1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass reassociates commutative expressions in an order that is designed 11 // to promote better constant propagation, GCSE, LICM, PRE, etc. 12 // 13 // For example: 4 + (x + 5) -> x + (4 + 5) 14 // 15 // In the implementation of this algorithm, constants are assigned rank = 0, 16 // function arguments are rank = 1, and other values are assigned ranks 17 // corresponding to the reverse post order traversal of current function 18 // (starting at 2), which effectively gives values in deep loops higher rank 19 // than values not in loops. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/Transforms/Scalar.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/PostOrderIterator.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/ValueHandle.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Transforms/Utils/Local.h" 41 #include <algorithm> 42 using namespace llvm; 43 44 #define DEBUG_TYPE "reassociate" 45 46 STATISTIC(NumChanged, "Number of insts reassociated"); 47 STATISTIC(NumAnnihil, "Number of expr tree annihilated"); 48 STATISTIC(NumFactor , "Number of multiplies factored"); 49 50 namespace { 51 struct ValueEntry { 52 unsigned Rank; 53 Value *Op; 54 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {} 55 }; 56 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) { 57 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start. 58 } 59 } 60 61 #ifndef NDEBUG 62 /// Print out the expression identified in the Ops list. 63 /// 64 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) { 65 Module *M = I->getParent()->getParent()->getParent(); 66 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " " 67 << *Ops[0].Op->getType() << '\t'; 68 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 69 dbgs() << "[ "; 70 Ops[i].Op->printAsOperand(dbgs(), false, M); 71 dbgs() << ", #" << Ops[i].Rank << "] "; 72 } 73 } 74 #endif 75 76 namespace { 77 /// \brief Utility class representing a base and exponent pair which form one 78 /// factor of some product. 79 struct Factor { 80 Value *Base; 81 unsigned Power; 82 83 Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {} 84 85 /// \brief Sort factors by their Base. 86 struct BaseSorter { 87 bool operator()(const Factor &LHS, const Factor &RHS) { 88 return LHS.Base < RHS.Base; 89 } 90 }; 91 92 /// \brief Compare factors for equal bases. 93 struct BaseEqual { 94 bool operator()(const Factor &LHS, const Factor &RHS) { 95 return LHS.Base == RHS.Base; 96 } 97 }; 98 99 /// \brief Sort factors in descending order by their power. 100 struct PowerDescendingSorter { 101 bool operator()(const Factor &LHS, const Factor &RHS) { 102 return LHS.Power > RHS.Power; 103 } 104 }; 105 106 /// \brief Compare factors for equal powers. 107 struct PowerEqual { 108 bool operator()(const Factor &LHS, const Factor &RHS) { 109 return LHS.Power == RHS.Power; 110 } 111 }; 112 }; 113 114 /// Utility class representing a non-constant Xor-operand. We classify 115 /// non-constant Xor-Operands into two categories: 116 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0 117 /// C2) 118 /// C2.1) The operand is in the form of "X | C", where C is a non-zero 119 /// constant. 120 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this 121 /// operand as "E | 0" 122 class XorOpnd { 123 public: 124 XorOpnd(Value *V); 125 126 bool isInvalid() const { return SymbolicPart == nullptr; } 127 bool isOrExpr() const { return isOr; } 128 Value *getValue() const { return OrigVal; } 129 Value *getSymbolicPart() const { return SymbolicPart; } 130 unsigned getSymbolicRank() const { return SymbolicRank; } 131 const APInt &getConstPart() const { return ConstPart; } 132 133 void Invalidate() { SymbolicPart = OrigVal = nullptr; } 134 void setSymbolicRank(unsigned R) { SymbolicRank = R; } 135 136 // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank. 137 // The purpose is twofold: 138 // 1) Cluster together the operands sharing the same symbolic-value. 139 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which 140 // could potentially shorten crital path, and expose more loop-invariants. 141 // Note that values' rank are basically defined in RPO order (FIXME). 142 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier 143 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2", 144 // "z" in the order of X-Y-Z is better than any other orders. 145 struct PtrSortFunctor { 146 bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) { 147 return LHS->getSymbolicRank() < RHS->getSymbolicRank(); 148 } 149 }; 150 private: 151 Value *OrigVal; 152 Value *SymbolicPart; 153 APInt ConstPart; 154 unsigned SymbolicRank; 155 bool isOr; 156 }; 157 } 158 159 namespace { 160 class Reassociate : public FunctionPass { 161 DenseMap<BasicBlock*, unsigned> RankMap; 162 DenseMap<AssertingVH<Value>, unsigned> ValueRankMap; 163 SetVector<AssertingVH<Instruction> > RedoInsts; 164 bool MadeChange; 165 public: 166 static char ID; // Pass identification, replacement for typeid 167 Reassociate() : FunctionPass(ID) { 168 initializeReassociatePass(*PassRegistry::getPassRegistry()); 169 } 170 171 bool runOnFunction(Function &F) override; 172 173 void getAnalysisUsage(AnalysisUsage &AU) const override { 174 AU.setPreservesCFG(); 175 } 176 private: 177 void BuildRankMap(Function &F); 178 unsigned getRank(Value *V); 179 void canonicalizeOperands(Instruction *I); 180 void ReassociateExpression(BinaryOperator *I); 181 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops); 182 Value *OptimizeExpression(BinaryOperator *I, 183 SmallVectorImpl<ValueEntry> &Ops); 184 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops); 185 Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops); 186 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd, 187 Value *&Res); 188 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2, 189 APInt &ConstOpnd, Value *&Res); 190 bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, 191 SmallVectorImpl<Factor> &Factors); 192 Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder, 193 SmallVectorImpl<Factor> &Factors); 194 Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops); 195 Value *RemoveFactorFromExpression(Value *V, Value *Factor); 196 void EraseInst(Instruction *I); 197 void OptimizeInst(Instruction *I); 198 Instruction *canonicalizeNegConstExpr(Instruction *I); 199 }; 200 } 201 202 XorOpnd::XorOpnd(Value *V) { 203 assert(!isa<ConstantInt>(V) && "No ConstantInt"); 204 OrigVal = V; 205 Instruction *I = dyn_cast<Instruction>(V); 206 SymbolicRank = 0; 207 208 if (I && (I->getOpcode() == Instruction::Or || 209 I->getOpcode() == Instruction::And)) { 210 Value *V0 = I->getOperand(0); 211 Value *V1 = I->getOperand(1); 212 if (isa<ConstantInt>(V0)) 213 std::swap(V0, V1); 214 215 if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) { 216 ConstPart = C->getValue(); 217 SymbolicPart = V0; 218 isOr = (I->getOpcode() == Instruction::Or); 219 return; 220 } 221 } 222 223 // view the operand as "V | 0" 224 SymbolicPart = V; 225 ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth()); 226 isOr = true; 227 } 228 229 char Reassociate::ID = 0; 230 INITIALIZE_PASS(Reassociate, "reassociate", 231 "Reassociate expressions", false, false) 232 233 // Public interface to the Reassociate pass 234 FunctionPass *llvm::createReassociatePass() { return new Reassociate(); } 235 236 /// Return true if V is an instruction of the specified opcode and if it 237 /// only has one use. 238 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) { 239 if (V->hasOneUse() && isa<Instruction>(V) && 240 cast<Instruction>(V)->getOpcode() == Opcode && 241 (!isa<FPMathOperator>(V) || 242 cast<Instruction>(V)->hasUnsafeAlgebra())) 243 return cast<BinaryOperator>(V); 244 return nullptr; 245 } 246 247 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1, 248 unsigned Opcode2) { 249 if (V->hasOneUse() && isa<Instruction>(V) && 250 (cast<Instruction>(V)->getOpcode() == Opcode1 || 251 cast<Instruction>(V)->getOpcode() == Opcode2) && 252 (!isa<FPMathOperator>(V) || 253 cast<Instruction>(V)->hasUnsafeAlgebra())) 254 return cast<BinaryOperator>(V); 255 return nullptr; 256 } 257 258 static bool isUnmovableInstruction(Instruction *I) { 259 switch (I->getOpcode()) { 260 case Instruction::PHI: 261 case Instruction::LandingPad: 262 case Instruction::Alloca: 263 case Instruction::Load: 264 case Instruction::Invoke: 265 case Instruction::UDiv: 266 case Instruction::SDiv: 267 case Instruction::FDiv: 268 case Instruction::URem: 269 case Instruction::SRem: 270 case Instruction::FRem: 271 return true; 272 case Instruction::Call: 273 return !isa<DbgInfoIntrinsic>(I); 274 default: 275 return false; 276 } 277 } 278 279 void Reassociate::BuildRankMap(Function &F) { 280 unsigned i = 2; 281 282 // Assign distinct ranks to function arguments. 283 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { 284 ValueRankMap[&*I] = ++i; 285 DEBUG(dbgs() << "Calculated Rank[" << I->getName() << "] = " << i << "\n"); 286 } 287 288 ReversePostOrderTraversal<Function*> RPOT(&F); 289 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(), 290 E = RPOT.end(); I != E; ++I) { 291 BasicBlock *BB = *I; 292 unsigned BBRank = RankMap[BB] = ++i << 16; 293 294 // Walk the basic block, adding precomputed ranks for any instructions that 295 // we cannot move. This ensures that the ranks for these instructions are 296 // all different in the block. 297 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 298 if (isUnmovableInstruction(I)) 299 ValueRankMap[&*I] = ++BBRank; 300 } 301 } 302 303 unsigned Reassociate::getRank(Value *V) { 304 Instruction *I = dyn_cast<Instruction>(V); 305 if (!I) { 306 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument. 307 return 0; // Otherwise it's a global or constant, rank 0. 308 } 309 310 if (unsigned Rank = ValueRankMap[I]) 311 return Rank; // Rank already known? 312 313 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that 314 // we can reassociate expressions for code motion! Since we do not recurse 315 // for PHI nodes, we cannot have infinite recursion here, because there 316 // cannot be loops in the value graph that do not go through PHI nodes. 317 unsigned Rank = 0, MaxRank = RankMap[I->getParent()]; 318 for (unsigned i = 0, e = I->getNumOperands(); 319 i != e && Rank != MaxRank; ++i) 320 Rank = std::max(Rank, getRank(I->getOperand(i))); 321 322 // If this is a not or neg instruction, do not count it for rank. This 323 // assures us that X and ~X will have the same rank. 324 if (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) && 325 !BinaryOperator::isFNeg(I)) 326 ++Rank; 327 328 DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n"); 329 330 return ValueRankMap[I] = Rank; 331 } 332 333 // Canonicalize constants to RHS. Otherwise, sort the operands by rank. 334 void Reassociate::canonicalizeOperands(Instruction *I) { 335 assert(isa<BinaryOperator>(I) && "Expected binary operator."); 336 assert(I->isCommutative() && "Expected commutative operator."); 337 338 Value *LHS = I->getOperand(0); 339 Value *RHS = I->getOperand(1); 340 unsigned LHSRank = getRank(LHS); 341 unsigned RHSRank = getRank(RHS); 342 343 if (isa<Constant>(RHS)) 344 return; 345 346 if (isa<Constant>(LHS) || RHSRank < LHSRank) 347 cast<BinaryOperator>(I)->swapOperands(); 348 } 349 350 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name, 351 Instruction *InsertBefore, Value *FlagsOp) { 352 if (S1->getType()->isIntOrIntVectorTy()) 353 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore); 354 else { 355 BinaryOperator *Res = 356 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore); 357 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 358 return Res; 359 } 360 } 361 362 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name, 363 Instruction *InsertBefore, Value *FlagsOp) { 364 if (S1->getType()->isIntOrIntVectorTy()) 365 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore); 366 else { 367 BinaryOperator *Res = 368 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore); 369 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 370 return Res; 371 } 372 } 373 374 static BinaryOperator *CreateNeg(Value *S1, const Twine &Name, 375 Instruction *InsertBefore, Value *FlagsOp) { 376 if (S1->getType()->isIntOrIntVectorTy()) 377 return BinaryOperator::CreateNeg(S1, Name, InsertBefore); 378 else { 379 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore); 380 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 381 return Res; 382 } 383 } 384 385 /// Replace 0-X with X*-1. 386 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) { 387 Type *Ty = Neg->getType(); 388 Constant *NegOne = Ty->isIntOrIntVectorTy() ? 389 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0); 390 391 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg); 392 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op. 393 Res->takeName(Neg); 394 Neg->replaceAllUsesWith(Res); 395 Res->setDebugLoc(Neg->getDebugLoc()); 396 return Res; 397 } 398 399 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael 400 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for 401 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic. 402 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every 403 /// even x in Bitwidth-bit arithmetic. 404 static unsigned CarmichaelShift(unsigned Bitwidth) { 405 if (Bitwidth < 3) 406 return Bitwidth - 1; 407 return Bitwidth - 2; 408 } 409 410 /// Add the extra weight 'RHS' to the existing weight 'LHS', 411 /// reducing the combined weight using any special properties of the operation. 412 /// The existing weight LHS represents the computation X op X op ... op X where 413 /// X occurs LHS times. The combined weight represents X op X op ... op X with 414 /// X occurring LHS + RHS times. If op is "Xor" for example then the combined 415 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even; 416 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second. 417 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) { 418 // If we were working with infinite precision arithmetic then the combined 419 // weight would be LHS + RHS. But we are using finite precision arithmetic, 420 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct 421 // for nilpotent operations and addition, but not for idempotent operations 422 // and multiplication), so it is important to correctly reduce the combined 423 // weight back into range if wrapping would be wrong. 424 425 // If RHS is zero then the weight didn't change. 426 if (RHS.isMinValue()) 427 return; 428 // If LHS is zero then the combined weight is RHS. 429 if (LHS.isMinValue()) { 430 LHS = RHS; 431 return; 432 } 433 // From this point on we know that neither LHS nor RHS is zero. 434 435 if (Instruction::isIdempotent(Opcode)) { 436 // Idempotent means X op X === X, so any non-zero weight is equivalent to a 437 // weight of 1. Keeping weights at zero or one also means that wrapping is 438 // not a problem. 439 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 440 return; // Return a weight of 1. 441 } 442 if (Instruction::isNilpotent(Opcode)) { 443 // Nilpotent means X op X === 0, so reduce weights modulo 2. 444 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 445 LHS = 0; // 1 + 1 === 0 modulo 2. 446 return; 447 } 448 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) { 449 // TODO: Reduce the weight by exploiting nsw/nuw? 450 LHS += RHS; 451 return; 452 } 453 454 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) && 455 "Unknown associative operation!"); 456 unsigned Bitwidth = LHS.getBitWidth(); 457 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth 458 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth 459 // bit number x, since either x is odd in which case x^CM = 1, or x is even in 460 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples 461 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth) 462 // which by a happy accident means that they can always be represented using 463 // Bitwidth bits. 464 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than 465 // the Carmichael number). 466 if (Bitwidth > 3) { 467 /// CM - The value of Carmichael's lambda function. 468 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth)); 469 // Any weight W >= Threshold can be replaced with W - CM. 470 APInt Threshold = CM + Bitwidth; 471 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!"); 472 // For Bitwidth 4 or more the following sum does not overflow. 473 LHS += RHS; 474 while (LHS.uge(Threshold)) 475 LHS -= CM; 476 } else { 477 // To avoid problems with overflow do everything the same as above but using 478 // a larger type. 479 unsigned CM = 1U << CarmichaelShift(Bitwidth); 480 unsigned Threshold = CM + Bitwidth; 481 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold && 482 "Weights not reduced!"); 483 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue(); 484 while (Total >= Threshold) 485 Total -= CM; 486 LHS = Total; 487 } 488 } 489 490 typedef std::pair<Value*, APInt> RepeatedValue; 491 492 /// Given an associative binary expression, return the leaf 493 /// nodes in Ops along with their weights (how many times the leaf occurs). The 494 /// original expression is the same as 495 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times 496 /// op 497 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times 498 /// op 499 /// ... 500 /// op 501 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times 502 /// 503 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct. 504 /// 505 /// This routine may modify the function, in which case it returns 'true'. The 506 /// changes it makes may well be destructive, changing the value computed by 'I' 507 /// to something completely different. Thus if the routine returns 'true' then 508 /// you MUST either replace I with a new expression computed from the Ops array, 509 /// or use RewriteExprTree to put the values back in. 510 /// 511 /// A leaf node is either not a binary operation of the same kind as the root 512 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different 513 /// opcode), or is the same kind of binary operator but has a use which either 514 /// does not belong to the expression, or does belong to the expression but is 515 /// a leaf node. Every leaf node has at least one use that is a non-leaf node 516 /// of the expression, while for non-leaf nodes (except for the root 'I') every 517 /// use is a non-leaf node of the expression. 518 /// 519 /// For example: 520 /// expression graph node names 521 /// 522 /// + | I 523 /// / \ | 524 /// + + | A, B 525 /// / \ / \ | 526 /// * + * | C, D, E 527 /// / \ / \ / \ | 528 /// + * | F, G 529 /// 530 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in 531 /// that order) (C, 1), (E, 1), (F, 2), (G, 2). 532 /// 533 /// The expression is maximal: if some instruction is a binary operator of the 534 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression, 535 /// then the instruction also belongs to the expression, is not a leaf node of 536 /// it, and its operands also belong to the expression (but may be leaf nodes). 537 /// 538 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in 539 /// order to ensure that every non-root node in the expression has *exactly one* 540 /// use by a non-leaf node of the expression. This destruction means that the 541 /// caller MUST either replace 'I' with a new expression or use something like 542 /// RewriteExprTree to put the values back in if the routine indicates that it 543 /// made a change by returning 'true'. 544 /// 545 /// In the above example either the right operand of A or the left operand of B 546 /// will be replaced by undef. If it is B's operand then this gives: 547 /// 548 /// + | I 549 /// / \ | 550 /// + + | A, B - operand of B replaced with undef 551 /// / \ \ | 552 /// * + * | C, D, E 553 /// / \ / \ / \ | 554 /// + * | F, G 555 /// 556 /// Note that such undef operands can only be reached by passing through 'I'. 557 /// For example, if you visit operands recursively starting from a leaf node 558 /// then you will never see such an undef operand unless you get back to 'I', 559 /// which requires passing through a phi node. 560 /// 561 /// Note that this routine may also mutate binary operators of the wrong type 562 /// that have all uses inside the expression (i.e. only used by non-leaf nodes 563 /// of the expression) if it can turn them into binary operators of the right 564 /// type and thus make the expression bigger. 565 566 static bool LinearizeExprTree(BinaryOperator *I, 567 SmallVectorImpl<RepeatedValue> &Ops) { 568 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n'); 569 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits(); 570 unsigned Opcode = I->getOpcode(); 571 assert(I->isAssociative() && I->isCommutative() && 572 "Expected an associative and commutative operation!"); 573 574 // Visit all operands of the expression, keeping track of their weight (the 575 // number of paths from the expression root to the operand, or if you like 576 // the number of times that operand occurs in the linearized expression). 577 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1 578 // while A has weight two. 579 580 // Worklist of non-leaf nodes (their operands are in the expression too) along 581 // with their weights, representing a certain number of paths to the operator. 582 // If an operator occurs in the worklist multiple times then we found multiple 583 // ways to get to it. 584 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight) 585 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1))); 586 bool Changed = false; 587 588 // Leaves of the expression are values that either aren't the right kind of 589 // operation (eg: a constant, or a multiply in an add tree), or are, but have 590 // some uses that are not inside the expression. For example, in I = X + X, 591 // X = A + B, the value X has two uses (by I) that are in the expression. If 592 // X has any other uses, for example in a return instruction, then we consider 593 // X to be a leaf, and won't analyze it further. When we first visit a value, 594 // if it has more than one use then at first we conservatively consider it to 595 // be a leaf. Later, as the expression is explored, we may discover some more 596 // uses of the value from inside the expression. If all uses turn out to be 597 // from within the expression (and the value is a binary operator of the right 598 // kind) then the value is no longer considered to be a leaf, and its operands 599 // are explored. 600 601 // Leaves - Keeps track of the set of putative leaves as well as the number of 602 // paths to each leaf seen so far. 603 typedef DenseMap<Value*, APInt> LeafMap; 604 LeafMap Leaves; // Leaf -> Total weight so far. 605 SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order. 606 607 #ifndef NDEBUG 608 SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme. 609 #endif 610 while (!Worklist.empty()) { 611 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val(); 612 I = P.first; // We examine the operands of this binary operator. 613 614 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands. 615 Value *Op = I->getOperand(OpIdx); 616 APInt Weight = P.second; // Number of paths to this operand. 617 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n"); 618 assert(!Op->use_empty() && "No uses, so how did we get to it?!"); 619 620 // If this is a binary operation of the right kind with only one use then 621 // add its operands to the expression. 622 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 623 assert(Visited.insert(Op).second && "Not first visit!"); 624 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n"); 625 Worklist.push_back(std::make_pair(BO, Weight)); 626 continue; 627 } 628 629 // Appears to be a leaf. Is the operand already in the set of leaves? 630 LeafMap::iterator It = Leaves.find(Op); 631 if (It == Leaves.end()) { 632 // Not in the leaf map. Must be the first time we saw this operand. 633 assert(Visited.insert(Op).second && "Not first visit!"); 634 if (!Op->hasOneUse()) { 635 // This value has uses not accounted for by the expression, so it is 636 // not safe to modify. Mark it as being a leaf. 637 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n"); 638 LeafOrder.push_back(Op); 639 Leaves[Op] = Weight; 640 continue; 641 } 642 // No uses outside the expression, try morphing it. 643 } else if (It != Leaves.end()) { 644 // Already in the leaf map. 645 assert(Visited.count(Op) && "In leaf map but not visited!"); 646 647 // Update the number of paths to the leaf. 648 IncorporateWeight(It->second, Weight, Opcode); 649 650 #if 0 // TODO: Re-enable once PR13021 is fixed. 651 // The leaf already has one use from inside the expression. As we want 652 // exactly one such use, drop this new use of the leaf. 653 assert(!Op->hasOneUse() && "Only one use, but we got here twice!"); 654 I->setOperand(OpIdx, UndefValue::get(I->getType())); 655 Changed = true; 656 657 // If the leaf is a binary operation of the right kind and we now see 658 // that its multiple original uses were in fact all by nodes belonging 659 // to the expression, then no longer consider it to be a leaf and add 660 // its operands to the expression. 661 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 662 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n"); 663 Worklist.push_back(std::make_pair(BO, It->second)); 664 Leaves.erase(It); 665 continue; 666 } 667 #endif 668 669 // If we still have uses that are not accounted for by the expression 670 // then it is not safe to modify the value. 671 if (!Op->hasOneUse()) 672 continue; 673 674 // No uses outside the expression, try morphing it. 675 Weight = It->second; 676 Leaves.erase(It); // Since the value may be morphed below. 677 } 678 679 // At this point we have a value which, first of all, is not a binary 680 // expression of the right kind, and secondly, is only used inside the 681 // expression. This means that it can safely be modified. See if we 682 // can usefully morph it into an expression of the right kind. 683 assert((!isa<Instruction>(Op) || 684 cast<Instruction>(Op)->getOpcode() != Opcode 685 || (isa<FPMathOperator>(Op) && 686 !cast<Instruction>(Op)->hasUnsafeAlgebra())) && 687 "Should have been handled above!"); 688 assert(Op->hasOneUse() && "Has uses outside the expression tree!"); 689 690 // If this is a multiply expression, turn any internal negations into 691 // multiplies by -1 so they can be reassociated. 692 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) 693 if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) || 694 (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) { 695 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO "); 696 BO = LowerNegateToMultiply(BO); 697 DEBUG(dbgs() << *BO << '\n'); 698 Worklist.push_back(std::make_pair(BO, Weight)); 699 Changed = true; 700 continue; 701 } 702 703 // Failed to morph into an expression of the right type. This really is 704 // a leaf. 705 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n"); 706 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?"); 707 LeafOrder.push_back(Op); 708 Leaves[Op] = Weight; 709 } 710 } 711 712 // The leaves, repeated according to their weights, represent the linearized 713 // form of the expression. 714 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) { 715 Value *V = LeafOrder[i]; 716 LeafMap::iterator It = Leaves.find(V); 717 if (It == Leaves.end()) 718 // Node initially thought to be a leaf wasn't. 719 continue; 720 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!"); 721 APInt Weight = It->second; 722 if (Weight.isMinValue()) 723 // Leaf already output or weight reduction eliminated it. 724 continue; 725 // Ensure the leaf is only output once. 726 It->second = 0; 727 Ops.push_back(std::make_pair(V, Weight)); 728 } 729 730 // For nilpotent operations or addition there may be no operands, for example 731 // because the expression was "X xor X" or consisted of 2^Bitwidth additions: 732 // in both cases the weight reduces to 0 causing the value to be skipped. 733 if (Ops.empty()) { 734 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType()); 735 assert(Identity && "Associative operation without identity!"); 736 Ops.emplace_back(Identity, APInt(Bitwidth, 1)); 737 } 738 739 return Changed; 740 } 741 742 /// Now that the operands for this expression tree are 743 /// linearized and optimized, emit them in-order. 744 void Reassociate::RewriteExprTree(BinaryOperator *I, 745 SmallVectorImpl<ValueEntry> &Ops) { 746 assert(Ops.size() > 1 && "Single values should be used directly!"); 747 748 // Since our optimizations should never increase the number of operations, the 749 // new expression can usually be written reusing the existing binary operators 750 // from the original expression tree, without creating any new instructions, 751 // though the rewritten expression may have a completely different topology. 752 // We take care to not change anything if the new expression will be the same 753 // as the original. If more than trivial changes (like commuting operands) 754 // were made then we are obliged to clear out any optional subclass data like 755 // nsw flags. 756 757 /// NodesToRewrite - Nodes from the original expression available for writing 758 /// the new expression into. 759 SmallVector<BinaryOperator*, 8> NodesToRewrite; 760 unsigned Opcode = I->getOpcode(); 761 BinaryOperator *Op = I; 762 763 /// NotRewritable - The operands being written will be the leaves of the new 764 /// expression and must not be used as inner nodes (via NodesToRewrite) by 765 /// mistake. Inner nodes are always reassociable, and usually leaves are not 766 /// (if they were they would have been incorporated into the expression and so 767 /// would not be leaves), so most of the time there is no danger of this. But 768 /// in rare cases a leaf may become reassociable if an optimization kills uses 769 /// of it, or it may momentarily become reassociable during rewriting (below) 770 /// due it being removed as an operand of one of its uses. Ensure that misuse 771 /// of leaf nodes as inner nodes cannot occur by remembering all of the future 772 /// leaves and refusing to reuse any of them as inner nodes. 773 SmallPtrSet<Value*, 8> NotRewritable; 774 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 775 NotRewritable.insert(Ops[i].Op); 776 777 // ExpressionChanged - Non-null if the rewritten expression differs from the 778 // original in some non-trivial way, requiring the clearing of optional flags. 779 // Flags are cleared from the operator in ExpressionChanged up to I inclusive. 780 BinaryOperator *ExpressionChanged = nullptr; 781 for (unsigned i = 0; ; ++i) { 782 // The last operation (which comes earliest in the IR) is special as both 783 // operands will come from Ops, rather than just one with the other being 784 // a subexpression. 785 if (i+2 == Ops.size()) { 786 Value *NewLHS = Ops[i].Op; 787 Value *NewRHS = Ops[i+1].Op; 788 Value *OldLHS = Op->getOperand(0); 789 Value *OldRHS = Op->getOperand(1); 790 791 if (NewLHS == OldLHS && NewRHS == OldRHS) 792 // Nothing changed, leave it alone. 793 break; 794 795 if (NewLHS == OldRHS && NewRHS == OldLHS) { 796 // The order of the operands was reversed. Swap them. 797 DEBUG(dbgs() << "RA: " << *Op << '\n'); 798 Op->swapOperands(); 799 DEBUG(dbgs() << "TO: " << *Op << '\n'); 800 MadeChange = true; 801 ++NumChanged; 802 break; 803 } 804 805 // The new operation differs non-trivially from the original. Overwrite 806 // the old operands with the new ones. 807 DEBUG(dbgs() << "RA: " << *Op << '\n'); 808 if (NewLHS != OldLHS) { 809 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode); 810 if (BO && !NotRewritable.count(BO)) 811 NodesToRewrite.push_back(BO); 812 Op->setOperand(0, NewLHS); 813 } 814 if (NewRHS != OldRHS) { 815 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode); 816 if (BO && !NotRewritable.count(BO)) 817 NodesToRewrite.push_back(BO); 818 Op->setOperand(1, NewRHS); 819 } 820 DEBUG(dbgs() << "TO: " << *Op << '\n'); 821 822 ExpressionChanged = Op; 823 MadeChange = true; 824 ++NumChanged; 825 826 break; 827 } 828 829 // Not the last operation. The left-hand side will be a sub-expression 830 // while the right-hand side will be the current element of Ops. 831 Value *NewRHS = Ops[i].Op; 832 if (NewRHS != Op->getOperand(1)) { 833 DEBUG(dbgs() << "RA: " << *Op << '\n'); 834 if (NewRHS == Op->getOperand(0)) { 835 // The new right-hand side was already present as the left operand. If 836 // we are lucky then swapping the operands will sort out both of them. 837 Op->swapOperands(); 838 } else { 839 // Overwrite with the new right-hand side. 840 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode); 841 if (BO && !NotRewritable.count(BO)) 842 NodesToRewrite.push_back(BO); 843 Op->setOperand(1, NewRHS); 844 ExpressionChanged = Op; 845 } 846 DEBUG(dbgs() << "TO: " << *Op << '\n'); 847 MadeChange = true; 848 ++NumChanged; 849 } 850 851 // Now deal with the left-hand side. If this is already an operation node 852 // from the original expression then just rewrite the rest of the expression 853 // into it. 854 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode); 855 if (BO && !NotRewritable.count(BO)) { 856 Op = BO; 857 continue; 858 } 859 860 // Otherwise, grab a spare node from the original expression and use that as 861 // the left-hand side. If there are no nodes left then the optimizers made 862 // an expression with more nodes than the original! This usually means that 863 // they did something stupid but it might mean that the problem was just too 864 // hard (finding the mimimal number of multiplications needed to realize a 865 // multiplication expression is NP-complete). Whatever the reason, smart or 866 // stupid, create a new node if there are none left. 867 BinaryOperator *NewOp; 868 if (NodesToRewrite.empty()) { 869 Constant *Undef = UndefValue::get(I->getType()); 870 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode), 871 Undef, Undef, "", I); 872 if (NewOp->getType()->isFPOrFPVectorTy()) 873 NewOp->setFastMathFlags(I->getFastMathFlags()); 874 } else { 875 NewOp = NodesToRewrite.pop_back_val(); 876 } 877 878 DEBUG(dbgs() << "RA: " << *Op << '\n'); 879 Op->setOperand(0, NewOp); 880 DEBUG(dbgs() << "TO: " << *Op << '\n'); 881 ExpressionChanged = Op; 882 MadeChange = true; 883 ++NumChanged; 884 Op = NewOp; 885 } 886 887 // If the expression changed non-trivially then clear out all subclass data 888 // starting from the operator specified in ExpressionChanged, and compactify 889 // the operators to just before the expression root to guarantee that the 890 // expression tree is dominated by all of Ops. 891 if (ExpressionChanged) 892 do { 893 // Preserve FastMathFlags. 894 if (isa<FPMathOperator>(I)) { 895 FastMathFlags Flags = I->getFastMathFlags(); 896 ExpressionChanged->clearSubclassOptionalData(); 897 ExpressionChanged->setFastMathFlags(Flags); 898 } else 899 ExpressionChanged->clearSubclassOptionalData(); 900 901 if (ExpressionChanged == I) 902 break; 903 ExpressionChanged->moveBefore(I); 904 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin()); 905 } while (1); 906 907 // Throw away any left over nodes from the original expression. 908 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i) 909 RedoInsts.insert(NodesToRewrite[i]); 910 } 911 912 /// Insert instructions before the instruction pointed to by BI, 913 /// that computes the negative version of the value specified. The negative 914 /// version of the value is returned, and BI is left pointing at the instruction 915 /// that should be processed next by the reassociation pass. 916 static Value *NegateValue(Value *V, Instruction *BI) { 917 if (Constant *C = dyn_cast<Constant>(V)) { 918 if (C->getType()->isFPOrFPVectorTy()) { 919 return ConstantExpr::getFNeg(C); 920 } 921 return ConstantExpr::getNeg(C); 922 } 923 924 925 // We are trying to expose opportunity for reassociation. One of the things 926 // that we want to do to achieve this is to push a negation as deep into an 927 // expression chain as possible, to expose the add instructions. In practice, 928 // this means that we turn this: 929 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D 930 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate 931 // the constants. We assume that instcombine will clean up the mess later if 932 // we introduce tons of unnecessary negation instructions. 933 // 934 if (BinaryOperator *I = 935 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) { 936 // Push the negates through the add. 937 I->setOperand(0, NegateValue(I->getOperand(0), BI)); 938 I->setOperand(1, NegateValue(I->getOperand(1), BI)); 939 if (I->getOpcode() == Instruction::Add) { 940 I->setHasNoUnsignedWrap(false); 941 I->setHasNoSignedWrap(false); 942 } 943 944 // We must move the add instruction here, because the neg instructions do 945 // not dominate the old add instruction in general. By moving it, we are 946 // assured that the neg instructions we just inserted dominate the 947 // instruction we are about to insert after them. 948 // 949 I->moveBefore(BI); 950 I->setName(I->getName()+".neg"); 951 return I; 952 } 953 954 // Okay, we need to materialize a negated version of V with an instruction. 955 // Scan the use lists of V to see if we have one already. 956 for (User *U : V->users()) { 957 if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U)) 958 continue; 959 960 // We found one! Now we have to make sure that the definition dominates 961 // this use. We do this by moving it to the entry block (if it is a 962 // non-instruction value) or right after the definition. These negates will 963 // be zapped by reassociate later, so we don't need much finesse here. 964 BinaryOperator *TheNeg = cast<BinaryOperator>(U); 965 966 // Verify that the negate is in this function, V might be a constant expr. 967 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent()) 968 continue; 969 970 BasicBlock::iterator InsertPt; 971 if (Instruction *InstInput = dyn_cast<Instruction>(V)) { 972 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) { 973 InsertPt = II->getNormalDest()->begin(); 974 } else { 975 InsertPt = InstInput; 976 ++InsertPt; 977 } 978 while (isa<PHINode>(InsertPt)) ++InsertPt; 979 } else { 980 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin(); 981 } 982 TheNeg->moveBefore(InsertPt); 983 if (TheNeg->getOpcode() == Instruction::Sub) { 984 TheNeg->setHasNoUnsignedWrap(false); 985 TheNeg->setHasNoSignedWrap(false); 986 } else { 987 TheNeg->andIRFlags(BI); 988 } 989 return TheNeg; 990 } 991 992 // Insert a 'neg' instruction that subtracts the value from zero to get the 993 // negation. 994 return CreateNeg(V, V->getName() + ".neg", BI, BI); 995 } 996 997 /// Return true if we should break up this subtract of X-Y into (X + -Y). 998 static bool ShouldBreakUpSubtract(Instruction *Sub) { 999 // If this is a negation, we can't split it up! 1000 if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub)) 1001 return false; 1002 1003 // Don't breakup X - undef. 1004 if (isa<UndefValue>(Sub->getOperand(1))) 1005 return false; 1006 1007 // Don't bother to break this up unless either the LHS is an associable add or 1008 // subtract or if this is only used by one. 1009 Value *V0 = Sub->getOperand(0); 1010 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) || 1011 isReassociableOp(V0, Instruction::Sub, Instruction::FSub)) 1012 return true; 1013 Value *V1 = Sub->getOperand(1); 1014 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) || 1015 isReassociableOp(V1, Instruction::Sub, Instruction::FSub)) 1016 return true; 1017 Value *VB = Sub->user_back(); 1018 if (Sub->hasOneUse() && 1019 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) || 1020 isReassociableOp(VB, Instruction::Sub, Instruction::FSub))) 1021 return true; 1022 1023 return false; 1024 } 1025 1026 /// If we have (X-Y), and if either X is an add, or if this is only used by an 1027 /// add, transform this into (X+(0-Y)) to promote better reassociation. 1028 static BinaryOperator *BreakUpSubtract(Instruction *Sub) { 1029 // Convert a subtract into an add and a neg instruction. This allows sub 1030 // instructions to be commuted with other add instructions. 1031 // 1032 // Calculate the negative value of Operand 1 of the sub instruction, 1033 // and set it as the RHS of the add instruction we just made. 1034 // 1035 Value *NegVal = NegateValue(Sub->getOperand(1), Sub); 1036 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub); 1037 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op. 1038 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op. 1039 New->takeName(Sub); 1040 1041 // Everyone now refers to the add instruction. 1042 Sub->replaceAllUsesWith(New); 1043 New->setDebugLoc(Sub->getDebugLoc()); 1044 1045 DEBUG(dbgs() << "Negated: " << *New << '\n'); 1046 return New; 1047 } 1048 1049 /// If this is a shift of a reassociable multiply or is used by one, change 1050 /// this into a multiply by a constant to assist with further reassociation. 1051 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) { 1052 Constant *MulCst = ConstantInt::get(Shl->getType(), 1); 1053 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1))); 1054 1055 BinaryOperator *Mul = 1056 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl); 1057 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op. 1058 Mul->takeName(Shl); 1059 1060 // Everyone now refers to the mul instruction. 1061 Shl->replaceAllUsesWith(Mul); 1062 Mul->setDebugLoc(Shl->getDebugLoc()); 1063 1064 // We can safely preserve the nuw flag in all cases. It's also safe to turn a 1065 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special 1066 // handling. 1067 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap(); 1068 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap(); 1069 if (NSW && NUW) 1070 Mul->setHasNoSignedWrap(true); 1071 Mul->setHasNoUnsignedWrap(NUW); 1072 return Mul; 1073 } 1074 1075 /// Scan backwards and forwards among values with the same rank as element i 1076 /// to see if X exists. If X does not exist, return i. This is useful when 1077 /// scanning for 'x' when we see '-x' because they both get the same rank. 1078 static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i, 1079 Value *X) { 1080 unsigned XRank = Ops[i].Rank; 1081 unsigned e = Ops.size(); 1082 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) { 1083 if (Ops[j].Op == X) 1084 return j; 1085 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 1086 if (Instruction *I2 = dyn_cast<Instruction>(X)) 1087 if (I1->isIdenticalTo(I2)) 1088 return j; 1089 } 1090 // Scan backwards. 1091 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) { 1092 if (Ops[j].Op == X) 1093 return j; 1094 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 1095 if (Instruction *I2 = dyn_cast<Instruction>(X)) 1096 if (I1->isIdenticalTo(I2)) 1097 return j; 1098 } 1099 return i; 1100 } 1101 1102 /// Emit a tree of add instructions, summing Ops together 1103 /// and returning the result. Insert the tree before I. 1104 static Value *EmitAddTreeOfValues(Instruction *I, 1105 SmallVectorImpl<WeakVH> &Ops){ 1106 if (Ops.size() == 1) return Ops.back(); 1107 1108 Value *V1 = Ops.back(); 1109 Ops.pop_back(); 1110 Value *V2 = EmitAddTreeOfValues(I, Ops); 1111 return CreateAdd(V2, V1, "tmp", I, I); 1112 } 1113 1114 /// If V is an expression tree that is a multiplication sequence, 1115 /// and if this sequence contains a multiply by Factor, 1116 /// remove Factor from the tree and return the new tree. 1117 Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) { 1118 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1119 if (!BO) 1120 return nullptr; 1121 1122 SmallVector<RepeatedValue, 8> Tree; 1123 MadeChange |= LinearizeExprTree(BO, Tree); 1124 SmallVector<ValueEntry, 8> Factors; 1125 Factors.reserve(Tree.size()); 1126 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 1127 RepeatedValue E = Tree[i]; 1128 Factors.append(E.second.getZExtValue(), 1129 ValueEntry(getRank(E.first), E.first)); 1130 } 1131 1132 bool FoundFactor = false; 1133 bool NeedsNegate = false; 1134 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1135 if (Factors[i].Op == Factor) { 1136 FoundFactor = true; 1137 Factors.erase(Factors.begin()+i); 1138 break; 1139 } 1140 1141 // If this is a negative version of this factor, remove it. 1142 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) { 1143 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op)) 1144 if (FC1->getValue() == -FC2->getValue()) { 1145 FoundFactor = NeedsNegate = true; 1146 Factors.erase(Factors.begin()+i); 1147 break; 1148 } 1149 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) { 1150 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) { 1151 APFloat F1(FC1->getValueAPF()); 1152 APFloat F2(FC2->getValueAPF()); 1153 F2.changeSign(); 1154 if (F1.compare(F2) == APFloat::cmpEqual) { 1155 FoundFactor = NeedsNegate = true; 1156 Factors.erase(Factors.begin() + i); 1157 break; 1158 } 1159 } 1160 } 1161 } 1162 1163 if (!FoundFactor) { 1164 // Make sure to restore the operands to the expression tree. 1165 RewriteExprTree(BO, Factors); 1166 return nullptr; 1167 } 1168 1169 BasicBlock::iterator InsertPt = BO; ++InsertPt; 1170 1171 // If this was just a single multiply, remove the multiply and return the only 1172 // remaining operand. 1173 if (Factors.size() == 1) { 1174 RedoInsts.insert(BO); 1175 V = Factors[0].Op; 1176 } else { 1177 RewriteExprTree(BO, Factors); 1178 V = BO; 1179 } 1180 1181 if (NeedsNegate) 1182 V = CreateNeg(V, "neg", InsertPt, BO); 1183 1184 return V; 1185 } 1186 1187 /// If V is a single-use multiply, recursively add its operands as factors, 1188 /// otherwise add V to the list of factors. 1189 /// 1190 /// Ops is the top-level list of add operands we're trying to factor. 1191 static void FindSingleUseMultiplyFactors(Value *V, 1192 SmallVectorImpl<Value*> &Factors, 1193 const SmallVectorImpl<ValueEntry> &Ops) { 1194 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1195 if (!BO) { 1196 Factors.push_back(V); 1197 return; 1198 } 1199 1200 // Otherwise, add the LHS and RHS to the list of factors. 1201 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops); 1202 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops); 1203 } 1204 1205 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction. 1206 /// This optimizes based on identities. If it can be reduced to a single Value, 1207 /// it is returned, otherwise the Ops list is mutated as necessary. 1208 static Value *OptimizeAndOrXor(unsigned Opcode, 1209 SmallVectorImpl<ValueEntry> &Ops) { 1210 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs. 1211 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1. 1212 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1213 // First, check for X and ~X in the operand list. 1214 assert(i < Ops.size()); 1215 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^. 1216 Value *X = BinaryOperator::getNotArgument(Ops[i].Op); 1217 unsigned FoundX = FindInOperandList(Ops, i, X); 1218 if (FoundX != i) { 1219 if (Opcode == Instruction::And) // ...&X&~X = 0 1220 return Constant::getNullValue(X->getType()); 1221 1222 if (Opcode == Instruction::Or) // ...|X|~X = -1 1223 return Constant::getAllOnesValue(X->getType()); 1224 } 1225 } 1226 1227 // Next, check for duplicate pairs of values, which we assume are next to 1228 // each other, due to our sorting criteria. 1229 assert(i < Ops.size()); 1230 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) { 1231 if (Opcode == Instruction::And || Opcode == Instruction::Or) { 1232 // Drop duplicate values for And and Or. 1233 Ops.erase(Ops.begin()+i); 1234 --i; --e; 1235 ++NumAnnihil; 1236 continue; 1237 } 1238 1239 // Drop pairs of values for Xor. 1240 assert(Opcode == Instruction::Xor); 1241 if (e == 2) 1242 return Constant::getNullValue(Ops[0].Op->getType()); 1243 1244 // Y ^ X^X -> Y 1245 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1246 i -= 1; e -= 2; 1247 ++NumAnnihil; 1248 } 1249 } 1250 return nullptr; 1251 } 1252 1253 /// Helper funciton of CombineXorOpnd(). It creates a bitwise-and 1254 /// instruction with the given two operands, and return the resulting 1255 /// instruction. There are two special cases: 1) if the constant operand is 0, 1256 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will 1257 /// be returned. 1258 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd, 1259 const APInt &ConstOpnd) { 1260 if (ConstOpnd != 0) { 1261 if (!ConstOpnd.isAllOnesValue()) { 1262 LLVMContext &Ctx = Opnd->getType()->getContext(); 1263 Instruction *I; 1264 I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd), 1265 "and.ra", InsertBefore); 1266 I->setDebugLoc(InsertBefore->getDebugLoc()); 1267 return I; 1268 } 1269 return Opnd; 1270 } 1271 return nullptr; 1272 } 1273 1274 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd" 1275 // into "R ^ C", where C would be 0, and R is a symbolic value. 1276 // 1277 // If it was successful, true is returned, and the "R" and "C" is returned 1278 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned, 1279 // and both "Res" and "ConstOpnd" remain unchanged. 1280 // 1281 bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1282 APInt &ConstOpnd, Value *&Res) { 1283 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2 1284 // = ((x | c1) ^ c1) ^ (c1 ^ c2) 1285 // = (x & ~c1) ^ (c1 ^ c2) 1286 // It is useful only when c1 == c2. 1287 if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) { 1288 if (!Opnd1->getValue()->hasOneUse()) 1289 return false; 1290 1291 const APInt &C1 = Opnd1->getConstPart(); 1292 if (C1 != ConstOpnd) 1293 return false; 1294 1295 Value *X = Opnd1->getSymbolicPart(); 1296 Res = createAndInstr(I, X, ~C1); 1297 // ConstOpnd was C2, now C1 ^ C2. 1298 ConstOpnd ^= C1; 1299 1300 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1301 RedoInsts.insert(T); 1302 return true; 1303 } 1304 return false; 1305 } 1306 1307 1308 // Helper function of OptimizeXor(). It tries to simplify 1309 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a 1310 // symbolic value. 1311 // 1312 // If it was successful, true is returned, and the "R" and "C" is returned 1313 // via "Res" and "ConstOpnd", respectively (If the entire expression is 1314 // evaluated to a constant, the Res is set to NULL); otherwise, false is 1315 // returned, and both "Res" and "ConstOpnd" remain unchanged. 1316 bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2, 1317 APInt &ConstOpnd, Value *&Res) { 1318 Value *X = Opnd1->getSymbolicPart(); 1319 if (X != Opnd2->getSymbolicPart()) 1320 return false; 1321 1322 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.) 1323 int DeadInstNum = 1; 1324 if (Opnd1->getValue()->hasOneUse()) 1325 DeadInstNum++; 1326 if (Opnd2->getValue()->hasOneUse()) 1327 DeadInstNum++; 1328 1329 // Xor-Rule 2: 1330 // (x | c1) ^ (x & c2) 1331 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1 1332 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1 1333 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3 1334 // 1335 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) { 1336 if (Opnd2->isOrExpr()) 1337 std::swap(Opnd1, Opnd2); 1338 1339 const APInt &C1 = Opnd1->getConstPart(); 1340 const APInt &C2 = Opnd2->getConstPart(); 1341 APInt C3((~C1) ^ C2); 1342 1343 // Do not increase code size! 1344 if (C3 != 0 && !C3.isAllOnesValue()) { 1345 int NewInstNum = ConstOpnd != 0 ? 1 : 2; 1346 if (NewInstNum > DeadInstNum) 1347 return false; 1348 } 1349 1350 Res = createAndInstr(I, X, C3); 1351 ConstOpnd ^= C1; 1352 1353 } else if (Opnd1->isOrExpr()) { 1354 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2 1355 // 1356 const APInt &C1 = Opnd1->getConstPart(); 1357 const APInt &C2 = Opnd2->getConstPart(); 1358 APInt C3 = C1 ^ C2; 1359 1360 // Do not increase code size 1361 if (C3 != 0 && !C3.isAllOnesValue()) { 1362 int NewInstNum = ConstOpnd != 0 ? 1 : 2; 1363 if (NewInstNum > DeadInstNum) 1364 return false; 1365 } 1366 1367 Res = createAndInstr(I, X, C3); 1368 ConstOpnd ^= C3; 1369 } else { 1370 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2)) 1371 // 1372 const APInt &C1 = Opnd1->getConstPart(); 1373 const APInt &C2 = Opnd2->getConstPart(); 1374 APInt C3 = C1 ^ C2; 1375 Res = createAndInstr(I, X, C3); 1376 } 1377 1378 // Put the original operands in the Redo list; hope they will be deleted 1379 // as dead code. 1380 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1381 RedoInsts.insert(T); 1382 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue())) 1383 RedoInsts.insert(T); 1384 1385 return true; 1386 } 1387 1388 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced 1389 /// to a single Value, it is returned, otherwise the Ops list is mutated as 1390 /// necessary. 1391 Value *Reassociate::OptimizeXor(Instruction *I, 1392 SmallVectorImpl<ValueEntry> &Ops) { 1393 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops)) 1394 return V; 1395 1396 if (Ops.size() == 1) 1397 return nullptr; 1398 1399 SmallVector<XorOpnd, 8> Opnds; 1400 SmallVector<XorOpnd*, 8> OpndPtrs; 1401 Type *Ty = Ops[0].Op->getType(); 1402 APInt ConstOpnd(Ty->getIntegerBitWidth(), 0); 1403 1404 // Step 1: Convert ValueEntry to XorOpnd 1405 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1406 Value *V = Ops[i].Op; 1407 if (!isa<ConstantInt>(V)) { 1408 XorOpnd O(V); 1409 O.setSymbolicRank(getRank(O.getSymbolicPart())); 1410 Opnds.push_back(O); 1411 } else 1412 ConstOpnd ^= cast<ConstantInt>(V)->getValue(); 1413 } 1414 1415 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds". 1416 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate 1417 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop 1418 // with the previous loop --- the iterator of the "Opnds" may be invalidated 1419 // when new elements are added to the vector. 1420 for (unsigned i = 0, e = Opnds.size(); i != e; ++i) 1421 OpndPtrs.push_back(&Opnds[i]); 1422 1423 // Step 2: Sort the Xor-Operands in a way such that the operands containing 1424 // the same symbolic value cluster together. For instance, the input operand 1425 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into: 1426 // ("x | 123", "x & 789", "y & 456"). 1427 std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor()); 1428 1429 // Step 3: Combine adjacent operands 1430 XorOpnd *PrevOpnd = nullptr; 1431 bool Changed = false; 1432 for (unsigned i = 0, e = Opnds.size(); i < e; i++) { 1433 XorOpnd *CurrOpnd = OpndPtrs[i]; 1434 // The combined value 1435 Value *CV; 1436 1437 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd" 1438 if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) { 1439 Changed = true; 1440 if (CV) 1441 *CurrOpnd = XorOpnd(CV); 1442 else { 1443 CurrOpnd->Invalidate(); 1444 continue; 1445 } 1446 } 1447 1448 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) { 1449 PrevOpnd = CurrOpnd; 1450 continue; 1451 } 1452 1453 // step 3.2: When previous and current operands share the same symbolic 1454 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd" 1455 // 1456 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) { 1457 // Remove previous operand 1458 PrevOpnd->Invalidate(); 1459 if (CV) { 1460 *CurrOpnd = XorOpnd(CV); 1461 PrevOpnd = CurrOpnd; 1462 } else { 1463 CurrOpnd->Invalidate(); 1464 PrevOpnd = nullptr; 1465 } 1466 Changed = true; 1467 } 1468 } 1469 1470 // Step 4: Reassemble the Ops 1471 if (Changed) { 1472 Ops.clear(); 1473 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) { 1474 XorOpnd &O = Opnds[i]; 1475 if (O.isInvalid()) 1476 continue; 1477 ValueEntry VE(getRank(O.getValue()), O.getValue()); 1478 Ops.push_back(VE); 1479 } 1480 if (ConstOpnd != 0) { 1481 Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd); 1482 ValueEntry VE(getRank(C), C); 1483 Ops.push_back(VE); 1484 } 1485 int Sz = Ops.size(); 1486 if (Sz == 1) 1487 return Ops.back().Op; 1488 else if (Sz == 0) { 1489 assert(ConstOpnd == 0); 1490 return ConstantInt::get(Ty->getContext(), ConstOpnd); 1491 } 1492 } 1493 1494 return nullptr; 1495 } 1496 1497 /// Optimize a series of operands to an 'add' instruction. This 1498 /// optimizes based on identities. If it can be reduced to a single Value, it 1499 /// is returned, otherwise the Ops list is mutated as necessary. 1500 Value *Reassociate::OptimizeAdd(Instruction *I, 1501 SmallVectorImpl<ValueEntry> &Ops) { 1502 // Scan the operand lists looking for X and -X pairs. If we find any, we 1503 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it, 1504 // scan for any 1505 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z. 1506 1507 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1508 Value *TheOp = Ops[i].Op; 1509 // Check to see if we've seen this operand before. If so, we factor all 1510 // instances of the operand together. Due to our sorting criteria, we know 1511 // that these need to be next to each other in the vector. 1512 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) { 1513 // Rescan the list, remove all instances of this operand from the expr. 1514 unsigned NumFound = 0; 1515 do { 1516 Ops.erase(Ops.begin()+i); 1517 ++NumFound; 1518 } while (i != Ops.size() && Ops[i].Op == TheOp); 1519 1520 DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n'); 1521 ++NumFactor; 1522 1523 // Insert a new multiply. 1524 Type *Ty = TheOp->getType(); 1525 Constant *C = Ty->isIntOrIntVectorTy() ? 1526 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound); 1527 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I); 1528 1529 // Now that we have inserted a multiply, optimize it. This allows us to 1530 // handle cases that require multiple factoring steps, such as this: 1531 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6 1532 RedoInsts.insert(Mul); 1533 1534 // If every add operand was a duplicate, return the multiply. 1535 if (Ops.empty()) 1536 return Mul; 1537 1538 // Otherwise, we had some input that didn't have the dupe, such as 1539 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of 1540 // things being added by this operation. 1541 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul)); 1542 1543 --i; 1544 e = Ops.size(); 1545 continue; 1546 } 1547 1548 // Check for X and -X or X and ~X in the operand list. 1549 if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) && 1550 !BinaryOperator::isNot(TheOp)) 1551 continue; 1552 1553 Value *X = nullptr; 1554 if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)) 1555 X = BinaryOperator::getNegArgument(TheOp); 1556 else if (BinaryOperator::isNot(TheOp)) 1557 X = BinaryOperator::getNotArgument(TheOp); 1558 1559 unsigned FoundX = FindInOperandList(Ops, i, X); 1560 if (FoundX == i) 1561 continue; 1562 1563 // Remove X and -X from the operand list. 1564 if (Ops.size() == 2 && 1565 (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))) 1566 return Constant::getNullValue(X->getType()); 1567 1568 // Remove X and ~X from the operand list. 1569 if (Ops.size() == 2 && BinaryOperator::isNot(TheOp)) 1570 return Constant::getAllOnesValue(X->getType()); 1571 1572 Ops.erase(Ops.begin()+i); 1573 if (i < FoundX) 1574 --FoundX; 1575 else 1576 --i; // Need to back up an extra one. 1577 Ops.erase(Ops.begin()+FoundX); 1578 ++NumAnnihil; 1579 --i; // Revisit element. 1580 e -= 2; // Removed two elements. 1581 1582 // if X and ~X we append -1 to the operand list. 1583 if (BinaryOperator::isNot(TheOp)) { 1584 Value *V = Constant::getAllOnesValue(X->getType()); 1585 Ops.insert(Ops.end(), ValueEntry(getRank(V), V)); 1586 e += 1; 1587 } 1588 } 1589 1590 // Scan the operand list, checking to see if there are any common factors 1591 // between operands. Consider something like A*A+A*B*C+D. We would like to 1592 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies. 1593 // To efficiently find this, we count the number of times a factor occurs 1594 // for any ADD operands that are MULs. 1595 DenseMap<Value*, unsigned> FactorOccurrences; 1596 1597 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4) 1598 // where they are actually the same multiply. 1599 unsigned MaxOcc = 0; 1600 Value *MaxOccVal = nullptr; 1601 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1602 BinaryOperator *BOp = 1603 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1604 if (!BOp) 1605 continue; 1606 1607 // Compute all of the factors of this added value. 1608 SmallVector<Value*, 8> Factors; 1609 FindSingleUseMultiplyFactors(BOp, Factors, Ops); 1610 assert(Factors.size() > 1 && "Bad linearize!"); 1611 1612 // Add one to FactorOccurrences for each unique factor in this op. 1613 SmallPtrSet<Value*, 8> Duplicates; 1614 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1615 Value *Factor = Factors[i]; 1616 if (!Duplicates.insert(Factor).second) 1617 continue; 1618 1619 unsigned Occ = ++FactorOccurrences[Factor]; 1620 if (Occ > MaxOcc) { 1621 MaxOcc = Occ; 1622 MaxOccVal = Factor; 1623 } 1624 1625 // If Factor is a negative constant, add the negated value as a factor 1626 // because we can percolate the negate out. Watch for minint, which 1627 // cannot be positivified. 1628 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) { 1629 if (CI->isNegative() && !CI->isMinValue(true)) { 1630 Factor = ConstantInt::get(CI->getContext(), -CI->getValue()); 1631 assert(!Duplicates.count(Factor) && 1632 "Shouldn't have two constant factors, missed a canonicalize"); 1633 unsigned Occ = ++FactorOccurrences[Factor]; 1634 if (Occ > MaxOcc) { 1635 MaxOcc = Occ; 1636 MaxOccVal = Factor; 1637 } 1638 } 1639 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) { 1640 if (CF->isNegative()) { 1641 APFloat F(CF->getValueAPF()); 1642 F.changeSign(); 1643 Factor = ConstantFP::get(CF->getContext(), F); 1644 assert(!Duplicates.count(Factor) && 1645 "Shouldn't have two constant factors, missed a canonicalize"); 1646 unsigned Occ = ++FactorOccurrences[Factor]; 1647 if (Occ > MaxOcc) { 1648 MaxOcc = Occ; 1649 MaxOccVal = Factor; 1650 } 1651 } 1652 } 1653 } 1654 } 1655 1656 // If any factor occurred more than one time, we can pull it out. 1657 if (MaxOcc > 1) { 1658 DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n'); 1659 ++NumFactor; 1660 1661 // Create a new instruction that uses the MaxOccVal twice. If we don't do 1662 // this, we could otherwise run into situations where removing a factor 1663 // from an expression will drop a use of maxocc, and this can cause 1664 // RemoveFactorFromExpression on successive values to behave differently. 1665 Instruction *DummyInst = 1666 I->getType()->isIntOrIntVectorTy() 1667 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal) 1668 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal); 1669 1670 SmallVector<WeakVH, 4> NewMulOps; 1671 for (unsigned i = 0; i != Ops.size(); ++i) { 1672 // Only try to remove factors from expressions we're allowed to. 1673 BinaryOperator *BOp = 1674 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1675 if (!BOp) 1676 continue; 1677 1678 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) { 1679 // The factorized operand may occur several times. Convert them all in 1680 // one fell swoop. 1681 for (unsigned j = Ops.size(); j != i;) { 1682 --j; 1683 if (Ops[j].Op == Ops[i].Op) { 1684 NewMulOps.push_back(V); 1685 Ops.erase(Ops.begin()+j); 1686 } 1687 } 1688 --i; 1689 } 1690 } 1691 1692 // No need for extra uses anymore. 1693 delete DummyInst; 1694 1695 unsigned NumAddedValues = NewMulOps.size(); 1696 Value *V = EmitAddTreeOfValues(I, NewMulOps); 1697 1698 // Now that we have inserted the add tree, optimize it. This allows us to 1699 // handle cases that require multiple factoring steps, such as this: 1700 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C)) 1701 assert(NumAddedValues > 1 && "Each occurrence should contribute a value"); 1702 (void)NumAddedValues; 1703 if (Instruction *VI = dyn_cast<Instruction>(V)) 1704 RedoInsts.insert(VI); 1705 1706 // Create the multiply. 1707 Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I); 1708 1709 // Rerun associate on the multiply in case the inner expression turned into 1710 // a multiply. We want to make sure that we keep things in canonical form. 1711 RedoInsts.insert(V2); 1712 1713 // If every add operand included the factor (e.g. "A*B + A*C"), then the 1714 // entire result expression is just the multiply "A*(B+C)". 1715 if (Ops.empty()) 1716 return V2; 1717 1718 // Otherwise, we had some input that didn't have the factor, such as 1719 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of 1720 // things being added by this operation. 1721 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2)); 1722 } 1723 1724 return nullptr; 1725 } 1726 1727 /// \brief Build up a vector of value/power pairs factoring a product. 1728 /// 1729 /// Given a series of multiplication operands, build a vector of factors and 1730 /// the powers each is raised to when forming the final product. Sort them in 1731 /// the order of descending power. 1732 /// 1733 /// (x*x) -> [(x, 2)] 1734 /// ((x*x)*x) -> [(x, 3)] 1735 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)] 1736 /// 1737 /// \returns Whether any factors have a power greater than one. 1738 bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, 1739 SmallVectorImpl<Factor> &Factors) { 1740 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this. 1741 // Compute the sum of powers of simplifiable factors. 1742 unsigned FactorPowerSum = 0; 1743 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) { 1744 Value *Op = Ops[Idx-1].Op; 1745 1746 // Count the number of occurrences of this value. 1747 unsigned Count = 1; 1748 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx) 1749 ++Count; 1750 // Track for simplification all factors which occur 2 or more times. 1751 if (Count > 1) 1752 FactorPowerSum += Count; 1753 } 1754 1755 // We can only simplify factors if the sum of the powers of our simplifiable 1756 // factors is 4 or higher. When that is the case, we will *always* have 1757 // a simplification. This is an important invariant to prevent cyclicly 1758 // trying to simplify already minimal formations. 1759 if (FactorPowerSum < 4) 1760 return false; 1761 1762 // Now gather the simplifiable factors, removing them from Ops. 1763 FactorPowerSum = 0; 1764 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) { 1765 Value *Op = Ops[Idx-1].Op; 1766 1767 // Count the number of occurrences of this value. 1768 unsigned Count = 1; 1769 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx) 1770 ++Count; 1771 if (Count == 1) 1772 continue; 1773 // Move an even number of occurrences to Factors. 1774 Count &= ~1U; 1775 Idx -= Count; 1776 FactorPowerSum += Count; 1777 Factors.push_back(Factor(Op, Count)); 1778 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count); 1779 } 1780 1781 // None of the adjustments above should have reduced the sum of factor powers 1782 // below our mininum of '4'. 1783 assert(FactorPowerSum >= 4); 1784 1785 std::stable_sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter()); 1786 return true; 1787 } 1788 1789 /// \brief Build a tree of multiplies, computing the product of Ops. 1790 static Value *buildMultiplyTree(IRBuilder<> &Builder, 1791 SmallVectorImpl<Value*> &Ops) { 1792 if (Ops.size() == 1) 1793 return Ops.back(); 1794 1795 Value *LHS = Ops.pop_back_val(); 1796 do { 1797 if (LHS->getType()->isIntOrIntVectorTy()) 1798 LHS = Builder.CreateMul(LHS, Ops.pop_back_val()); 1799 else 1800 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val()); 1801 } while (!Ops.empty()); 1802 1803 return LHS; 1804 } 1805 1806 /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*... 1807 /// 1808 /// Given a vector of values raised to various powers, where no two values are 1809 /// equal and the powers are sorted in decreasing order, compute the minimal 1810 /// DAG of multiplies to compute the final product, and return that product 1811 /// value. 1812 Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder, 1813 SmallVectorImpl<Factor> &Factors) { 1814 assert(Factors[0].Power); 1815 SmallVector<Value *, 4> OuterProduct; 1816 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size(); 1817 Idx < Size && Factors[Idx].Power > 0; ++Idx) { 1818 if (Factors[Idx].Power != Factors[LastIdx].Power) { 1819 LastIdx = Idx; 1820 continue; 1821 } 1822 1823 // We want to multiply across all the factors with the same power so that 1824 // we can raise them to that power as a single entity. Build a mini tree 1825 // for that. 1826 SmallVector<Value *, 4> InnerProduct; 1827 InnerProduct.push_back(Factors[LastIdx].Base); 1828 do { 1829 InnerProduct.push_back(Factors[Idx].Base); 1830 ++Idx; 1831 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power); 1832 1833 // Reset the base value of the first factor to the new expression tree. 1834 // We'll remove all the factors with the same power in a second pass. 1835 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct); 1836 if (Instruction *MI = dyn_cast<Instruction>(M)) 1837 RedoInsts.insert(MI); 1838 1839 LastIdx = Idx; 1840 } 1841 // Unique factors with equal powers -- we've folded them into the first one's 1842 // base. 1843 Factors.erase(std::unique(Factors.begin(), Factors.end(), 1844 Factor::PowerEqual()), 1845 Factors.end()); 1846 1847 // Iteratively collect the base of each factor with an add power into the 1848 // outer product, and halve each power in preparation for squaring the 1849 // expression. 1850 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) { 1851 if (Factors[Idx].Power & 1) 1852 OuterProduct.push_back(Factors[Idx].Base); 1853 Factors[Idx].Power >>= 1; 1854 } 1855 if (Factors[0].Power) { 1856 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors); 1857 OuterProduct.push_back(SquareRoot); 1858 OuterProduct.push_back(SquareRoot); 1859 } 1860 if (OuterProduct.size() == 1) 1861 return OuterProduct.front(); 1862 1863 Value *V = buildMultiplyTree(Builder, OuterProduct); 1864 return V; 1865 } 1866 1867 Value *Reassociate::OptimizeMul(BinaryOperator *I, 1868 SmallVectorImpl<ValueEntry> &Ops) { 1869 // We can only optimize the multiplies when there is a chain of more than 1870 // three, such that a balanced tree might require fewer total multiplies. 1871 if (Ops.size() < 4) 1872 return nullptr; 1873 1874 // Try to turn linear trees of multiplies without other uses of the 1875 // intermediate stages into minimal multiply DAGs with perfect sub-expression 1876 // re-use. 1877 SmallVector<Factor, 4> Factors; 1878 if (!collectMultiplyFactors(Ops, Factors)) 1879 return nullptr; // All distinct factors, so nothing left for us to do. 1880 1881 IRBuilder<> Builder(I); 1882 Value *V = buildMinimalMultiplyDAG(Builder, Factors); 1883 if (Ops.empty()) 1884 return V; 1885 1886 ValueEntry NewEntry = ValueEntry(getRank(V), V); 1887 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry); 1888 return nullptr; 1889 } 1890 1891 Value *Reassociate::OptimizeExpression(BinaryOperator *I, 1892 SmallVectorImpl<ValueEntry> &Ops) { 1893 // Now that we have the linearized expression tree, try to optimize it. 1894 // Start by folding any constants that we found. 1895 Constant *Cst = nullptr; 1896 unsigned Opcode = I->getOpcode(); 1897 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) { 1898 Constant *C = cast<Constant>(Ops.pop_back_val().Op); 1899 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C; 1900 } 1901 // If there was nothing but constants then we are done. 1902 if (Ops.empty()) 1903 return Cst; 1904 1905 // Put the combined constant back at the end of the operand list, except if 1906 // there is no point. For example, an add of 0 gets dropped here, while a 1907 // multiplication by zero turns the whole expression into zero. 1908 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) { 1909 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType())) 1910 return Cst; 1911 Ops.push_back(ValueEntry(0, Cst)); 1912 } 1913 1914 if (Ops.size() == 1) return Ops[0].Op; 1915 1916 // Handle destructive annihilation due to identities between elements in the 1917 // argument list here. 1918 unsigned NumOps = Ops.size(); 1919 switch (Opcode) { 1920 default: break; 1921 case Instruction::And: 1922 case Instruction::Or: 1923 if (Value *Result = OptimizeAndOrXor(Opcode, Ops)) 1924 return Result; 1925 break; 1926 1927 case Instruction::Xor: 1928 if (Value *Result = OptimizeXor(I, Ops)) 1929 return Result; 1930 break; 1931 1932 case Instruction::Add: 1933 case Instruction::FAdd: 1934 if (Value *Result = OptimizeAdd(I, Ops)) 1935 return Result; 1936 break; 1937 1938 case Instruction::Mul: 1939 case Instruction::FMul: 1940 if (Value *Result = OptimizeMul(I, Ops)) 1941 return Result; 1942 break; 1943 } 1944 1945 if (Ops.size() != NumOps) 1946 return OptimizeExpression(I, Ops); 1947 return nullptr; 1948 } 1949 1950 /// Zap the given instruction, adding interesting operands to the work list. 1951 void Reassociate::EraseInst(Instruction *I) { 1952 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1953 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 1954 // Erase the dead instruction. 1955 ValueRankMap.erase(I); 1956 RedoInsts.remove(I); 1957 I->eraseFromParent(); 1958 // Optimize its operands. 1959 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes. 1960 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1961 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) { 1962 // If this is a node in an expression tree, climb to the expression root 1963 // and add that since that's where optimization actually happens. 1964 unsigned Opcode = Op->getOpcode(); 1965 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode && 1966 Visited.insert(Op).second) 1967 Op = Op->user_back(); 1968 RedoInsts.insert(Op); 1969 } 1970 } 1971 1972 // Canonicalize expressions of the following form: 1973 // x + (-Constant * y) -> x - (Constant * y) 1974 // x - (-Constant * y) -> x + (Constant * y) 1975 Instruction *Reassociate::canonicalizeNegConstExpr(Instruction *I) { 1976 if (!I->hasOneUse() || I->getType()->isVectorTy()) 1977 return nullptr; 1978 1979 // Must be a fmul or fdiv instruction. 1980 unsigned Opcode = I->getOpcode(); 1981 if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv) 1982 return nullptr; 1983 1984 auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0)); 1985 auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1)); 1986 1987 // Both operands are constant, let it get constant folded away. 1988 if (C0 && C1) 1989 return nullptr; 1990 1991 ConstantFP *CF = C0 ? C0 : C1; 1992 1993 // Must have one constant operand. 1994 if (!CF) 1995 return nullptr; 1996 1997 // Must be a negative ConstantFP. 1998 if (!CF->isNegative()) 1999 return nullptr; 2000 2001 // User must be a binary operator with one or more uses. 2002 Instruction *User = I->user_back(); 2003 if (!isa<BinaryOperator>(User) || !User->hasNUsesOrMore(1)) 2004 return nullptr; 2005 2006 unsigned UserOpcode = User->getOpcode(); 2007 if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub) 2008 return nullptr; 2009 2010 // Subtraction is not commutative. Explicitly, the following transform is 2011 // not valid: (-Constant * y) - x -> x + (Constant * y) 2012 if (!User->isCommutative() && User->getOperand(1) != I) 2013 return nullptr; 2014 2015 // Change the sign of the constant. 2016 APFloat Val = CF->getValueAPF(); 2017 Val.changeSign(); 2018 I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val)); 2019 2020 // Canonicalize I to RHS to simplify the next bit of logic. E.g., 2021 // ((-Const*y) + x) -> (x + (-Const*y)). 2022 if (User->getOperand(0) == I && User->isCommutative()) 2023 cast<BinaryOperator>(User)->swapOperands(); 2024 2025 Value *Op0 = User->getOperand(0); 2026 Value *Op1 = User->getOperand(1); 2027 BinaryOperator *NI; 2028 switch (UserOpcode) { 2029 default: 2030 llvm_unreachable("Unexpected Opcode!"); 2031 case Instruction::FAdd: 2032 NI = BinaryOperator::CreateFSub(Op0, Op1); 2033 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags()); 2034 break; 2035 case Instruction::FSub: 2036 NI = BinaryOperator::CreateFAdd(Op0, Op1); 2037 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags()); 2038 break; 2039 } 2040 2041 NI->insertBefore(User); 2042 NI->setName(User->getName()); 2043 User->replaceAllUsesWith(NI); 2044 NI->setDebugLoc(I->getDebugLoc()); 2045 RedoInsts.insert(I); 2046 MadeChange = true; 2047 return NI; 2048 } 2049 2050 /// Inspect and optimize the given instruction. Note that erasing 2051 /// instructions is not allowed. 2052 void Reassociate::OptimizeInst(Instruction *I) { 2053 // Only consider operations that we understand. 2054 if (!isa<BinaryOperator>(I)) 2055 return; 2056 2057 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1))) 2058 // If an operand of this shift is a reassociable multiply, or if the shift 2059 // is used by a reassociable multiply or add, turn into a multiply. 2060 if (isReassociableOp(I->getOperand(0), Instruction::Mul) || 2061 (I->hasOneUse() && 2062 (isReassociableOp(I->user_back(), Instruction::Mul) || 2063 isReassociableOp(I->user_back(), Instruction::Add)))) { 2064 Instruction *NI = ConvertShiftToMul(I); 2065 RedoInsts.insert(I); 2066 MadeChange = true; 2067 I = NI; 2068 } 2069 2070 // Canonicalize negative constants out of expressions. 2071 if (Instruction *Res = canonicalizeNegConstExpr(I)) 2072 I = Res; 2073 2074 // Commute binary operators, to canonicalize the order of their operands. 2075 // This can potentially expose more CSE opportunities, and makes writing other 2076 // transformations simpler. 2077 if (I->isCommutative()) 2078 canonicalizeOperands(I); 2079 2080 // TODO: We should optimize vector Xor instructions, but they are 2081 // currently unsupported. 2082 if (I->getType()->isVectorTy() && I->getOpcode() == Instruction::Xor) 2083 return; 2084 2085 // Don't optimize floating point instructions that don't have unsafe algebra. 2086 if (I->getType()->isFloatingPointTy() && !I->hasUnsafeAlgebra()) 2087 return; 2088 2089 // Do not reassociate boolean (i1) expressions. We want to preserve the 2090 // original order of evaluation for short-circuited comparisons that 2091 // SimplifyCFG has folded to AND/OR expressions. If the expression 2092 // is not further optimized, it is likely to be transformed back to a 2093 // short-circuited form for code gen, and the source order may have been 2094 // optimized for the most likely conditions. 2095 if (I->getType()->isIntegerTy(1)) 2096 return; 2097 2098 // If this is a subtract instruction which is not already in negate form, 2099 // see if we can convert it to X+-Y. 2100 if (I->getOpcode() == Instruction::Sub) { 2101 if (ShouldBreakUpSubtract(I)) { 2102 Instruction *NI = BreakUpSubtract(I); 2103 RedoInsts.insert(I); 2104 MadeChange = true; 2105 I = NI; 2106 } else if (BinaryOperator::isNeg(I)) { 2107 // Otherwise, this is a negation. See if the operand is a multiply tree 2108 // and if this is not an inner node of a multiply tree. 2109 if (isReassociableOp(I->getOperand(1), Instruction::Mul) && 2110 (!I->hasOneUse() || 2111 !isReassociableOp(I->user_back(), Instruction::Mul))) { 2112 Instruction *NI = LowerNegateToMultiply(I); 2113 RedoInsts.insert(I); 2114 MadeChange = true; 2115 I = NI; 2116 } 2117 } 2118 } else if (I->getOpcode() == Instruction::FSub) { 2119 if (ShouldBreakUpSubtract(I)) { 2120 Instruction *NI = BreakUpSubtract(I); 2121 RedoInsts.insert(I); 2122 MadeChange = true; 2123 I = NI; 2124 } else if (BinaryOperator::isFNeg(I)) { 2125 // Otherwise, this is a negation. See if the operand is a multiply tree 2126 // and if this is not an inner node of a multiply tree. 2127 if (isReassociableOp(I->getOperand(1), Instruction::FMul) && 2128 (!I->hasOneUse() || 2129 !isReassociableOp(I->user_back(), Instruction::FMul))) { 2130 Instruction *NI = LowerNegateToMultiply(I); 2131 RedoInsts.insert(I); 2132 MadeChange = true; 2133 I = NI; 2134 } 2135 } 2136 } 2137 2138 // If this instruction is an associative binary operator, process it. 2139 if (!I->isAssociative()) return; 2140 BinaryOperator *BO = cast<BinaryOperator>(I); 2141 2142 // If this is an interior node of a reassociable tree, ignore it until we 2143 // get to the root of the tree, to avoid N^2 analysis. 2144 unsigned Opcode = BO->getOpcode(); 2145 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) 2146 return; 2147 2148 // If this is an add tree that is used by a sub instruction, ignore it 2149 // until we process the subtract. 2150 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add && 2151 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub) 2152 return; 2153 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd && 2154 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub) 2155 return; 2156 2157 ReassociateExpression(BO); 2158 } 2159 2160 void Reassociate::ReassociateExpression(BinaryOperator *I) { 2161 // First, walk the expression tree, linearizing the tree, collecting the 2162 // operand information. 2163 SmallVector<RepeatedValue, 8> Tree; 2164 MadeChange |= LinearizeExprTree(I, Tree); 2165 SmallVector<ValueEntry, 8> Ops; 2166 Ops.reserve(Tree.size()); 2167 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 2168 RepeatedValue E = Tree[i]; 2169 Ops.append(E.second.getZExtValue(), 2170 ValueEntry(getRank(E.first), E.first)); 2171 } 2172 2173 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2174 2175 // Now that we have linearized the tree to a list and have gathered all of 2176 // the operands and their ranks, sort the operands by their rank. Use a 2177 // stable_sort so that values with equal ranks will have their relative 2178 // positions maintained (and so the compiler is deterministic). Note that 2179 // this sorts so that the highest ranking values end up at the beginning of 2180 // the vector. 2181 std::stable_sort(Ops.begin(), Ops.end()); 2182 2183 // Now that we have the expression tree in a convenient 2184 // sorted form, optimize it globally if possible. 2185 if (Value *V = OptimizeExpression(I, Ops)) { 2186 if (V == I) 2187 // Self-referential expression in unreachable code. 2188 return; 2189 // This expression tree simplified to something that isn't a tree, 2190 // eliminate it. 2191 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n'); 2192 I->replaceAllUsesWith(V); 2193 if (Instruction *VI = dyn_cast<Instruction>(V)) 2194 VI->setDebugLoc(I->getDebugLoc()); 2195 RedoInsts.insert(I); 2196 ++NumAnnihil; 2197 return; 2198 } 2199 2200 // We want to sink immediates as deeply as possible except in the case where 2201 // this is a multiply tree used only by an add, and the immediate is a -1. 2202 // In this case we reassociate to put the negation on the outside so that we 2203 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y 2204 if (I->hasOneUse()) { 2205 if (I->getOpcode() == Instruction::Mul && 2206 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add && 2207 isa<ConstantInt>(Ops.back().Op) && 2208 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) { 2209 ValueEntry Tmp = Ops.pop_back_val(); 2210 Ops.insert(Ops.begin(), Tmp); 2211 } else if (I->getOpcode() == Instruction::FMul && 2212 cast<Instruction>(I->user_back())->getOpcode() == 2213 Instruction::FAdd && 2214 isa<ConstantFP>(Ops.back().Op) && 2215 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) { 2216 ValueEntry Tmp = Ops.pop_back_val(); 2217 Ops.insert(Ops.begin(), Tmp); 2218 } 2219 } 2220 2221 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2222 2223 if (Ops.size() == 1) { 2224 if (Ops[0].Op == I) 2225 // Self-referential expression in unreachable code. 2226 return; 2227 2228 // This expression tree simplified to something that isn't a tree, 2229 // eliminate it. 2230 I->replaceAllUsesWith(Ops[0].Op); 2231 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op)) 2232 OI->setDebugLoc(I->getDebugLoc()); 2233 RedoInsts.insert(I); 2234 return; 2235 } 2236 2237 // Now that we ordered and optimized the expressions, splat them back into 2238 // the expression tree, removing any unneeded nodes. 2239 RewriteExprTree(I, Ops); 2240 } 2241 2242 bool Reassociate::runOnFunction(Function &F) { 2243 if (skipOptnoneFunction(F)) 2244 return false; 2245 2246 // Calculate the rank map for F 2247 BuildRankMap(F); 2248 2249 MadeChange = false; 2250 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) { 2251 // Optimize every instruction in the basic block. 2252 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; ) 2253 if (isInstructionTriviallyDead(II)) { 2254 EraseInst(II++); 2255 } else { 2256 OptimizeInst(II); 2257 assert(II->getParent() == BI && "Moved to a different block!"); 2258 ++II; 2259 } 2260 2261 // If this produced extra instructions to optimize, handle them now. 2262 while (!RedoInsts.empty()) { 2263 Instruction *I = RedoInsts.pop_back_val(); 2264 if (isInstructionTriviallyDead(I)) 2265 EraseInst(I); 2266 else 2267 OptimizeInst(I); 2268 } 2269 } 2270 2271 // We are done with the rank map. 2272 RankMap.clear(); 2273 ValueRankMap.clear(); 2274 2275 return MadeChange; 2276 } 2277