1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass reassociates commutative expressions in an order that is designed 11 // to promote better constant propagation, GCSE, LICM, PRE, etc. 12 // 13 // For example: 4 + (x + 5) -> x + (4 + 5) 14 // 15 // In the implementation of this algorithm, constants are assigned rank = 0, 16 // function arguments are rank = 1, and other values are assigned ranks 17 // corresponding to the reverse post order traversal of current function 18 // (starting at 2), which effectively gives values in deep loops higher rank 19 // than values not in loops. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/Transforms/Scalar/Reassociate.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/PostOrderIterator.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/Analysis/GlobalsModRef.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/PatternMatch.h" 39 #include "llvm/IR/ValueHandle.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Scalar.h" 44 #include "llvm/Transforms/Utils/Local.h" 45 #include <algorithm> 46 using namespace llvm; 47 using namespace reassociate; 48 49 #define DEBUG_TYPE "reassociate" 50 51 STATISTIC(NumChanged, "Number of insts reassociated"); 52 STATISTIC(NumAnnihil, "Number of expr tree annihilated"); 53 STATISTIC(NumFactor , "Number of multiplies factored"); 54 55 #ifndef NDEBUG 56 /// Print out the expression identified in the Ops list. 57 /// 58 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) { 59 Module *M = I->getModule(); 60 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " " 61 << *Ops[0].Op->getType() << '\t'; 62 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 63 dbgs() << "[ "; 64 Ops[i].Op->printAsOperand(dbgs(), false, M); 65 dbgs() << ", #" << Ops[i].Rank << "] "; 66 } 67 } 68 #endif 69 70 /// Utility class representing a non-constant Xor-operand. We classify 71 /// non-constant Xor-Operands into two categories: 72 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0 73 /// C2) 74 /// C2.1) The operand is in the form of "X | C", where C is a non-zero 75 /// constant. 76 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this 77 /// operand as "E | 0" 78 class llvm::reassociate::XorOpnd { 79 public: 80 XorOpnd(Value *V); 81 82 bool isInvalid() const { return SymbolicPart == nullptr; } 83 bool isOrExpr() const { return isOr; } 84 Value *getValue() const { return OrigVal; } 85 Value *getSymbolicPart() const { return SymbolicPart; } 86 unsigned getSymbolicRank() const { return SymbolicRank; } 87 const APInt &getConstPart() const { return ConstPart; } 88 89 void Invalidate() { SymbolicPart = OrigVal = nullptr; } 90 void setSymbolicRank(unsigned R) { SymbolicRank = R; } 91 92 private: 93 Value *OrigVal; 94 Value *SymbolicPart; 95 APInt ConstPart; 96 unsigned SymbolicRank; 97 bool isOr; 98 }; 99 100 XorOpnd::XorOpnd(Value *V) { 101 assert(!isa<ConstantInt>(V) && "No ConstantInt"); 102 OrigVal = V; 103 Instruction *I = dyn_cast<Instruction>(V); 104 SymbolicRank = 0; 105 106 if (I && (I->getOpcode() == Instruction::Or || 107 I->getOpcode() == Instruction::And)) { 108 Value *V0 = I->getOperand(0); 109 Value *V1 = I->getOperand(1); 110 const APInt *C; 111 if (match(V0, PatternMatch::m_APInt(C))) 112 std::swap(V0, V1); 113 114 if (match(V1, PatternMatch::m_APInt(C))) { 115 ConstPart = *C; 116 SymbolicPart = V0; 117 isOr = (I->getOpcode() == Instruction::Or); 118 return; 119 } 120 } 121 122 // view the operand as "V | 0" 123 SymbolicPart = V; 124 ConstPart = APInt::getNullValue(V->getType()->getScalarSizeInBits()); 125 isOr = true; 126 } 127 128 /// Return true if V is an instruction of the specified opcode and if it 129 /// only has one use. 130 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) { 131 if (V->hasOneUse() && isa<Instruction>(V) && 132 cast<Instruction>(V)->getOpcode() == Opcode && 133 (!isa<FPMathOperator>(V) || 134 cast<Instruction>(V)->hasUnsafeAlgebra())) 135 return cast<BinaryOperator>(V); 136 return nullptr; 137 } 138 139 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1, 140 unsigned Opcode2) { 141 if (V->hasOneUse() && isa<Instruction>(V) && 142 (cast<Instruction>(V)->getOpcode() == Opcode1 || 143 cast<Instruction>(V)->getOpcode() == Opcode2) && 144 (!isa<FPMathOperator>(V) || 145 cast<Instruction>(V)->hasUnsafeAlgebra())) 146 return cast<BinaryOperator>(V); 147 return nullptr; 148 } 149 150 void ReassociatePass::BuildRankMap(Function &F, 151 ReversePostOrderTraversal<Function*> &RPOT) { 152 unsigned i = 2; 153 154 // Assign distinct ranks to function arguments. 155 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { 156 ValueRankMap[&*I] = ++i; 157 DEBUG(dbgs() << "Calculated Rank[" << I->getName() << "] = " << i << "\n"); 158 } 159 160 // Traverse basic blocks in ReversePostOrder 161 for (BasicBlock *BB : RPOT) { 162 unsigned BBRank = RankMap[BB] = ++i << 16; 163 164 // Walk the basic block, adding precomputed ranks for any instructions that 165 // we cannot move. This ensures that the ranks for these instructions are 166 // all different in the block. 167 for (Instruction &I : *BB) 168 if (mayBeMemoryDependent(I)) 169 ValueRankMap[&I] = ++BBRank; 170 } 171 } 172 173 unsigned ReassociatePass::getRank(Value *V) { 174 Instruction *I = dyn_cast<Instruction>(V); 175 if (!I) { 176 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument. 177 return 0; // Otherwise it's a global or constant, rank 0. 178 } 179 180 if (unsigned Rank = ValueRankMap[I]) 181 return Rank; // Rank already known? 182 183 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that 184 // we can reassociate expressions for code motion! Since we do not recurse 185 // for PHI nodes, we cannot have infinite recursion here, because there 186 // cannot be loops in the value graph that do not go through PHI nodes. 187 unsigned Rank = 0, MaxRank = RankMap[I->getParent()]; 188 for (unsigned i = 0, e = I->getNumOperands(); 189 i != e && Rank != MaxRank; ++i) 190 Rank = std::max(Rank, getRank(I->getOperand(i))); 191 192 // If this is a not or neg instruction, do not count it for rank. This 193 // assures us that X and ~X will have the same rank. 194 if (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) && 195 !BinaryOperator::isFNeg(I)) 196 ++Rank; 197 198 DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n"); 199 200 return ValueRankMap[I] = Rank; 201 } 202 203 // Canonicalize constants to RHS. Otherwise, sort the operands by rank. 204 void ReassociatePass::canonicalizeOperands(Instruction *I) { 205 assert(isa<BinaryOperator>(I) && "Expected binary operator."); 206 assert(I->isCommutative() && "Expected commutative operator."); 207 208 Value *LHS = I->getOperand(0); 209 Value *RHS = I->getOperand(1); 210 unsigned LHSRank = getRank(LHS); 211 unsigned RHSRank = getRank(RHS); 212 213 if (isa<Constant>(RHS)) 214 return; 215 216 if (isa<Constant>(LHS) || RHSRank < LHSRank) 217 cast<BinaryOperator>(I)->swapOperands(); 218 } 219 220 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name, 221 Instruction *InsertBefore, Value *FlagsOp) { 222 if (S1->getType()->isIntOrIntVectorTy()) 223 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore); 224 else { 225 BinaryOperator *Res = 226 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore); 227 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 228 return Res; 229 } 230 } 231 232 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name, 233 Instruction *InsertBefore, Value *FlagsOp) { 234 if (S1->getType()->isIntOrIntVectorTy()) 235 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore); 236 else { 237 BinaryOperator *Res = 238 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore); 239 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 240 return Res; 241 } 242 } 243 244 static BinaryOperator *CreateNeg(Value *S1, const Twine &Name, 245 Instruction *InsertBefore, Value *FlagsOp) { 246 if (S1->getType()->isIntOrIntVectorTy()) 247 return BinaryOperator::CreateNeg(S1, Name, InsertBefore); 248 else { 249 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore); 250 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 251 return Res; 252 } 253 } 254 255 /// Replace 0-X with X*-1. 256 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) { 257 Type *Ty = Neg->getType(); 258 Constant *NegOne = Ty->isIntOrIntVectorTy() ? 259 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0); 260 261 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg); 262 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op. 263 Res->takeName(Neg); 264 Neg->replaceAllUsesWith(Res); 265 Res->setDebugLoc(Neg->getDebugLoc()); 266 return Res; 267 } 268 269 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael 270 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for 271 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic. 272 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every 273 /// even x in Bitwidth-bit arithmetic. 274 static unsigned CarmichaelShift(unsigned Bitwidth) { 275 if (Bitwidth < 3) 276 return Bitwidth - 1; 277 return Bitwidth - 2; 278 } 279 280 /// Add the extra weight 'RHS' to the existing weight 'LHS', 281 /// reducing the combined weight using any special properties of the operation. 282 /// The existing weight LHS represents the computation X op X op ... op X where 283 /// X occurs LHS times. The combined weight represents X op X op ... op X with 284 /// X occurring LHS + RHS times. If op is "Xor" for example then the combined 285 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even; 286 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second. 287 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) { 288 // If we were working with infinite precision arithmetic then the combined 289 // weight would be LHS + RHS. But we are using finite precision arithmetic, 290 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct 291 // for nilpotent operations and addition, but not for idempotent operations 292 // and multiplication), so it is important to correctly reduce the combined 293 // weight back into range if wrapping would be wrong. 294 295 // If RHS is zero then the weight didn't change. 296 if (RHS.isMinValue()) 297 return; 298 // If LHS is zero then the combined weight is RHS. 299 if (LHS.isMinValue()) { 300 LHS = RHS; 301 return; 302 } 303 // From this point on we know that neither LHS nor RHS is zero. 304 305 if (Instruction::isIdempotent(Opcode)) { 306 // Idempotent means X op X === X, so any non-zero weight is equivalent to a 307 // weight of 1. Keeping weights at zero or one also means that wrapping is 308 // not a problem. 309 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 310 return; // Return a weight of 1. 311 } 312 if (Instruction::isNilpotent(Opcode)) { 313 // Nilpotent means X op X === 0, so reduce weights modulo 2. 314 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 315 LHS = 0; // 1 + 1 === 0 modulo 2. 316 return; 317 } 318 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) { 319 // TODO: Reduce the weight by exploiting nsw/nuw? 320 LHS += RHS; 321 return; 322 } 323 324 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) && 325 "Unknown associative operation!"); 326 unsigned Bitwidth = LHS.getBitWidth(); 327 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth 328 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth 329 // bit number x, since either x is odd in which case x^CM = 1, or x is even in 330 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples 331 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth) 332 // which by a happy accident means that they can always be represented using 333 // Bitwidth bits. 334 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than 335 // the Carmichael number). 336 if (Bitwidth > 3) { 337 /// CM - The value of Carmichael's lambda function. 338 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth)); 339 // Any weight W >= Threshold can be replaced with W - CM. 340 APInt Threshold = CM + Bitwidth; 341 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!"); 342 // For Bitwidth 4 or more the following sum does not overflow. 343 LHS += RHS; 344 while (LHS.uge(Threshold)) 345 LHS -= CM; 346 } else { 347 // To avoid problems with overflow do everything the same as above but using 348 // a larger type. 349 unsigned CM = 1U << CarmichaelShift(Bitwidth); 350 unsigned Threshold = CM + Bitwidth; 351 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold && 352 "Weights not reduced!"); 353 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue(); 354 while (Total >= Threshold) 355 Total -= CM; 356 LHS = Total; 357 } 358 } 359 360 typedef std::pair<Value*, APInt> RepeatedValue; 361 362 /// Given an associative binary expression, return the leaf 363 /// nodes in Ops along with their weights (how many times the leaf occurs). The 364 /// original expression is the same as 365 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times 366 /// op 367 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times 368 /// op 369 /// ... 370 /// op 371 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times 372 /// 373 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct. 374 /// 375 /// This routine may modify the function, in which case it returns 'true'. The 376 /// changes it makes may well be destructive, changing the value computed by 'I' 377 /// to something completely different. Thus if the routine returns 'true' then 378 /// you MUST either replace I with a new expression computed from the Ops array, 379 /// or use RewriteExprTree to put the values back in. 380 /// 381 /// A leaf node is either not a binary operation of the same kind as the root 382 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different 383 /// opcode), or is the same kind of binary operator but has a use which either 384 /// does not belong to the expression, or does belong to the expression but is 385 /// a leaf node. Every leaf node has at least one use that is a non-leaf node 386 /// of the expression, while for non-leaf nodes (except for the root 'I') every 387 /// use is a non-leaf node of the expression. 388 /// 389 /// For example: 390 /// expression graph node names 391 /// 392 /// + | I 393 /// / \ | 394 /// + + | A, B 395 /// / \ / \ | 396 /// * + * | C, D, E 397 /// / \ / \ / \ | 398 /// + * | F, G 399 /// 400 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in 401 /// that order) (C, 1), (E, 1), (F, 2), (G, 2). 402 /// 403 /// The expression is maximal: if some instruction is a binary operator of the 404 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression, 405 /// then the instruction also belongs to the expression, is not a leaf node of 406 /// it, and its operands also belong to the expression (but may be leaf nodes). 407 /// 408 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in 409 /// order to ensure that every non-root node in the expression has *exactly one* 410 /// use by a non-leaf node of the expression. This destruction means that the 411 /// caller MUST either replace 'I' with a new expression or use something like 412 /// RewriteExprTree to put the values back in if the routine indicates that it 413 /// made a change by returning 'true'. 414 /// 415 /// In the above example either the right operand of A or the left operand of B 416 /// will be replaced by undef. If it is B's operand then this gives: 417 /// 418 /// + | I 419 /// / \ | 420 /// + + | A, B - operand of B replaced with undef 421 /// / \ \ | 422 /// * + * | C, D, E 423 /// / \ / \ / \ | 424 /// + * | F, G 425 /// 426 /// Note that such undef operands can only be reached by passing through 'I'. 427 /// For example, if you visit operands recursively starting from a leaf node 428 /// then you will never see such an undef operand unless you get back to 'I', 429 /// which requires passing through a phi node. 430 /// 431 /// Note that this routine may also mutate binary operators of the wrong type 432 /// that have all uses inside the expression (i.e. only used by non-leaf nodes 433 /// of the expression) if it can turn them into binary operators of the right 434 /// type and thus make the expression bigger. 435 436 static bool LinearizeExprTree(BinaryOperator *I, 437 SmallVectorImpl<RepeatedValue> &Ops) { 438 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n'); 439 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits(); 440 unsigned Opcode = I->getOpcode(); 441 assert(I->isAssociative() && I->isCommutative() && 442 "Expected an associative and commutative operation!"); 443 444 // Visit all operands of the expression, keeping track of their weight (the 445 // number of paths from the expression root to the operand, or if you like 446 // the number of times that operand occurs in the linearized expression). 447 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1 448 // while A has weight two. 449 450 // Worklist of non-leaf nodes (their operands are in the expression too) along 451 // with their weights, representing a certain number of paths to the operator. 452 // If an operator occurs in the worklist multiple times then we found multiple 453 // ways to get to it. 454 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight) 455 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1))); 456 bool Changed = false; 457 458 // Leaves of the expression are values that either aren't the right kind of 459 // operation (eg: a constant, or a multiply in an add tree), or are, but have 460 // some uses that are not inside the expression. For example, in I = X + X, 461 // X = A + B, the value X has two uses (by I) that are in the expression. If 462 // X has any other uses, for example in a return instruction, then we consider 463 // X to be a leaf, and won't analyze it further. When we first visit a value, 464 // if it has more than one use then at first we conservatively consider it to 465 // be a leaf. Later, as the expression is explored, we may discover some more 466 // uses of the value from inside the expression. If all uses turn out to be 467 // from within the expression (and the value is a binary operator of the right 468 // kind) then the value is no longer considered to be a leaf, and its operands 469 // are explored. 470 471 // Leaves - Keeps track of the set of putative leaves as well as the number of 472 // paths to each leaf seen so far. 473 typedef DenseMap<Value*, APInt> LeafMap; 474 LeafMap Leaves; // Leaf -> Total weight so far. 475 SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order. 476 477 #ifndef NDEBUG 478 SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme. 479 #endif 480 while (!Worklist.empty()) { 481 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val(); 482 I = P.first; // We examine the operands of this binary operator. 483 484 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands. 485 Value *Op = I->getOperand(OpIdx); 486 APInt Weight = P.second; // Number of paths to this operand. 487 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n"); 488 assert(!Op->use_empty() && "No uses, so how did we get to it?!"); 489 490 // If this is a binary operation of the right kind with only one use then 491 // add its operands to the expression. 492 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 493 assert(Visited.insert(Op).second && "Not first visit!"); 494 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n"); 495 Worklist.push_back(std::make_pair(BO, Weight)); 496 continue; 497 } 498 499 // Appears to be a leaf. Is the operand already in the set of leaves? 500 LeafMap::iterator It = Leaves.find(Op); 501 if (It == Leaves.end()) { 502 // Not in the leaf map. Must be the first time we saw this operand. 503 assert(Visited.insert(Op).second && "Not first visit!"); 504 if (!Op->hasOneUse()) { 505 // This value has uses not accounted for by the expression, so it is 506 // not safe to modify. Mark it as being a leaf. 507 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n"); 508 LeafOrder.push_back(Op); 509 Leaves[Op] = Weight; 510 continue; 511 } 512 // No uses outside the expression, try morphing it. 513 } else { 514 // Already in the leaf map. 515 assert(It != Leaves.end() && Visited.count(Op) && 516 "In leaf map but not visited!"); 517 518 // Update the number of paths to the leaf. 519 IncorporateWeight(It->second, Weight, Opcode); 520 521 #if 0 // TODO: Re-enable once PR13021 is fixed. 522 // The leaf already has one use from inside the expression. As we want 523 // exactly one such use, drop this new use of the leaf. 524 assert(!Op->hasOneUse() && "Only one use, but we got here twice!"); 525 I->setOperand(OpIdx, UndefValue::get(I->getType())); 526 Changed = true; 527 528 // If the leaf is a binary operation of the right kind and we now see 529 // that its multiple original uses were in fact all by nodes belonging 530 // to the expression, then no longer consider it to be a leaf and add 531 // its operands to the expression. 532 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 533 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n"); 534 Worklist.push_back(std::make_pair(BO, It->second)); 535 Leaves.erase(It); 536 continue; 537 } 538 #endif 539 540 // If we still have uses that are not accounted for by the expression 541 // then it is not safe to modify the value. 542 if (!Op->hasOneUse()) 543 continue; 544 545 // No uses outside the expression, try morphing it. 546 Weight = It->second; 547 Leaves.erase(It); // Since the value may be morphed below. 548 } 549 550 // At this point we have a value which, first of all, is not a binary 551 // expression of the right kind, and secondly, is only used inside the 552 // expression. This means that it can safely be modified. See if we 553 // can usefully morph it into an expression of the right kind. 554 assert((!isa<Instruction>(Op) || 555 cast<Instruction>(Op)->getOpcode() != Opcode 556 || (isa<FPMathOperator>(Op) && 557 !cast<Instruction>(Op)->hasUnsafeAlgebra())) && 558 "Should have been handled above!"); 559 assert(Op->hasOneUse() && "Has uses outside the expression tree!"); 560 561 // If this is a multiply expression, turn any internal negations into 562 // multiplies by -1 so they can be reassociated. 563 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) 564 if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) || 565 (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) { 566 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO "); 567 BO = LowerNegateToMultiply(BO); 568 DEBUG(dbgs() << *BO << '\n'); 569 Worklist.push_back(std::make_pair(BO, Weight)); 570 Changed = true; 571 continue; 572 } 573 574 // Failed to morph into an expression of the right type. This really is 575 // a leaf. 576 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n"); 577 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?"); 578 LeafOrder.push_back(Op); 579 Leaves[Op] = Weight; 580 } 581 } 582 583 // The leaves, repeated according to their weights, represent the linearized 584 // form of the expression. 585 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) { 586 Value *V = LeafOrder[i]; 587 LeafMap::iterator It = Leaves.find(V); 588 if (It == Leaves.end()) 589 // Node initially thought to be a leaf wasn't. 590 continue; 591 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!"); 592 APInt Weight = It->second; 593 if (Weight.isMinValue()) 594 // Leaf already output or weight reduction eliminated it. 595 continue; 596 // Ensure the leaf is only output once. 597 It->second = 0; 598 Ops.push_back(std::make_pair(V, Weight)); 599 } 600 601 // For nilpotent operations or addition there may be no operands, for example 602 // because the expression was "X xor X" or consisted of 2^Bitwidth additions: 603 // in both cases the weight reduces to 0 causing the value to be skipped. 604 if (Ops.empty()) { 605 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType()); 606 assert(Identity && "Associative operation without identity!"); 607 Ops.emplace_back(Identity, APInt(Bitwidth, 1)); 608 } 609 610 return Changed; 611 } 612 613 /// Now that the operands for this expression tree are 614 /// linearized and optimized, emit them in-order. 615 void ReassociatePass::RewriteExprTree(BinaryOperator *I, 616 SmallVectorImpl<ValueEntry> &Ops) { 617 assert(Ops.size() > 1 && "Single values should be used directly!"); 618 619 // Since our optimizations should never increase the number of operations, the 620 // new expression can usually be written reusing the existing binary operators 621 // from the original expression tree, without creating any new instructions, 622 // though the rewritten expression may have a completely different topology. 623 // We take care to not change anything if the new expression will be the same 624 // as the original. If more than trivial changes (like commuting operands) 625 // were made then we are obliged to clear out any optional subclass data like 626 // nsw flags. 627 628 /// NodesToRewrite - Nodes from the original expression available for writing 629 /// the new expression into. 630 SmallVector<BinaryOperator*, 8> NodesToRewrite; 631 unsigned Opcode = I->getOpcode(); 632 BinaryOperator *Op = I; 633 634 /// NotRewritable - The operands being written will be the leaves of the new 635 /// expression and must not be used as inner nodes (via NodesToRewrite) by 636 /// mistake. Inner nodes are always reassociable, and usually leaves are not 637 /// (if they were they would have been incorporated into the expression and so 638 /// would not be leaves), so most of the time there is no danger of this. But 639 /// in rare cases a leaf may become reassociable if an optimization kills uses 640 /// of it, or it may momentarily become reassociable during rewriting (below) 641 /// due it being removed as an operand of one of its uses. Ensure that misuse 642 /// of leaf nodes as inner nodes cannot occur by remembering all of the future 643 /// leaves and refusing to reuse any of them as inner nodes. 644 SmallPtrSet<Value*, 8> NotRewritable; 645 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 646 NotRewritable.insert(Ops[i].Op); 647 648 // ExpressionChanged - Non-null if the rewritten expression differs from the 649 // original in some non-trivial way, requiring the clearing of optional flags. 650 // Flags are cleared from the operator in ExpressionChanged up to I inclusive. 651 BinaryOperator *ExpressionChanged = nullptr; 652 for (unsigned i = 0; ; ++i) { 653 // The last operation (which comes earliest in the IR) is special as both 654 // operands will come from Ops, rather than just one with the other being 655 // a subexpression. 656 if (i+2 == Ops.size()) { 657 Value *NewLHS = Ops[i].Op; 658 Value *NewRHS = Ops[i+1].Op; 659 Value *OldLHS = Op->getOperand(0); 660 Value *OldRHS = Op->getOperand(1); 661 662 if (NewLHS == OldLHS && NewRHS == OldRHS) 663 // Nothing changed, leave it alone. 664 break; 665 666 if (NewLHS == OldRHS && NewRHS == OldLHS) { 667 // The order of the operands was reversed. Swap them. 668 DEBUG(dbgs() << "RA: " << *Op << '\n'); 669 Op->swapOperands(); 670 DEBUG(dbgs() << "TO: " << *Op << '\n'); 671 MadeChange = true; 672 ++NumChanged; 673 break; 674 } 675 676 // The new operation differs non-trivially from the original. Overwrite 677 // the old operands with the new ones. 678 DEBUG(dbgs() << "RA: " << *Op << '\n'); 679 if (NewLHS != OldLHS) { 680 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode); 681 if (BO && !NotRewritable.count(BO)) 682 NodesToRewrite.push_back(BO); 683 Op->setOperand(0, NewLHS); 684 } 685 if (NewRHS != OldRHS) { 686 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode); 687 if (BO && !NotRewritable.count(BO)) 688 NodesToRewrite.push_back(BO); 689 Op->setOperand(1, NewRHS); 690 } 691 DEBUG(dbgs() << "TO: " << *Op << '\n'); 692 693 ExpressionChanged = Op; 694 MadeChange = true; 695 ++NumChanged; 696 697 break; 698 } 699 700 // Not the last operation. The left-hand side will be a sub-expression 701 // while the right-hand side will be the current element of Ops. 702 Value *NewRHS = Ops[i].Op; 703 if (NewRHS != Op->getOperand(1)) { 704 DEBUG(dbgs() << "RA: " << *Op << '\n'); 705 if (NewRHS == Op->getOperand(0)) { 706 // The new right-hand side was already present as the left operand. If 707 // we are lucky then swapping the operands will sort out both of them. 708 Op->swapOperands(); 709 } else { 710 // Overwrite with the new right-hand side. 711 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode); 712 if (BO && !NotRewritable.count(BO)) 713 NodesToRewrite.push_back(BO); 714 Op->setOperand(1, NewRHS); 715 ExpressionChanged = Op; 716 } 717 DEBUG(dbgs() << "TO: " << *Op << '\n'); 718 MadeChange = true; 719 ++NumChanged; 720 } 721 722 // Now deal with the left-hand side. If this is already an operation node 723 // from the original expression then just rewrite the rest of the expression 724 // into it. 725 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode); 726 if (BO && !NotRewritable.count(BO)) { 727 Op = BO; 728 continue; 729 } 730 731 // Otherwise, grab a spare node from the original expression and use that as 732 // the left-hand side. If there are no nodes left then the optimizers made 733 // an expression with more nodes than the original! This usually means that 734 // they did something stupid but it might mean that the problem was just too 735 // hard (finding the mimimal number of multiplications needed to realize a 736 // multiplication expression is NP-complete). Whatever the reason, smart or 737 // stupid, create a new node if there are none left. 738 BinaryOperator *NewOp; 739 if (NodesToRewrite.empty()) { 740 Constant *Undef = UndefValue::get(I->getType()); 741 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode), 742 Undef, Undef, "", I); 743 if (NewOp->getType()->isFPOrFPVectorTy()) 744 NewOp->setFastMathFlags(I->getFastMathFlags()); 745 } else { 746 NewOp = NodesToRewrite.pop_back_val(); 747 } 748 749 DEBUG(dbgs() << "RA: " << *Op << '\n'); 750 Op->setOperand(0, NewOp); 751 DEBUG(dbgs() << "TO: " << *Op << '\n'); 752 ExpressionChanged = Op; 753 MadeChange = true; 754 ++NumChanged; 755 Op = NewOp; 756 } 757 758 // If the expression changed non-trivially then clear out all subclass data 759 // starting from the operator specified in ExpressionChanged, and compactify 760 // the operators to just before the expression root to guarantee that the 761 // expression tree is dominated by all of Ops. 762 if (ExpressionChanged) 763 do { 764 // Preserve FastMathFlags. 765 if (isa<FPMathOperator>(I)) { 766 FastMathFlags Flags = I->getFastMathFlags(); 767 ExpressionChanged->clearSubclassOptionalData(); 768 ExpressionChanged->setFastMathFlags(Flags); 769 } else 770 ExpressionChanged->clearSubclassOptionalData(); 771 772 if (ExpressionChanged == I) 773 break; 774 ExpressionChanged->moveBefore(I); 775 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin()); 776 } while (1); 777 778 // Throw away any left over nodes from the original expression. 779 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i) 780 RedoInsts.insert(NodesToRewrite[i]); 781 } 782 783 /// Insert instructions before the instruction pointed to by BI, 784 /// that computes the negative version of the value specified. The negative 785 /// version of the value is returned, and BI is left pointing at the instruction 786 /// that should be processed next by the reassociation pass. 787 /// Also add intermediate instructions to the redo list that are modified while 788 /// pushing the negates through adds. These will be revisited to see if 789 /// additional opportunities have been exposed. 790 static Value *NegateValue(Value *V, Instruction *BI, 791 SetVector<AssertingVH<Instruction>> &ToRedo) { 792 if (Constant *C = dyn_cast<Constant>(V)) { 793 if (C->getType()->isFPOrFPVectorTy()) { 794 return ConstantExpr::getFNeg(C); 795 } 796 return ConstantExpr::getNeg(C); 797 } 798 799 800 // We are trying to expose opportunity for reassociation. One of the things 801 // that we want to do to achieve this is to push a negation as deep into an 802 // expression chain as possible, to expose the add instructions. In practice, 803 // this means that we turn this: 804 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D 805 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate 806 // the constants. We assume that instcombine will clean up the mess later if 807 // we introduce tons of unnecessary negation instructions. 808 // 809 if (BinaryOperator *I = 810 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) { 811 // Push the negates through the add. 812 I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo)); 813 I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo)); 814 if (I->getOpcode() == Instruction::Add) { 815 I->setHasNoUnsignedWrap(false); 816 I->setHasNoSignedWrap(false); 817 } 818 819 // We must move the add instruction here, because the neg instructions do 820 // not dominate the old add instruction in general. By moving it, we are 821 // assured that the neg instructions we just inserted dominate the 822 // instruction we are about to insert after them. 823 // 824 I->moveBefore(BI); 825 I->setName(I->getName()+".neg"); 826 827 // Add the intermediate negates to the redo list as processing them later 828 // could expose more reassociating opportunities. 829 ToRedo.insert(I); 830 return I; 831 } 832 833 // Okay, we need to materialize a negated version of V with an instruction. 834 // Scan the use lists of V to see if we have one already. 835 for (User *U : V->users()) { 836 if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U)) 837 continue; 838 839 // We found one! Now we have to make sure that the definition dominates 840 // this use. We do this by moving it to the entry block (if it is a 841 // non-instruction value) or right after the definition. These negates will 842 // be zapped by reassociate later, so we don't need much finesse here. 843 BinaryOperator *TheNeg = cast<BinaryOperator>(U); 844 845 // Verify that the negate is in this function, V might be a constant expr. 846 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent()) 847 continue; 848 849 BasicBlock::iterator InsertPt; 850 if (Instruction *InstInput = dyn_cast<Instruction>(V)) { 851 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) { 852 InsertPt = II->getNormalDest()->begin(); 853 } else { 854 InsertPt = ++InstInput->getIterator(); 855 } 856 while (isa<PHINode>(InsertPt)) ++InsertPt; 857 } else { 858 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin(); 859 } 860 TheNeg->moveBefore(&*InsertPt); 861 if (TheNeg->getOpcode() == Instruction::Sub) { 862 TheNeg->setHasNoUnsignedWrap(false); 863 TheNeg->setHasNoSignedWrap(false); 864 } else { 865 TheNeg->andIRFlags(BI); 866 } 867 ToRedo.insert(TheNeg); 868 return TheNeg; 869 } 870 871 // Insert a 'neg' instruction that subtracts the value from zero to get the 872 // negation. 873 BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI); 874 ToRedo.insert(NewNeg); 875 return NewNeg; 876 } 877 878 /// Return true if we should break up this subtract of X-Y into (X + -Y). 879 static bool ShouldBreakUpSubtract(Instruction *Sub) { 880 // If this is a negation, we can't split it up! 881 if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub)) 882 return false; 883 884 // Don't breakup X - undef. 885 if (isa<UndefValue>(Sub->getOperand(1))) 886 return false; 887 888 // Don't bother to break this up unless either the LHS is an associable add or 889 // subtract or if this is only used by one. 890 Value *V0 = Sub->getOperand(0); 891 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) || 892 isReassociableOp(V0, Instruction::Sub, Instruction::FSub)) 893 return true; 894 Value *V1 = Sub->getOperand(1); 895 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) || 896 isReassociableOp(V1, Instruction::Sub, Instruction::FSub)) 897 return true; 898 Value *VB = Sub->user_back(); 899 if (Sub->hasOneUse() && 900 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) || 901 isReassociableOp(VB, Instruction::Sub, Instruction::FSub))) 902 return true; 903 904 return false; 905 } 906 907 /// If we have (X-Y), and if either X is an add, or if this is only used by an 908 /// add, transform this into (X+(0-Y)) to promote better reassociation. 909 static BinaryOperator * 910 BreakUpSubtract(Instruction *Sub, SetVector<AssertingVH<Instruction>> &ToRedo) { 911 // Convert a subtract into an add and a neg instruction. This allows sub 912 // instructions to be commuted with other add instructions. 913 // 914 // Calculate the negative value of Operand 1 of the sub instruction, 915 // and set it as the RHS of the add instruction we just made. 916 // 917 Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo); 918 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub); 919 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op. 920 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op. 921 New->takeName(Sub); 922 923 // Everyone now refers to the add instruction. 924 Sub->replaceAllUsesWith(New); 925 New->setDebugLoc(Sub->getDebugLoc()); 926 927 DEBUG(dbgs() << "Negated: " << *New << '\n'); 928 return New; 929 } 930 931 /// If this is a shift of a reassociable multiply or is used by one, change 932 /// this into a multiply by a constant to assist with further reassociation. 933 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) { 934 Constant *MulCst = ConstantInt::get(Shl->getType(), 1); 935 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1))); 936 937 BinaryOperator *Mul = 938 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl); 939 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op. 940 Mul->takeName(Shl); 941 942 // Everyone now refers to the mul instruction. 943 Shl->replaceAllUsesWith(Mul); 944 Mul->setDebugLoc(Shl->getDebugLoc()); 945 946 // We can safely preserve the nuw flag in all cases. It's also safe to turn a 947 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special 948 // handling. 949 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap(); 950 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap(); 951 if (NSW && NUW) 952 Mul->setHasNoSignedWrap(true); 953 Mul->setHasNoUnsignedWrap(NUW); 954 return Mul; 955 } 956 957 /// Scan backwards and forwards among values with the same rank as element i 958 /// to see if X exists. If X does not exist, return i. This is useful when 959 /// scanning for 'x' when we see '-x' because they both get the same rank. 960 static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops, 961 unsigned i, Value *X) { 962 unsigned XRank = Ops[i].Rank; 963 unsigned e = Ops.size(); 964 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) { 965 if (Ops[j].Op == X) 966 return j; 967 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 968 if (Instruction *I2 = dyn_cast<Instruction>(X)) 969 if (I1->isIdenticalTo(I2)) 970 return j; 971 } 972 // Scan backwards. 973 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) { 974 if (Ops[j].Op == X) 975 return j; 976 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 977 if (Instruction *I2 = dyn_cast<Instruction>(X)) 978 if (I1->isIdenticalTo(I2)) 979 return j; 980 } 981 return i; 982 } 983 984 /// Emit a tree of add instructions, summing Ops together 985 /// and returning the result. Insert the tree before I. 986 static Value *EmitAddTreeOfValues(Instruction *I, 987 SmallVectorImpl<WeakTrackingVH> &Ops) { 988 if (Ops.size() == 1) return Ops.back(); 989 990 Value *V1 = Ops.back(); 991 Ops.pop_back(); 992 Value *V2 = EmitAddTreeOfValues(I, Ops); 993 return CreateAdd(V2, V1, "tmp", I, I); 994 } 995 996 /// If V is an expression tree that is a multiplication sequence, 997 /// and if this sequence contains a multiply by Factor, 998 /// remove Factor from the tree and return the new tree. 999 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) { 1000 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1001 if (!BO) 1002 return nullptr; 1003 1004 SmallVector<RepeatedValue, 8> Tree; 1005 MadeChange |= LinearizeExprTree(BO, Tree); 1006 SmallVector<ValueEntry, 8> Factors; 1007 Factors.reserve(Tree.size()); 1008 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 1009 RepeatedValue E = Tree[i]; 1010 Factors.append(E.second.getZExtValue(), 1011 ValueEntry(getRank(E.first), E.first)); 1012 } 1013 1014 bool FoundFactor = false; 1015 bool NeedsNegate = false; 1016 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1017 if (Factors[i].Op == Factor) { 1018 FoundFactor = true; 1019 Factors.erase(Factors.begin()+i); 1020 break; 1021 } 1022 1023 // If this is a negative version of this factor, remove it. 1024 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) { 1025 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op)) 1026 if (FC1->getValue() == -FC2->getValue()) { 1027 FoundFactor = NeedsNegate = true; 1028 Factors.erase(Factors.begin()+i); 1029 break; 1030 } 1031 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) { 1032 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) { 1033 const APFloat &F1 = FC1->getValueAPF(); 1034 APFloat F2(FC2->getValueAPF()); 1035 F2.changeSign(); 1036 if (F1.compare(F2) == APFloat::cmpEqual) { 1037 FoundFactor = NeedsNegate = true; 1038 Factors.erase(Factors.begin() + i); 1039 break; 1040 } 1041 } 1042 } 1043 } 1044 1045 if (!FoundFactor) { 1046 // Make sure to restore the operands to the expression tree. 1047 RewriteExprTree(BO, Factors); 1048 return nullptr; 1049 } 1050 1051 BasicBlock::iterator InsertPt = ++BO->getIterator(); 1052 1053 // If this was just a single multiply, remove the multiply and return the only 1054 // remaining operand. 1055 if (Factors.size() == 1) { 1056 RedoInsts.insert(BO); 1057 V = Factors[0].Op; 1058 } else { 1059 RewriteExprTree(BO, Factors); 1060 V = BO; 1061 } 1062 1063 if (NeedsNegate) 1064 V = CreateNeg(V, "neg", &*InsertPt, BO); 1065 1066 return V; 1067 } 1068 1069 /// If V is a single-use multiply, recursively add its operands as factors, 1070 /// otherwise add V to the list of factors. 1071 /// 1072 /// Ops is the top-level list of add operands we're trying to factor. 1073 static void FindSingleUseMultiplyFactors(Value *V, 1074 SmallVectorImpl<Value*> &Factors) { 1075 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1076 if (!BO) { 1077 Factors.push_back(V); 1078 return; 1079 } 1080 1081 // Otherwise, add the LHS and RHS to the list of factors. 1082 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors); 1083 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors); 1084 } 1085 1086 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction. 1087 /// This optimizes based on identities. If it can be reduced to a single Value, 1088 /// it is returned, otherwise the Ops list is mutated as necessary. 1089 static Value *OptimizeAndOrXor(unsigned Opcode, 1090 SmallVectorImpl<ValueEntry> &Ops) { 1091 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs. 1092 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1. 1093 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1094 // First, check for X and ~X in the operand list. 1095 assert(i < Ops.size()); 1096 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^. 1097 Value *X = BinaryOperator::getNotArgument(Ops[i].Op); 1098 unsigned FoundX = FindInOperandList(Ops, i, X); 1099 if (FoundX != i) { 1100 if (Opcode == Instruction::And) // ...&X&~X = 0 1101 return Constant::getNullValue(X->getType()); 1102 1103 if (Opcode == Instruction::Or) // ...|X|~X = -1 1104 return Constant::getAllOnesValue(X->getType()); 1105 } 1106 } 1107 1108 // Next, check for duplicate pairs of values, which we assume are next to 1109 // each other, due to our sorting criteria. 1110 assert(i < Ops.size()); 1111 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) { 1112 if (Opcode == Instruction::And || Opcode == Instruction::Or) { 1113 // Drop duplicate values for And and Or. 1114 Ops.erase(Ops.begin()+i); 1115 --i; --e; 1116 ++NumAnnihil; 1117 continue; 1118 } 1119 1120 // Drop pairs of values for Xor. 1121 assert(Opcode == Instruction::Xor); 1122 if (e == 2) 1123 return Constant::getNullValue(Ops[0].Op->getType()); 1124 1125 // Y ^ X^X -> Y 1126 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1127 i -= 1; e -= 2; 1128 ++NumAnnihil; 1129 } 1130 } 1131 return nullptr; 1132 } 1133 1134 /// Helper function of CombineXorOpnd(). It creates a bitwise-and 1135 /// instruction with the given two operands, and return the resulting 1136 /// instruction. There are two special cases: 1) if the constant operand is 0, 1137 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will 1138 /// be returned. 1139 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd, 1140 const APInt &ConstOpnd) { 1141 if (ConstOpnd.isNullValue()) 1142 return nullptr; 1143 1144 if (ConstOpnd.isAllOnesValue()) 1145 return Opnd; 1146 1147 Instruction *I = BinaryOperator::CreateAnd( 1148 Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra", 1149 InsertBefore); 1150 I->setDebugLoc(InsertBefore->getDebugLoc()); 1151 return I; 1152 } 1153 1154 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd" 1155 // into "R ^ C", where C would be 0, and R is a symbolic value. 1156 // 1157 // If it was successful, true is returned, and the "R" and "C" is returned 1158 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned, 1159 // and both "Res" and "ConstOpnd" remain unchanged. 1160 // 1161 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1162 APInt &ConstOpnd, Value *&Res) { 1163 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2 1164 // = ((x | c1) ^ c1) ^ (c1 ^ c2) 1165 // = (x & ~c1) ^ (c1 ^ c2) 1166 // It is useful only when c1 == c2. 1167 if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isNullValue()) 1168 return false; 1169 1170 if (!Opnd1->getValue()->hasOneUse()) 1171 return false; 1172 1173 const APInt &C1 = Opnd1->getConstPart(); 1174 if (C1 != ConstOpnd) 1175 return false; 1176 1177 Value *X = Opnd1->getSymbolicPart(); 1178 Res = createAndInstr(I, X, ~C1); 1179 // ConstOpnd was C2, now C1 ^ C2. 1180 ConstOpnd ^= C1; 1181 1182 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1183 RedoInsts.insert(T); 1184 return true; 1185 } 1186 1187 1188 // Helper function of OptimizeXor(). It tries to simplify 1189 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a 1190 // symbolic value. 1191 // 1192 // If it was successful, true is returned, and the "R" and "C" is returned 1193 // via "Res" and "ConstOpnd", respectively (If the entire expression is 1194 // evaluated to a constant, the Res is set to NULL); otherwise, false is 1195 // returned, and both "Res" and "ConstOpnd" remain unchanged. 1196 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1197 XorOpnd *Opnd2, APInt &ConstOpnd, 1198 Value *&Res) { 1199 Value *X = Opnd1->getSymbolicPart(); 1200 if (X != Opnd2->getSymbolicPart()) 1201 return false; 1202 1203 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.) 1204 int DeadInstNum = 1; 1205 if (Opnd1->getValue()->hasOneUse()) 1206 DeadInstNum++; 1207 if (Opnd2->getValue()->hasOneUse()) 1208 DeadInstNum++; 1209 1210 // Xor-Rule 2: 1211 // (x | c1) ^ (x & c2) 1212 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1 1213 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1 1214 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3 1215 // 1216 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) { 1217 if (Opnd2->isOrExpr()) 1218 std::swap(Opnd1, Opnd2); 1219 1220 const APInt &C1 = Opnd1->getConstPart(); 1221 const APInt &C2 = Opnd2->getConstPart(); 1222 APInt C3((~C1) ^ C2); 1223 1224 // Do not increase code size! 1225 if (!C3.isNullValue() && !C3.isAllOnesValue()) { 1226 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2; 1227 if (NewInstNum > DeadInstNum) 1228 return false; 1229 } 1230 1231 Res = createAndInstr(I, X, C3); 1232 ConstOpnd ^= C1; 1233 1234 } else if (Opnd1->isOrExpr()) { 1235 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2 1236 // 1237 const APInt &C1 = Opnd1->getConstPart(); 1238 const APInt &C2 = Opnd2->getConstPart(); 1239 APInt C3 = C1 ^ C2; 1240 1241 // Do not increase code size 1242 if (!C3.isNullValue() && !C3.isAllOnesValue()) { 1243 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2; 1244 if (NewInstNum > DeadInstNum) 1245 return false; 1246 } 1247 1248 Res = createAndInstr(I, X, C3); 1249 ConstOpnd ^= C3; 1250 } else { 1251 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2)) 1252 // 1253 const APInt &C1 = Opnd1->getConstPart(); 1254 const APInt &C2 = Opnd2->getConstPart(); 1255 APInt C3 = C1 ^ C2; 1256 Res = createAndInstr(I, X, C3); 1257 } 1258 1259 // Put the original operands in the Redo list; hope they will be deleted 1260 // as dead code. 1261 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1262 RedoInsts.insert(T); 1263 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue())) 1264 RedoInsts.insert(T); 1265 1266 return true; 1267 } 1268 1269 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced 1270 /// to a single Value, it is returned, otherwise the Ops list is mutated as 1271 /// necessary. 1272 Value *ReassociatePass::OptimizeXor(Instruction *I, 1273 SmallVectorImpl<ValueEntry> &Ops) { 1274 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops)) 1275 return V; 1276 1277 if (Ops.size() == 1) 1278 return nullptr; 1279 1280 SmallVector<XorOpnd, 8> Opnds; 1281 SmallVector<XorOpnd*, 8> OpndPtrs; 1282 Type *Ty = Ops[0].Op->getType(); 1283 APInt ConstOpnd(Ty->getScalarSizeInBits(), 0); 1284 1285 // Step 1: Convert ValueEntry to XorOpnd 1286 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1287 Value *V = Ops[i].Op; 1288 const APInt *C; 1289 // TODO: Support non-splat vectors. 1290 if (match(V, PatternMatch::m_APInt(C))) { 1291 ConstOpnd ^= *C; 1292 } else { 1293 XorOpnd O(V); 1294 O.setSymbolicRank(getRank(O.getSymbolicPart())); 1295 Opnds.push_back(O); 1296 } 1297 } 1298 1299 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds". 1300 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate 1301 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop 1302 // with the previous loop --- the iterator of the "Opnds" may be invalidated 1303 // when new elements are added to the vector. 1304 for (unsigned i = 0, e = Opnds.size(); i != e; ++i) 1305 OpndPtrs.push_back(&Opnds[i]); 1306 1307 // Step 2: Sort the Xor-Operands in a way such that the operands containing 1308 // the same symbolic value cluster together. For instance, the input operand 1309 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into: 1310 // ("x | 123", "x & 789", "y & 456"). 1311 // 1312 // The purpose is twofold: 1313 // 1) Cluster together the operands sharing the same symbolic-value. 1314 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which 1315 // could potentially shorten crital path, and expose more loop-invariants. 1316 // Note that values' rank are basically defined in RPO order (FIXME). 1317 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier 1318 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2", 1319 // "z" in the order of X-Y-Z is better than any other orders. 1320 std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), 1321 [](XorOpnd *LHS, XorOpnd *RHS) { 1322 return LHS->getSymbolicRank() < RHS->getSymbolicRank(); 1323 }); 1324 1325 // Step 3: Combine adjacent operands 1326 XorOpnd *PrevOpnd = nullptr; 1327 bool Changed = false; 1328 for (unsigned i = 0, e = Opnds.size(); i < e; i++) { 1329 XorOpnd *CurrOpnd = OpndPtrs[i]; 1330 // The combined value 1331 Value *CV; 1332 1333 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd" 1334 if (!ConstOpnd.isNullValue() && 1335 CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) { 1336 Changed = true; 1337 if (CV) 1338 *CurrOpnd = XorOpnd(CV); 1339 else { 1340 CurrOpnd->Invalidate(); 1341 continue; 1342 } 1343 } 1344 1345 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) { 1346 PrevOpnd = CurrOpnd; 1347 continue; 1348 } 1349 1350 // step 3.2: When previous and current operands share the same symbolic 1351 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd" 1352 // 1353 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) { 1354 // Remove previous operand 1355 PrevOpnd->Invalidate(); 1356 if (CV) { 1357 *CurrOpnd = XorOpnd(CV); 1358 PrevOpnd = CurrOpnd; 1359 } else { 1360 CurrOpnd->Invalidate(); 1361 PrevOpnd = nullptr; 1362 } 1363 Changed = true; 1364 } 1365 } 1366 1367 // Step 4: Reassemble the Ops 1368 if (Changed) { 1369 Ops.clear(); 1370 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) { 1371 XorOpnd &O = Opnds[i]; 1372 if (O.isInvalid()) 1373 continue; 1374 ValueEntry VE(getRank(O.getValue()), O.getValue()); 1375 Ops.push_back(VE); 1376 } 1377 if (!ConstOpnd.isNullValue()) { 1378 Value *C = ConstantInt::get(Ty, ConstOpnd); 1379 ValueEntry VE(getRank(C), C); 1380 Ops.push_back(VE); 1381 } 1382 unsigned Sz = Ops.size(); 1383 if (Sz == 1) 1384 return Ops.back().Op; 1385 if (Sz == 0) { 1386 assert(ConstOpnd.isNullValue()); 1387 return ConstantInt::get(Ty, ConstOpnd); 1388 } 1389 } 1390 1391 return nullptr; 1392 } 1393 1394 /// Optimize a series of operands to an 'add' instruction. This 1395 /// optimizes based on identities. If it can be reduced to a single Value, it 1396 /// is returned, otherwise the Ops list is mutated as necessary. 1397 Value *ReassociatePass::OptimizeAdd(Instruction *I, 1398 SmallVectorImpl<ValueEntry> &Ops) { 1399 // Scan the operand lists looking for X and -X pairs. If we find any, we 1400 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it, 1401 // scan for any 1402 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z. 1403 1404 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1405 Value *TheOp = Ops[i].Op; 1406 // Check to see if we've seen this operand before. If so, we factor all 1407 // instances of the operand together. Due to our sorting criteria, we know 1408 // that these need to be next to each other in the vector. 1409 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) { 1410 // Rescan the list, remove all instances of this operand from the expr. 1411 unsigned NumFound = 0; 1412 do { 1413 Ops.erase(Ops.begin()+i); 1414 ++NumFound; 1415 } while (i != Ops.size() && Ops[i].Op == TheOp); 1416 1417 DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n'); 1418 ++NumFactor; 1419 1420 // Insert a new multiply. 1421 Type *Ty = TheOp->getType(); 1422 Constant *C = Ty->isIntOrIntVectorTy() ? 1423 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound); 1424 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I); 1425 1426 // Now that we have inserted a multiply, optimize it. This allows us to 1427 // handle cases that require multiple factoring steps, such as this: 1428 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6 1429 RedoInsts.insert(Mul); 1430 1431 // If every add operand was a duplicate, return the multiply. 1432 if (Ops.empty()) 1433 return Mul; 1434 1435 // Otherwise, we had some input that didn't have the dupe, such as 1436 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of 1437 // things being added by this operation. 1438 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul)); 1439 1440 --i; 1441 e = Ops.size(); 1442 continue; 1443 } 1444 1445 // Check for X and -X or X and ~X in the operand list. 1446 if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) && 1447 !BinaryOperator::isNot(TheOp)) 1448 continue; 1449 1450 Value *X = nullptr; 1451 if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)) 1452 X = BinaryOperator::getNegArgument(TheOp); 1453 else if (BinaryOperator::isNot(TheOp)) 1454 X = BinaryOperator::getNotArgument(TheOp); 1455 1456 unsigned FoundX = FindInOperandList(Ops, i, X); 1457 if (FoundX == i) 1458 continue; 1459 1460 // Remove X and -X from the operand list. 1461 if (Ops.size() == 2 && 1462 (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))) 1463 return Constant::getNullValue(X->getType()); 1464 1465 // Remove X and ~X from the operand list. 1466 if (Ops.size() == 2 && BinaryOperator::isNot(TheOp)) 1467 return Constant::getAllOnesValue(X->getType()); 1468 1469 Ops.erase(Ops.begin()+i); 1470 if (i < FoundX) 1471 --FoundX; 1472 else 1473 --i; // Need to back up an extra one. 1474 Ops.erase(Ops.begin()+FoundX); 1475 ++NumAnnihil; 1476 --i; // Revisit element. 1477 e -= 2; // Removed two elements. 1478 1479 // if X and ~X we append -1 to the operand list. 1480 if (BinaryOperator::isNot(TheOp)) { 1481 Value *V = Constant::getAllOnesValue(X->getType()); 1482 Ops.insert(Ops.end(), ValueEntry(getRank(V), V)); 1483 e += 1; 1484 } 1485 } 1486 1487 // Scan the operand list, checking to see if there are any common factors 1488 // between operands. Consider something like A*A+A*B*C+D. We would like to 1489 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies. 1490 // To efficiently find this, we count the number of times a factor occurs 1491 // for any ADD operands that are MULs. 1492 DenseMap<Value*, unsigned> FactorOccurrences; 1493 1494 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4) 1495 // where they are actually the same multiply. 1496 unsigned MaxOcc = 0; 1497 Value *MaxOccVal = nullptr; 1498 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1499 BinaryOperator *BOp = 1500 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1501 if (!BOp) 1502 continue; 1503 1504 // Compute all of the factors of this added value. 1505 SmallVector<Value*, 8> Factors; 1506 FindSingleUseMultiplyFactors(BOp, Factors); 1507 assert(Factors.size() > 1 && "Bad linearize!"); 1508 1509 // Add one to FactorOccurrences for each unique factor in this op. 1510 SmallPtrSet<Value*, 8> Duplicates; 1511 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1512 Value *Factor = Factors[i]; 1513 if (!Duplicates.insert(Factor).second) 1514 continue; 1515 1516 unsigned Occ = ++FactorOccurrences[Factor]; 1517 if (Occ > MaxOcc) { 1518 MaxOcc = Occ; 1519 MaxOccVal = Factor; 1520 } 1521 1522 // If Factor is a negative constant, add the negated value as a factor 1523 // because we can percolate the negate out. Watch for minint, which 1524 // cannot be positivified. 1525 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) { 1526 if (CI->isNegative() && !CI->isMinValue(true)) { 1527 Factor = ConstantInt::get(CI->getContext(), -CI->getValue()); 1528 if (!Duplicates.insert(Factor).second) 1529 continue; 1530 unsigned Occ = ++FactorOccurrences[Factor]; 1531 if (Occ > MaxOcc) { 1532 MaxOcc = Occ; 1533 MaxOccVal = Factor; 1534 } 1535 } 1536 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) { 1537 if (CF->isNegative()) { 1538 APFloat F(CF->getValueAPF()); 1539 F.changeSign(); 1540 Factor = ConstantFP::get(CF->getContext(), F); 1541 if (!Duplicates.insert(Factor).second) 1542 continue; 1543 unsigned Occ = ++FactorOccurrences[Factor]; 1544 if (Occ > MaxOcc) { 1545 MaxOcc = Occ; 1546 MaxOccVal = Factor; 1547 } 1548 } 1549 } 1550 } 1551 } 1552 1553 // If any factor occurred more than one time, we can pull it out. 1554 if (MaxOcc > 1) { 1555 DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n'); 1556 ++NumFactor; 1557 1558 // Create a new instruction that uses the MaxOccVal twice. If we don't do 1559 // this, we could otherwise run into situations where removing a factor 1560 // from an expression will drop a use of maxocc, and this can cause 1561 // RemoveFactorFromExpression on successive values to behave differently. 1562 Instruction *DummyInst = 1563 I->getType()->isIntOrIntVectorTy() 1564 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal) 1565 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal); 1566 1567 SmallVector<WeakTrackingVH, 4> NewMulOps; 1568 for (unsigned i = 0; i != Ops.size(); ++i) { 1569 // Only try to remove factors from expressions we're allowed to. 1570 BinaryOperator *BOp = 1571 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1572 if (!BOp) 1573 continue; 1574 1575 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) { 1576 // The factorized operand may occur several times. Convert them all in 1577 // one fell swoop. 1578 for (unsigned j = Ops.size(); j != i;) { 1579 --j; 1580 if (Ops[j].Op == Ops[i].Op) { 1581 NewMulOps.push_back(V); 1582 Ops.erase(Ops.begin()+j); 1583 } 1584 } 1585 --i; 1586 } 1587 } 1588 1589 // No need for extra uses anymore. 1590 DummyInst->deleteValue(); 1591 1592 unsigned NumAddedValues = NewMulOps.size(); 1593 Value *V = EmitAddTreeOfValues(I, NewMulOps); 1594 1595 // Now that we have inserted the add tree, optimize it. This allows us to 1596 // handle cases that require multiple factoring steps, such as this: 1597 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C)) 1598 assert(NumAddedValues > 1 && "Each occurrence should contribute a value"); 1599 (void)NumAddedValues; 1600 if (Instruction *VI = dyn_cast<Instruction>(V)) 1601 RedoInsts.insert(VI); 1602 1603 // Create the multiply. 1604 Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I); 1605 1606 // Rerun associate on the multiply in case the inner expression turned into 1607 // a multiply. We want to make sure that we keep things in canonical form. 1608 RedoInsts.insert(V2); 1609 1610 // If every add operand included the factor (e.g. "A*B + A*C"), then the 1611 // entire result expression is just the multiply "A*(B+C)". 1612 if (Ops.empty()) 1613 return V2; 1614 1615 // Otherwise, we had some input that didn't have the factor, such as 1616 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of 1617 // things being added by this operation. 1618 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2)); 1619 } 1620 1621 return nullptr; 1622 } 1623 1624 /// \brief Build up a vector of value/power pairs factoring a product. 1625 /// 1626 /// Given a series of multiplication operands, build a vector of factors and 1627 /// the powers each is raised to when forming the final product. Sort them in 1628 /// the order of descending power. 1629 /// 1630 /// (x*x) -> [(x, 2)] 1631 /// ((x*x)*x) -> [(x, 3)] 1632 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)] 1633 /// 1634 /// \returns Whether any factors have a power greater than one. 1635 static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, 1636 SmallVectorImpl<Factor> &Factors) { 1637 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this. 1638 // Compute the sum of powers of simplifiable factors. 1639 unsigned FactorPowerSum = 0; 1640 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) { 1641 Value *Op = Ops[Idx-1].Op; 1642 1643 // Count the number of occurrences of this value. 1644 unsigned Count = 1; 1645 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx) 1646 ++Count; 1647 // Track for simplification all factors which occur 2 or more times. 1648 if (Count > 1) 1649 FactorPowerSum += Count; 1650 } 1651 1652 // We can only simplify factors if the sum of the powers of our simplifiable 1653 // factors is 4 or higher. When that is the case, we will *always* have 1654 // a simplification. This is an important invariant to prevent cyclicly 1655 // trying to simplify already minimal formations. 1656 if (FactorPowerSum < 4) 1657 return false; 1658 1659 // Now gather the simplifiable factors, removing them from Ops. 1660 FactorPowerSum = 0; 1661 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) { 1662 Value *Op = Ops[Idx-1].Op; 1663 1664 // Count the number of occurrences of this value. 1665 unsigned Count = 1; 1666 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx) 1667 ++Count; 1668 if (Count == 1) 1669 continue; 1670 // Move an even number of occurrences to Factors. 1671 Count &= ~1U; 1672 Idx -= Count; 1673 FactorPowerSum += Count; 1674 Factors.push_back(Factor(Op, Count)); 1675 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count); 1676 } 1677 1678 // None of the adjustments above should have reduced the sum of factor powers 1679 // below our mininum of '4'. 1680 assert(FactorPowerSum >= 4); 1681 1682 std::stable_sort(Factors.begin(), Factors.end(), 1683 [](const Factor &LHS, const Factor &RHS) { 1684 return LHS.Power > RHS.Power; 1685 }); 1686 return true; 1687 } 1688 1689 /// \brief Build a tree of multiplies, computing the product of Ops. 1690 static Value *buildMultiplyTree(IRBuilder<> &Builder, 1691 SmallVectorImpl<Value*> &Ops) { 1692 if (Ops.size() == 1) 1693 return Ops.back(); 1694 1695 Value *LHS = Ops.pop_back_val(); 1696 do { 1697 if (LHS->getType()->isIntOrIntVectorTy()) 1698 LHS = Builder.CreateMul(LHS, Ops.pop_back_val()); 1699 else 1700 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val()); 1701 } while (!Ops.empty()); 1702 1703 return LHS; 1704 } 1705 1706 /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*... 1707 /// 1708 /// Given a vector of values raised to various powers, where no two values are 1709 /// equal and the powers are sorted in decreasing order, compute the minimal 1710 /// DAG of multiplies to compute the final product, and return that product 1711 /// value. 1712 Value * 1713 ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder, 1714 SmallVectorImpl<Factor> &Factors) { 1715 assert(Factors[0].Power); 1716 SmallVector<Value *, 4> OuterProduct; 1717 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size(); 1718 Idx < Size && Factors[Idx].Power > 0; ++Idx) { 1719 if (Factors[Idx].Power != Factors[LastIdx].Power) { 1720 LastIdx = Idx; 1721 continue; 1722 } 1723 1724 // We want to multiply across all the factors with the same power so that 1725 // we can raise them to that power as a single entity. Build a mini tree 1726 // for that. 1727 SmallVector<Value *, 4> InnerProduct; 1728 InnerProduct.push_back(Factors[LastIdx].Base); 1729 do { 1730 InnerProduct.push_back(Factors[Idx].Base); 1731 ++Idx; 1732 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power); 1733 1734 // Reset the base value of the first factor to the new expression tree. 1735 // We'll remove all the factors with the same power in a second pass. 1736 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct); 1737 if (Instruction *MI = dyn_cast<Instruction>(M)) 1738 RedoInsts.insert(MI); 1739 1740 LastIdx = Idx; 1741 } 1742 // Unique factors with equal powers -- we've folded them into the first one's 1743 // base. 1744 Factors.erase(std::unique(Factors.begin(), Factors.end(), 1745 [](const Factor &LHS, const Factor &RHS) { 1746 return LHS.Power == RHS.Power; 1747 }), 1748 Factors.end()); 1749 1750 // Iteratively collect the base of each factor with an add power into the 1751 // outer product, and halve each power in preparation for squaring the 1752 // expression. 1753 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) { 1754 if (Factors[Idx].Power & 1) 1755 OuterProduct.push_back(Factors[Idx].Base); 1756 Factors[Idx].Power >>= 1; 1757 } 1758 if (Factors[0].Power) { 1759 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors); 1760 OuterProduct.push_back(SquareRoot); 1761 OuterProduct.push_back(SquareRoot); 1762 } 1763 if (OuterProduct.size() == 1) 1764 return OuterProduct.front(); 1765 1766 Value *V = buildMultiplyTree(Builder, OuterProduct); 1767 return V; 1768 } 1769 1770 Value *ReassociatePass::OptimizeMul(BinaryOperator *I, 1771 SmallVectorImpl<ValueEntry> &Ops) { 1772 // We can only optimize the multiplies when there is a chain of more than 1773 // three, such that a balanced tree might require fewer total multiplies. 1774 if (Ops.size() < 4) 1775 return nullptr; 1776 1777 // Try to turn linear trees of multiplies without other uses of the 1778 // intermediate stages into minimal multiply DAGs with perfect sub-expression 1779 // re-use. 1780 SmallVector<Factor, 4> Factors; 1781 if (!collectMultiplyFactors(Ops, Factors)) 1782 return nullptr; // All distinct factors, so nothing left for us to do. 1783 1784 IRBuilder<> Builder(I); 1785 // The reassociate transformation for FP operations is performed only 1786 // if unsafe algebra is permitted by FastMathFlags. Propagate those flags 1787 // to the newly generated operations. 1788 if (auto FPI = dyn_cast<FPMathOperator>(I)) 1789 Builder.setFastMathFlags(FPI->getFastMathFlags()); 1790 1791 Value *V = buildMinimalMultiplyDAG(Builder, Factors); 1792 if (Ops.empty()) 1793 return V; 1794 1795 ValueEntry NewEntry = ValueEntry(getRank(V), V); 1796 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry); 1797 return nullptr; 1798 } 1799 1800 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I, 1801 SmallVectorImpl<ValueEntry> &Ops) { 1802 // Now that we have the linearized expression tree, try to optimize it. 1803 // Start by folding any constants that we found. 1804 Constant *Cst = nullptr; 1805 unsigned Opcode = I->getOpcode(); 1806 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) { 1807 Constant *C = cast<Constant>(Ops.pop_back_val().Op); 1808 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C; 1809 } 1810 // If there was nothing but constants then we are done. 1811 if (Ops.empty()) 1812 return Cst; 1813 1814 // Put the combined constant back at the end of the operand list, except if 1815 // there is no point. For example, an add of 0 gets dropped here, while a 1816 // multiplication by zero turns the whole expression into zero. 1817 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) { 1818 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType())) 1819 return Cst; 1820 Ops.push_back(ValueEntry(0, Cst)); 1821 } 1822 1823 if (Ops.size() == 1) return Ops[0].Op; 1824 1825 // Handle destructive annihilation due to identities between elements in the 1826 // argument list here. 1827 unsigned NumOps = Ops.size(); 1828 switch (Opcode) { 1829 default: break; 1830 case Instruction::And: 1831 case Instruction::Or: 1832 if (Value *Result = OptimizeAndOrXor(Opcode, Ops)) 1833 return Result; 1834 break; 1835 1836 case Instruction::Xor: 1837 if (Value *Result = OptimizeXor(I, Ops)) 1838 return Result; 1839 break; 1840 1841 case Instruction::Add: 1842 case Instruction::FAdd: 1843 if (Value *Result = OptimizeAdd(I, Ops)) 1844 return Result; 1845 break; 1846 1847 case Instruction::Mul: 1848 case Instruction::FMul: 1849 if (Value *Result = OptimizeMul(I, Ops)) 1850 return Result; 1851 break; 1852 } 1853 1854 if (Ops.size() != NumOps) 1855 return OptimizeExpression(I, Ops); 1856 return nullptr; 1857 } 1858 1859 // Remove dead instructions and if any operands are trivially dead add them to 1860 // Insts so they will be removed as well. 1861 void ReassociatePass::RecursivelyEraseDeadInsts( 1862 Instruction *I, SetVector<AssertingVH<Instruction>> &Insts) { 1863 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1864 SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end()); 1865 ValueRankMap.erase(I); 1866 Insts.remove(I); 1867 RedoInsts.remove(I); 1868 I->eraseFromParent(); 1869 for (auto Op : Ops) 1870 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1871 if (OpInst->use_empty()) 1872 Insts.insert(OpInst); 1873 } 1874 1875 /// Zap the given instruction, adding interesting operands to the work list. 1876 void ReassociatePass::EraseInst(Instruction *I) { 1877 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1878 DEBUG(dbgs() << "Erasing dead inst: "; I->dump()); 1879 1880 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 1881 // Erase the dead instruction. 1882 ValueRankMap.erase(I); 1883 RedoInsts.remove(I); 1884 I->eraseFromParent(); 1885 // Optimize its operands. 1886 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes. 1887 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1888 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) { 1889 // If this is a node in an expression tree, climb to the expression root 1890 // and add that since that's where optimization actually happens. 1891 unsigned Opcode = Op->getOpcode(); 1892 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode && 1893 Visited.insert(Op).second) 1894 Op = Op->user_back(); 1895 RedoInsts.insert(Op); 1896 } 1897 1898 MadeChange = true; 1899 } 1900 1901 // Canonicalize expressions of the following form: 1902 // x + (-Constant * y) -> x - (Constant * y) 1903 // x - (-Constant * y) -> x + (Constant * y) 1904 Instruction *ReassociatePass::canonicalizeNegConstExpr(Instruction *I) { 1905 if (!I->hasOneUse() || I->getType()->isVectorTy()) 1906 return nullptr; 1907 1908 // Must be a fmul or fdiv instruction. 1909 unsigned Opcode = I->getOpcode(); 1910 if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv) 1911 return nullptr; 1912 1913 auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0)); 1914 auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1)); 1915 1916 // Both operands are constant, let it get constant folded away. 1917 if (C0 && C1) 1918 return nullptr; 1919 1920 ConstantFP *CF = C0 ? C0 : C1; 1921 1922 // Must have one constant operand. 1923 if (!CF) 1924 return nullptr; 1925 1926 // Must be a negative ConstantFP. 1927 if (!CF->isNegative()) 1928 return nullptr; 1929 1930 // User must be a binary operator with one or more uses. 1931 Instruction *User = I->user_back(); 1932 if (!isa<BinaryOperator>(User) || User->use_empty()) 1933 return nullptr; 1934 1935 unsigned UserOpcode = User->getOpcode(); 1936 if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub) 1937 return nullptr; 1938 1939 // Subtraction is not commutative. Explicitly, the following transform is 1940 // not valid: (-Constant * y) - x -> x + (Constant * y) 1941 if (!User->isCommutative() && User->getOperand(1) != I) 1942 return nullptr; 1943 1944 // Change the sign of the constant. 1945 APFloat Val = CF->getValueAPF(); 1946 Val.changeSign(); 1947 I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val)); 1948 1949 // Canonicalize I to RHS to simplify the next bit of logic. E.g., 1950 // ((-Const*y) + x) -> (x + (-Const*y)). 1951 if (User->getOperand(0) == I && User->isCommutative()) 1952 cast<BinaryOperator>(User)->swapOperands(); 1953 1954 Value *Op0 = User->getOperand(0); 1955 Value *Op1 = User->getOperand(1); 1956 BinaryOperator *NI; 1957 switch (UserOpcode) { 1958 default: 1959 llvm_unreachable("Unexpected Opcode!"); 1960 case Instruction::FAdd: 1961 NI = BinaryOperator::CreateFSub(Op0, Op1); 1962 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags()); 1963 break; 1964 case Instruction::FSub: 1965 NI = BinaryOperator::CreateFAdd(Op0, Op1); 1966 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags()); 1967 break; 1968 } 1969 1970 NI->insertBefore(User); 1971 NI->setName(User->getName()); 1972 User->replaceAllUsesWith(NI); 1973 NI->setDebugLoc(I->getDebugLoc()); 1974 RedoInsts.insert(I); 1975 MadeChange = true; 1976 return NI; 1977 } 1978 1979 /// Inspect and optimize the given instruction. Note that erasing 1980 /// instructions is not allowed. 1981 void ReassociatePass::OptimizeInst(Instruction *I) { 1982 // Only consider operations that we understand. 1983 if (!isa<BinaryOperator>(I)) 1984 return; 1985 1986 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1))) 1987 // If an operand of this shift is a reassociable multiply, or if the shift 1988 // is used by a reassociable multiply or add, turn into a multiply. 1989 if (isReassociableOp(I->getOperand(0), Instruction::Mul) || 1990 (I->hasOneUse() && 1991 (isReassociableOp(I->user_back(), Instruction::Mul) || 1992 isReassociableOp(I->user_back(), Instruction::Add)))) { 1993 Instruction *NI = ConvertShiftToMul(I); 1994 RedoInsts.insert(I); 1995 MadeChange = true; 1996 I = NI; 1997 } 1998 1999 // Canonicalize negative constants out of expressions. 2000 if (Instruction *Res = canonicalizeNegConstExpr(I)) 2001 I = Res; 2002 2003 // Commute binary operators, to canonicalize the order of their operands. 2004 // This can potentially expose more CSE opportunities, and makes writing other 2005 // transformations simpler. 2006 if (I->isCommutative()) 2007 canonicalizeOperands(I); 2008 2009 // Don't optimize floating point instructions that don't have unsafe algebra. 2010 if (I->getType()->isFPOrFPVectorTy() && !I->hasUnsafeAlgebra()) 2011 return; 2012 2013 // Do not reassociate boolean (i1) expressions. We want to preserve the 2014 // original order of evaluation for short-circuited comparisons that 2015 // SimplifyCFG has folded to AND/OR expressions. If the expression 2016 // is not further optimized, it is likely to be transformed back to a 2017 // short-circuited form for code gen, and the source order may have been 2018 // optimized for the most likely conditions. 2019 if (I->getType()->isIntegerTy(1)) 2020 return; 2021 2022 // If this is a subtract instruction which is not already in negate form, 2023 // see if we can convert it to X+-Y. 2024 if (I->getOpcode() == Instruction::Sub) { 2025 if (ShouldBreakUpSubtract(I)) { 2026 Instruction *NI = BreakUpSubtract(I, RedoInsts); 2027 RedoInsts.insert(I); 2028 MadeChange = true; 2029 I = NI; 2030 } else if (BinaryOperator::isNeg(I)) { 2031 // Otherwise, this is a negation. See if the operand is a multiply tree 2032 // and if this is not an inner node of a multiply tree. 2033 if (isReassociableOp(I->getOperand(1), Instruction::Mul) && 2034 (!I->hasOneUse() || 2035 !isReassociableOp(I->user_back(), Instruction::Mul))) { 2036 Instruction *NI = LowerNegateToMultiply(I); 2037 // If the negate was simplified, revisit the users to see if we can 2038 // reassociate further. 2039 for (User *U : NI->users()) { 2040 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U)) 2041 RedoInsts.insert(Tmp); 2042 } 2043 RedoInsts.insert(I); 2044 MadeChange = true; 2045 I = NI; 2046 } 2047 } 2048 } else if (I->getOpcode() == Instruction::FSub) { 2049 if (ShouldBreakUpSubtract(I)) { 2050 Instruction *NI = BreakUpSubtract(I, RedoInsts); 2051 RedoInsts.insert(I); 2052 MadeChange = true; 2053 I = NI; 2054 } else if (BinaryOperator::isFNeg(I)) { 2055 // Otherwise, this is a negation. See if the operand is a multiply tree 2056 // and if this is not an inner node of a multiply tree. 2057 if (isReassociableOp(I->getOperand(1), Instruction::FMul) && 2058 (!I->hasOneUse() || 2059 !isReassociableOp(I->user_back(), Instruction::FMul))) { 2060 // If the negate was simplified, revisit the users to see if we can 2061 // reassociate further. 2062 Instruction *NI = LowerNegateToMultiply(I); 2063 for (User *U : NI->users()) { 2064 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U)) 2065 RedoInsts.insert(Tmp); 2066 } 2067 RedoInsts.insert(I); 2068 MadeChange = true; 2069 I = NI; 2070 } 2071 } 2072 } 2073 2074 // If this instruction is an associative binary operator, process it. 2075 if (!I->isAssociative()) return; 2076 BinaryOperator *BO = cast<BinaryOperator>(I); 2077 2078 // If this is an interior node of a reassociable tree, ignore it until we 2079 // get to the root of the tree, to avoid N^2 analysis. 2080 unsigned Opcode = BO->getOpcode(); 2081 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) { 2082 // During the initial run we will get to the root of the tree. 2083 // But if we get here while we are redoing instructions, there is no 2084 // guarantee that the root will be visited. So Redo later 2085 if (BO->user_back() != BO && 2086 BO->getParent() == BO->user_back()->getParent()) 2087 RedoInsts.insert(BO->user_back()); 2088 return; 2089 } 2090 2091 // If this is an add tree that is used by a sub instruction, ignore it 2092 // until we process the subtract. 2093 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add && 2094 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub) 2095 return; 2096 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd && 2097 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub) 2098 return; 2099 2100 ReassociateExpression(BO); 2101 } 2102 2103 void ReassociatePass::ReassociateExpression(BinaryOperator *I) { 2104 // First, walk the expression tree, linearizing the tree, collecting the 2105 // operand information. 2106 SmallVector<RepeatedValue, 8> Tree; 2107 MadeChange |= LinearizeExprTree(I, Tree); 2108 SmallVector<ValueEntry, 8> Ops; 2109 Ops.reserve(Tree.size()); 2110 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 2111 RepeatedValue E = Tree[i]; 2112 Ops.append(E.second.getZExtValue(), 2113 ValueEntry(getRank(E.first), E.first)); 2114 } 2115 2116 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2117 2118 // Now that we have linearized the tree to a list and have gathered all of 2119 // the operands and their ranks, sort the operands by their rank. Use a 2120 // stable_sort so that values with equal ranks will have their relative 2121 // positions maintained (and so the compiler is deterministic). Note that 2122 // this sorts so that the highest ranking values end up at the beginning of 2123 // the vector. 2124 std::stable_sort(Ops.begin(), Ops.end()); 2125 2126 // Now that we have the expression tree in a convenient 2127 // sorted form, optimize it globally if possible. 2128 if (Value *V = OptimizeExpression(I, Ops)) { 2129 if (V == I) 2130 // Self-referential expression in unreachable code. 2131 return; 2132 // This expression tree simplified to something that isn't a tree, 2133 // eliminate it. 2134 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n'); 2135 I->replaceAllUsesWith(V); 2136 if (Instruction *VI = dyn_cast<Instruction>(V)) 2137 VI->setDebugLoc(I->getDebugLoc()); 2138 RedoInsts.insert(I); 2139 ++NumAnnihil; 2140 return; 2141 } 2142 2143 // We want to sink immediates as deeply as possible except in the case where 2144 // this is a multiply tree used only by an add, and the immediate is a -1. 2145 // In this case we reassociate to put the negation on the outside so that we 2146 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y 2147 if (I->hasOneUse()) { 2148 if (I->getOpcode() == Instruction::Mul && 2149 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add && 2150 isa<ConstantInt>(Ops.back().Op) && 2151 cast<ConstantInt>(Ops.back().Op)->isMinusOne()) { 2152 ValueEntry Tmp = Ops.pop_back_val(); 2153 Ops.insert(Ops.begin(), Tmp); 2154 } else if (I->getOpcode() == Instruction::FMul && 2155 cast<Instruction>(I->user_back())->getOpcode() == 2156 Instruction::FAdd && 2157 isa<ConstantFP>(Ops.back().Op) && 2158 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) { 2159 ValueEntry Tmp = Ops.pop_back_val(); 2160 Ops.insert(Ops.begin(), Tmp); 2161 } 2162 } 2163 2164 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2165 2166 if (Ops.size() == 1) { 2167 if (Ops[0].Op == I) 2168 // Self-referential expression in unreachable code. 2169 return; 2170 2171 // This expression tree simplified to something that isn't a tree, 2172 // eliminate it. 2173 I->replaceAllUsesWith(Ops[0].Op); 2174 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op)) 2175 OI->setDebugLoc(I->getDebugLoc()); 2176 RedoInsts.insert(I); 2177 return; 2178 } 2179 2180 // Now that we ordered and optimized the expressions, splat them back into 2181 // the expression tree, removing any unneeded nodes. 2182 RewriteExprTree(I, Ops); 2183 } 2184 2185 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) { 2186 // Get the functions basic blocks in Reverse Post Order. This order is used by 2187 // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic 2188 // blocks (it has been seen that the analysis in this pass could hang when 2189 // analysing dead basic blocks). 2190 ReversePostOrderTraversal<Function *> RPOT(&F); 2191 2192 // Calculate the rank map for F. 2193 BuildRankMap(F, RPOT); 2194 2195 MadeChange = false; 2196 // Traverse the same blocks that was analysed by BuildRankMap. 2197 for (BasicBlock *BI : RPOT) { 2198 assert(RankMap.count(&*BI) && "BB should be ranked."); 2199 // Optimize every instruction in the basic block. 2200 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;) 2201 if (isInstructionTriviallyDead(&*II)) { 2202 EraseInst(&*II++); 2203 } else { 2204 OptimizeInst(&*II); 2205 assert(II->getParent() == &*BI && "Moved to a different block!"); 2206 ++II; 2207 } 2208 2209 // Make a copy of all the instructions to be redone so we can remove dead 2210 // instructions. 2211 SetVector<AssertingVH<Instruction>> ToRedo(RedoInsts); 2212 // Iterate over all instructions to be reevaluated and remove trivially dead 2213 // instructions. If any operand of the trivially dead instruction becomes 2214 // dead mark it for deletion as well. Continue this process until all 2215 // trivially dead instructions have been removed. 2216 while (!ToRedo.empty()) { 2217 Instruction *I = ToRedo.pop_back_val(); 2218 if (isInstructionTriviallyDead(I)) { 2219 RecursivelyEraseDeadInsts(I, ToRedo); 2220 MadeChange = true; 2221 } 2222 } 2223 2224 // Now that we have removed dead instructions, we can reoptimize the 2225 // remaining instructions. 2226 while (!RedoInsts.empty()) { 2227 Instruction *I = RedoInsts.pop_back_val(); 2228 if (isInstructionTriviallyDead(I)) 2229 EraseInst(I); 2230 else 2231 OptimizeInst(I); 2232 } 2233 } 2234 2235 // We are done with the rank map. 2236 RankMap.clear(); 2237 ValueRankMap.clear(); 2238 2239 if (MadeChange) { 2240 PreservedAnalyses PA; 2241 PA.preserveSet<CFGAnalyses>(); 2242 PA.preserve<GlobalsAA>(); 2243 return PA; 2244 } 2245 2246 return PreservedAnalyses::all(); 2247 } 2248 2249 namespace { 2250 class ReassociateLegacyPass : public FunctionPass { 2251 ReassociatePass Impl; 2252 public: 2253 static char ID; // Pass identification, replacement for typeid 2254 ReassociateLegacyPass() : FunctionPass(ID) { 2255 initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry()); 2256 } 2257 2258 bool runOnFunction(Function &F) override { 2259 if (skipFunction(F)) 2260 return false; 2261 2262 FunctionAnalysisManager DummyFAM; 2263 auto PA = Impl.run(F, DummyFAM); 2264 return !PA.areAllPreserved(); 2265 } 2266 2267 void getAnalysisUsage(AnalysisUsage &AU) const override { 2268 AU.setPreservesCFG(); 2269 AU.addPreserved<GlobalsAAWrapperPass>(); 2270 } 2271 }; 2272 } 2273 2274 char ReassociateLegacyPass::ID = 0; 2275 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate", 2276 "Reassociate expressions", false, false) 2277 2278 // Public interface to the Reassociate pass 2279 FunctionPass *llvm::createReassociatePass() { 2280 return new ReassociateLegacyPass(); 2281 } 2282