1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass reassociates commutative expressions in an order that is designed
11 // to promote better constant propagation, GCSE, LICM, PRE, etc.
12 //
13 // For example: 4 + (x + 5) -> x + (4 + 5)
14 //
15 // In the implementation of this algorithm, constants are assigned rank = 0,
16 // function arguments are rank = 1, and other values are assigned ranks
17 // corresponding to the reverse post order traversal of current function
18 // (starting at 2), which effectively gives values in deep loops higher rank
19 // than values not in loops.
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #define DEBUG_TYPE "reassociate"
24 #include "llvm/Transforms/Scalar.h"
25 #include "llvm/Constants.h"
26 #include "llvm/DerivedTypes.h"
27 #include "llvm/Function.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/IntrinsicInst.h"
30 #include "llvm/Pass.h"
31 #include "llvm/Assembly/Writer.h"
32 #include "llvm/Support/CFG.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ValueHandle.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/ADT/PostOrderIterator.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/ADT/DenseMap.h"
39 #include <algorithm>
40 using namespace llvm;
41 
42 STATISTIC(NumLinear , "Number of insts linearized");
43 STATISTIC(NumChanged, "Number of insts reassociated");
44 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
45 STATISTIC(NumFactor , "Number of multiplies factored");
46 
47 namespace {
48   struct ValueEntry {
49     unsigned Rank;
50     Value *Op;
51     ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
52   };
53   inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
54     return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
55   }
56 }
57 
58 #ifndef NDEBUG
59 /// PrintOps - Print out the expression identified in the Ops list.
60 ///
61 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
62   Module *M = I->getParent()->getParent()->getParent();
63   dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
64        << *Ops[0].Op->getType() << '\t';
65   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
66     dbgs() << "[ ";
67     WriteAsOperand(dbgs(), Ops[i].Op, false, M);
68     dbgs() << ", #" << Ops[i].Rank << "] ";
69   }
70 }
71 #endif
72 
73 namespace {
74   class Reassociate : public FunctionPass {
75     DenseMap<BasicBlock*, unsigned> RankMap;
76     DenseMap<AssertingVH<>, unsigned> ValueRankMap;
77     bool MadeChange;
78   public:
79     static char ID; // Pass identification, replacement for typeid
80     Reassociate() : FunctionPass(&ID) {}
81 
82     bool runOnFunction(Function &F);
83 
84     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
85       AU.setPreservesCFG();
86     }
87   private:
88     void BuildRankMap(Function &F);
89     unsigned getRank(Value *V);
90     Value *ReassociateExpression(BinaryOperator *I);
91     void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops,
92                          unsigned Idx = 0);
93     Value *OptimizeExpression(BinaryOperator *I,
94                               SmallVectorImpl<ValueEntry> &Ops);
95     Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
96     void LinearizeExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
97     void LinearizeExpr(BinaryOperator *I);
98     Value *RemoveFactorFromExpression(Value *V, Value *Factor);
99     void ReassociateBB(BasicBlock *BB);
100 
101     void RemoveDeadBinaryOp(Value *V);
102   };
103 }
104 
105 char Reassociate::ID = 0;
106 static RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
107 
108 // Public interface to the Reassociate pass
109 FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
110 
111 void Reassociate::RemoveDeadBinaryOp(Value *V) {
112   Instruction *Op = dyn_cast<Instruction>(V);
113   if (!Op || !isa<BinaryOperator>(Op) || !Op->use_empty())
114     return;
115 
116   Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
117 
118   ValueRankMap.erase(Op);
119   Op->eraseFromParent();
120   RemoveDeadBinaryOp(LHS);
121   RemoveDeadBinaryOp(RHS);
122 }
123 
124 
125 static bool isUnmovableInstruction(Instruction *I) {
126   if (I->getOpcode() == Instruction::PHI ||
127       I->getOpcode() == Instruction::Alloca ||
128       I->getOpcode() == Instruction::Load ||
129       I->getOpcode() == Instruction::Invoke ||
130       (I->getOpcode() == Instruction::Call &&
131        !isa<DbgInfoIntrinsic>(I)) ||
132       I->getOpcode() == Instruction::UDiv ||
133       I->getOpcode() == Instruction::SDiv ||
134       I->getOpcode() == Instruction::FDiv ||
135       I->getOpcode() == Instruction::URem ||
136       I->getOpcode() == Instruction::SRem ||
137       I->getOpcode() == Instruction::FRem)
138     return true;
139   return false;
140 }
141 
142 void Reassociate::BuildRankMap(Function &F) {
143   unsigned i = 2;
144 
145   // Assign distinct ranks to function arguments
146   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
147     ValueRankMap[&*I] = ++i;
148 
149   ReversePostOrderTraversal<Function*> RPOT(&F);
150   for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
151          E = RPOT.end(); I != E; ++I) {
152     BasicBlock *BB = *I;
153     unsigned BBRank = RankMap[BB] = ++i << 16;
154 
155     // Walk the basic block, adding precomputed ranks for any instructions that
156     // we cannot move.  This ensures that the ranks for these instructions are
157     // all different in the block.
158     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
159       if (isUnmovableInstruction(I))
160         ValueRankMap[&*I] = ++BBRank;
161   }
162 }
163 
164 unsigned Reassociate::getRank(Value *V) {
165   Instruction *I = dyn_cast<Instruction>(V);
166   if (I == 0) {
167     if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
168     return 0;  // Otherwise it's a global or constant, rank 0.
169   }
170 
171   if (unsigned Rank = ValueRankMap[I])
172     return Rank;    // Rank already known?
173 
174   // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
175   // we can reassociate expressions for code motion!  Since we do not recurse
176   // for PHI nodes, we cannot have infinite recursion here, because there
177   // cannot be loops in the value graph that do not go through PHI nodes.
178   unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
179   for (unsigned i = 0, e = I->getNumOperands();
180        i != e && Rank != MaxRank; ++i)
181     Rank = std::max(Rank, getRank(I->getOperand(i)));
182 
183   // If this is a not or neg instruction, do not count it for rank.  This
184   // assures us that X and ~X will have the same rank.
185   if (!I->getType()->isIntegerTy() ||
186       (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
187     ++Rank;
188 
189   //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
190   //     << Rank << "\n");
191 
192   return ValueRankMap[I] = Rank;
193 }
194 
195 /// isReassociableOp - Return true if V is an instruction of the specified
196 /// opcode and if it only has one use.
197 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
198   if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
199       cast<Instruction>(V)->getOpcode() == Opcode)
200     return cast<BinaryOperator>(V);
201   return 0;
202 }
203 
204 /// LowerNegateToMultiply - Replace 0-X with X*-1.
205 ///
206 static Instruction *LowerNegateToMultiply(Instruction *Neg,
207                               DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
208   Constant *Cst = Constant::getAllOnesValue(Neg->getType());
209 
210   Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
211   ValueRankMap.erase(Neg);
212   Res->takeName(Neg);
213   Neg->replaceAllUsesWith(Res);
214   Neg->eraseFromParent();
215   return Res;
216 }
217 
218 // Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
219 // Note that if D is also part of the expression tree that we recurse to
220 // linearize it as well.  Besides that case, this does not recurse into A,B, or
221 // C.
222 void Reassociate::LinearizeExpr(BinaryOperator *I) {
223   BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
224   BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
225   assert(isReassociableOp(LHS, I->getOpcode()) &&
226          isReassociableOp(RHS, I->getOpcode()) &&
227          "Not an expression that needs linearization?");
228 
229   DEBUG(dbgs() << "Linear" << *LHS << '\n' << *RHS << '\n' << *I << '\n');
230 
231   // Move the RHS instruction to live immediately before I, avoiding breaking
232   // dominator properties.
233   RHS->moveBefore(I);
234 
235   // Move operands around to do the linearization.
236   I->setOperand(1, RHS->getOperand(0));
237   RHS->setOperand(0, LHS);
238   I->setOperand(0, RHS);
239 
240   ++NumLinear;
241   MadeChange = true;
242   DEBUG(dbgs() << "Linearized: " << *I << '\n');
243 
244   // If D is part of this expression tree, tail recurse.
245   if (isReassociableOp(I->getOperand(1), I->getOpcode()))
246     LinearizeExpr(I);
247 }
248 
249 
250 /// LinearizeExprTree - Given an associative binary expression tree, traverse
251 /// all of the uses putting it into canonical form.  This forces a left-linear
252 /// form of the expression (((a+b)+c)+d), and collects information about the
253 /// rank of the non-tree operands.
254 ///
255 /// NOTE: These intentionally destroys the expression tree operands (turning
256 /// them into undef values) to reduce #uses of the values.  This means that the
257 /// caller MUST use something like RewriteExprTree to put the values back in.
258 ///
259 void Reassociate::LinearizeExprTree(BinaryOperator *I,
260                                     SmallVectorImpl<ValueEntry> &Ops) {
261   Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
262   unsigned Opcode = I->getOpcode();
263 
264   // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
265   BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
266   BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
267 
268   // If this is a multiply expression tree and it contains internal negations,
269   // transform them into multiplies by -1 so they can be reassociated.
270   if (I->getOpcode() == Instruction::Mul) {
271     if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
272       LHS = LowerNegateToMultiply(cast<Instruction>(LHS), ValueRankMap);
273       LHSBO = isReassociableOp(LHS, Opcode);
274     }
275     if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
276       RHS = LowerNegateToMultiply(cast<Instruction>(RHS), ValueRankMap);
277       RHSBO = isReassociableOp(RHS, Opcode);
278     }
279   }
280 
281   if (!LHSBO) {
282     if (!RHSBO) {
283       // Neither the LHS or RHS as part of the tree, thus this is a leaf.  As
284       // such, just remember these operands and their rank.
285       Ops.push_back(ValueEntry(getRank(LHS), LHS));
286       Ops.push_back(ValueEntry(getRank(RHS), RHS));
287 
288       // Clear the leaves out.
289       I->setOperand(0, UndefValue::get(I->getType()));
290       I->setOperand(1, UndefValue::get(I->getType()));
291       return;
292     }
293 
294     // Turn X+(Y+Z) -> (Y+Z)+X
295     std::swap(LHSBO, RHSBO);
296     std::swap(LHS, RHS);
297     bool Success = !I->swapOperands();
298     assert(Success && "swapOperands failed");
299     Success = false;
300     MadeChange = true;
301   } else if (RHSBO) {
302     // Turn (A+B)+(C+D) -> (((A+B)+C)+D).  This guarantees the RHS is not
303     // part of the expression tree.
304     LinearizeExpr(I);
305     LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
306     RHS = I->getOperand(1);
307     RHSBO = 0;
308   }
309 
310   // Okay, now we know that the LHS is a nested expression and that the RHS is
311   // not.  Perform reassociation.
312   assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
313 
314   // Move LHS right before I to make sure that the tree expression dominates all
315   // values.
316   LHSBO->moveBefore(I);
317 
318   // Linearize the expression tree on the LHS.
319   LinearizeExprTree(LHSBO, Ops);
320 
321   // Remember the RHS operand and its rank.
322   Ops.push_back(ValueEntry(getRank(RHS), RHS));
323 
324   // Clear the RHS leaf out.
325   I->setOperand(1, UndefValue::get(I->getType()));
326 }
327 
328 // RewriteExprTree - Now that the operands for this expression tree are
329 // linearized and optimized, emit them in-order.  This function is written to be
330 // tail recursive.
331 void Reassociate::RewriteExprTree(BinaryOperator *I,
332                                   SmallVectorImpl<ValueEntry> &Ops,
333                                   unsigned i) {
334   if (i+2 == Ops.size()) {
335     if (I->getOperand(0) != Ops[i].Op ||
336         I->getOperand(1) != Ops[i+1].Op) {
337       Value *OldLHS = I->getOperand(0);
338       DEBUG(dbgs() << "RA: " << *I << '\n');
339       I->setOperand(0, Ops[i].Op);
340       I->setOperand(1, Ops[i+1].Op);
341       DEBUG(dbgs() << "TO: " << *I << '\n');
342       MadeChange = true;
343       ++NumChanged;
344 
345       // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
346       // delete the extra, now dead, nodes.
347       RemoveDeadBinaryOp(OldLHS);
348     }
349     return;
350   }
351   assert(i+2 < Ops.size() && "Ops index out of range!");
352 
353   if (I->getOperand(1) != Ops[i].Op) {
354     DEBUG(dbgs() << "RA: " << *I << '\n');
355     I->setOperand(1, Ops[i].Op);
356     DEBUG(dbgs() << "TO: " << *I << '\n');
357     MadeChange = true;
358     ++NumChanged;
359   }
360 
361   BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
362   assert(LHS->getOpcode() == I->getOpcode() &&
363          "Improper expression tree!");
364 
365   // Compactify the tree instructions together with each other to guarantee
366   // that the expression tree is dominated by all of Ops.
367   LHS->moveBefore(I);
368   RewriteExprTree(LHS, Ops, i+1);
369 }
370 
371 
372 
373 // NegateValue - Insert instructions before the instruction pointed to by BI,
374 // that computes the negative version of the value specified.  The negative
375 // version of the value is returned, and BI is left pointing at the instruction
376 // that should be processed next by the reassociation pass.
377 //
378 static Value *NegateValue(Value *V, Instruction *BI) {
379   if (Constant *C = dyn_cast<Constant>(V))
380     return ConstantExpr::getNeg(C);
381 
382   // We are trying to expose opportunity for reassociation.  One of the things
383   // that we want to do to achieve this is to push a negation as deep into an
384   // expression chain as possible, to expose the add instructions.  In practice,
385   // this means that we turn this:
386   //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
387   // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
388   // the constants.  We assume that instcombine will clean up the mess later if
389   // we introduce tons of unnecessary negation instructions.
390   //
391   if (Instruction *I = dyn_cast<Instruction>(V))
392     if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
393       // Push the negates through the add.
394       I->setOperand(0, NegateValue(I->getOperand(0), BI));
395       I->setOperand(1, NegateValue(I->getOperand(1), BI));
396 
397       // We must move the add instruction here, because the neg instructions do
398       // not dominate the old add instruction in general.  By moving it, we are
399       // assured that the neg instructions we just inserted dominate the
400       // instruction we are about to insert after them.
401       //
402       I->moveBefore(BI);
403       I->setName(I->getName()+".neg");
404       return I;
405     }
406 
407   // Okay, we need to materialize a negated version of V with an instruction.
408   // Scan the use lists of V to see if we have one already.
409   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
410     if (!BinaryOperator::isNeg(*UI)) continue;
411 
412     // We found one!  Now we have to make sure that the definition dominates
413     // this use.  We do this by moving it to the entry block (if it is a
414     // non-instruction value) or right after the definition.  These negates will
415     // be zapped by reassociate later, so we don't need much finesse here.
416     BinaryOperator *TheNeg = cast<BinaryOperator>(*UI);
417 
418     // Verify that the negate is in this function, V might be a constant expr.
419     if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
420       continue;
421 
422     BasicBlock::iterator InsertPt;
423     if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
424       if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
425         InsertPt = II->getNormalDest()->begin();
426       } else {
427         InsertPt = InstInput;
428         ++InsertPt;
429       }
430       while (isa<PHINode>(InsertPt)) ++InsertPt;
431     } else {
432       InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
433     }
434     TheNeg->moveBefore(InsertPt);
435     return TheNeg;
436   }
437 
438   // Insert a 'neg' instruction that subtracts the value from zero to get the
439   // negation.
440   return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
441 }
442 
443 /// ShouldBreakUpSubtract - Return true if we should break up this subtract of
444 /// X-Y into (X + -Y).
445 static bool ShouldBreakUpSubtract(Instruction *Sub) {
446   // If this is a negation, we can't split it up!
447   if (BinaryOperator::isNeg(Sub))
448     return false;
449 
450   // Don't bother to break this up unless either the LHS is an associable add or
451   // subtract or if this is only used by one.
452   if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
453       isReassociableOp(Sub->getOperand(0), Instruction::Sub))
454     return true;
455   if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
456       isReassociableOp(Sub->getOperand(1), Instruction::Sub))
457     return true;
458   if (Sub->hasOneUse() &&
459       (isReassociableOp(Sub->use_back(), Instruction::Add) ||
460        isReassociableOp(Sub->use_back(), Instruction::Sub)))
461     return true;
462 
463   return false;
464 }
465 
466 /// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
467 /// only used by an add, transform this into (X+(0-Y)) to promote better
468 /// reassociation.
469 static Instruction *BreakUpSubtract(Instruction *Sub,
470                               DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
471   // Convert a subtract into an add and a neg instruction. This allows sub
472   // instructions to be commuted with other add instructions.
473   //
474   // Calculate the negative value of Operand 1 of the sub instruction,
475   // and set it as the RHS of the add instruction we just made.
476   //
477   Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
478   Instruction *New =
479     BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
480   New->takeName(Sub);
481 
482   // Everyone now refers to the add instruction.
483   ValueRankMap.erase(Sub);
484   Sub->replaceAllUsesWith(New);
485   Sub->eraseFromParent();
486 
487   DEBUG(dbgs() << "Negated: " << *New << '\n');
488   return New;
489 }
490 
491 /// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
492 /// by one, change this into a multiply by a constant to assist with further
493 /// reassociation.
494 static Instruction *ConvertShiftToMul(Instruction *Shl,
495                               DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
496   // If an operand of this shift is a reassociable multiply, or if the shift
497   // is used by a reassociable multiply or add, turn into a multiply.
498   if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
499       (Shl->hasOneUse() &&
500        (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
501         isReassociableOp(Shl->use_back(), Instruction::Add)))) {
502     Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
503     MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
504 
505     Instruction *Mul =
506       BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
507     ValueRankMap.erase(Shl);
508     Mul->takeName(Shl);
509     Shl->replaceAllUsesWith(Mul);
510     Shl->eraseFromParent();
511     return Mul;
512   }
513   return 0;
514 }
515 
516 // Scan backwards and forwards among values with the same rank as element i to
517 // see if X exists.  If X does not exist, return i.  This is useful when
518 // scanning for 'x' when we see '-x' because they both get the same rank.
519 static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
520                                   Value *X) {
521   unsigned XRank = Ops[i].Rank;
522   unsigned e = Ops.size();
523   for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
524     if (Ops[j].Op == X)
525       return j;
526   // Scan backwards.
527   for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
528     if (Ops[j].Op == X)
529       return j;
530   return i;
531 }
532 
533 /// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
534 /// and returning the result.  Insert the tree before I.
535 static Value *EmitAddTreeOfValues(Instruction *I, SmallVectorImpl<Value*> &Ops){
536   if (Ops.size() == 1) return Ops.back();
537 
538   Value *V1 = Ops.back();
539   Ops.pop_back();
540   Value *V2 = EmitAddTreeOfValues(I, Ops);
541   return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
542 }
543 
544 /// RemoveFactorFromExpression - If V is an expression tree that is a
545 /// multiplication sequence, and if this sequence contains a multiply by Factor,
546 /// remove Factor from the tree and return the new tree.
547 Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
548   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
549   if (!BO) return 0;
550 
551   SmallVector<ValueEntry, 8> Factors;
552   LinearizeExprTree(BO, Factors);
553 
554   bool FoundFactor = false;
555   bool NeedsNegate = false;
556   for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
557     if (Factors[i].Op == Factor) {
558       FoundFactor = true;
559       Factors.erase(Factors.begin()+i);
560       break;
561     }
562 
563     // If this is a negative version of this factor, remove it.
564     if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
565       if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
566         if (FC1->getValue() == -FC2->getValue()) {
567           FoundFactor = NeedsNegate = true;
568           Factors.erase(Factors.begin()+i);
569           break;
570         }
571   }
572 
573   if (!FoundFactor) {
574     // Make sure to restore the operands to the expression tree.
575     RewriteExprTree(BO, Factors);
576     return 0;
577   }
578 
579   BasicBlock::iterator InsertPt = BO; ++InsertPt;
580 
581   // If this was just a single multiply, remove the multiply and return the only
582   // remaining operand.
583   if (Factors.size() == 1) {
584     ValueRankMap.erase(BO);
585     BO->eraseFromParent();
586     V = Factors[0].Op;
587   } else {
588     RewriteExprTree(BO, Factors);
589     V = BO;
590   }
591 
592   if (NeedsNegate)
593     V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
594 
595   return V;
596 }
597 
598 /// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
599 /// add its operands as factors, otherwise add V to the list of factors.
600 ///
601 /// Ops is the top-level list of add operands we're trying to factor.
602 static void FindSingleUseMultiplyFactors(Value *V,
603                                          SmallVectorImpl<Value*> &Factors,
604                                        const SmallVectorImpl<ValueEntry> &Ops,
605                                          bool IsRoot) {
606   BinaryOperator *BO;
607   if (!(V->hasOneUse() || V->use_empty()) || // More than one use.
608       !(BO = dyn_cast<BinaryOperator>(V)) ||
609       BO->getOpcode() != Instruction::Mul) {
610     Factors.push_back(V);
611     return;
612   }
613 
614   // If this value has a single use because it is another input to the add
615   // tree we're reassociating and we dropped its use, it actually has two
616   // uses and we can't factor it.
617   if (!IsRoot) {
618     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
619       if (Ops[i].Op == V) {
620         Factors.push_back(V);
621         return;
622       }
623   }
624 
625 
626   // Otherwise, add the LHS and RHS to the list of factors.
627   FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops, false);
628   FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops, false);
629 }
630 
631 /// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
632 /// instruction.  This optimizes based on identities.  If it can be reduced to
633 /// a single Value, it is returned, otherwise the Ops list is mutated as
634 /// necessary.
635 static Value *OptimizeAndOrXor(unsigned Opcode,
636                                SmallVectorImpl<ValueEntry> &Ops) {
637   // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
638   // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
639   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
640     // First, check for X and ~X in the operand list.
641     assert(i < Ops.size());
642     if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
643       Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
644       unsigned FoundX = FindInOperandList(Ops, i, X);
645       if (FoundX != i) {
646         if (Opcode == Instruction::And)   // ...&X&~X = 0
647           return Constant::getNullValue(X->getType());
648 
649         if (Opcode == Instruction::Or)    // ...|X|~X = -1
650           return Constant::getAllOnesValue(X->getType());
651       }
652     }
653 
654     // Next, check for duplicate pairs of values, which we assume are next to
655     // each other, due to our sorting criteria.
656     assert(i < Ops.size());
657     if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
658       if (Opcode == Instruction::And || Opcode == Instruction::Or) {
659         // Drop duplicate values for And and Or.
660         Ops.erase(Ops.begin()+i);
661         --i; --e;
662         ++NumAnnihil;
663         continue;
664       }
665 
666       // Drop pairs of values for Xor.
667       assert(Opcode == Instruction::Xor);
668       if (e == 2)
669         return Constant::getNullValue(Ops[0].Op->getType());
670 
671       // Y ^ X^X -> Y
672       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
673       i -= 1; e -= 2;
674       ++NumAnnihil;
675     }
676   }
677   return 0;
678 }
679 
680 /// OptimizeAdd - Optimize a series of operands to an 'add' instruction.  This
681 /// optimizes based on identities.  If it can be reduced to a single Value, it
682 /// is returned, otherwise the Ops list is mutated as necessary.
683 Value *Reassociate::OptimizeAdd(Instruction *I,
684                                 SmallVectorImpl<ValueEntry> &Ops) {
685   // Scan the operand lists looking for X and -X pairs.  If we find any, we
686   // can simplify the expression. X+-X == 0.  While we're at it, scan for any
687   // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
688   //
689   // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
690   //
691   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
692     Value *TheOp = Ops[i].Op;
693     // Check to see if we've seen this operand before.  If so, we factor all
694     // instances of the operand together.  Due to our sorting criteria, we know
695     // that these need to be next to each other in the vector.
696     if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
697       // Rescan the list, remove all instances of this operand from the expr.
698       unsigned NumFound = 0;
699       do {
700         Ops.erase(Ops.begin()+i);
701         ++NumFound;
702       } while (i != Ops.size() && Ops[i].Op == TheOp);
703 
704       DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
705       ++NumFactor;
706 
707       // Insert a new multiply.
708       Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
709       Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
710 
711       // Now that we have inserted a multiply, optimize it. This allows us to
712       // handle cases that require multiple factoring steps, such as this:
713       // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
714       Mul = ReassociateExpression(cast<BinaryOperator>(Mul));
715 
716       // If every add operand was a duplicate, return the multiply.
717       if (Ops.empty())
718         return Mul;
719 
720       // Otherwise, we had some input that didn't have the dupe, such as
721       // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
722       // things being added by this operation.
723       Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
724 
725       --i;
726       e = Ops.size();
727       continue;
728     }
729 
730     // Check for X and -X in the operand list.
731     if (!BinaryOperator::isNeg(TheOp))
732       continue;
733 
734     Value *X = BinaryOperator::getNegArgument(TheOp);
735     unsigned FoundX = FindInOperandList(Ops, i, X);
736     if (FoundX == i)
737       continue;
738 
739     // Remove X and -X from the operand list.
740     if (Ops.size() == 2)
741       return Constant::getNullValue(X->getType());
742 
743     Ops.erase(Ops.begin()+i);
744     if (i < FoundX)
745       --FoundX;
746     else
747       --i;   // Need to back up an extra one.
748     Ops.erase(Ops.begin()+FoundX);
749     ++NumAnnihil;
750     --i;     // Revisit element.
751     e -= 2;  // Removed two elements.
752   }
753 
754   // Scan the operand list, checking to see if there are any common factors
755   // between operands.  Consider something like A*A+A*B*C+D.  We would like to
756   // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
757   // To efficiently find this, we count the number of times a factor occurs
758   // for any ADD operands that are MULs.
759   DenseMap<Value*, unsigned> FactorOccurrences;
760 
761   // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
762   // where they are actually the same multiply.
763   unsigned MaxOcc = 0;
764   Value *MaxOccVal = 0;
765   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
766     BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
767     if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
768       continue;
769 
770     // Compute all of the factors of this added value.
771     SmallVector<Value*, 8> Factors;
772     FindSingleUseMultiplyFactors(BOp, Factors, Ops, true);
773     assert(Factors.size() > 1 && "Bad linearize!");
774 
775     // Add one to FactorOccurrences for each unique factor in this op.
776     SmallPtrSet<Value*, 8> Duplicates;
777     for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
778       Value *Factor = Factors[i];
779       if (!Duplicates.insert(Factor)) continue;
780 
781       unsigned Occ = ++FactorOccurrences[Factor];
782       if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
783 
784       // If Factor is a negative constant, add the negated value as a factor
785       // because we can percolate the negate out.  Watch for minint, which
786       // cannot be positivified.
787       if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
788         if (CI->getValue().isNegative() && !CI->getValue().isMinSignedValue()) {
789           Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
790           assert(!Duplicates.count(Factor) &&
791                  "Shouldn't have two constant factors, missed a canonicalize");
792 
793           unsigned Occ = ++FactorOccurrences[Factor];
794           if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
795         }
796     }
797   }
798 
799   // If any factor occurred more than one time, we can pull it out.
800   if (MaxOcc > 1) {
801     DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
802     ++NumFactor;
803 
804     // Create a new instruction that uses the MaxOccVal twice.  If we don't do
805     // this, we could otherwise run into situations where removing a factor
806     // from an expression will drop a use of maxocc, and this can cause
807     // RemoveFactorFromExpression on successive values to behave differently.
808     Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
809     SmallVector<Value*, 4> NewMulOps;
810     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
811       // Only try to remove factors from expressions we're allowed to.
812       BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
813       if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
814         continue;
815 
816       if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
817         NewMulOps.push_back(V);
818         Ops.erase(Ops.begin()+i);
819         --i; --e;
820       }
821     }
822 
823     // No need for extra uses anymore.
824     delete DummyInst;
825 
826     unsigned NumAddedValues = NewMulOps.size();
827     Value *V = EmitAddTreeOfValues(I, NewMulOps);
828 
829     // Now that we have inserted the add tree, optimize it. This allows us to
830     // handle cases that require multiple factoring steps, such as this:
831     // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
832     assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
833     (void)NumAddedValues;
834     V = ReassociateExpression(cast<BinaryOperator>(V));
835 
836     // Create the multiply.
837     Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
838 
839     // Rerun associate on the multiply in case the inner expression turned into
840     // a multiply.  We want to make sure that we keep things in canonical form.
841     V2 = ReassociateExpression(cast<BinaryOperator>(V2));
842 
843     // If every add operand included the factor (e.g. "A*B + A*C"), then the
844     // entire result expression is just the multiply "A*(B+C)".
845     if (Ops.empty())
846       return V2;
847 
848     // Otherwise, we had some input that didn't have the factor, such as
849     // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
850     // things being added by this operation.
851     Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
852   }
853 
854   return 0;
855 }
856 
857 Value *Reassociate::OptimizeExpression(BinaryOperator *I,
858                                        SmallVectorImpl<ValueEntry> &Ops) {
859   // Now that we have the linearized expression tree, try to optimize it.
860   // Start by folding any constants that we found.
861   bool IterateOptimization = false;
862   if (Ops.size() == 1) return Ops[0].Op;
863 
864   unsigned Opcode = I->getOpcode();
865 
866   if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
867     if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
868       Ops.pop_back();
869       Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
870       return OptimizeExpression(I, Ops);
871     }
872 
873   // Check for destructive annihilation due to a constant being used.
874   if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
875     switch (Opcode) {
876     default: break;
877     case Instruction::And:
878       if (CstVal->isZero())                  // X & 0 -> 0
879         return CstVal;
880       if (CstVal->isAllOnesValue())          // X & -1 -> X
881         Ops.pop_back();
882       break;
883     case Instruction::Mul:
884       if (CstVal->isZero()) {                // X * 0 -> 0
885         ++NumAnnihil;
886         return CstVal;
887       }
888 
889       if (cast<ConstantInt>(CstVal)->isOne())
890         Ops.pop_back();                      // X * 1 -> X
891       break;
892     case Instruction::Or:
893       if (CstVal->isAllOnesValue())          // X | -1 -> -1
894         return CstVal;
895       // FALLTHROUGH!
896     case Instruction::Add:
897     case Instruction::Xor:
898       if (CstVal->isZero())                  // X [|^+] 0 -> X
899         Ops.pop_back();
900       break;
901     }
902   if (Ops.size() == 1) return Ops[0].Op;
903 
904   // Handle destructive annihilation due to identities between elements in the
905   // argument list here.
906   switch (Opcode) {
907   default: break;
908   case Instruction::And:
909   case Instruction::Or:
910   case Instruction::Xor: {
911     unsigned NumOps = Ops.size();
912     if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
913       return Result;
914     IterateOptimization |= Ops.size() != NumOps;
915     break;
916   }
917 
918   case Instruction::Add: {
919     unsigned NumOps = Ops.size();
920     if (Value *Result = OptimizeAdd(I, Ops))
921       return Result;
922     IterateOptimization |= Ops.size() != NumOps;
923   }
924 
925     break;
926   //case Instruction::Mul:
927   }
928 
929   if (IterateOptimization)
930     return OptimizeExpression(I, Ops);
931   return 0;
932 }
933 
934 
935 /// ReassociateBB - Inspect all of the instructions in this basic block,
936 /// reassociating them as we go.
937 void Reassociate::ReassociateBB(BasicBlock *BB) {
938   for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
939     Instruction *BI = BBI++;
940     if (BI->getOpcode() == Instruction::Shl &&
941         isa<ConstantInt>(BI->getOperand(1)))
942       if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap)) {
943         MadeChange = true;
944         BI = NI;
945       }
946 
947     // Reject cases where it is pointless to do this.
948     if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPointTy() ||
949         BI->getType()->isVectorTy())
950       continue;  // Floating point ops are not associative.
951 
952     // Do not reassociate boolean (i1) expressions.  We want to preserve the
953     // original order of evaluation for short-circuited comparisons that
954     // SimplifyCFG has folded to AND/OR expressions.  If the expression
955     // is not further optimized, it is likely to be transformed back to a
956     // short-circuited form for code gen, and the source order may have been
957     // optimized for the most likely conditions.
958     if (BI->getType()->isIntegerTy(1))
959       continue;
960 
961     // If this is a subtract instruction which is not already in negate form,
962     // see if we can convert it to X+-Y.
963     if (BI->getOpcode() == Instruction::Sub) {
964       if (ShouldBreakUpSubtract(BI)) {
965         BI = BreakUpSubtract(BI, ValueRankMap);
966         // Reset the BBI iterator in case BreakUpSubtract changed the
967         // instruction it points to.
968         BBI = BI;
969         ++BBI;
970         MadeChange = true;
971       } else if (BinaryOperator::isNeg(BI)) {
972         // Otherwise, this is a negation.  See if the operand is a multiply tree
973         // and if this is not an inner node of a multiply tree.
974         if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
975             (!BI->hasOneUse() ||
976              !isReassociableOp(BI->use_back(), Instruction::Mul))) {
977           BI = LowerNegateToMultiply(BI, ValueRankMap);
978           MadeChange = true;
979         }
980       }
981     }
982 
983     // If this instruction is a commutative binary operator, process it.
984     if (!BI->isAssociative()) continue;
985     BinaryOperator *I = cast<BinaryOperator>(BI);
986 
987     // If this is an interior node of a reassociable tree, ignore it until we
988     // get to the root of the tree, to avoid N^2 analysis.
989     if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
990       continue;
991 
992     // If this is an add tree that is used by a sub instruction, ignore it
993     // until we process the subtract.
994     if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
995         cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
996       continue;
997 
998     ReassociateExpression(I);
999   }
1000 }
1001 
1002 Value *Reassociate::ReassociateExpression(BinaryOperator *I) {
1003 
1004   // First, walk the expression tree, linearizing the tree, collecting the
1005   // operand information.
1006   SmallVector<ValueEntry, 8> Ops;
1007   LinearizeExprTree(I, Ops);
1008 
1009   DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
1010 
1011   // Now that we have linearized the tree to a list and have gathered all of
1012   // the operands and their ranks, sort the operands by their rank.  Use a
1013   // stable_sort so that values with equal ranks will have their relative
1014   // positions maintained (and so the compiler is deterministic).  Note that
1015   // this sorts so that the highest ranking values end up at the beginning of
1016   // the vector.
1017   std::stable_sort(Ops.begin(), Ops.end());
1018 
1019   // OptimizeExpression - Now that we have the expression tree in a convenient
1020   // sorted form, optimize it globally if possible.
1021   if (Value *V = OptimizeExpression(I, Ops)) {
1022     // This expression tree simplified to something that isn't a tree,
1023     // eliminate it.
1024     DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
1025     I->replaceAllUsesWith(V);
1026     RemoveDeadBinaryOp(I);
1027     ++NumAnnihil;
1028     return V;
1029   }
1030 
1031   // We want to sink immediates as deeply as possible except in the case where
1032   // this is a multiply tree used only by an add, and the immediate is a -1.
1033   // In this case we reassociate to put the negation on the outside so that we
1034   // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1035   if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
1036       cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
1037       isa<ConstantInt>(Ops.back().Op) &&
1038       cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
1039     ValueEntry Tmp = Ops.pop_back_val();
1040     Ops.insert(Ops.begin(), Tmp);
1041   }
1042 
1043   DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
1044 
1045   if (Ops.size() == 1) {
1046     // This expression tree simplified to something that isn't a tree,
1047     // eliminate it.
1048     I->replaceAllUsesWith(Ops[0].Op);
1049     RemoveDeadBinaryOp(I);
1050     return Ops[0].Op;
1051   }
1052 
1053   // Now that we ordered and optimized the expressions, splat them back into
1054   // the expression tree, removing any unneeded nodes.
1055   RewriteExprTree(I, Ops);
1056   return I;
1057 }
1058 
1059 
1060 bool Reassociate::runOnFunction(Function &F) {
1061   // Recalculate the rank map for F
1062   BuildRankMap(F);
1063 
1064   MadeChange = false;
1065   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
1066     ReassociateBB(FI);
1067 
1068   // We are done with the rank map.
1069   RankMap.clear();
1070   ValueRankMap.clear();
1071   return MadeChange;
1072 }
1073 
1074