS, const Factor &RHS) {
1687     return LHS.Power > RHS.Power;
1688   });
1689   return true;
1690 }
1691 
1692 /// \brief Build a tree of multiplies, computing the product of Ops.
1693 static Value *buildMultiplyTree(IRBuilder<> &Builder,
1694                                 SmallVectorImpl<Value*> &Ops) {
1695   if (Ops.size() == 1)
1696     return Ops.back();
1697 
1698   Value *LHS = Ops.pop_back_val();
1699   do {
1700     if (LHS->getType()->isIntOrIntVectorTy())
1701       LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1702     else
1703       LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
1704   } while (!Ops.empty());
1705 
1706   return LHS;
1707 }
1708 
1709 /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1710 ///
1711 /// Given a vector of values raised to various powers, where no two values are
1712 /// equal and the powers are sorted in decreasing order, compute the minimal
1713 /// DAG of multiplies to compute the final product, and return that product
1714 /// value.
1715 Value *
1716 ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1717                                          SmallVectorImpl<Factor> &Factors) {
1718   assert(Factors[0].Power);
1719   SmallVector<Value *, 4> OuterProduct;
1720   for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1721        Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1722     if (Factors[Idx].Power != Factors[LastIdx].Power) {
1723       LastIdx = Idx;
1724       continue;
1725     }
1726 
1727     // We want to multiply across all the factors with the same power so that
1728     // we can raise them to that power as a single entity. Build a mini tree
1729     // for that.
1730     SmallVector<Value *, 4> InnerProduct;
1731     InnerProduct.push_back(Factors[LastIdx].Base);
1732     do {
1733       InnerProduct.push_back(Factors[Idx].Base);
1734       ++Idx;
1735     } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1736 
1737     // Reset the base value of the first factor to the new expression tree.
1738     // We'll remove all the factors with the same power in a second pass.
1739     Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1740     if (Instruction *MI = dyn_cast<Instruction>(M))
1741       RedoInsts.insert(MI);
1742 
1743     LastIdx = Idx;
1744   }
1745   // Unique factors with equal powers -- we've folded them into the first one's
1746   // base.
1747   Factors.erase(std::unique(Factors.begin(), Factors.end(),
1748                             [](const Factor &LHS, const Factor &RHS) {
1749                               return LHS.Power == RHS.Power;
1750                             }),
1751                 Factors.end());
1752 
1753   // Iteratively collect the base of each factor with an add power into the
1754   // outer product, and halve each power in preparation for squaring the
1755   // expression.
1756   for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1757     if (Factors[Idx].Power & 1)
1758       OuterProduct.push_back(Factors[Idx].Base);
1759     Factors[Idx].Power >>= 1;
1760   }
1761   if (Factors[0].Power) {
1762     Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1763     OuterProduct.push_back(SquareRoot);
1764     OuterProduct.push_back(SquareRoot);
1765   }
1766   if (OuterProduct.size() == 1)
1767     return OuterProduct.front();
1768 
1769   Value *V = buildMultiplyTree(Builder, OuterProduct);
1770   return V;
1771 }
1772 
1773 Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
1774                                     SmallVectorImpl<ValueEntry> &Ops) {
1775   // We can only optimize the multiplies when there is a chain of more than
1776   // three, such that a balanced tree might require fewer total multiplies.
1777   if (Ops.size() < 4)
1778     return nullptr;
1779 
1780   // Try to turn linear trees of multiplies without other uses of the
1781   // intermediate stages into minimal multiply DAGs with perfect sub-expression
1782   // re-use.
1783   SmallVector<Factor, 4> Factors;
1784   if (!collectMultiplyFactors(Ops, Factors))
1785     return nullptr; // All distinct factors, so nothing left for us to do.
1786 
1787   IRBuilder<> Builder(I);
1788   // The reassociate transformation for FP operations is performed only
1789   // if unsafe algebra is permitted by FastMathFlags. Propagate those flags
1790   // to the newly generated operations.
1791   if (auto FPI = dyn_cast<FPMathOperator>(I))
1792     Builder.setFastMathFlags(FPI->getFastMathFlags());
1793 
1794   Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1795   if (Ops.empty())
1796     return V;
1797 
1798   ValueEntry NewEntry = ValueEntry(getRank(V), V);
1799   Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
1800   return nullptr;
1801 }
1802 
1803 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
1804                                            SmallVectorImpl<ValueEntry> &Ops) {
1805   // Now that we have the linearized expression tree, try to optimize it.
1806   // Start by folding any constants that we found.
1807   Constant *Cst = nullptr;
1808   unsigned Opcode = I->getOpcode();
1809   while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1810     Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1811     Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1812   }
1813   // If there was nothing but constants then we are done.
1814   if (Ops.empty())
1815     return Cst;
1816 
1817   // Put the combined constant back at the end of the operand list, except if
1818   // there is no point.  For example, an add of 0 gets dropped here, while a
1819   // multiplication by zero turns the whole expression into zero.
1820   if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1821     if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1822       return Cst;
1823     Ops.push_back(ValueEntry(0, Cst));
1824   }
1825 
1826   if (Ops.size() == 1) return Ops[0].Op;
1827 
1828   // Handle destructive annihilation due to identities between elements in the
1829   // argument list here.
1830   unsigned NumOps = Ops.size();
1831   switch (Opcode) {
1832   default: break;
1833   case Instruction::And:
1834   case Instruction::Or:
1835     if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1836       return Result;
1837     break;
1838 
1839   case Instruction::Xor:
1840     if (Value *Result = OptimizeXor(I, Ops))
1841       return Result;
1842     break;
1843 
1844   case Instruction::Add:
1845   case Instruction::FAdd:
1846     if (Value *Result = OptimizeAdd(I, Ops))
1847       return Result;
1848     break;
1849 
1850   case Instruction::Mul:
1851   case Instruction::FMul:
1852     if (Value *Result = OptimizeMul(I, Ops))
1853       return Result;
1854     break;
1855   }
1856 
1857   if (Ops.size() != NumOps)
1858     return OptimizeExpression(I, Ops);
1859   return nullptr;
1860 }
1861 
1862 // Remove dead instructions and if any operands are trivially dead add them to
1863 // Insts so they will be removed as well.
1864 void ReassociatePass::RecursivelyEraseDeadInsts(
1865     Instruction *I, SetVector<AssertingVH<Instruction>> &Insts) {
1866   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1867   SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end());
1868   ValueRankMap.erase(I);
1869   Insts.remove(I);
1870   RedoInsts.remove(I);
1871   I->eraseFromParent();
1872   for (auto Op : Ops)
1873     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1874       if (OpInst->use_empty())
1875         Insts.insert(OpInst);
1876 }
1877 
1878 /// Zap the given instruction, adding interesting operands to the work list.
1879 void ReassociatePass::EraseInst(Instruction *I) {
1880   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1881   DEBUG(dbgs() << "Erasing dead inst: "; I->dump());
1882 
1883   SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1884   // Erase the dead instruction.
1885   ValueRankMap.erase(I);
1886   RedoInsts.remove(I);
1887   I->eraseFromParent();
1888   // Optimize its operands.
1889   SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
1890   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1891     if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1892       // If this is a node in an expression tree, climb to the expression root
1893       // and add that since that's where optimization actually happens.
1894       unsigned Opcode = Op->getOpcode();
1895       while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
1896              Visited.insert(Op).second)
1897         Op = Op->user_back();
1898       RedoInsts.insert(Op);
1899     }
1900 
1901   MadeChange = true;
1902 }
1903 
1904 // Canonicalize expressions of the following form:
1905 //  x + (-Constant * y) -> x - (Constant * y)
1906 //  x - (-Constant * y) -> x + (Constant * y)
1907 Instruction *ReassociatePass::canonicalizeNegConstExpr(Instruction *I) {
1908   if (!I->hasOneUse() || I->getType()->isVectorTy())
1909     return nullptr;
1910 
1911   // Must be a fmul or fdiv instruction.
1912   unsigned Opcode = I->getOpcode();
1913   if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv)
1914     return nullptr;
1915 
1916   auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
1917   auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
1918 
1919   // Both operands are constant, let it get constant folded away.
1920   if (C0 && C1)
1921     return nullptr;
1922 
1923   ConstantFP *CF = C0 ? C0 : C1;
1924 
1925   // Must have one constant operand.
1926   if (!CF)
1927     return nullptr;
1928 
1929   // Must be a negative ConstantFP.
1930   if (!CF->isNegative())
1931     return nullptr;
1932 
1933   // User must be a binary operator with one or more uses.
1934   Instruction *User = I->user_back();
1935   if (!isa<BinaryOperator>(User) || User->use_empty())
1936     return nullptr;
1937 
1938   unsigned UserOpcode = User->getOpcode();
1939   if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub)
1940     return nullptr;
1941 
1942   // Subtraction is not commutative. Explicitly, the following transform is
1943   // not valid: (-Constant * y) - x  -> x + (Constant * y)
1944   if (!User->isCommutative() && User->getOperand(1) != I)
1945     return nullptr;
1946 
1947   // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the
1948   // resulting subtract will be broken up later.  This can get us into an
1949   // infinite loop during reassociation.
1950   if (UserOpcode == Instruction::FAdd && ShouldBreakUpSubtract(User))
1951     return nullptr;
1952 
1953   // Change the sign of the constant.
1954   APFloat Val = CF->getValueAPF();
1955   Val.changeSign();
1956   I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val));
1957 
1958   // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
1959   // ((-Const*y) + x) -> (x + (-Const*y)).
1960   if (User->getOperand(0) == I && User->isCommutative())
1961     cast<BinaryOperator>(User)->swapOperands();
1962 
1963   Value *Op0 = User->getOperand(0);
1964   Value *Op1 = User->getOperand(1);
1965   BinaryOperator *NI;
1966   switch (UserOpcode) {
1967   default:
1968     llvm_unreachable("Unexpected Opcode!");
1969   case Instruction::FAdd:
1970     NI = BinaryOperator::CreateFSub(Op0, Op1);
1971     NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1972     break;
1973   case Instruction::FSub:
1974     NI = BinaryOperator::CreateFAdd(Op0, Op1);
1975     NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1976     break;
1977   }
1978 
1979   NI->insertBefore(User);
1980   NI->setName(User->getName());
1981   User->replaceAllUsesWith(NI);
1982   NI->setDebugLoc(I->getDebugLoc());
1983   RedoInsts.insert(I);
1984   MadeChange = true;
1985   return NI;
1986 }
1987 
1988 /// Inspect and optimize the given instruction. Note that erasing
1989 /// instructions is not allowed.
1990 void ReassociatePass::OptimizeInst(Instruction *I) {
1991   // Only consider operations that we understand.
1992   if (!isa<BinaryOperator>(I))
1993     return;
1994 
1995   if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
1996     // If an operand of this shift is a reassociable multiply, or if the shift
1997     // is used by a reassociable multiply or add, turn into a multiply.
1998     if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
1999         (I->hasOneUse() &&
2000          (isReassociableOp(I->user_back(), Instruction::Mul) ||
2001           isReassociableOp(I->user_back(), Instruction::Add)))) {
2002       Instruction *NI = ConvertShiftToMul(I);
2003       RedoInsts.insert(I);
2004       MadeChange = true;
2005       I = NI;
2006     }
2007 
2008   // Canonicalize negative constants out of expressions.
2009   if (Instruction *Res = canonicalizeNegConstExpr(I))
2010     I = Res;
2011 
2012   // Commute binary operators, to canonicalize the order of their operands.
2013   // This can potentially expose more CSE opportunities, and makes writing other
2014   // transformations simpler.
2015   if (I->isCommutative())
2016     canonicalizeOperands(I);
2017 
2018   // Don't optimize floating-point instructions unless they are 'fast'.
2019   if (I->getType()->isFPOrFPVectorTy() && !I->isFast())
2020     return;
2021 
2022   // Do not reassociate boolean (i1) expressions.  We want to preserve the
2023   // original order of evaluation for short-circuited comparisons that
2024   // SimplifyCFG has folded to AND/OR expressions.  If the expression
2025   // is not further optimized, it is likely to be transformed back to a
2026   // short-circuited form for code gen, and the source order may have been
2027   // optimized for the most likely conditions.
2028   if (I->getType()->isIntegerTy(1))
2029     return;
2030 
2031   // If this is a subtract instruction which is not already in negate form,
2032   // see if we can convert it to X+-Y.
2033   if (I->getOpcode() == Instruction::Sub) {
2034     if (ShouldBreakUpSubtract(I)) {
2035       Instruction *NI = BreakUpSubtract(I, RedoInsts);
2036       RedoInsts.insert(I);
2037       MadeChange = true;
2038       I = NI;
2039     } else if (BinaryOperator::isNeg(I)) {
2040       // Otherwise, this is a negation.  See if the operand is a multiply tree
2041       // and if this is not an inner node of a multiply tree.
2042       if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2043           (!I->hasOneUse() ||
2044            !isReassociableOp(I->user_back(), Instruction::Mul))) {
2045         Instruction *NI = LowerNegateToMultiply(I);
2046         // If the negate was simplified, revisit the users to see if we can
2047         // reassociate further.
2048         for (User *U : NI->users()) {
2049           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2050             RedoInsts.insert(Tmp);
2051         }
2052         RedoInsts.insert(I);
2053         MadeChange = true;
2054         I = NI;
2055       }
2056     }
2057   } else if (I->getOpcode() == Instruction::FSub) {
2058     if (ShouldBreakUpSubtract(I)) {
2059       Instruction *NI = BreakUpSubtract(I, RedoInsts);
2060       RedoInsts.insert(I);
2061       MadeChange = true;
2062       I = NI;
2063     } else if (BinaryOperator::isFNeg(I)) {
2064       // Otherwise, this is a negation.  See if the operand is a multiply tree
2065       // and if this is not an inner node of a multiply tree.
2066       if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
2067           (!I->hasOneUse() ||
2068            !isReassociableOp(I->user_back(), Instruction::FMul))) {
2069         // If the negate was simplified, revisit the users to see if we can
2070         // reassociate further.
2071         Instruction *NI = LowerNegateToMultiply(I);
2072         for (User *U : NI->users()) {
2073           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2074             RedoInsts.insert(Tmp);
2075         }
2076         RedoInsts.insert(I);
2077         MadeChange = true;
2078         I = NI;
2079       }
2080     }
2081   }
2082 
2083   // If this instruction is an associative binary operator, process it.
2084   if (!I->isAssociative()) return;
2085   BinaryOperator *BO = cast<BinaryOperator>(I);
2086 
2087   // If this is an interior node of a reassociable tree, ignore it until we
2088   // get to the root of the tree, to avoid N^2 analysis.
2089   unsigned Opcode = BO->getOpcode();
2090   if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2091     // During the initial run we will get to the root of the tree.
2092     // But if we get here while we are redoing instructions, there is no
2093     // guarantee that the root will be visited. So Redo later
2094     if (BO->user_back() != BO &&
2095         BO->getParent() == BO->user_back()->getParent())
2096       RedoInsts.insert(BO->user_back());
2097     return;
2098   }
2099 
2100   // If this is an add tree that is used by a sub instruction, ignore it
2101   // until we process the subtract.
2102   if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
2103       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
2104     return;
2105   if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2106       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2107     return;
2108 
2109   ReassociateExpression(BO);
2110 }
2111 
2112 void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
2113   // First, walk the expression tree, linearizing the tree, collecting the
2114   // operand information.
2115   SmallVector<RepeatedValue, 8> Tree;
2116   MadeChange |= LinearizeExprTree(I, Tree);
2117   SmallVector<ValueEntry, 8> Ops;
2118   Ops.reserve(Tree.size());
2119   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
2120     RepeatedValue E = Tree[i];
2121     Ops.append(E.second.getZExtValue(),
2122                ValueEntry(getRank(E.first), E.first));
2123   }
2124 
2125   DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2126 
2127   // Now that we have linearized the tree to a list and have gathered all of
2128   // the operands and their ranks, sort the operands by their rank.  Use a
2129   // stable_sort so that values with equal ranks will have their relative
2130   // positions maintained (and so the compiler is deterministic).  Note that
2131   // this sorts so that the highest ranking values end up at the beginning of
2132   // the vector.
2133   std::stable_sort(Ops.begin(), Ops.end());
2134 
2135   // Now that we have the expression tree in a convenient
2136   // sorted form, optimize it globally if possible.
2137   if (Value *V = OptimizeExpression(I, Ops)) {
2138     if (V == I)
2139       // Self-referential expression in unreachable code.
2140       return;
2141     // This expression tree simplified to something that isn't a tree,
2142     // eliminate it.
2143     DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
2144     I->replaceAllUsesWith(V);
2145     if (Instruction *VI = dyn_cast<Instruction>(V))
2146       if (I->getDebugLoc())
2147         VI->setDebugLoc(I->getDebugLoc());
2148     RedoInsts.insert(I);
2149     ++NumAnnihil;
2150     return;
2151   }
2152 
2153   // We want to sink immediates as deeply as possible except in the case where
2154   // this is a multiply tree used only by an add, and the immediate is a -1.
2155   // In this case we reassociate to put the negation on the outside so that we
2156   // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
2157   if (I->hasOneUse()) {
2158     if (I->getOpcode() == Instruction::Mul &&
2159         cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2160         isa<ConstantInt>(Ops.back().Op) &&
2161         cast<ConstantInt>(Ops.back().Op)->isMinusOne()) {
2162       ValueEntry Tmp = Ops.pop_back_val();
2163       Ops.insert(Ops.begin(), Tmp);
2164     } else if (I->getOpcode() == Instruction::FMul &&
2165                cast<Instruction>(I->user_back())->getOpcode() ==
2166                    Instruction::FAdd &&
2167                isa<ConstantFP>(Ops.back().Op) &&
2168                cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2169       ValueEntry Tmp = Ops.pop_back_val();
2170       Ops.insert(Ops.begin(), Tmp);
2171     }
2172   }
2173 
2174   DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
2175 
2176   if (Ops.size() == 1) {
2177     if (Ops[0].Op == I)
2178       // Self-referential expression in unreachable code.
2179       return;
2180 
2181     // This expression tree simplified to something that isn't a tree,
2182     // eliminate it.
2183     I->replaceAllUsesWith(Ops[0].Op);
2184     if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2185       OI->setDebugLoc(I->getDebugLoc());
2186     RedoInsts.insert(I);
2187     return;
2188   }
2189 
2190   // Now that we ordered and optimized the expressions, splat them back into
2191   // the expression tree, removing any unneeded nodes.
2192   RewriteExprTree(I, Ops);
2193 }
2194 
2195 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
2196   // Get the functions basic blocks in Reverse Post Order. This order is used by
2197   // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic
2198   // blocks (it has been seen that the analysis in this pass could hang when
2199   // analysing dead basic blocks).
2200   ReversePostOrderTraversal<Function *> RPOT(&F);
2201 
2202   // Calculate the rank map for F.
2203   BuildRankMap(F, RPOT);
2204 
2205   MadeChange = false;
2206   // Traverse the same blocks that was analysed by BuildRankMap.
2207   for (BasicBlock *BI : RPOT) {
2208     assert(RankMap.count(&*BI) && "BB should be ranked.");
2209     // Optimize every instruction in the basic block.
2210     for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;)
2211       if (isInstructionTriviallyDead(&*II)) {
2212         EraseInst(&*II++);
2213       } else {
2214         OptimizeInst(&*II);
2215         assert(II->getParent() == &*BI && "Moved to a different block!");
2216         ++II;
2217       }
2218 
2219     // Make a copy of all the instructions to be redone so we can remove dead
2220     // instructions.
2221     SetVector<AssertingVH<Instruction>> ToRedo(RedoInsts);
2222     // Iterate over all instructions to be reevaluated and remove trivially dead
2223     // instructions. If any operand of the trivially dead instruction becomes
2224     // dead mark it for deletion as well. Continue this process until all
2225     // trivially dead instructions have been removed.
2226     while (!ToRedo.empty()) {
2227       Instruction *I = ToRedo.pop_back_val();
2228       if (isInstructionTriviallyDead(I)) {
2229         RecursivelyEraseDeadInsts(I, ToRedo);
2230         MadeChange = true;
2231       }
2232     }
2233 
2234     // Now that we have removed dead instructions, we can reoptimize the
2235     // remaining instructions.
2236     while (!RedoInsts.empty()) {
2237       Instruction *I = RedoInsts.pop_back_val();
2238       if (isInstructionTriviallyDead(I))
2239         EraseInst(I);
2240       else
2241         OptimizeInst(I);
2242     }
2243   }
2244 
2245   // We are done with the rank map.
2246   RankMap.clear();
2247   ValueRankMap.clear();
2248 
2249   if (MadeChange) {
2250     PreservedAnalyses PA;
2251     PA.preserveSet<CFGAnalyses>();
2252     PA.preserve<GlobalsAA>();
2253     return PA;
2254   }
2255 
2256   return PreservedAnalyses::all();
2257 }
2258 
2259 namespace {
2260 
2261   class ReassociateLegacyPass : public FunctionPass {
2262     ReassociatePass Impl;
2263 
2264   public:
2265     static char ID; // Pass identification, replacement for typeid
2266 
2267     ReassociateLegacyPass() : FunctionPass(ID) {
2268       initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
2269     }
2270 
2271     bool runOnFunction(Function &F) override {
2272       if (skipFunction(F))
2273         return false;
2274 
2275       FunctionAnalysisManager DummyFAM;
2276       auto PA = Impl.run(F, DummyFAM);
2277       return !PA.areAllPreserved();
2278     }
2279 
2280     void getAnalysisUsage(AnalysisUsage &AU) const override {
2281       AU.setPreservesCFG();
2282       AU.addPreserved<GlobalsAAWrapperPass>();
2283     }
2284   };
2285 
2286 } // end anonymous namespace
2287 
2288 char ReassociateLegacyPass::ID = 0;
2289 
2290 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
2291                 "Reassociate expressions", false, false)
2292 
2293 // Public interface to the Reassociate pass
2294 FunctionPass *llvm::createReassociatePass() {
2295   return new ReassociateLegacyPass();
2296 }
2297