1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass reassociates commutative expressions in an order that is designed
11 // to promote better constant propagation, GCSE, LICM, PRE, etc.
12 //
13 // For example: 4 + (x + 5) -> x + (4 + 5)
14 //
15 // In the implementation of this algorithm, constants are assigned rank = 0,
16 // function arguments are rank = 1, and other values are assigned ranks
17 // corresponding to the reverse post order traversal of current function
18 // (starting at 2), which effectively gives values in deep loops higher rank
19 // than values not in loops.
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/Transforms/Scalar/Reassociate.h"
24 #include "llvm/ADT/APFloat.h"
25 #include "llvm/ADT/APInt.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/SetVector.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/Analysis/GlobalsModRef.h"
34 #include "llvm/Transforms/Utils/Local.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/Argument.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/IRBuilder.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Operator.h"
48 #include "llvm/IR/PassManager.h"
49 #include "llvm/IR/PatternMatch.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/User.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/IR/ValueHandle.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Transforms/Scalar.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <utility>
63 
64 using namespace llvm;
65 using namespace reassociate;
66 using namespace PatternMatch;
67 
68 #define DEBUG_TYPE "reassociate"
69 
70 STATISTIC(NumChanged, "Number of insts reassociated");
71 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
72 STATISTIC(NumFactor , "Number of multiplies factored");
73 
74 #ifndef NDEBUG
75 /// Print out the expression identified in the Ops list.
76 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
77   Module *M = I->getModule();
78   dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
79        << *Ops[0].Op->getType() << '\t';
80   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
81     dbgs() << "[ ";
82     Ops[i].Op->printAsOperand(dbgs(), false, M);
83     dbgs() << ", #" << Ops[i].Rank << "] ";
84   }
85 }
86 #endif
87 
88 /// Utility class representing a non-constant Xor-operand. We classify
89 /// non-constant Xor-Operands into two categories:
90 ///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
91 ///  C2)
92 ///    C2.1) The operand is in the form of "X | C", where C is a non-zero
93 ///          constant.
94 ///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
95 ///          operand as "E | 0"
96 class llvm::reassociate::XorOpnd {
97 public:
98   XorOpnd(Value *V);
99 
100   bool isInvalid() const { return SymbolicPart == nullptr; }
101   bool isOrExpr() const { return isOr; }
102   Value *getValue() const { return OrigVal; }
103   Value *getSymbolicPart() const { return SymbolicPart; }
104   unsigned getSymbolicRank() const { return SymbolicRank; }
105   const APInt &getConstPart() const { return ConstPart; }
106 
107   void Invalidate() { SymbolicPart = OrigVal = nullptr; }
108   void setSymbolicRank(unsigned R) { SymbolicRank = R; }
109 
110 private:
111   Value *OrigVal;
112   Value *SymbolicPart;
113   APInt ConstPart;
114   unsigned SymbolicRank;
115   bool isOr;
116 };
117 
118 XorOpnd::XorOpnd(Value *V) {
119   assert(!isa<ConstantInt>(V) && "No ConstantInt");
120   OrigVal = V;
121   Instruction *I = dyn_cast<Instruction>(V);
122   SymbolicRank = 0;
123 
124   if (I && (I->getOpcode() == Instruction::Or ||
125             I->getOpcode() == Instruction::And)) {
126     Value *V0 = I->getOperand(0);
127     Value *V1 = I->getOperand(1);
128     const APInt *C;
129     if (match(V0, m_APInt(C)))
130       std::swap(V0, V1);
131 
132     if (match(V1, m_APInt(C))) {
133       ConstPart = *C;
134       SymbolicPart = V0;
135       isOr = (I->getOpcode() == Instruction::Or);
136       return;
137     }
138   }
139 
140   // view the operand as "V | 0"
141   SymbolicPart = V;
142   ConstPart = APInt::getNullValue(V->getType()->getScalarSizeInBits());
143   isOr = true;
144 }
145 
146 /// Return true if V is an instruction of the specified opcode and if it
147 /// only has one use.
148 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
149   auto *I = dyn_cast<Instruction>(V);
150   if (I && I->hasOneUse() && I->getOpcode() == Opcode)
151     if (!isa<FPMathOperator>(I) || I->isFast())
152       return cast<BinaryOperator>(I);
153   return nullptr;
154 }
155 
156 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
157                                         unsigned Opcode2) {
158   auto *I = dyn_cast<Instruction>(V);
159   if (I && I->hasOneUse() &&
160       (I->getOpcode() == Opcode1 || I->getOpcode() == Opcode2))
161     if (!isa<FPMathOperator>(I) || I->isFast())
162       return cast<BinaryOperator>(I);
163   return nullptr;
164 }
165 
166 void ReassociatePass::BuildRankMap(Function &F,
167                                    ReversePostOrderTraversal<Function*> &RPOT) {
168   unsigned Rank = 2;
169 
170   // Assign distinct ranks to function arguments.
171   for (auto &Arg : F.args()) {
172     ValueRankMap[&Arg] = ++Rank;
173     LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank
174                       << "\n");
175   }
176 
177   // Traverse basic blocks in ReversePostOrder
178   for (BasicBlock *BB : RPOT) {
179     unsigned BBRank = RankMap[BB] = ++Rank << 16;
180 
181     // Walk the basic block, adding precomputed ranks for any instructions that
182     // we cannot move.  This ensures that the ranks for these instructions are
183     // all different in the block.
184     for (Instruction &I : *BB)
185       if (mayBeMemoryDependent(I))
186         ValueRankMap[&I] = ++BBRank;
187   }
188 }
189 
190 unsigned ReassociatePass::getRank(Value *V) {
191   Instruction *I = dyn_cast<Instruction>(V);
192   if (!I) {
193     if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
194     return 0;  // Otherwise it's a global or constant, rank 0.
195   }
196 
197   if (unsigned Rank = ValueRankMap[I])
198     return Rank;    // Rank already known?
199 
200   // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
201   // we can reassociate expressions for code motion!  Since we do not recurse
202   // for PHI nodes, we cannot have infinite recursion here, because there
203   // cannot be loops in the value graph that do not go through PHI nodes.
204   unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
205   for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i)
206     Rank = std::max(Rank, getRank(I->getOperand(i)));
207 
208   // If this is a 'not' or 'neg' instruction, do not count it for rank. This
209   // assures us that X and ~X will have the same rank.
210   if (!match(I, m_Not(m_Value())) && !match(I, m_Neg(m_Value())) &&
211       !match(I, m_FNeg(m_Value())))
212     ++Rank;
213 
214   LLVM_DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank
215                     << "\n");
216 
217   return ValueRankMap[I] = Rank;
218 }
219 
220 // Canonicalize constants to RHS.  Otherwise, sort the operands by rank.
221 void ReassociatePass::canonicalizeOperands(Instruction *I) {
222   assert(isa<BinaryOperator>(I) && "Expected binary operator.");
223   assert(I->isCommutative() && "Expected commutative operator.");
224 
225   Value *LHS = I->getOperand(0);
226   Value *RHS = I->getOperand(1);
227   if (LHS == RHS || isa<Constant>(RHS))
228     return;
229   if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS))
230     cast<BinaryOperator>(I)->swapOperands();
231 }
232 
233 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
234                                  Instruction *InsertBefore, Value *FlagsOp) {
235   if (S1->getType()->isIntOrIntVectorTy())
236     return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
237   else {
238     BinaryOperator *Res =
239         BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
240     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
241     return Res;
242   }
243 }
244 
245 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
246                                  Instruction *InsertBefore, Value *FlagsOp) {
247   if (S1->getType()->isIntOrIntVectorTy())
248     return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
249   else {
250     BinaryOperator *Res =
251       BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
252     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
253     return Res;
254   }
255 }
256 
257 static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
258                                  Instruction *InsertBefore, Value *FlagsOp) {
259   if (S1->getType()->isIntOrIntVectorTy())
260     return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
261   else {
262     BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
263     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
264     return Res;
265   }
266 }
267 
268 /// Replace 0-X with X*-1.
269 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
270   Type *Ty = Neg->getType();
271   Constant *NegOne = Ty->isIntOrIntVectorTy() ?
272     ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
273 
274   BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
275   Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
276   Res->takeName(Neg);
277   Neg->replaceAllUsesWith(Res);
278   Res->setDebugLoc(Neg->getDebugLoc());
279   return Res;
280 }
281 
282 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
283 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
284 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
285 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
286 /// even x in Bitwidth-bit arithmetic.
287 static unsigned CarmichaelShift(unsigned Bitwidth) {
288   if (Bitwidth < 3)
289     return Bitwidth - 1;
290   return Bitwidth - 2;
291 }
292 
293 /// Add the extra weight 'RHS' to the existing weight 'LHS',
294 /// reducing the combined weight using any special properties of the operation.
295 /// The existing weight LHS represents the computation X op X op ... op X where
296 /// X occurs LHS times.  The combined weight represents  X op X op ... op X with
297 /// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
298 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
299 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
300 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
301   // If we were working with infinite precision arithmetic then the combined
302   // weight would be LHS + RHS.  But we are using finite precision arithmetic,
303   // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
304   // for nilpotent operations and addition, but not for idempotent operations
305   // and multiplication), so it is important to correctly reduce the combined
306   // weight back into range if wrapping would be wrong.
307 
308   // If RHS is zero then the weight didn't change.
309   if (RHS.isMinValue())
310     return;
311   // If LHS is zero then the combined weight is RHS.
312   if (LHS.isMinValue()) {
313     LHS = RHS;
314     return;
315   }
316   // From this point on we know that neither LHS nor RHS is zero.
317 
318   if (Instruction::isIdempotent(Opcode)) {
319     // Idempotent means X op X === X, so any non-zero weight is equivalent to a
320     // weight of 1.  Keeping weights at zero or one also means that wrapping is
321     // not a problem.
322     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
323     return; // Return a weight of 1.
324   }
325   if (Instruction::isNilpotent(Opcode)) {
326     // Nilpotent means X op X === 0, so reduce weights modulo 2.
327     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
328     LHS = 0; // 1 + 1 === 0 modulo 2.
329     return;
330   }
331   if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
332     // TODO: Reduce the weight by exploiting nsw/nuw?
333     LHS += RHS;
334     return;
335   }
336 
337   assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
338          "Unknown associative operation!");
339   unsigned Bitwidth = LHS.getBitWidth();
340   // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
341   // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
342   // bit number x, since either x is odd in which case x^CM = 1, or x is even in
343   // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
344   // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
345   // which by a happy accident means that they can always be represented using
346   // Bitwidth bits.
347   // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
348   // the Carmichael number).
349   if (Bitwidth > 3) {
350     /// CM - The value of Carmichael's lambda function.
351     APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
352     // Any weight W >= Threshold can be replaced with W - CM.
353     APInt Threshold = CM + Bitwidth;
354     assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
355     // For Bitwidth 4 or more the following sum does not overflow.
356     LHS += RHS;
357     while (LHS.uge(Threshold))
358       LHS -= CM;
359   } else {
360     // To avoid problems with overflow do everything the same as above but using
361     // a larger type.
362     unsigned CM = 1U << CarmichaelShift(Bitwidth);
363     unsigned Threshold = CM + Bitwidth;
364     assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
365            "Weights not reduced!");
366     unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
367     while (Total >= Threshold)
368       Total -= CM;
369     LHS = Total;
370   }
371 }
372 
373 using RepeatedValue = std::pair<Value*, APInt>;
374 
375 /// Given an associative binary expression, return the leaf
376 /// nodes in Ops along with their weights (how many times the leaf occurs).  The
377 /// original expression is the same as
378 ///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
379 /// op
380 ///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
381 /// op
382 ///   ...
383 /// op
384 ///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
385 ///
386 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
387 ///
388 /// This routine may modify the function, in which case it returns 'true'.  The
389 /// changes it makes may well be destructive, changing the value computed by 'I'
390 /// to something completely different.  Thus if the routine returns 'true' then
391 /// you MUST either replace I with a new expression computed from the Ops array,
392 /// or use RewriteExprTree to put the values back in.
393 ///
394 /// A leaf node is either not a binary operation of the same kind as the root
395 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
396 /// opcode), or is the same kind of binary operator but has a use which either
397 /// does not belong to the expression, or does belong to the expression but is
398 /// a leaf node.  Every leaf node has at least one use that is a non-leaf node
399 /// of the expression, while for non-leaf nodes (except for the root 'I') every
400 /// use is a non-leaf node of the expression.
401 ///
402 /// For example:
403 ///           expression graph        node names
404 ///
405 ///                     +        |        I
406 ///                    / \       |
407 ///                   +   +      |      A,  B
408 ///                  / \ / \     |
409 ///                 *   +   *    |    C,  D,  E
410 ///                / \ / \ / \   |
411 ///                   +   *      |      F,  G
412 ///
413 /// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
414 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
415 ///
416 /// The expression is maximal: if some instruction is a binary operator of the
417 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
418 /// then the instruction also belongs to the expression, is not a leaf node of
419 /// it, and its operands also belong to the expression (but may be leaf nodes).
420 ///
421 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
422 /// order to ensure that every non-root node in the expression has *exactly one*
423 /// use by a non-leaf node of the expression.  This destruction means that the
424 /// caller MUST either replace 'I' with a new expression or use something like
425 /// RewriteExprTree to put the values back in if the routine indicates that it
426 /// made a change by returning 'true'.
427 ///
428 /// In the above example either the right operand of A or the left operand of B
429 /// will be replaced by undef.  If it is B's operand then this gives:
430 ///
431 ///                     +        |        I
432 ///                    / \       |
433 ///                   +   +      |      A,  B - operand of B replaced with undef
434 ///                  / \   \     |
435 ///                 *   +   *    |    C,  D,  E
436 ///                / \ / \ / \   |
437 ///                   +   *      |      F,  G
438 ///
439 /// Note that such undef operands can only be reached by passing through 'I'.
440 /// For example, if you visit operands recursively starting from a leaf node
441 /// then you will never see such an undef operand unless you get back to 'I',
442 /// which requires passing through a phi node.
443 ///
444 /// Note that this routine may also mutate binary operators of the wrong type
445 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
446 /// of the expression) if it can turn them into binary operators of the right
447 /// type and thus make the expression bigger.
448 static bool LinearizeExprTree(BinaryOperator *I,
449                               SmallVectorImpl<RepeatedValue> &Ops) {
450   LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
451   unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
452   unsigned Opcode = I->getOpcode();
453   assert(I->isAssociative() && I->isCommutative() &&
454          "Expected an associative and commutative operation!");
455 
456   // Visit all operands of the expression, keeping track of their weight (the
457   // number of paths from the expression root to the operand, or if you like
458   // the number of times that operand occurs in the linearized expression).
459   // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
460   // while A has weight two.
461 
462   // Worklist of non-leaf nodes (their operands are in the expression too) along
463   // with their weights, representing a certain number of paths to the operator.
464   // If an operator occurs in the worklist multiple times then we found multiple
465   // ways to get to it.
466   SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
467   Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
468   bool Changed = false;
469 
470   // Leaves of the expression are values that either aren't the right kind of
471   // operation (eg: a constant, or a multiply in an add tree), or are, but have
472   // some uses that are not inside the expression.  For example, in I = X + X,
473   // X = A + B, the value X has two uses (by I) that are in the expression.  If
474   // X has any other uses, for example in a return instruction, then we consider
475   // X to be a leaf, and won't analyze it further.  When we first visit a value,
476   // if it has more than one use then at first we conservatively consider it to
477   // be a leaf.  Later, as the expression is explored, we may discover some more
478   // uses of the value from inside the expression.  If all uses turn out to be
479   // from within the expression (and the value is a binary operator of the right
480   // kind) then the value is no longer considered to be a leaf, and its operands
481   // are explored.
482 
483   // Leaves - Keeps track of the set of putative leaves as well as the number of
484   // paths to each leaf seen so far.
485   using LeafMap = DenseMap<Value *, APInt>;
486   LeafMap Leaves; // Leaf -> Total weight so far.
487   SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order.
488 
489 #ifndef NDEBUG
490   SmallPtrSet<Value *, 8> Visited; // For sanity checking the iteration scheme.
491 #endif
492   while (!Worklist.empty()) {
493     std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
494     I = P.first; // We examine the operands of this binary operator.
495 
496     for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
497       Value *Op = I->getOperand(OpIdx);
498       APInt Weight = P.second; // Number of paths to this operand.
499       LLVM_DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
500       assert(!Op->use_empty() && "No uses, so how did we get to it?!");
501 
502       // If this is a binary operation of the right kind with only one use then
503       // add its operands to the expression.
504       if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
505         assert(Visited.insert(Op).second && "Not first visit!");
506         LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
507         Worklist.push_back(std::make_pair(BO, Weight));
508         continue;
509       }
510 
511       // Appears to be a leaf.  Is the operand already in the set of leaves?
512       LeafMap::iterator It = Leaves.find(Op);
513       if (It == Leaves.end()) {
514         // Not in the leaf map.  Must be the first time we saw this operand.
515         assert(Visited.insert(Op).second && "Not first visit!");
516         if (!Op->hasOneUse()) {
517           // This value has uses not accounted for by the expression, so it is
518           // not safe to modify.  Mark it as being a leaf.
519           LLVM_DEBUG(dbgs()
520                      << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
521           LeafOrder.push_back(Op);
522           Leaves[Op] = Weight;
523           continue;
524         }
525         // No uses outside the expression, try morphing it.
526       } else {
527         // Already in the leaf map.
528         assert(It != Leaves.end() && Visited.count(Op) &&
529                "In leaf map but not visited!");
530 
531         // Update the number of paths to the leaf.
532         IncorporateWeight(It->second, Weight, Opcode);
533 
534 #if 0   // TODO: Re-enable once PR13021 is fixed.
535         // The leaf already has one use from inside the expression.  As we want
536         // exactly one such use, drop this new use of the leaf.
537         assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
538         I->setOperand(OpIdx, UndefValue::get(I->getType()));
539         Changed = true;
540 
541         // If the leaf is a binary operation of the right kind and we now see
542         // that its multiple original uses were in fact all by nodes belonging
543         // to the expression, then no longer consider it to be a leaf and add
544         // its operands to the expression.
545         if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
546           LLVM_DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
547           Worklist.push_back(std::make_pair(BO, It->second));
548           Leaves.erase(It);
549           continue;
550         }
551 #endif
552 
553         // If we still have uses that are not accounted for by the expression
554         // then it is not safe to modify the value.
555         if (!Op->hasOneUse())
556           continue;
557 
558         // No uses outside the expression, try morphing it.
559         Weight = It->second;
560         Leaves.erase(It); // Since the value may be morphed below.
561       }
562 
563       // At this point we have a value which, first of all, is not a binary
564       // expression of the right kind, and secondly, is only used inside the
565       // expression.  This means that it can safely be modified.  See if we
566       // can usefully morph it into an expression of the right kind.
567       assert((!isa<Instruction>(Op) ||
568               cast<Instruction>(Op)->getOpcode() != Opcode
569               || (isa<FPMathOperator>(Op) &&
570                   !cast<Instruction>(Op)->isFast())) &&
571              "Should have been handled above!");
572       assert(Op->hasOneUse() && "Has uses outside the expression tree!");
573 
574       // If this is a multiply expression, turn any internal negations into
575       // multiplies by -1 so they can be reassociated.
576       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
577         if ((Opcode == Instruction::Mul && match(BO, m_Neg(m_Value()))) ||
578             (Opcode == Instruction::FMul && match(BO, m_FNeg(m_Value())))) {
579           LLVM_DEBUG(dbgs()
580                      << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
581           BO = LowerNegateToMultiply(BO);
582           LLVM_DEBUG(dbgs() << *BO << '\n');
583           Worklist.push_back(std::make_pair(BO, Weight));
584           Changed = true;
585           continue;
586         }
587 
588       // Failed to morph into an expression of the right type.  This really is
589       // a leaf.
590       LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
591       assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
592       LeafOrder.push_back(Op);
593       Leaves[Op] = Weight;
594     }
595   }
596 
597   // The leaves, repeated according to their weights, represent the linearized
598   // form of the expression.
599   for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
600     Value *V = LeafOrder[i];
601     LeafMap::iterator It = Leaves.find(V);
602     if (It == Leaves.end())
603       // Node initially thought to be a leaf wasn't.
604       continue;
605     assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
606     APInt Weight = It->second;
607     if (Weight.isMinValue())
608       // Leaf already output or weight reduction eliminated it.
609       continue;
610     // Ensure the leaf is only output once.
611     It->second = 0;
612     Ops.push_back(std::make_pair(V, Weight));
613   }
614 
615   // For nilpotent operations or addition there may be no operands, for example
616   // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
617   // in both cases the weight reduces to 0 causing the value to be skipped.
618   if (Ops.empty()) {
619     Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
620     assert(Identity && "Associative operation without identity!");
621     Ops.emplace_back(Identity, APInt(Bitwidth, 1));
622   }
623 
624   return Changed;
625 }
626 
627 /// Now that the operands for this expression tree are
628 /// linearized and optimized, emit them in-order.
629 void ReassociatePass::RewriteExprTree(BinaryOperator *I,
630                                       SmallVectorImpl<ValueEntry> &Ops) {
631   assert(Ops.size() > 1 && "Single values should be used directly!");
632 
633   // Since our optimizations should never increase the number of operations, the
634   // new expression can usually be written reusing the existing binary operators
635   // from the original expression tree, without creating any new instructions,
636   // though the rewritten expression may have a completely different topology.
637   // We take care to not change anything if the new expression will be the same
638   // as the original.  If more than trivial changes (like commuting operands)
639   // were made then we are obliged to clear out any optional subclass data like
640   // nsw flags.
641 
642   /// NodesToRewrite - Nodes from the original expression available for writing
643   /// the new expression into.
644   SmallVector<BinaryOperator*, 8> NodesToRewrite;
645   unsigned Opcode = I->getOpcode();
646   BinaryOperator *Op = I;
647 
648   /// NotRewritable - The operands being written will be the leaves of the new
649   /// expression and must not be used as inner nodes (via NodesToRewrite) by
650   /// mistake.  Inner nodes are always reassociable, and usually leaves are not
651   /// (if they were they would have been incorporated into the expression and so
652   /// would not be leaves), so most of the time there is no danger of this.  But
653   /// in rare cases a leaf may become reassociable if an optimization kills uses
654   /// of it, or it may momentarily become reassociable during rewriting (below)
655   /// due it being removed as an operand of one of its uses.  Ensure that misuse
656   /// of leaf nodes as inner nodes cannot occur by remembering all of the future
657   /// leaves and refusing to reuse any of them as inner nodes.
658   SmallPtrSet<Value*, 8> NotRewritable;
659   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
660     NotRewritable.insert(Ops[i].Op);
661 
662   // ExpressionChanged - Non-null if the rewritten expression differs from the
663   // original in some non-trivial way, requiring the clearing of optional flags.
664   // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
665   BinaryOperator *ExpressionChanged = nullptr;
666   for (unsigned i = 0; ; ++i) {
667     // The last operation (which comes earliest in the IR) is special as both
668     // operands will come from Ops, rather than just one with the other being
669     // a subexpression.
670     if (i+2 == Ops.size()) {
671       Value *NewLHS = Ops[i].Op;
672       Value *NewRHS = Ops[i+1].Op;
673       Value *OldLHS = Op->getOperand(0);
674       Value *OldRHS = Op->getOperand(1);
675 
676       if (NewLHS == OldLHS && NewRHS == OldRHS)
677         // Nothing changed, leave it alone.
678         break;
679 
680       if (NewLHS == OldRHS && NewRHS == OldLHS) {
681         // The order of the operands was reversed.  Swap them.
682         LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
683         Op->swapOperands();
684         LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
685         MadeChange = true;
686         ++NumChanged;
687         break;
688       }
689 
690       // The new operation differs non-trivially from the original. Overwrite
691       // the old operands with the new ones.
692       LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
693       if (NewLHS != OldLHS) {
694         BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
695         if (BO && !NotRewritable.count(BO))
696           NodesToRewrite.push_back(BO);
697         Op->setOperand(0, NewLHS);
698       }
699       if (NewRHS != OldRHS) {
700         BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
701         if (BO && !NotRewritable.count(BO))
702           NodesToRewrite.push_back(BO);
703         Op->setOperand(1, NewRHS);
704       }
705       LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
706 
707       ExpressionChanged = Op;
708       MadeChange = true;
709       ++NumChanged;
710 
711       break;
712     }
713 
714     // Not the last operation.  The left-hand side will be a sub-expression
715     // while the right-hand side will be the current element of Ops.
716     Value *NewRHS = Ops[i].Op;
717     if (NewRHS != Op->getOperand(1)) {
718       LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
719       if (NewRHS == Op->getOperand(0)) {
720         // The new right-hand side was already present as the left operand.  If
721         // we are lucky then swapping the operands will sort out both of them.
722         Op->swapOperands();
723       } else {
724         // Overwrite with the new right-hand side.
725         BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
726         if (BO && !NotRewritable.count(BO))
727           NodesToRewrite.push_back(BO);
728         Op->setOperand(1, NewRHS);
729         ExpressionChanged = Op;
730       }
731       LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
732       MadeChange = true;
733       ++NumChanged;
734     }
735 
736     // Now deal with the left-hand side.  If this is already an operation node
737     // from the original expression then just rewrite the rest of the expression
738     // into it.
739     BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
740     if (BO && !NotRewritable.count(BO)) {
741       Op = BO;
742       continue;
743     }
744 
745     // Otherwise, grab a spare node from the original expression and use that as
746     // the left-hand side.  If there are no nodes left then the optimizers made
747     // an expression with more nodes than the original!  This usually means that
748     // they did something stupid but it might mean that the problem was just too
749     // hard (finding the mimimal number of multiplications needed to realize a
750     // multiplication expression is NP-complete).  Whatever the reason, smart or
751     // stupid, create a new node if there are none left.
752     BinaryOperator *NewOp;
753     if (NodesToRewrite.empty()) {
754       Constant *Undef = UndefValue::get(I->getType());
755       NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
756                                      Undef, Undef, "", I);
757       if (NewOp->getType()->isFPOrFPVectorTy())
758         NewOp->setFastMathFlags(I->getFastMathFlags());
759     } else {
760       NewOp = NodesToRewrite.pop_back_val();
761     }
762 
763     LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
764     Op->setOperand(0, NewOp);
765     LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
766     ExpressionChanged = Op;
767     MadeChange = true;
768     ++NumChanged;
769     Op = NewOp;
770   }
771 
772   // If the expression changed non-trivially then clear out all subclass data
773   // starting from the operator specified in ExpressionChanged, and compactify
774   // the operators to just before the expression root to guarantee that the
775   // expression tree is dominated by all of Ops.
776   if (ExpressionChanged)
777     do {
778       // Preserve FastMathFlags.
779       if (isa<FPMathOperator>(I)) {
780         FastMathFlags Flags = I->getFastMathFlags();
781         ExpressionChanged->clearSubclassOptionalData();
782         ExpressionChanged->setFastMathFlags(Flags);
783       } else
784         ExpressionChanged->clearSubclassOptionalData();
785 
786       if (ExpressionChanged == I)
787         break;
788 
789       // Discard any debug info related to the expressions that has changed (we
790       // can leave debug infor related to the root, since the result of the
791       // expression tree should be the same even after reassociation).
792       SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
793       findDbgUsers(DbgUsers, ExpressionChanged);
794       for (auto *DII : DbgUsers) {
795         Value *Undef = UndefValue::get(ExpressionChanged->getType());
796         DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
797                                                 ValueAsMetadata::get(Undef)));
798       }
799 
800       ExpressionChanged->moveBefore(I);
801       ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
802     } while (true);
803 
804   // Throw away any left over nodes from the original expression.
805   for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
806     RedoInsts.insert(NodesToRewrite[i]);
807 }
808 
809 /// Insert instructions before the instruction pointed to by BI,
810 /// that computes the negative version of the value specified.  The negative
811 /// version of the value is returned, and BI is left pointing at the instruction
812 /// that should be processed next by the reassociation pass.
813 /// Also add intermediate instructions to the redo list that are modified while
814 /// pushing the negates through adds.  These will be revisited to see if
815 /// additional opportunities have been exposed.
816 static Value *NegateValue(Value *V, Instruction *BI,
817                           ReassociatePass::OrderedSet &ToRedo) {
818   if (auto *C = dyn_cast<Constant>(V))
819     return C->getType()->isFPOrFPVectorTy() ? ConstantExpr::getFNeg(C) :
820                                               ConstantExpr::getNeg(C);
821 
822   // We are trying to expose opportunity for reassociation.  One of the things
823   // that we want to do to achieve this is to push a negation as deep into an
824   // expression chain as possible, to expose the add instructions.  In practice,
825   // this means that we turn this:
826   //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
827   // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
828   // the constants.  We assume that instcombine will clean up the mess later if
829   // we introduce tons of unnecessary negation instructions.
830   //
831   if (BinaryOperator *I =
832           isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
833     // Push the negates through the add.
834     I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
835     I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
836     if (I->getOpcode() == Instruction::Add) {
837       I->setHasNoUnsignedWrap(false);
838       I->setHasNoSignedWrap(false);
839     }
840 
841     // We must move the add instruction here, because the neg instructions do
842     // not dominate the old add instruction in general.  By moving it, we are
843     // assured that the neg instructions we just inserted dominate the
844     // instruction we are about to insert after them.
845     //
846     I->moveBefore(BI);
847     I->setName(I->getName()+".neg");
848 
849     // Add the intermediate negates to the redo list as processing them later
850     // could expose more reassociating opportunities.
851     ToRedo.insert(I);
852     return I;
853   }
854 
855   // Okay, we need to materialize a negated version of V with an instruction.
856   // Scan the use lists of V to see if we have one already.
857   for (User *U : V->users()) {
858     if (!match(U, m_Neg(m_Value())) && !match(U, m_FNeg(m_Value())))
859       continue;
860 
861     // We found one!  Now we have to make sure that the definition dominates
862     // this use.  We do this by moving it to the entry block (if it is a
863     // non-instruction value) or right after the definition.  These negates will
864     // be zapped by reassociate later, so we don't need much finesse here.
865     BinaryOperator *TheNeg = cast<BinaryOperator>(U);
866 
867     // Verify that the negate is in this function, V might be a constant expr.
868     if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
869       continue;
870 
871     BasicBlock::iterator InsertPt;
872     if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
873       if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
874         InsertPt = II->getNormalDest()->begin();
875       } else {
876         InsertPt = ++InstInput->getIterator();
877       }
878       while (isa<PHINode>(InsertPt)) ++InsertPt;
879     } else {
880       InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
881     }
882     TheNeg->moveBefore(&*InsertPt);
883     if (TheNeg->getOpcode() == Instruction::Sub) {
884       TheNeg->setHasNoUnsignedWrap(false);
885       TheNeg->setHasNoSignedWrap(false);
886     } else {
887       TheNeg->andIRFlags(BI);
888     }
889     ToRedo.insert(TheNeg);
890     return TheNeg;
891   }
892 
893   // Insert a 'neg' instruction that subtracts the value from zero to get the
894   // negation.
895   BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
896   ToRedo.insert(NewNeg);
897   return NewNeg;
898 }
899 
900 /// Return true if we should break up this subtract of X-Y into (X + -Y).
901 static bool ShouldBreakUpSubtract(Instruction *Sub) {
902   // If this is a negation, we can't split it up!
903   if (match(Sub, m_Neg(m_Value())) || match(Sub, m_FNeg(m_Value())))
904     return false;
905 
906   // Don't breakup X - undef.
907   if (isa<UndefValue>(Sub->getOperand(1)))
908     return false;
909 
910   // Don't bother to break this up unless either the LHS is an associable add or
911   // subtract or if this is only used by one.
912   Value *V0 = Sub->getOperand(0);
913   if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
914       isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
915     return true;
916   Value *V1 = Sub->getOperand(1);
917   if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
918       isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
919     return true;
920   Value *VB = Sub->user_back();
921   if (Sub->hasOneUse() &&
922       (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
923        isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
924     return true;
925 
926   return false;
927 }
928 
929 /// If we have (X-Y), and if either X is an add, or if this is only used by an
930 /// add, transform this into (X+(0-Y)) to promote better reassociation.
931 static BinaryOperator *BreakUpSubtract(Instruction *Sub,
932                                        ReassociatePass::OrderedSet &ToRedo) {
933   // Convert a subtract into an add and a neg instruction. This allows sub
934   // instructions to be commuted with other add instructions.
935   //
936   // Calculate the negative value of Operand 1 of the sub instruction,
937   // and set it as the RHS of the add instruction we just made.
938   Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
939   BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
940   Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
941   Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
942   New->takeName(Sub);
943 
944   // Everyone now refers to the add instruction.
945   Sub->replaceAllUsesWith(New);
946   New->setDebugLoc(Sub->getDebugLoc());
947 
948   LLVM_DEBUG(dbgs() << "Negated: " << *New << '\n');
949   return New;
950 }
951 
952 /// If this is a shift of a reassociable multiply or is used by one, change
953 /// this into a multiply by a constant to assist with further reassociation.
954 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
955   Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
956   MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
957 
958   BinaryOperator *Mul =
959     BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
960   Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
961   Mul->takeName(Shl);
962 
963   // Everyone now refers to the mul instruction.
964   Shl->replaceAllUsesWith(Mul);
965   Mul->setDebugLoc(Shl->getDebugLoc());
966 
967   // We can safely preserve the nuw flag in all cases.  It's also safe to turn a
968   // nuw nsw shl into a nuw nsw mul.  However, nsw in isolation requires special
969   // handling.
970   bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
971   bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
972   if (NSW && NUW)
973     Mul->setHasNoSignedWrap(true);
974   Mul->setHasNoUnsignedWrap(NUW);
975   return Mul;
976 }
977 
978 /// Scan backwards and forwards among values with the same rank as element i
979 /// to see if X exists.  If X does not exist, return i.  This is useful when
980 /// scanning for 'x' when we see '-x' because they both get the same rank.
981 static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops,
982                                   unsigned i, Value *X) {
983   unsigned XRank = Ops[i].Rank;
984   unsigned e = Ops.size();
985   for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
986     if (Ops[j].Op == X)
987       return j;
988     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
989       if (Instruction *I2 = dyn_cast<Instruction>(X))
990         if (I1->isIdenticalTo(I2))
991           return j;
992   }
993   // Scan backwards.
994   for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
995     if (Ops[j].Op == X)
996       return j;
997     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
998       if (Instruction *I2 = dyn_cast<Instruction>(X))
999         if (I1->isIdenticalTo(I2))
1000           return j;
1001   }
1002   return i;
1003 }
1004 
1005 /// Emit a tree of add instructions, summing Ops together
1006 /// and returning the result.  Insert the tree before I.
1007 static Value *EmitAddTreeOfValues(Instruction *I,
1008                                   SmallVectorImpl<WeakTrackingVH> &Ops) {
1009   if (Ops.size() == 1) return Ops.back();
1010 
1011   Value *V1 = Ops.back();
1012   Ops.pop_back();
1013   Value *V2 = EmitAddTreeOfValues(I, Ops);
1014   return CreateAdd(V2, V1, "reass.add", I, I);
1015 }
1016 
1017 /// If V is an expression tree that is a multiplication sequence,
1018 /// and if this sequence contains a multiply by Factor,
1019 /// remove Factor from the tree and return the new tree.
1020 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
1021   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1022   if (!BO)
1023     return nullptr;
1024 
1025   SmallVector<RepeatedValue, 8> Tree;
1026   MadeChange |= LinearizeExprTree(BO, Tree);
1027   SmallVector<ValueEntry, 8> Factors;
1028   Factors.reserve(Tree.size());
1029   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1030     RepeatedValue E = Tree[i];
1031     Factors.append(E.second.getZExtValue(),
1032                    ValueEntry(getRank(E.first), E.first));
1033   }
1034 
1035   bool FoundFactor = false;
1036   bool NeedsNegate = false;
1037   for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1038     if (Factors[i].Op == Factor) {
1039       FoundFactor = true;
1040       Factors.erase(Factors.begin()+i);
1041       break;
1042     }
1043 
1044     // If this is a negative version of this factor, remove it.
1045     if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
1046       if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1047         if (FC1->getValue() == -FC2->getValue()) {
1048           FoundFactor = NeedsNegate = true;
1049           Factors.erase(Factors.begin()+i);
1050           break;
1051         }
1052     } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1053       if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
1054         const APFloat &F1 = FC1->getValueAPF();
1055         APFloat F2(FC2->getValueAPF());
1056         F2.changeSign();
1057         if (F1.compare(F2) == APFloat::cmpEqual) {
1058           FoundFactor = NeedsNegate = true;
1059           Factors.erase(Factors.begin() + i);
1060           break;
1061         }
1062       }
1063     }
1064   }
1065 
1066   if (!FoundFactor) {
1067     // Make sure to restore the operands to the expression tree.
1068     RewriteExprTree(BO, Factors);
1069     return nullptr;
1070   }
1071 
1072   BasicBlock::iterator InsertPt = ++BO->getIterator();
1073 
1074   // If this was just a single multiply, remove the multiply and return the only
1075   // remaining operand.
1076   if (Factors.size() == 1) {
1077     RedoInsts.insert(BO);
1078     V = Factors[0].Op;
1079   } else {
1080     RewriteExprTree(BO, Factors);
1081     V = BO;
1082   }
1083 
1084   if (NeedsNegate)
1085     V = CreateNeg(V, "neg", &*InsertPt, BO);
1086 
1087   return V;
1088 }
1089 
1090 /// If V is a single-use multiply, recursively add its operands as factors,
1091 /// otherwise add V to the list of factors.
1092 ///
1093 /// Ops is the top-level list of add operands we're trying to factor.
1094 static void FindSingleUseMultiplyFactors(Value *V,
1095                                          SmallVectorImpl<Value*> &Factors) {
1096   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1097   if (!BO) {
1098     Factors.push_back(V);
1099     return;
1100   }
1101 
1102   // Otherwise, add the LHS and RHS to the list of factors.
1103   FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
1104   FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
1105 }
1106 
1107 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1108 /// This optimizes based on identities.  If it can be reduced to a single Value,
1109 /// it is returned, otherwise the Ops list is mutated as necessary.
1110 static Value *OptimizeAndOrXor(unsigned Opcode,
1111                                SmallVectorImpl<ValueEntry> &Ops) {
1112   // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1113   // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1114   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1115     // First, check for X and ~X in the operand list.
1116     assert(i < Ops.size());
1117     Value *X;
1118     if (match(Ops[i].Op, m_Not(m_Value(X)))) {    // Cannot occur for ^.
1119       unsigned FoundX = FindInOperandList(Ops, i, X);
1120       if (FoundX != i) {
1121         if (Opcode == Instruction::And)   // ...&X&~X = 0
1122           return Constant::getNullValue(X->getType());
1123 
1124         if (Opcode == Instruction::Or)    // ...|X|~X = -1
1125           return Constant::getAllOnesValue(X->getType());
1126       }
1127     }
1128 
1129     // Next, check for duplicate pairs of values, which we assume are next to
1130     // each other, due to our sorting criteria.
1131     assert(i < Ops.size());
1132     if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1133       if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1134         // Drop duplicate values for And and Or.
1135         Ops.erase(Ops.begin()+i);
1136         --i; --e;
1137         ++NumAnnihil;
1138         continue;
1139       }
1140 
1141       // Drop pairs of values for Xor.
1142       assert(Opcode == Instruction::Xor);
1143       if (e == 2)
1144         return Constant::getNullValue(Ops[0].Op->getType());
1145 
1146       // Y ^ X^X -> Y
1147       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1148       i -= 1; e -= 2;
1149       ++NumAnnihil;
1150     }
1151   }
1152   return nullptr;
1153 }
1154 
1155 /// Helper function of CombineXorOpnd(). It creates a bitwise-and
1156 /// instruction with the given two operands, and return the resulting
1157 /// instruction. There are two special cases: 1) if the constant operand is 0,
1158 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1159 /// be returned.
1160 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1161                              const APInt &ConstOpnd) {
1162   if (ConstOpnd.isNullValue())
1163     return nullptr;
1164 
1165   if (ConstOpnd.isAllOnesValue())
1166     return Opnd;
1167 
1168   Instruction *I = BinaryOperator::CreateAnd(
1169       Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra",
1170       InsertBefore);
1171   I->setDebugLoc(InsertBefore->getDebugLoc());
1172   return I;
1173 }
1174 
1175 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1176 // into "R ^ C", where C would be 0, and R is a symbolic value.
1177 //
1178 // If it was successful, true is returned, and the "R" and "C" is returned
1179 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1180 // and both "Res" and "ConstOpnd" remain unchanged.
1181 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1182                                      APInt &ConstOpnd, Value *&Res) {
1183   // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1184   //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
1185   //                       = (x & ~c1) ^ (c1 ^ c2)
1186   // It is useful only when c1 == c2.
1187   if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isNullValue())
1188     return false;
1189 
1190   if (!Opnd1->getValue()->hasOneUse())
1191     return false;
1192 
1193   const APInt &C1 = Opnd1->getConstPart();
1194   if (C1 != ConstOpnd)
1195     return false;
1196 
1197   Value *X = Opnd1->getSymbolicPart();
1198   Res = createAndInstr(I, X, ~C1);
1199   // ConstOpnd was C2, now C1 ^ C2.
1200   ConstOpnd ^= C1;
1201 
1202   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1203     RedoInsts.insert(T);
1204   return true;
1205 }
1206 
1207 // Helper function of OptimizeXor(). It tries to simplify
1208 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1209 // symbolic value.
1210 //
1211 // If it was successful, true is returned, and the "R" and "C" is returned
1212 // via "Res" and "ConstOpnd", respectively (If the entire expression is
1213 // evaluated to a constant, the Res is set to NULL); otherwise, false is
1214 // returned, and both "Res" and "ConstOpnd" remain unchanged.
1215 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1216                                      XorOpnd *Opnd2, APInt &ConstOpnd,
1217                                      Value *&Res) {
1218   Value *X = Opnd1->getSymbolicPart();
1219   if (X != Opnd2->getSymbolicPart())
1220     return false;
1221 
1222   // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1223   int DeadInstNum = 1;
1224   if (Opnd1->getValue()->hasOneUse())
1225     DeadInstNum++;
1226   if (Opnd2->getValue()->hasOneUse())
1227     DeadInstNum++;
1228 
1229   // Xor-Rule 2:
1230   //  (x | c1) ^ (x & c2)
1231   //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1232   //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
1233   //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
1234   //
1235   if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1236     if (Opnd2->isOrExpr())
1237       std::swap(Opnd1, Opnd2);
1238 
1239     const APInt &C1 = Opnd1->getConstPart();
1240     const APInt &C2 = Opnd2->getConstPart();
1241     APInt C3((~C1) ^ C2);
1242 
1243     // Do not increase code size!
1244     if (!C3.isNullValue() && !C3.isAllOnesValue()) {
1245       int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1246       if (NewInstNum > DeadInstNum)
1247         return false;
1248     }
1249 
1250     Res = createAndInstr(I, X, C3);
1251     ConstOpnd ^= C1;
1252   } else if (Opnd1->isOrExpr()) {
1253     // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1254     //
1255     const APInt &C1 = Opnd1->getConstPart();
1256     const APInt &C2 = Opnd2->getConstPart();
1257     APInt C3 = C1 ^ C2;
1258 
1259     // Do not increase code size
1260     if (!C3.isNullValue() && !C3.isAllOnesValue()) {
1261       int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1262       if (NewInstNum > DeadInstNum)
1263         return false;
1264     }
1265 
1266     Res = createAndInstr(I, X, C3);
1267     ConstOpnd ^= C3;
1268   } else {
1269     // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1270     //
1271     const APInt &C1 = Opnd1->getConstPart();
1272     const APInt &C2 = Opnd2->getConstPart();
1273     APInt C3 = C1 ^ C2;
1274     Res = createAndInstr(I, X, C3);
1275   }
1276 
1277   // Put the original operands in the Redo list; hope they will be deleted
1278   // as dead code.
1279   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1280     RedoInsts.insert(T);
1281   if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1282     RedoInsts.insert(T);
1283 
1284   return true;
1285 }
1286 
1287 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1288 /// to a single Value, it is returned, otherwise the Ops list is mutated as
1289 /// necessary.
1290 Value *ReassociatePass::OptimizeXor(Instruction *I,
1291                                     SmallVectorImpl<ValueEntry> &Ops) {
1292   if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1293     return V;
1294 
1295   if (Ops.size() == 1)
1296     return nullptr;
1297 
1298   SmallVector<XorOpnd, 8> Opnds;
1299   SmallVector<XorOpnd*, 8> OpndPtrs;
1300   Type *Ty = Ops[0].Op->getType();
1301   APInt ConstOpnd(Ty->getScalarSizeInBits(), 0);
1302 
1303   // Step 1: Convert ValueEntry to XorOpnd
1304   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1305     Value *V = Ops[i].Op;
1306     const APInt *C;
1307     // TODO: Support non-splat vectors.
1308     if (match(V, m_APInt(C))) {
1309       ConstOpnd ^= *C;
1310     } else {
1311       XorOpnd O(V);
1312       O.setSymbolicRank(getRank(O.getSymbolicPart()));
1313       Opnds.push_back(O);
1314     }
1315   }
1316 
1317   // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1318   //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1319   //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1320   //  with the previous loop --- the iterator of the "Opnds" may be invalidated
1321   //  when new elements are added to the vector.
1322   for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1323     OpndPtrs.push_back(&Opnds[i]);
1324 
1325   // Step 2: Sort the Xor-Operands in a way such that the operands containing
1326   //  the same symbolic value cluster together. For instance, the input operand
1327   //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1328   //  ("x | 123", "x & 789", "y & 456").
1329   //
1330   //  The purpose is twofold:
1331   //  1) Cluster together the operands sharing the same symbolic-value.
1332   //  2) Operand having smaller symbolic-value-rank is permuted earlier, which
1333   //     could potentially shorten crital path, and expose more loop-invariants.
1334   //     Note that values' rank are basically defined in RPO order (FIXME).
1335   //     So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
1336   //     than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
1337   //     "z" in the order of X-Y-Z is better than any other orders.
1338   std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(),
1339                    [](XorOpnd *LHS, XorOpnd *RHS) {
1340     return LHS->getSymbolicRank() < RHS->getSymbolicRank();
1341   });
1342 
1343   // Step 3: Combine adjacent operands
1344   XorOpnd *PrevOpnd = nullptr;
1345   bool Changed = false;
1346   for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
1347     XorOpnd *CurrOpnd = OpndPtrs[i];
1348     // The combined value
1349     Value *CV;
1350 
1351     // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1352     if (!ConstOpnd.isNullValue() &&
1353         CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1354       Changed = true;
1355       if (CV)
1356         *CurrOpnd = XorOpnd(CV);
1357       else {
1358         CurrOpnd->Invalidate();
1359         continue;
1360       }
1361     }
1362 
1363     if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1364       PrevOpnd = CurrOpnd;
1365       continue;
1366     }
1367 
1368     // step 3.2: When previous and current operands share the same symbolic
1369     //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1370     if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1371       // Remove previous operand
1372       PrevOpnd->Invalidate();
1373       if (CV) {
1374         *CurrOpnd = XorOpnd(CV);
1375         PrevOpnd = CurrOpnd;
1376       } else {
1377         CurrOpnd->Invalidate();
1378         PrevOpnd = nullptr;
1379       }
1380       Changed = true;
1381     }
1382   }
1383 
1384   // Step 4: Reassemble the Ops
1385   if (Changed) {
1386     Ops.clear();
1387     for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1388       XorOpnd &O = Opnds[i];
1389       if (O.isInvalid())
1390         continue;
1391       ValueEntry VE(getRank(O.getValue()), O.getValue());
1392       Ops.push_back(VE);
1393     }
1394     if (!ConstOpnd.isNullValue()) {
1395       Value *C = ConstantInt::get(Ty, ConstOpnd);
1396       ValueEntry VE(getRank(C), C);
1397       Ops.push_back(VE);
1398     }
1399     unsigned Sz = Ops.size();
1400     if (Sz == 1)
1401       return Ops.back().Op;
1402     if (Sz == 0) {
1403       assert(ConstOpnd.isNullValue());
1404       return ConstantInt::get(Ty, ConstOpnd);
1405     }
1406   }
1407 
1408   return nullptr;
1409 }
1410 
1411 /// Optimize a series of operands to an 'add' instruction.  This
1412 /// optimizes based on identities.  If it can be reduced to a single Value, it
1413 /// is returned, otherwise the Ops list is mutated as necessary.
1414 Value *ReassociatePass::OptimizeAdd(Instruction *I,
1415                                     SmallVectorImpl<ValueEntry> &Ops) {
1416   // Scan the operand lists looking for X and -X pairs.  If we find any, we
1417   // can simplify expressions like X+-X == 0 and X+~X ==-1.  While we're at it,
1418   // scan for any
1419   // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1420 
1421   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1422     Value *TheOp = Ops[i].Op;
1423     // Check to see if we've seen this operand before.  If so, we factor all
1424     // instances of the operand together.  Due to our sorting criteria, we know
1425     // that these need to be next to each other in the vector.
1426     if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1427       // Rescan the list, remove all instances of this operand from the expr.
1428       unsigned NumFound = 0;
1429       do {
1430         Ops.erase(Ops.begin()+i);
1431         ++NumFound;
1432       } while (i != Ops.size() && Ops[i].Op == TheOp);
1433 
1434       LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp
1435                         << '\n');
1436       ++NumFactor;
1437 
1438       // Insert a new multiply.
1439       Type *Ty = TheOp->getType();
1440       Constant *C = Ty->isIntOrIntVectorTy() ?
1441         ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
1442       Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
1443 
1444       // Now that we have inserted a multiply, optimize it. This allows us to
1445       // handle cases that require multiple factoring steps, such as this:
1446       // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1447       RedoInsts.insert(Mul);
1448 
1449       // If every add operand was a duplicate, return the multiply.
1450       if (Ops.empty())
1451         return Mul;
1452 
1453       // Otherwise, we had some input that didn't have the dupe, such as
1454       // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
1455       // things being added by this operation.
1456       Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1457 
1458       --i;
1459       e = Ops.size();
1460       continue;
1461     }
1462 
1463     // Check for X and -X or X and ~X in the operand list.
1464     Value *X;
1465     if (!match(TheOp, m_Neg(m_Value(X))) && !match(TheOp, m_Not(m_Value(X))) &&
1466         !match(TheOp, m_FNeg(m_Value(X))))
1467       continue;
1468 
1469     unsigned FoundX = FindInOperandList(Ops, i, X);
1470     if (FoundX == i)
1471       continue;
1472 
1473     // Remove X and -X from the operand list.
1474     if (Ops.size() == 2 &&
1475         (match(TheOp, m_Neg(m_Value())) || match(TheOp, m_FNeg(m_Value()))))
1476       return Constant::getNullValue(X->getType());
1477 
1478     // Remove X and ~X from the operand list.
1479     if (Ops.size() == 2 && match(TheOp, m_Not(m_Value())))
1480       return Constant::getAllOnesValue(X->getType());
1481 
1482     Ops.erase(Ops.begin()+i);
1483     if (i < FoundX)
1484       --FoundX;
1485     else
1486       --i;   // Need to back up an extra one.
1487     Ops.erase(Ops.begin()+FoundX);
1488     ++NumAnnihil;
1489     --i;     // Revisit element.
1490     e -= 2;  // Removed two elements.
1491 
1492     // if X and ~X we append -1 to the operand list.
1493     if (match(TheOp, m_Not(m_Value()))) {
1494       Value *V = Constant::getAllOnesValue(X->getType());
1495       Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1496       e += 1;
1497     }
1498   }
1499 
1500   // Scan the operand list, checking to see if there are any common factors
1501   // between operands.  Consider something like A*A+A*B*C+D.  We would like to
1502   // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1503   // To efficiently find this, we count the number of times a factor occurs
1504   // for any ADD operands that are MULs.
1505   DenseMap<Value*, unsigned> FactorOccurrences;
1506 
1507   // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1508   // where they are actually the same multiply.
1509   unsigned MaxOcc = 0;
1510   Value *MaxOccVal = nullptr;
1511   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1512     BinaryOperator *BOp =
1513         isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1514     if (!BOp)
1515       continue;
1516 
1517     // Compute all of the factors of this added value.
1518     SmallVector<Value*, 8> Factors;
1519     FindSingleUseMultiplyFactors(BOp, Factors);
1520     assert(Factors.size() > 1 && "Bad linearize!");
1521 
1522     // Add one to FactorOccurrences for each unique factor in this op.
1523     SmallPtrSet<Value*, 8> Duplicates;
1524     for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1525       Value *Factor = Factors[i];
1526       if (!Duplicates.insert(Factor).second)
1527         continue;
1528 
1529       unsigned Occ = ++FactorOccurrences[Factor];
1530       if (Occ > MaxOcc) {
1531         MaxOcc = Occ;
1532         MaxOccVal = Factor;
1533       }
1534 
1535       // If Factor is a negative constant, add the negated value as a factor
1536       // because we can percolate the negate out.  Watch for minint, which
1537       // cannot be positivified.
1538       if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
1539         if (CI->isNegative() && !CI->isMinValue(true)) {
1540           Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1541           if (!Duplicates.insert(Factor).second)
1542             continue;
1543           unsigned Occ = ++FactorOccurrences[Factor];
1544           if (Occ > MaxOcc) {
1545             MaxOcc = Occ;
1546             MaxOccVal = Factor;
1547           }
1548         }
1549       } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1550         if (CF->isNegative()) {
1551           APFloat F(CF->getValueAPF());
1552           F.changeSign();
1553           Factor = ConstantFP::get(CF->getContext(), F);
1554           if (!Duplicates.insert(Factor).second)
1555             continue;
1556           unsigned Occ = ++FactorOccurrences[Factor];
1557           if (Occ > MaxOcc) {
1558             MaxOcc = Occ;
1559             MaxOccVal = Factor;
1560           }
1561         }
1562       }
1563     }
1564   }
1565 
1566   // If any factor occurred more than one time, we can pull it out.
1567   if (MaxOcc > 1) {
1568     LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal
1569                       << '\n');
1570     ++NumFactor;
1571 
1572     // Create a new instruction that uses the MaxOccVal twice.  If we don't do
1573     // this, we could otherwise run into situations where removing a factor
1574     // from an expression will drop a use of maxocc, and this can cause
1575     // RemoveFactorFromExpression on successive values to behave differently.
1576     Instruction *DummyInst =
1577         I->getType()->isIntOrIntVectorTy()
1578             ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1579             : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1580 
1581     SmallVector<WeakTrackingVH, 4> NewMulOps;
1582     for (unsigned i = 0; i != Ops.size(); ++i) {
1583       // Only try to remove factors from expressions we're allowed to.
1584       BinaryOperator *BOp =
1585           isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1586       if (!BOp)
1587         continue;
1588 
1589       if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1590         // The factorized operand may occur several times.  Convert them all in
1591         // one fell swoop.
1592         for (unsigned j = Ops.size(); j != i;) {
1593           --j;
1594           if (Ops[j].Op == Ops[i].Op) {
1595             NewMulOps.push_back(V);
1596             Ops.erase(Ops.begin()+j);
1597           }
1598         }
1599         --i;
1600       }
1601     }
1602 
1603     // No need for extra uses anymore.
1604     DummyInst->deleteValue();
1605 
1606     unsigned NumAddedValues = NewMulOps.size();
1607     Value *V = EmitAddTreeOfValues(I, NewMulOps);
1608 
1609     // Now that we have inserted the add tree, optimize it. This allows us to
1610     // handle cases that require multiple factoring steps, such as this:
1611     // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
1612     assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1613     (void)NumAddedValues;
1614     if (Instruction *VI = dyn_cast<Instruction>(V))
1615       RedoInsts.insert(VI);
1616 
1617     // Create the multiply.
1618     Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I);
1619 
1620     // Rerun associate on the multiply in case the inner expression turned into
1621     // a multiply.  We want to make sure that we keep things in canonical form.
1622     RedoInsts.insert(V2);
1623 
1624     // If every add operand included the factor (e.g. "A*B + A*C"), then the
1625     // entire result expression is just the multiply "A*(B+C)".
1626     if (Ops.empty())
1627       return V2;
1628 
1629     // Otherwise, we had some input that didn't have the factor, such as
1630     // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
1631     // things being added by this operation.
1632     Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1633   }
1634 
1635   return nullptr;
1636 }
1637 
1638 /// Build up a vector of value/power pairs factoring a product.
1639 ///
1640 /// Given a series of multiplication operands, build a vector of factors and
1641 /// the powers each is raised to when forming the final product. Sort them in
1642 /// the order of descending power.
1643 ///
1644 ///      (x*x)          -> [(x, 2)]
1645 ///     ((x*x)*x)       -> [(x, 3)]
1646 ///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1647 ///
1648 /// \returns Whether any factors have a power greater than one.
1649 static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1650                                    SmallVectorImpl<Factor> &Factors) {
1651   // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1652   // Compute the sum of powers of simplifiable factors.
1653   unsigned FactorPowerSum = 0;
1654   for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1655     Value *Op = Ops[Idx-1].Op;
1656 
1657     // Count the number of occurrences of this value.
1658     unsigned Count = 1;
1659     for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1660       ++Count;
1661     // Track for simplification all factors which occur 2 or more times.
1662     if (Count > 1)
1663       FactorPowerSum += Count;
1664   }
1665 
1666   // We can only simplify factors if the sum of the powers of our simplifiable
1667   // factors is 4 or higher. When that is the case, we will *always* have
1668   // a simplification. This is an important invariant to prevent cyclicly
1669   // trying to simplify already minimal formations.
1670   if (FactorPowerSum < 4)
1671     return false;
1672 
1673   // Now gather the simplifiable factors, removing them from Ops.
1674   FactorPowerSum = 0;
1675   for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1676     Value *Op = Ops[Idx-1].Op;
1677 
1678     // Count the number of occurrences of this value.
1679     unsigned Count = 1;
1680     for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1681       ++Count;
1682     if (Count == 1)
1683       continue;
1684     // Move an even number of occurrences to Factors.
1685     Count &= ~1U;
1686     Idx -= Count;
1687     FactorPowerSum += Count;
1688     Factors.push_back(Factor(Op, Count));
1689     Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1690   }
1691 
1692   // None of the adjustments above should have reduced the sum of factor powers
1693   // below our mininum of '4'.
1694   assert(FactorPowerSum >= 4);
1695 
1696   std::stable_sort(Factors.begin(), Factors.end(),
1697                    [](const Factor &LHS, const Factor &RHS) {
1698     return LHS.Power > RHS.Power;
1699   });
1700   return true;
1701 }
1702 
1703 /// Build a tree of multiplies, computing the product of Ops.
1704 static Value *buildMultiplyTree(IRBuilder<> &Builder,
1705                                 SmallVectorImpl<Value*> &Ops) {
1706   if (Ops.size() == 1)
1707     return Ops.back();
1708 
1709   Value *LHS = Ops.pop_back_val();
1710   do {
1711     if (LHS->getType()->isIntOrIntVectorTy())
1712       LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1713     else
1714       LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
1715   } while (!Ops.empty());
1716 
1717   return LHS;
1718 }
1719 
1720 /// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1721 ///
1722 /// Given a vector of values raised to various powers, where no two values are
1723 /// equal and the powers are sorted in decreasing order, compute the minimal
1724 /// DAG of multiplies to compute the final product, and return that product
1725 /// value.
1726 Value *
1727 ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1728                                          SmallVectorImpl<Factor> &Factors) {
1729   assert(Factors[0].Power);
1730   SmallVector<Value *, 4> OuterProduct;
1731   for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1732        Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1733     if (Factors[Idx].Power != Factors[LastIdx].Power) {
1734       LastIdx = Idx;
1735       continue;
1736     }
1737 
1738     // We want to multiply across all the factors with the same power so that
1739     // we can raise them to that power as a single entity. Build a mini tree
1740     // for that.
1741     SmallVector<Value *, 4> InnerProduct;
1742     InnerProduct.push_back(Factors[LastIdx].Base);
1743     do {
1744       InnerProduct.push_back(Factors[Idx].Base);
1745       ++Idx;
1746     } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1747 
1748     // Reset the base value of the first factor to the new expression tree.
1749     // We'll remove all the factors with the same power in a second pass.
1750     Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1751     if (Instruction *MI = dyn_cast<Instruction>(M))
1752       RedoInsts.insert(MI);
1753 
1754     LastIdx = Idx;
1755   }
1756   // Unique factors with equal powers -- we've folded them into the first one's
1757   // base.
1758   Factors.erase(std::unique(Factors.begin(), Factors.end(),
1759                             [](const Factor &LHS, const Factor &RHS) {
1760                               return LHS.Power == RHS.Power;
1761                             }),
1762                 Factors.end());
1763 
1764   // Iteratively collect the base of each factor with an add power into the
1765   // outer product, and halve each power in preparation for squaring the
1766   // expression.
1767   for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1768     if (Factors[Idx].Power & 1)
1769       OuterProduct.push_back(Factors[Idx].Base);
1770     Factors[Idx].Power >>= 1;
1771   }
1772   if (Factors[0].Power) {
1773     Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1774     OuterProduct.push_back(SquareRoot);
1775     OuterProduct.push_back(SquareRoot);
1776   }
1777   if (OuterProduct.size() == 1)
1778     return OuterProduct.front();
1779 
1780   Value *V = buildMultiplyTree(Builder, OuterProduct);
1781   return V;
1782 }
1783 
1784 Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
1785                                     SmallVectorImpl<ValueEntry> &Ops) {
1786   // We can only optimize the multiplies when there is a chain of more than
1787   // three, such that a balanced tree might require fewer total multiplies.
1788   if (Ops.size() < 4)
1789     return nullptr;
1790 
1791   // Try to turn linear trees of multiplies without other uses of the
1792   // intermediate stages into minimal multiply DAGs with perfect sub-expression
1793   // re-use.
1794   SmallVector<Factor, 4> Factors;
1795   if (!collectMultiplyFactors(Ops, Factors))
1796     return nullptr; // All distinct factors, so nothing left for us to do.
1797 
1798   IRBuilder<> Builder(I);
1799   // The reassociate transformation for FP operations is performed only
1800   // if unsafe algebra is permitted by FastMathFlags. Propagate those flags
1801   // to the newly generated operations.
1802   if (auto FPI = dyn_cast<FPMathOperator>(I))
1803     Builder.setFastMathFlags(FPI->getFastMathFlags());
1804 
1805   Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1806   if (Ops.empty())
1807     return V;
1808 
1809   ValueEntry NewEntry = ValueEntry(getRank(V), V);
1810   Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
1811   return nullptr;
1812 }
1813 
1814 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
1815                                            SmallVectorImpl<ValueEntry> &Ops) {
1816   // Now that we have the linearized expression tree, try to optimize it.
1817   // Start by folding any constants that we found.
1818   Constant *Cst = nullptr;
1819   unsigned Opcode = I->getOpcode();
1820   while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1821     Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1822     Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1823   }
1824   // If there was nothing but constants then we are done.
1825   if (Ops.empty())
1826     return Cst;
1827 
1828   // Put the combined constant back at the end of the operand list, except if
1829   // there is no point.  For example, an add of 0 gets dropped here, while a
1830   // multiplication by zero turns the whole expression into zero.
1831   if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1832     if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1833       return Cst;
1834     Ops.push_back(ValueEntry(0, Cst));
1835   }
1836 
1837   if (Ops.size() == 1) return Ops[0].Op;
1838 
1839   // Handle destructive annihilation due to identities between elements in the
1840   // argument list here.
1841   unsigned NumOps = Ops.size();
1842   switch (Opcode) {
1843   default: break;
1844   case Instruction::And:
1845   case Instruction::Or:
1846     if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1847       return Result;
1848     break;
1849 
1850   case Instruction::Xor:
1851     if (Value *Result = OptimizeXor(I, Ops))
1852       return Result;
1853     break;
1854 
1855   case Instruction::Add:
1856   case Instruction::FAdd:
1857     if (Value *Result = OptimizeAdd(I, Ops))
1858       return Result;
1859     break;
1860 
1861   case Instruction::Mul:
1862   case Instruction::FMul:
1863     if (Value *Result = OptimizeMul(I, Ops))
1864       return Result;
1865     break;
1866   }
1867 
1868   if (Ops.size() != NumOps)
1869     return OptimizeExpression(I, Ops);
1870   return nullptr;
1871 }
1872 
1873 // Remove dead instructions and if any operands are trivially dead add them to
1874 // Insts so they will be removed as well.
1875 void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I,
1876                                                 OrderedSet &Insts) {
1877   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1878   SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end());
1879   ValueRankMap.erase(I);
1880   Insts.remove(I);
1881   RedoInsts.remove(I);
1882   I->eraseFromParent();
1883   for (auto Op : Ops)
1884     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1885       if (OpInst->use_empty())
1886         Insts.insert(OpInst);
1887 }
1888 
1889 /// Zap the given instruction, adding interesting operands to the work list.
1890 void ReassociatePass::EraseInst(Instruction *I) {
1891   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1892   LLVM_DEBUG(dbgs() << "Erasing dead inst: "; I->dump());
1893 
1894   SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1895   // Erase the dead instruction.
1896   ValueRankMap.erase(I);
1897   RedoInsts.remove(I);
1898   I->eraseFromParent();
1899   // Optimize its operands.
1900   SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
1901   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1902     if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1903       // If this is a node in an expression tree, climb to the expression root
1904       // and add that since that's where optimization actually happens.
1905       unsigned Opcode = Op->getOpcode();
1906       while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
1907              Visited.insert(Op).second)
1908         Op = Op->user_back();
1909 
1910       // The instruction we're going to push may be coming from a
1911       // dead block, and Reassociate skips the processing of unreachable
1912       // blocks because it's a waste of time and also because it can
1913       // lead to infinite loop due to LLVM's non-standard definition
1914       // of dominance.
1915       if (ValueRankMap.find(Op) != ValueRankMap.end())
1916         RedoInsts.insert(Op);
1917     }
1918 
1919   MadeChange = true;
1920 }
1921 
1922 // Canonicalize expressions of the following form:
1923 //  x + (-Constant * y) -> x - (Constant * y)
1924 //  x - (-Constant * y) -> x + (Constant * y)
1925 Instruction *ReassociatePass::canonicalizeNegConstExpr(Instruction *I) {
1926   if (!I->hasOneUse() || I->getType()->isVectorTy())
1927     return nullptr;
1928 
1929   // Must be a fmul or fdiv instruction.
1930   unsigned Opcode = I->getOpcode();
1931   if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv)
1932     return nullptr;
1933 
1934   auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
1935   auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
1936 
1937   // Both operands are constant, let it get constant folded away.
1938   if (C0 && C1)
1939     return nullptr;
1940 
1941   ConstantFP *CF = C0 ? C0 : C1;
1942 
1943   // Must have one constant operand.
1944   if (!CF)
1945     return nullptr;
1946 
1947   // Must be a negative ConstantFP.
1948   if (!CF->isNegative())
1949     return nullptr;
1950 
1951   // User must be a binary operator with one or more uses.
1952   Instruction *User = I->user_back();
1953   if (!isa<BinaryOperator>(User) || User->use_empty())
1954     return nullptr;
1955 
1956   unsigned UserOpcode = User->getOpcode();
1957   if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub)
1958     return nullptr;
1959 
1960   // Subtraction is not commutative. Explicitly, the following transform is
1961   // not valid: (-Constant * y) - x  -> x + (Constant * y)
1962   if (!User->isCommutative() && User->getOperand(1) != I)
1963     return nullptr;
1964 
1965   // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the
1966   // resulting subtract will be broken up later.  This can get us into an
1967   // infinite loop during reassociation.
1968   if (UserOpcode == Instruction::FAdd && ShouldBreakUpSubtract(User))
1969     return nullptr;
1970 
1971   // Change the sign of the constant.
1972   APFloat Val = CF->getValueAPF();
1973   Val.changeSign();
1974   I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val));
1975 
1976   // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
1977   // ((-Const*y) + x) -> (x + (-Const*y)).
1978   if (User->getOperand(0) == I && User->isCommutative())
1979     cast<BinaryOperator>(User)->swapOperands();
1980 
1981   Value *Op0 = User->getOperand(0);
1982   Value *Op1 = User->getOperand(1);
1983   BinaryOperator *NI;
1984   switch (UserOpcode) {
1985   default:
1986     llvm_unreachable("Unexpected Opcode!");
1987   case Instruction::FAdd:
1988     NI = BinaryOperator::CreateFSub(Op0, Op1);
1989     NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1990     break;
1991   case Instruction::FSub:
1992     NI = BinaryOperator::CreateFAdd(Op0, Op1);
1993     NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1994     break;
1995   }
1996 
1997   NI->insertBefore(User);
1998   NI->setName(User->getName());
1999   User->replaceAllUsesWith(NI);
2000   NI->setDebugLoc(I->getDebugLoc());
2001   RedoInsts.insert(I);
2002   MadeChange = true;
2003   return NI;
2004 }
2005 
2006 /// Inspect and optimize the given instruction. Note that erasing
2007 /// instructions is not allowed.
2008 void ReassociatePass::OptimizeInst(Instruction *I) {
2009   // Only consider operations that we understand.
2010   if (!isa<BinaryOperator>(I))
2011     return;
2012 
2013   if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
2014     // If an operand of this shift is a reassociable multiply, or if the shift
2015     // is used by a reassociable multiply or add, turn into a multiply.
2016     if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
2017         (I->hasOneUse() &&
2018          (isReassociableOp(I->user_back(), Instruction::Mul) ||
2019           isReassociableOp(I->user_back(), Instruction::Add)))) {
2020       Instruction *NI = ConvertShiftToMul(I);
2021       RedoInsts.insert(I);
2022       MadeChange = true;
2023       I = NI;
2024     }
2025 
2026   // Canonicalize negative constants out of expressions.
2027   if (Instruction *Res = canonicalizeNegConstExpr(I))
2028     I = Res;
2029 
2030   // Commute binary operators, to canonicalize the order of their operands.
2031   // This can potentially expose more CSE opportunities, and makes writing other
2032   // transformations simpler.
2033   if (I->isCommutative())
2034     canonicalizeOperands(I);
2035 
2036   // Don't optimize floating-point instructions unless they are 'fast'.
2037   if (I->getType()->isFPOrFPVectorTy() && !I->isFast())
2038     return;
2039 
2040   // Do not reassociate boolean (i1) expressions.  We want to preserve the
2041   // original order of evaluation for short-circuited comparisons that
2042   // SimplifyCFG has folded to AND/OR expressions.  If the expression
2043   // is not further optimized, it is likely to be transformed back to a
2044   // short-circuited form for code gen, and the source order may have been
2045   // optimized for the most likely conditions.
2046   if (I->getType()->isIntegerTy(1))
2047     return;
2048 
2049   // If this is a subtract instruction which is not already in negate form,
2050   // see if we can convert it to X+-Y.
2051   if (I->getOpcode() == Instruction::Sub) {
2052     if (ShouldBreakUpSubtract(I)) {
2053       Instruction *NI = BreakUpSubtract(I, RedoInsts);
2054       RedoInsts.insert(I);
2055       MadeChange = true;
2056       I = NI;
2057     } else if (match(I, m_Neg(m_Value()))) {
2058       // Otherwise, this is a negation.  See if the operand is a multiply tree
2059       // and if this is not an inner node of a multiply tree.
2060       if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2061           (!I->hasOneUse() ||
2062            !isReassociableOp(I->user_back(), Instruction::Mul))) {
2063         Instruction *NI = LowerNegateToMultiply(I);
2064         // If the negate was simplified, revisit the users to see if we can
2065         // reassociate further.
2066         for (User *U : NI->users()) {
2067           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2068             RedoInsts.insert(Tmp);
2069         }
2070         RedoInsts.insert(I);
2071         MadeChange = true;
2072         I = NI;
2073       }
2074     }
2075   } else if (I->getOpcode() == Instruction::FSub) {
2076     if (ShouldBreakUpSubtract(I)) {
2077       Instruction *NI = BreakUpSubtract(I, RedoInsts);
2078       RedoInsts.insert(I);
2079       MadeChange = true;
2080       I = NI;
2081     } else if (match(I, m_FNeg(m_Value()))) {
2082       // Otherwise, this is a negation.  See if the operand is a multiply tree
2083       // and if this is not an inner node of a multiply tree.
2084       if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
2085           (!I->hasOneUse() ||
2086            !isReassociableOp(I->user_back(), Instruction::FMul))) {
2087         // If the negate was simplified, revisit the users to see if we can
2088         // reassociate further.
2089         Instruction *NI = LowerNegateToMultiply(I);
2090         for (User *U : NI->users()) {
2091           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2092             RedoInsts.insert(Tmp);
2093         }
2094         RedoInsts.insert(I);
2095         MadeChange = true;
2096         I = NI;
2097       }
2098     }
2099   }
2100 
2101   // If this instruction is an associative binary operator, process it.
2102   if (!I->isAssociative()) return;
2103   BinaryOperator *BO = cast<BinaryOperator>(I);
2104 
2105   // If this is an interior node of a reassociable tree, ignore it until we
2106   // get to the root of the tree, to avoid N^2 analysis.
2107   unsigned Opcode = BO->getOpcode();
2108   if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2109     // During the initial run we will get to the root of the tree.
2110     // But if we get here while we are redoing instructions, there is no
2111     // guarantee that the root will be visited. So Redo later
2112     if (BO->user_back() != BO &&
2113         BO->getParent() == BO->user_back()->getParent())
2114       RedoInsts.insert(BO->user_back());
2115     return;
2116   }
2117 
2118   // If this is an add tree that is used by a sub instruction, ignore it
2119   // until we process the subtract.
2120   if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
2121       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
2122     return;
2123   if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2124       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2125     return;
2126 
2127   ReassociateExpression(BO);
2128 }
2129 
2130 void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
2131   // First, walk the expression tree, linearizing the tree, collecting the
2132   // operand information.
2133   SmallVector<RepeatedValue, 8> Tree;
2134   MadeChange |= LinearizeExprTree(I, Tree);
2135   SmallVector<ValueEntry, 8> Ops;
2136   Ops.reserve(Tree.size());
2137   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
2138     RepeatedValue E = Tree[i];
2139     Ops.append(E.second.getZExtValue(),
2140                ValueEntry(getRank(E.first), E.first));
2141   }
2142 
2143   LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2144 
2145   // Now that we have linearized the tree to a list and have gathered all of
2146   // the operands and their ranks, sort the operands by their rank.  Use a
2147   // stable_sort so that values with equal ranks will have their relative
2148   // positions maintained (and so the compiler is deterministic).  Note that
2149   // this sorts so that the highest ranking values end up at the beginning of
2150   // the vector.
2151   std::stable_sort(Ops.begin(), Ops.end());
2152 
2153   // Now that we have the expression tree in a convenient
2154   // sorted form, optimize it globally if possible.
2155   if (Value *V = OptimizeExpression(I, Ops)) {
2156     if (V == I)
2157       // Self-referential expression in unreachable code.
2158       return;
2159     // This expression tree simplified to something that isn't a tree,
2160     // eliminate it.
2161     LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
2162     I->replaceAllUsesWith(V);
2163     if (Instruction *VI = dyn_cast<Instruction>(V))
2164       if (I->getDebugLoc())
2165         VI->setDebugLoc(I->getDebugLoc());
2166     RedoInsts.insert(I);
2167     ++NumAnnihil;
2168     return;
2169   }
2170 
2171   // We want to sink immediates as deeply as possible except in the case where
2172   // this is a multiply tree used only by an add, and the immediate is a -1.
2173   // In this case we reassociate to put the negation on the outside so that we
2174   // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
2175   if (I->hasOneUse()) {
2176     if (I->getOpcode() == Instruction::Mul &&
2177         cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2178         isa<ConstantInt>(Ops.back().Op) &&
2179         cast<ConstantInt>(Ops.back().Op)->isMinusOne()) {
2180       ValueEntry Tmp = Ops.pop_back_val();
2181       Ops.insert(Ops.begin(), Tmp);
2182     } else if (I->getOpcode() == Instruction::FMul &&
2183                cast<Instruction>(I->user_back())->getOpcode() ==
2184                    Instruction::FAdd &&
2185                isa<ConstantFP>(Ops.back().Op) &&
2186                cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2187       ValueEntry Tmp = Ops.pop_back_val();
2188       Ops.insert(Ops.begin(), Tmp);
2189     }
2190   }
2191 
2192   LLVM_DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
2193 
2194   if (Ops.size() == 1) {
2195     if (Ops[0].Op == I)
2196       // Self-referential expression in unreachable code.
2197       return;
2198 
2199     // This expression tree simplified to something that isn't a tree,
2200     // eliminate it.
2201     I->replaceAllUsesWith(Ops[0].Op);
2202     if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2203       OI->setDebugLoc(I->getDebugLoc());
2204     RedoInsts.insert(I);
2205     return;
2206   }
2207 
2208   if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) {
2209     // Find the pair with the highest count in the pairmap and move it to the
2210     // back of the list so that it can later be CSE'd.
2211     // example:
2212     //   a*b*c*d*e
2213     // if c*e is the most "popular" pair, we can express this as
2214     //   (((c*e)*d)*b)*a
2215     unsigned Max = 1;
2216     unsigned BestRank = 0;
2217     std::pair<unsigned, unsigned> BestPair;
2218     unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin;
2219     for (unsigned i = 0; i < Ops.size() - 1; ++i)
2220       for (unsigned j = i + 1; j < Ops.size(); ++j) {
2221         unsigned Score = 0;
2222         Value *Op0 = Ops[i].Op;
2223         Value *Op1 = Ops[j].Op;
2224         if (std::less<Value *>()(Op1, Op0))
2225           std::swap(Op0, Op1);
2226         auto it = PairMap[Idx].find({Op0, Op1});
2227         if (it != PairMap[Idx].end())
2228           Score += it->second;
2229 
2230         unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank);
2231         if (Score > Max || (Score == Max && MaxRank < BestRank)) {
2232           BestPair = {i, j};
2233           Max = Score;
2234           BestRank = MaxRank;
2235         }
2236       }
2237     if (Max > 1) {
2238       auto Op0 = Ops[BestPair.first];
2239       auto Op1 = Ops[BestPair.second];
2240       Ops.erase(&Ops[BestPair.second]);
2241       Ops.erase(&Ops[BestPair.first]);
2242       Ops.push_back(Op0);
2243       Ops.push_back(Op1);
2244     }
2245   }
2246   // Now that we ordered and optimized the expressions, splat them back into
2247   // the expression tree, removing any unneeded nodes.
2248   RewriteExprTree(I, Ops);
2249 }
2250 
2251 void
2252 ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) {
2253   // Make a "pairmap" of how often each operand pair occurs.
2254   for (BasicBlock *BI : RPOT) {
2255     for (Instruction &I : *BI) {
2256       if (!I.isAssociative())
2257         continue;
2258 
2259       // Ignore nodes that aren't at the root of trees.
2260       if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode())
2261         continue;
2262 
2263       // Collect all operands in a single reassociable expression.
2264       // Since Reassociate has already been run once, we can assume things
2265       // are already canonical according to Reassociation's regime.
2266       SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) };
2267       SmallVector<Value *, 8> Ops;
2268       while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) {
2269         Value *Op = Worklist.pop_back_val();
2270         Instruction *OpI = dyn_cast<Instruction>(Op);
2271         if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) {
2272           Ops.push_back(Op);
2273           continue;
2274         }
2275         // Be paranoid about self-referencing expressions in unreachable code.
2276         if (OpI->getOperand(0) != OpI)
2277           Worklist.push_back(OpI->getOperand(0));
2278         if (OpI->getOperand(1) != OpI)
2279           Worklist.push_back(OpI->getOperand(1));
2280       }
2281       // Skip extremely long expressions.
2282       if (Ops.size() > GlobalReassociateLimit)
2283         continue;
2284 
2285       // Add all pairwise combinations of operands to the pair map.
2286       unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin;
2287       SmallSet<std::pair<Value *, Value*>, 32> Visited;
2288       for (unsigned i = 0; i < Ops.size() - 1; ++i) {
2289         for (unsigned j = i + 1; j < Ops.size(); ++j) {
2290           // Canonicalize operand orderings.
2291           Value *Op0 = Ops[i];
2292           Value *Op1 = Ops[j];
2293           if (std::less<Value *>()(Op1, Op0))
2294             std::swap(Op0, Op1);
2295           if (!Visited.insert({Op0, Op1}).second)
2296             continue;
2297           auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, 1});
2298           if (!res.second)
2299             ++res.first->second;
2300         }
2301       }
2302     }
2303   }
2304 }
2305 
2306 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
2307   // Get the functions basic blocks in Reverse Post Order. This order is used by
2308   // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic
2309   // blocks (it has been seen that the analysis in this pass could hang when
2310   // analysing dead basic blocks).
2311   ReversePostOrderTraversal<Function *> RPOT(&F);
2312 
2313   // Calculate the rank map for F.
2314   BuildRankMap(F, RPOT);
2315 
2316   // Build the pair map before running reassociate.
2317   // Technically this would be more accurate if we did it after one round
2318   // of reassociation, but in practice it doesn't seem to help much on
2319   // real-world code, so don't waste the compile time running reassociate
2320   // twice.
2321   // If a user wants, they could expicitly run reassociate twice in their
2322   // pass pipeline for further potential gains.
2323   // It might also be possible to update the pair map during runtime, but the
2324   // overhead of that may be large if there's many reassociable chains.
2325   BuildPairMap(RPOT);
2326 
2327   MadeChange = false;
2328 
2329   // Traverse the same blocks that were analysed by BuildRankMap.
2330   for (BasicBlock *BI : RPOT) {
2331     assert(RankMap.count(&*BI) && "BB should be ranked.");
2332     // Optimize every instruction in the basic block.
2333     for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;)
2334       if (isInstructionTriviallyDead(&*II)) {
2335         EraseInst(&*II++);
2336       } else {
2337         OptimizeInst(&*II);
2338         assert(II->getParent() == &*BI && "Moved to a different block!");
2339         ++II;
2340       }
2341 
2342     // Make a copy of all the instructions to be redone so we can remove dead
2343     // instructions.
2344     OrderedSet ToRedo(RedoInsts);
2345     // Iterate over all instructions to be reevaluated and remove trivially dead
2346     // instructions. If any operand of the trivially dead instruction becomes
2347     // dead mark it for deletion as well. Continue this process until all
2348     // trivially dead instructions have been removed.
2349     while (!ToRedo.empty()) {
2350       Instruction *I = ToRedo.pop_back_val();
2351       if (isInstructionTriviallyDead(I)) {
2352         RecursivelyEraseDeadInsts(I, ToRedo);
2353         MadeChange = true;
2354       }
2355     }
2356 
2357     // Now that we have removed dead instructions, we can reoptimize the
2358     // remaining instructions.
2359     while (!RedoInsts.empty()) {
2360       Instruction *I = RedoInsts.front();
2361       RedoInsts.erase(RedoInsts.begin());
2362       if (isInstructionTriviallyDead(I))
2363         EraseInst(I);
2364       else
2365         OptimizeInst(I);
2366     }
2367   }
2368 
2369   // We are done with the rank map and pair map.
2370   RankMap.clear();
2371   ValueRankMap.clear();
2372   for (auto &Entry : PairMap)
2373     Entry.clear();
2374 
2375   if (MadeChange) {
2376     PreservedAnalyses PA;
2377     PA.preserveSet<CFGAnalyses>();
2378     PA.preserve<GlobalsAA>();
2379     return PA;
2380   }
2381 
2382   return PreservedAnalyses::all();
2383 }
2384 
2385 namespace {
2386 
2387   class ReassociateLegacyPass : public FunctionPass {
2388     ReassociatePass Impl;
2389 
2390   public:
2391     static char ID; // Pass identification, replacement for typeid
2392 
2393     ReassociateLegacyPass() : FunctionPass(ID) {
2394       initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
2395     }
2396 
2397     bool runOnFunction(Function &F) override {
2398       if (skipFunction(F))
2399         return false;
2400 
2401       FunctionAnalysisManager DummyFAM;
2402       auto PA = Impl.run(F, DummyFAM);
2403       return !PA.areAllPreserved();
2404     }
2405 
2406     void getAnalysisUsage(AnalysisUsage &AU) const override {
2407       AU.setPreservesCFG();
2408       AU.addPreserved<GlobalsAAWrapperPass>();
2409     }
2410   };
2411 
2412 } // end anonymous namespace
2413 
2414 char ReassociateLegacyPass::ID = 0;
2415 
2416 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
2417                 "Reassociate expressions", false, false)
2418 
2419 // Public interface to the Reassociate pass
2420 FunctionPass *llvm::createReassociatePass() {
2421   return new ReassociateLegacyPass();
2422 }
2423