1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass reassociates commutative expressions in an order that is designed
10 // to promote better constant propagation, GCSE, LICM, PRE, etc.
11 //
12 // For example: 4 + (x + 5) -> x + (4 + 5)
13 //
14 // In the implementation of this algorithm, constants are assigned rank = 0,
15 // function arguments are rank = 1, and other values are assigned ranks
16 // corresponding to the reverse post order traversal of current function
17 // (starting at 2), which effectively gives values in deep loops higher rank
18 // than values not in loops.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "llvm/Transforms/Scalar/Reassociate.h"
23 #include "llvm/ADT/APFloat.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/PostOrderIterator.h"
27 #include "llvm/ADT/SetVector.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/GlobalsModRef.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Operator.h"
47 #include "llvm/IR/PassManager.h"
48 #include "llvm/IR/PatternMatch.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/IR/ValueHandle.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Scalar.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <utility>
62 
63 using namespace llvm;
64 using namespace reassociate;
65 using namespace PatternMatch;
66 
67 #define DEBUG_TYPE "reassociate"
68 
69 STATISTIC(NumChanged, "Number of insts reassociated");
70 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
71 STATISTIC(NumFactor , "Number of multiplies factored");
72 
73 #ifndef NDEBUG
74 /// Print out the expression identified in the Ops list.
75 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
76   Module *M = I->getModule();
77   dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
78        << *Ops[0].Op->getType() << '\t';
79   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
80     dbgs() << "[ ";
81     Ops[i].Op->printAsOperand(dbgs(), false, M);
82     dbgs() << ", #" << Ops[i].Rank << "] ";
83   }
84 }
85 #endif
86 
87 /// Utility class representing a non-constant Xor-operand. We classify
88 /// non-constant Xor-Operands into two categories:
89 ///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
90 ///  C2)
91 ///    C2.1) The operand is in the form of "X | C", where C is a non-zero
92 ///          constant.
93 ///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
94 ///          operand as "E | 0"
95 class llvm::reassociate::XorOpnd {
96 public:
97   XorOpnd(Value *V);
98 
99   bool isInvalid() const { return SymbolicPart == nullptr; }
100   bool isOrExpr() const { return isOr; }
101   Value *getValue() const { return OrigVal; }
102   Value *getSymbolicPart() const { return SymbolicPart; }
103   unsigned getSymbolicRank() const { return SymbolicRank; }
104   const APInt &getConstPart() const { return ConstPart; }
105 
106   void Invalidate() { SymbolicPart = OrigVal = nullptr; }
107   void setSymbolicRank(unsigned R) { SymbolicRank = R; }
108 
109 private:
110   Value *OrigVal;
111   Value *SymbolicPart;
112   APInt ConstPart;
113   unsigned SymbolicRank;
114   bool isOr;
115 };
116 
117 XorOpnd::XorOpnd(Value *V) {
118   assert(!isa<ConstantInt>(V) && "No ConstantInt");
119   OrigVal = V;
120   Instruction *I = dyn_cast<Instruction>(V);
121   SymbolicRank = 0;
122 
123   if (I && (I->getOpcode() == Instruction::Or ||
124             I->getOpcode() == Instruction::And)) {
125     Value *V0 = I->getOperand(0);
126     Value *V1 = I->getOperand(1);
127     const APInt *C;
128     if (match(V0, m_APInt(C)))
129       std::swap(V0, V1);
130 
131     if (match(V1, m_APInt(C))) {
132       ConstPart = *C;
133       SymbolicPart = V0;
134       isOr = (I->getOpcode() == Instruction::Or);
135       return;
136     }
137   }
138 
139   // view the operand as "V | 0"
140   SymbolicPart = V;
141   ConstPart = APInt::getNullValue(V->getType()->getScalarSizeInBits());
142   isOr = true;
143 }
144 
145 /// Return true if V is an instruction of the specified opcode and if it
146 /// only has one use.
147 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
148   auto *I = dyn_cast<Instruction>(V);
149   if (I && I->hasOneUse() && I->getOpcode() == Opcode)
150     if (!isa<FPMathOperator>(I) || I->isFast())
151       return cast<BinaryOperator>(I);
152   return nullptr;
153 }
154 
155 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
156                                         unsigned Opcode2) {
157   auto *I = dyn_cast<Instruction>(V);
158   if (I && I->hasOneUse() &&
159       (I->getOpcode() == Opcode1 || I->getOpcode() == Opcode2))
160     if (!isa<FPMathOperator>(I) || I->isFast())
161       return cast<BinaryOperator>(I);
162   return nullptr;
163 }
164 
165 void ReassociatePass::BuildRankMap(Function &F,
166                                    ReversePostOrderTraversal<Function*> &RPOT) {
167   unsigned Rank = 2;
168 
169   // Assign distinct ranks to function arguments.
170   for (auto &Arg : F.args()) {
171     ValueRankMap[&Arg] = ++Rank;
172     LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank
173                       << "\n");
174   }
175 
176   // Traverse basic blocks in ReversePostOrder
177   for (BasicBlock *BB : RPOT) {
178     unsigned BBRank = RankMap[BB] = ++Rank << 16;
179 
180     // Walk the basic block, adding precomputed ranks for any instructions that
181     // we cannot move.  This ensures that the ranks for these instructions are
182     // all different in the block.
183     for (Instruction &I : *BB)
184       if (mayBeMemoryDependent(I))
185         ValueRankMap[&I] = ++BBRank;
186   }
187 }
188 
189 unsigned ReassociatePass::getRank(Value *V) {
190   Instruction *I = dyn_cast<Instruction>(V);
191   if (!I) {
192     if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
193     return 0;  // Otherwise it's a global or constant, rank 0.
194   }
195 
196   if (unsigned Rank = ValueRankMap[I])
197     return Rank;    // Rank already known?
198 
199   // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
200   // we can reassociate expressions for code motion!  Since we do not recurse
201   // for PHI nodes, we cannot have infinite recursion here, because there
202   // cannot be loops in the value graph that do not go through PHI nodes.
203   unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
204   for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i)
205     Rank = std::max(Rank, getRank(I->getOperand(i)));
206 
207   // If this is a 'not' or 'neg' instruction, do not count it for rank. This
208   // assures us that X and ~X will have the same rank.
209   if (!match(I, m_Not(m_Value())) && !match(I, m_Neg(m_Value())) &&
210       !match(I, m_FNeg(m_Value())))
211     ++Rank;
212 
213   LLVM_DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank
214                     << "\n");
215 
216   return ValueRankMap[I] = Rank;
217 }
218 
219 // Canonicalize constants to RHS.  Otherwise, sort the operands by rank.
220 void ReassociatePass::canonicalizeOperands(Instruction *I) {
221   assert(isa<BinaryOperator>(I) && "Expected binary operator.");
222   assert(I->isCommutative() && "Expected commutative operator.");
223 
224   Value *LHS = I->getOperand(0);
225   Value *RHS = I->getOperand(1);
226   if (LHS == RHS || isa<Constant>(RHS))
227     return;
228   if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS))
229     cast<BinaryOperator>(I)->swapOperands();
230 }
231 
232 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
233                                  Instruction *InsertBefore, Value *FlagsOp) {
234   if (S1->getType()->isIntOrIntVectorTy())
235     return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
236   else {
237     BinaryOperator *Res =
238         BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
239     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
240     return Res;
241   }
242 }
243 
244 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
245                                  Instruction *InsertBefore, Value *FlagsOp) {
246   if (S1->getType()->isIntOrIntVectorTy())
247     return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
248   else {
249     BinaryOperator *Res =
250       BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
251     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
252     return Res;
253   }
254 }
255 
256 static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
257                                  Instruction *InsertBefore, Value *FlagsOp) {
258   if (S1->getType()->isIntOrIntVectorTy())
259     return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
260   else {
261     BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
262     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
263     return Res;
264   }
265 }
266 
267 /// Replace 0-X with X*-1.
268 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
269   Type *Ty = Neg->getType();
270   Constant *NegOne = Ty->isIntOrIntVectorTy() ?
271     ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
272 
273   BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
274   Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
275   Res->takeName(Neg);
276   Neg->replaceAllUsesWith(Res);
277   Res->setDebugLoc(Neg->getDebugLoc());
278   return Res;
279 }
280 
281 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
282 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
283 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
284 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
285 /// even x in Bitwidth-bit arithmetic.
286 static unsigned CarmichaelShift(unsigned Bitwidth) {
287   if (Bitwidth < 3)
288     return Bitwidth - 1;
289   return Bitwidth - 2;
290 }
291 
292 /// Add the extra weight 'RHS' to the existing weight 'LHS',
293 /// reducing the combined weight using any special properties of the operation.
294 /// The existing weight LHS represents the computation X op X op ... op X where
295 /// X occurs LHS times.  The combined weight represents  X op X op ... op X with
296 /// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
297 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
298 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
299 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
300   // If we were working with infinite precision arithmetic then the combined
301   // weight would be LHS + RHS.  But we are using finite precision arithmetic,
302   // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
303   // for nilpotent operations and addition, but not for idempotent operations
304   // and multiplication), so it is important to correctly reduce the combined
305   // weight back into range if wrapping would be wrong.
306 
307   // If RHS is zero then the weight didn't change.
308   if (RHS.isMinValue())
309     return;
310   // If LHS is zero then the combined weight is RHS.
311   if (LHS.isMinValue()) {
312     LHS = RHS;
313     return;
314   }
315   // From this point on we know that neither LHS nor RHS is zero.
316 
317   if (Instruction::isIdempotent(Opcode)) {
318     // Idempotent means X op X === X, so any non-zero weight is equivalent to a
319     // weight of 1.  Keeping weights at zero or one also means that wrapping is
320     // not a problem.
321     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
322     return; // Return a weight of 1.
323   }
324   if (Instruction::isNilpotent(Opcode)) {
325     // Nilpotent means X op X === 0, so reduce weights modulo 2.
326     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
327     LHS = 0; // 1 + 1 === 0 modulo 2.
328     return;
329   }
330   if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
331     // TODO: Reduce the weight by exploiting nsw/nuw?
332     LHS += RHS;
333     return;
334   }
335 
336   assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
337          "Unknown associative operation!");
338   unsigned Bitwidth = LHS.getBitWidth();
339   // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
340   // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
341   // bit number x, since either x is odd in which case x^CM = 1, or x is even in
342   // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
343   // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
344   // which by a happy accident means that they can always be represented using
345   // Bitwidth bits.
346   // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
347   // the Carmichael number).
348   if (Bitwidth > 3) {
349     /// CM - The value of Carmichael's lambda function.
350     APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
351     // Any weight W >= Threshold can be replaced with W - CM.
352     APInt Threshold = CM + Bitwidth;
353     assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
354     // For Bitwidth 4 or more the following sum does not overflow.
355     LHS += RHS;
356     while (LHS.uge(Threshold))
357       LHS -= CM;
358   } else {
359     // To avoid problems with overflow do everything the same as above but using
360     // a larger type.
361     unsigned CM = 1U << CarmichaelShift(Bitwidth);
362     unsigned Threshold = CM + Bitwidth;
363     assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
364            "Weights not reduced!");
365     unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
366     while (Total >= Threshold)
367       Total -= CM;
368     LHS = Total;
369   }
370 }
371 
372 using RepeatedValue = std::pair<Value*, APInt>;
373 
374 /// Given an associative binary expression, return the leaf
375 /// nodes in Ops along with their weights (how many times the leaf occurs).  The
376 /// original expression is the same as
377 ///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
378 /// op
379 ///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
380 /// op
381 ///   ...
382 /// op
383 ///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
384 ///
385 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
386 ///
387 /// This routine may modify the function, in which case it returns 'true'.  The
388 /// changes it makes may well be destructive, changing the value computed by 'I'
389 /// to something completely different.  Thus if the routine returns 'true' then
390 /// you MUST either replace I with a new expression computed from the Ops array,
391 /// or use RewriteExprTree to put the values back in.
392 ///
393 /// A leaf node is either not a binary operation of the same kind as the root
394 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
395 /// opcode), or is the same kind of binary operator but has a use which either
396 /// does not belong to the expression, or does belong to the expression but is
397 /// a leaf node.  Every leaf node has at least one use that is a non-leaf node
398 /// of the expression, while for non-leaf nodes (except for the root 'I') every
399 /// use is a non-leaf node of the expression.
400 ///
401 /// For example:
402 ///           expression graph        node names
403 ///
404 ///                     +        |        I
405 ///                    / \       |
406 ///                   +   +      |      A,  B
407 ///                  / \ / \     |
408 ///                 *   +   *    |    C,  D,  E
409 ///                / \ / \ / \   |
410 ///                   +   *      |      F,  G
411 ///
412 /// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
413 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
414 ///
415 /// The expression is maximal: if some instruction is a binary operator of the
416 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
417 /// then the instruction also belongs to the expression, is not a leaf node of
418 /// it, and its operands also belong to the expression (but may be leaf nodes).
419 ///
420 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
421 /// order to ensure that every non-root node in the expression has *exactly one*
422 /// use by a non-leaf node of the expression.  This destruction means that the
423 /// caller MUST either replace 'I' with a new expression or use something like
424 /// RewriteExprTree to put the values back in if the routine indicates that it
425 /// made a change by returning 'true'.
426 ///
427 /// In the above example either the right operand of A or the left operand of B
428 /// will be replaced by undef.  If it is B's operand then this gives:
429 ///
430 ///                     +        |        I
431 ///                    / \       |
432 ///                   +   +      |      A,  B - operand of B replaced with undef
433 ///                  / \   \     |
434 ///                 *   +   *    |    C,  D,  E
435 ///                / \ / \ / \   |
436 ///                   +   *      |      F,  G
437 ///
438 /// Note that such undef operands can only be reached by passing through 'I'.
439 /// For example, if you visit operands recursively starting from a leaf node
440 /// then you will never see such an undef operand unless you get back to 'I',
441 /// which requires passing through a phi node.
442 ///
443 /// Note that this routine may also mutate binary operators of the wrong type
444 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
445 /// of the expression) if it can turn them into binary operators of the right
446 /// type and thus make the expression bigger.
447 static bool LinearizeExprTree(BinaryOperator *I,
448                               SmallVectorImpl<RepeatedValue> &Ops) {
449   LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
450   unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
451   unsigned Opcode = I->getOpcode();
452   assert(I->isAssociative() && I->isCommutative() &&
453          "Expected an associative and commutative operation!");
454 
455   // Visit all operands of the expression, keeping track of their weight (the
456   // number of paths from the expression root to the operand, or if you like
457   // the number of times that operand occurs in the linearized expression).
458   // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
459   // while A has weight two.
460 
461   // Worklist of non-leaf nodes (their operands are in the expression too) along
462   // with their weights, representing a certain number of paths to the operator.
463   // If an operator occurs in the worklist multiple times then we found multiple
464   // ways to get to it.
465   SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
466   Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
467   bool Changed = false;
468 
469   // Leaves of the expression are values that either aren't the right kind of
470   // operation (eg: a constant, or a multiply in an add tree), or are, but have
471   // some uses that are not inside the expression.  For example, in I = X + X,
472   // X = A + B, the value X has two uses (by I) that are in the expression.  If
473   // X has any other uses, for example in a return instruction, then we consider
474   // X to be a leaf, and won't analyze it further.  When we first visit a value,
475   // if it has more than one use then at first we conservatively consider it to
476   // be a leaf.  Later, as the expression is explored, we may discover some more
477   // uses of the value from inside the expression.  If all uses turn out to be
478   // from within the expression (and the value is a binary operator of the right
479   // kind) then the value is no longer considered to be a leaf, and its operands
480   // are explored.
481 
482   // Leaves - Keeps track of the set of putative leaves as well as the number of
483   // paths to each leaf seen so far.
484   using LeafMap = DenseMap<Value *, APInt>;
485   LeafMap Leaves; // Leaf -> Total weight so far.
486   SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order.
487 
488 #ifndef NDEBUG
489   SmallPtrSet<Value *, 8> Visited; // For sanity checking the iteration scheme.
490 #endif
491   while (!Worklist.empty()) {
492     std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
493     I = P.first; // We examine the operands of this binary operator.
494 
495     for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
496       Value *Op = I->getOperand(OpIdx);
497       APInt Weight = P.second; // Number of paths to this operand.
498       LLVM_DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
499       assert(!Op->use_empty() && "No uses, so how did we get to it?!");
500 
501       // If this is a binary operation of the right kind with only one use then
502       // add its operands to the expression.
503       if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
504         assert(Visited.insert(Op).second && "Not first visit!");
505         LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
506         Worklist.push_back(std::make_pair(BO, Weight));
507         continue;
508       }
509 
510       // Appears to be a leaf.  Is the operand already in the set of leaves?
511       LeafMap::iterator It = Leaves.find(Op);
512       if (It == Leaves.end()) {
513         // Not in the leaf map.  Must be the first time we saw this operand.
514         assert(Visited.insert(Op).second && "Not first visit!");
515         if (!Op->hasOneUse()) {
516           // This value has uses not accounted for by the expression, so it is
517           // not safe to modify.  Mark it as being a leaf.
518           LLVM_DEBUG(dbgs()
519                      << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
520           LeafOrder.push_back(Op);
521           Leaves[Op] = Weight;
522           continue;
523         }
524         // No uses outside the expression, try morphing it.
525       } else {
526         // Already in the leaf map.
527         assert(It != Leaves.end() && Visited.count(Op) &&
528                "In leaf map but not visited!");
529 
530         // Update the number of paths to the leaf.
531         IncorporateWeight(It->second, Weight, Opcode);
532 
533 #if 0   // TODO: Re-enable once PR13021 is fixed.
534         // The leaf already has one use from inside the expression.  As we want
535         // exactly one such use, drop this new use of the leaf.
536         assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
537         I->setOperand(OpIdx, UndefValue::get(I->getType()));
538         Changed = true;
539 
540         // If the leaf is a binary operation of the right kind and we now see
541         // that its multiple original uses were in fact all by nodes belonging
542         // to the expression, then no longer consider it to be a leaf and add
543         // its operands to the expression.
544         if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
545           LLVM_DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
546           Worklist.push_back(std::make_pair(BO, It->second));
547           Leaves.erase(It);
548           continue;
549         }
550 #endif
551 
552         // If we still have uses that are not accounted for by the expression
553         // then it is not safe to modify the value.
554         if (!Op->hasOneUse())
555           continue;
556 
557         // No uses outside the expression, try morphing it.
558         Weight = It->second;
559         Leaves.erase(It); // Since the value may be morphed below.
560       }
561 
562       // At this point we have a value which, first of all, is not a binary
563       // expression of the right kind, and secondly, is only used inside the
564       // expression.  This means that it can safely be modified.  See if we
565       // can usefully morph it into an expression of the right kind.
566       assert((!isa<Instruction>(Op) ||
567               cast<Instruction>(Op)->getOpcode() != Opcode
568               || (isa<FPMathOperator>(Op) &&
569                   !cast<Instruction>(Op)->isFast())) &&
570              "Should have been handled above!");
571       assert(Op->hasOneUse() && "Has uses outside the expression tree!");
572 
573       // If this is a multiply expression, turn any internal negations into
574       // multiplies by -1 so they can be reassociated.
575       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
576         if ((Opcode == Instruction::Mul && match(BO, m_Neg(m_Value()))) ||
577             (Opcode == Instruction::FMul && match(BO, m_FNeg(m_Value())))) {
578           LLVM_DEBUG(dbgs()
579                      << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
580           BO = LowerNegateToMultiply(BO);
581           LLVM_DEBUG(dbgs() << *BO << '\n');
582           Worklist.push_back(std::make_pair(BO, Weight));
583           Changed = true;
584           continue;
585         }
586 
587       // Failed to morph into an expression of the right type.  This really is
588       // a leaf.
589       LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
590       assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
591       LeafOrder.push_back(Op);
592       Leaves[Op] = Weight;
593     }
594   }
595 
596   // The leaves, repeated according to their weights, represent the linearized
597   // form of the expression.
598   for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
599     Value *V = LeafOrder[i];
600     LeafMap::iterator It = Leaves.find(V);
601     if (It == Leaves.end())
602       // Node initially thought to be a leaf wasn't.
603       continue;
604     assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
605     APInt Weight = It->second;
606     if (Weight.isMinValue())
607       // Leaf already output or weight reduction eliminated it.
608       continue;
609     // Ensure the leaf is only output once.
610     It->second = 0;
611     Ops.push_back(std::make_pair(V, Weight));
612   }
613 
614   // For nilpotent operations or addition there may be no operands, for example
615   // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
616   // in both cases the weight reduces to 0 causing the value to be skipped.
617   if (Ops.empty()) {
618     Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
619     assert(Identity && "Associative operation without identity!");
620     Ops.emplace_back(Identity, APInt(Bitwidth, 1));
621   }
622 
623   return Changed;
624 }
625 
626 /// Now that the operands for this expression tree are
627 /// linearized and optimized, emit them in-order.
628 void ReassociatePass::RewriteExprTree(BinaryOperator *I,
629                                       SmallVectorImpl<ValueEntry> &Ops) {
630   assert(Ops.size() > 1 && "Single values should be used directly!");
631 
632   // Since our optimizations should never increase the number of operations, the
633   // new expression can usually be written reusing the existing binary operators
634   // from the original expression tree, without creating any new instructions,
635   // though the rewritten expression may have a completely different topology.
636   // We take care to not change anything if the new expression will be the same
637   // as the original.  If more than trivial changes (like commuting operands)
638   // were made then we are obliged to clear out any optional subclass data like
639   // nsw flags.
640 
641   /// NodesToRewrite - Nodes from the original expression available for writing
642   /// the new expression into.
643   SmallVector<BinaryOperator*, 8> NodesToRewrite;
644   unsigned Opcode = I->getOpcode();
645   BinaryOperator *Op = I;
646 
647   /// NotRewritable - The operands being written will be the leaves of the new
648   /// expression and must not be used as inner nodes (via NodesToRewrite) by
649   /// mistake.  Inner nodes are always reassociable, and usually leaves are not
650   /// (if they were they would have been incorporated into the expression and so
651   /// would not be leaves), so most of the time there is no danger of this.  But
652   /// in rare cases a leaf may become reassociable if an optimization kills uses
653   /// of it, or it may momentarily become reassociable during rewriting (below)
654   /// due it being removed as an operand of one of its uses.  Ensure that misuse
655   /// of leaf nodes as inner nodes cannot occur by remembering all of the future
656   /// leaves and refusing to reuse any of them as inner nodes.
657   SmallPtrSet<Value*, 8> NotRewritable;
658   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
659     NotRewritable.insert(Ops[i].Op);
660 
661   // ExpressionChanged - Non-null if the rewritten expression differs from the
662   // original in some non-trivial way, requiring the clearing of optional flags.
663   // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
664   BinaryOperator *ExpressionChanged = nullptr;
665   for (unsigned i = 0; ; ++i) {
666     // The last operation (which comes earliest in the IR) is special as both
667     // operands will come from Ops, rather than just one with the other being
668     // a subexpression.
669     if (i+2 == Ops.size()) {
670       Value *NewLHS = Ops[i].Op;
671       Value *NewRHS = Ops[i+1].Op;
672       Value *OldLHS = Op->getOperand(0);
673       Value *OldRHS = Op->getOperand(1);
674 
675       if (NewLHS == OldLHS && NewRHS == OldRHS)
676         // Nothing changed, leave it alone.
677         break;
678 
679       if (NewLHS == OldRHS && NewRHS == OldLHS) {
680         // The order of the operands was reversed.  Swap them.
681         LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
682         Op->swapOperands();
683         LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
684         MadeChange = true;
685         ++NumChanged;
686         break;
687       }
688 
689       // The new operation differs non-trivially from the original. Overwrite
690       // the old operands with the new ones.
691       LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
692       if (NewLHS != OldLHS) {
693         BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
694         if (BO && !NotRewritable.count(BO))
695           NodesToRewrite.push_back(BO);
696         Op->setOperand(0, NewLHS);
697       }
698       if (NewRHS != OldRHS) {
699         BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
700         if (BO && !NotRewritable.count(BO))
701           NodesToRewrite.push_back(BO);
702         Op->setOperand(1, NewRHS);
703       }
704       LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
705 
706       ExpressionChanged = Op;
707       MadeChange = true;
708       ++NumChanged;
709 
710       break;
711     }
712 
713     // Not the last operation.  The left-hand side will be a sub-expression
714     // while the right-hand side will be the current element of Ops.
715     Value *NewRHS = Ops[i].Op;
716     if (NewRHS != Op->getOperand(1)) {
717       LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
718       if (NewRHS == Op->getOperand(0)) {
719         // The new right-hand side was already present as the left operand.  If
720         // we are lucky then swapping the operands will sort out both of them.
721         Op->swapOperands();
722       } else {
723         // Overwrite with the new right-hand side.
724         BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
725         if (BO && !NotRewritable.count(BO))
726           NodesToRewrite.push_back(BO);
727         Op->setOperand(1, NewRHS);
728         ExpressionChanged = Op;
729       }
730       LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
731       MadeChange = true;
732       ++NumChanged;
733     }
734 
735     // Now deal with the left-hand side.  If this is already an operation node
736     // from the original expression then just rewrite the rest of the expression
737     // into it.
738     BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
739     if (BO && !NotRewritable.count(BO)) {
740       Op = BO;
741       continue;
742     }
743 
744     // Otherwise, grab a spare node from the original expression and use that as
745     // the left-hand side.  If there are no nodes left then the optimizers made
746     // an expression with more nodes than the original!  This usually means that
747     // they did something stupid but it might mean that the problem was just too
748     // hard (finding the mimimal number of multiplications needed to realize a
749     // multiplication expression is NP-complete).  Whatever the reason, smart or
750     // stupid, create a new node if there are none left.
751     BinaryOperator *NewOp;
752     if (NodesToRewrite.empty()) {
753       Constant *Undef = UndefValue::get(I->getType());
754       NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
755                                      Undef, Undef, "", I);
756       if (NewOp->getType()->isFPOrFPVectorTy())
757         NewOp->setFastMathFlags(I->getFastMathFlags());
758     } else {
759       NewOp = NodesToRewrite.pop_back_val();
760     }
761 
762     LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
763     Op->setOperand(0, NewOp);
764     LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
765     ExpressionChanged = Op;
766     MadeChange = true;
767     ++NumChanged;
768     Op = NewOp;
769   }
770 
771   // If the expression changed non-trivially then clear out all subclass data
772   // starting from the operator specified in ExpressionChanged, and compactify
773   // the operators to just before the expression root to guarantee that the
774   // expression tree is dominated by all of Ops.
775   if (ExpressionChanged)
776     do {
777       // Preserve FastMathFlags.
778       if (isa<FPMathOperator>(I)) {
779         FastMathFlags Flags = I->getFastMathFlags();
780         ExpressionChanged->clearSubclassOptionalData();
781         ExpressionChanged->setFastMathFlags(Flags);
782       } else
783         ExpressionChanged->clearSubclassOptionalData();
784 
785       if (ExpressionChanged == I)
786         break;
787 
788       // Discard any debug info related to the expressions that has changed (we
789       // can leave debug infor related to the root, since the result of the
790       // expression tree should be the same even after reassociation).
791       replaceDbgUsesWithUndef(ExpressionChanged);
792 
793       ExpressionChanged->moveBefore(I);
794       ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
795     } while (true);
796 
797   // Throw away any left over nodes from the original expression.
798   for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
799     RedoInsts.insert(NodesToRewrite[i]);
800 }
801 
802 /// Insert instructions before the instruction pointed to by BI,
803 /// that computes the negative version of the value specified.  The negative
804 /// version of the value is returned, and BI is left pointing at the instruction
805 /// that should be processed next by the reassociation pass.
806 /// Also add intermediate instructions to the redo list that are modified while
807 /// pushing the negates through adds.  These will be revisited to see if
808 /// additional opportunities have been exposed.
809 static Value *NegateValue(Value *V, Instruction *BI,
810                           ReassociatePass::OrderedSet &ToRedo) {
811   if (auto *C = dyn_cast<Constant>(V))
812     return C->getType()->isFPOrFPVectorTy() ? ConstantExpr::getFNeg(C) :
813                                               ConstantExpr::getNeg(C);
814 
815   // We are trying to expose opportunity for reassociation.  One of the things
816   // that we want to do to achieve this is to push a negation as deep into an
817   // expression chain as possible, to expose the add instructions.  In practice,
818   // this means that we turn this:
819   //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
820   // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
821   // the constants.  We assume that instcombine will clean up the mess later if
822   // we introduce tons of unnecessary negation instructions.
823   //
824   if (BinaryOperator *I =
825           isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
826     // Push the negates through the add.
827     I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
828     I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
829     if (I->getOpcode() == Instruction::Add) {
830       I->setHasNoUnsignedWrap(false);
831       I->setHasNoSignedWrap(false);
832     }
833 
834     // We must move the add instruction here, because the neg instructions do
835     // not dominate the old add instruction in general.  By moving it, we are
836     // assured that the neg instructions we just inserted dominate the
837     // instruction we are about to insert after them.
838     //
839     I->moveBefore(BI);
840     I->setName(I->getName()+".neg");
841 
842     // Add the intermediate negates to the redo list as processing them later
843     // could expose more reassociating opportunities.
844     ToRedo.insert(I);
845     return I;
846   }
847 
848   // Okay, we need to materialize a negated version of V with an instruction.
849   // Scan the use lists of V to see if we have one already.
850   for (User *U : V->users()) {
851     if (!match(U, m_Neg(m_Value())) && !match(U, m_FNeg(m_Value())))
852       continue;
853 
854     // We found one!  Now we have to make sure that the definition dominates
855     // this use.  We do this by moving it to the entry block (if it is a
856     // non-instruction value) or right after the definition.  These negates will
857     // be zapped by reassociate later, so we don't need much finesse here.
858     BinaryOperator *TheNeg = cast<BinaryOperator>(U);
859 
860     // Verify that the negate is in this function, V might be a constant expr.
861     if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
862       continue;
863 
864     BasicBlock::iterator InsertPt;
865     if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
866       if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
867         InsertPt = II->getNormalDest()->begin();
868       } else {
869         InsertPt = ++InstInput->getIterator();
870       }
871       while (isa<PHINode>(InsertPt)) ++InsertPt;
872     } else {
873       InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
874     }
875     TheNeg->moveBefore(&*InsertPt);
876     if (TheNeg->getOpcode() == Instruction::Sub) {
877       TheNeg->setHasNoUnsignedWrap(false);
878       TheNeg->setHasNoSignedWrap(false);
879     } else {
880       TheNeg->andIRFlags(BI);
881     }
882     ToRedo.insert(TheNeg);
883     return TheNeg;
884   }
885 
886   // Insert a 'neg' instruction that subtracts the value from zero to get the
887   // negation.
888   BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
889   ToRedo.insert(NewNeg);
890   return NewNeg;
891 }
892 
893 /// Return true if we should break up this subtract of X-Y into (X + -Y).
894 static bool ShouldBreakUpSubtract(Instruction *Sub) {
895   // If this is a negation, we can't split it up!
896   if (match(Sub, m_Neg(m_Value())) || match(Sub, m_FNeg(m_Value())))
897     return false;
898 
899   // Don't breakup X - undef.
900   if (isa<UndefValue>(Sub->getOperand(1)))
901     return false;
902 
903   // Don't bother to break this up unless either the LHS is an associable add or
904   // subtract or if this is only used by one.
905   Value *V0 = Sub->getOperand(0);
906   if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
907       isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
908     return true;
909   Value *V1 = Sub->getOperand(1);
910   if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
911       isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
912     return true;
913   Value *VB = Sub->user_back();
914   if (Sub->hasOneUse() &&
915       (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
916        isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
917     return true;
918 
919   return false;
920 }
921 
922 /// If we have (X-Y), and if either X is an add, or if this is only used by an
923 /// add, transform this into (X+(0-Y)) to promote better reassociation.
924 static BinaryOperator *BreakUpSubtract(Instruction *Sub,
925                                        ReassociatePass::OrderedSet &ToRedo) {
926   // Convert a subtract into an add and a neg instruction. This allows sub
927   // instructions to be commuted with other add instructions.
928   //
929   // Calculate the negative value of Operand 1 of the sub instruction,
930   // and set it as the RHS of the add instruction we just made.
931   Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
932   BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
933   Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
934   Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
935   New->takeName(Sub);
936 
937   // Everyone now refers to the add instruction.
938   Sub->replaceAllUsesWith(New);
939   New->setDebugLoc(Sub->getDebugLoc());
940 
941   LLVM_DEBUG(dbgs() << "Negated: " << *New << '\n');
942   return New;
943 }
944 
945 /// If this is a shift of a reassociable multiply or is used by one, change
946 /// this into a multiply by a constant to assist with further reassociation.
947 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
948   Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
949   MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
950 
951   BinaryOperator *Mul =
952     BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
953   Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
954   Mul->takeName(Shl);
955 
956   // Everyone now refers to the mul instruction.
957   Shl->replaceAllUsesWith(Mul);
958   Mul->setDebugLoc(Shl->getDebugLoc());
959 
960   // We can safely preserve the nuw flag in all cases.  It's also safe to turn a
961   // nuw nsw shl into a nuw nsw mul.  However, nsw in isolation requires special
962   // handling.
963   bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
964   bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
965   if (NSW && NUW)
966     Mul->setHasNoSignedWrap(true);
967   Mul->setHasNoUnsignedWrap(NUW);
968   return Mul;
969 }
970 
971 /// Scan backwards and forwards among values with the same rank as element i
972 /// to see if X exists.  If X does not exist, return i.  This is useful when
973 /// scanning for 'x' when we see '-x' because they both get the same rank.
974 static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops,
975                                   unsigned i, Value *X) {
976   unsigned XRank = Ops[i].Rank;
977   unsigned e = Ops.size();
978   for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
979     if (Ops[j].Op == X)
980       return j;
981     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
982       if (Instruction *I2 = dyn_cast<Instruction>(X))
983         if (I1->isIdenticalTo(I2))
984           return j;
985   }
986   // Scan backwards.
987   for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
988     if (Ops[j].Op == X)
989       return j;
990     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
991       if (Instruction *I2 = dyn_cast<Instruction>(X))
992         if (I1->isIdenticalTo(I2))
993           return j;
994   }
995   return i;
996 }
997 
998 /// Emit a tree of add instructions, summing Ops together
999 /// and returning the result.  Insert the tree before I.
1000 static Value *EmitAddTreeOfValues(Instruction *I,
1001                                   SmallVectorImpl<WeakTrackingVH> &Ops) {
1002   if (Ops.size() == 1) return Ops.back();
1003 
1004   Value *V1 = Ops.back();
1005   Ops.pop_back();
1006   Value *V2 = EmitAddTreeOfValues(I, Ops);
1007   return CreateAdd(V2, V1, "reass.add", I, I);
1008 }
1009 
1010 /// If V is an expression tree that is a multiplication sequence,
1011 /// and if this sequence contains a multiply by Factor,
1012 /// remove Factor from the tree and return the new tree.
1013 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
1014   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1015   if (!BO)
1016     return nullptr;
1017 
1018   SmallVector<RepeatedValue, 8> Tree;
1019   MadeChange |= LinearizeExprTree(BO, Tree);
1020   SmallVector<ValueEntry, 8> Factors;
1021   Factors.reserve(Tree.size());
1022   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1023     RepeatedValue E = Tree[i];
1024     Factors.append(E.second.getZExtValue(),
1025                    ValueEntry(getRank(E.first), E.first));
1026   }
1027 
1028   bool FoundFactor = false;
1029   bool NeedsNegate = false;
1030   for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1031     if (Factors[i].Op == Factor) {
1032       FoundFactor = true;
1033       Factors.erase(Factors.begin()+i);
1034       break;
1035     }
1036 
1037     // If this is a negative version of this factor, remove it.
1038     if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
1039       if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1040         if (FC1->getValue() == -FC2->getValue()) {
1041           FoundFactor = NeedsNegate = true;
1042           Factors.erase(Factors.begin()+i);
1043           break;
1044         }
1045     } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1046       if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
1047         const APFloat &F1 = FC1->getValueAPF();
1048         APFloat F2(FC2->getValueAPF());
1049         F2.changeSign();
1050         if (F1.compare(F2) == APFloat::cmpEqual) {
1051           FoundFactor = NeedsNegate = true;
1052           Factors.erase(Factors.begin() + i);
1053           break;
1054         }
1055       }
1056     }
1057   }
1058 
1059   if (!FoundFactor) {
1060     // Make sure to restore the operands to the expression tree.
1061     RewriteExprTree(BO, Factors);
1062     return nullptr;
1063   }
1064 
1065   BasicBlock::iterator InsertPt = ++BO->getIterator();
1066 
1067   // If this was just a single multiply, remove the multiply and return the only
1068   // remaining operand.
1069   if (Factors.size() == 1) {
1070     RedoInsts.insert(BO);
1071     V = Factors[0].Op;
1072   } else {
1073     RewriteExprTree(BO, Factors);
1074     V = BO;
1075   }
1076 
1077   if (NeedsNegate)
1078     V = CreateNeg(V, "neg", &*InsertPt, BO);
1079 
1080   return V;
1081 }
1082 
1083 /// If V is a single-use multiply, recursively add its operands as factors,
1084 /// otherwise add V to the list of factors.
1085 ///
1086 /// Ops is the top-level list of add operands we're trying to factor.
1087 static void FindSingleUseMultiplyFactors(Value *V,
1088                                          SmallVectorImpl<Value*> &Factors) {
1089   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1090   if (!BO) {
1091     Factors.push_back(V);
1092     return;
1093   }
1094 
1095   // Otherwise, add the LHS and RHS to the list of factors.
1096   FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
1097   FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
1098 }
1099 
1100 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1101 /// This optimizes based on identities.  If it can be reduced to a single Value,
1102 /// it is returned, otherwise the Ops list is mutated as necessary.
1103 static Value *OptimizeAndOrXor(unsigned Opcode,
1104                                SmallVectorImpl<ValueEntry> &Ops) {
1105   // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1106   // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1107   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1108     // First, check for X and ~X in the operand list.
1109     assert(i < Ops.size());
1110     Value *X;
1111     if (match(Ops[i].Op, m_Not(m_Value(X)))) {    // Cannot occur for ^.
1112       unsigned FoundX = FindInOperandList(Ops, i, X);
1113       if (FoundX != i) {
1114         if (Opcode == Instruction::And)   // ...&X&~X = 0
1115           return Constant::getNullValue(X->getType());
1116 
1117         if (Opcode == Instruction::Or)    // ...|X|~X = -1
1118           return Constant::getAllOnesValue(X->getType());
1119       }
1120     }
1121 
1122     // Next, check for duplicate pairs of values, which we assume are next to
1123     // each other, due to our sorting criteria.
1124     assert(i < Ops.size());
1125     if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1126       if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1127         // Drop duplicate values for And and Or.
1128         Ops.erase(Ops.begin()+i);
1129         --i; --e;
1130         ++NumAnnihil;
1131         continue;
1132       }
1133 
1134       // Drop pairs of values for Xor.
1135       assert(Opcode == Instruction::Xor);
1136       if (e == 2)
1137         return Constant::getNullValue(Ops[0].Op->getType());
1138 
1139       // Y ^ X^X -> Y
1140       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1141       i -= 1; e -= 2;
1142       ++NumAnnihil;
1143     }
1144   }
1145   return nullptr;
1146 }
1147 
1148 /// Helper function of CombineXorOpnd(). It creates a bitwise-and
1149 /// instruction with the given two operands, and return the resulting
1150 /// instruction. There are two special cases: 1) if the constant operand is 0,
1151 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1152 /// be returned.
1153 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1154                              const APInt &ConstOpnd) {
1155   if (ConstOpnd.isNullValue())
1156     return nullptr;
1157 
1158   if (ConstOpnd.isAllOnesValue())
1159     return Opnd;
1160 
1161   Instruction *I = BinaryOperator::CreateAnd(
1162       Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra",
1163       InsertBefore);
1164   I->setDebugLoc(InsertBefore->getDebugLoc());
1165   return I;
1166 }
1167 
1168 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1169 // into "R ^ C", where C would be 0, and R is a symbolic value.
1170 //
1171 // If it was successful, true is returned, and the "R" and "C" is returned
1172 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1173 // and both "Res" and "ConstOpnd" remain unchanged.
1174 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1175                                      APInt &ConstOpnd, Value *&Res) {
1176   // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1177   //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
1178   //                       = (x & ~c1) ^ (c1 ^ c2)
1179   // It is useful only when c1 == c2.
1180   if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isNullValue())
1181     return false;
1182 
1183   if (!Opnd1->getValue()->hasOneUse())
1184     return false;
1185 
1186   const APInt &C1 = Opnd1->getConstPart();
1187   if (C1 != ConstOpnd)
1188     return false;
1189 
1190   Value *X = Opnd1->getSymbolicPart();
1191   Res = createAndInstr(I, X, ~C1);
1192   // ConstOpnd was C2, now C1 ^ C2.
1193   ConstOpnd ^= C1;
1194 
1195   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1196     RedoInsts.insert(T);
1197   return true;
1198 }
1199 
1200 // Helper function of OptimizeXor(). It tries to simplify
1201 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1202 // symbolic value.
1203 //
1204 // If it was successful, true is returned, and the "R" and "C" is returned
1205 // via "Res" and "ConstOpnd", respectively (If the entire expression is
1206 // evaluated to a constant, the Res is set to NULL); otherwise, false is
1207 // returned, and both "Res" and "ConstOpnd" remain unchanged.
1208 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1209                                      XorOpnd *Opnd2, APInt &ConstOpnd,
1210                                      Value *&Res) {
1211   Value *X = Opnd1->getSymbolicPart();
1212   if (X != Opnd2->getSymbolicPart())
1213     return false;
1214 
1215   // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1216   int DeadInstNum = 1;
1217   if (Opnd1->getValue()->hasOneUse())
1218     DeadInstNum++;
1219   if (Opnd2->getValue()->hasOneUse())
1220     DeadInstNum++;
1221 
1222   // Xor-Rule 2:
1223   //  (x | c1) ^ (x & c2)
1224   //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1225   //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
1226   //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
1227   //
1228   if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1229     if (Opnd2->isOrExpr())
1230       std::swap(Opnd1, Opnd2);
1231 
1232     const APInt &C1 = Opnd1->getConstPart();
1233     const APInt &C2 = Opnd2->getConstPart();
1234     APInt C3((~C1) ^ C2);
1235 
1236     // Do not increase code size!
1237     if (!C3.isNullValue() && !C3.isAllOnesValue()) {
1238       int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1239       if (NewInstNum > DeadInstNum)
1240         return false;
1241     }
1242 
1243     Res = createAndInstr(I, X, C3);
1244     ConstOpnd ^= C1;
1245   } else if (Opnd1->isOrExpr()) {
1246     // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1247     //
1248     const APInt &C1 = Opnd1->getConstPart();
1249     const APInt &C2 = Opnd2->getConstPart();
1250     APInt C3 = C1 ^ C2;
1251 
1252     // Do not increase code size
1253     if (!C3.isNullValue() && !C3.isAllOnesValue()) {
1254       int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1255       if (NewInstNum > DeadInstNum)
1256         return false;
1257     }
1258 
1259     Res = createAndInstr(I, X, C3);
1260     ConstOpnd ^= C3;
1261   } else {
1262     // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1263     //
1264     const APInt &C1 = Opnd1->getConstPart();
1265     const APInt &C2 = Opnd2->getConstPart();
1266     APInt C3 = C1 ^ C2;
1267     Res = createAndInstr(I, X, C3);
1268   }
1269 
1270   // Put the original operands in the Redo list; hope they will be deleted
1271   // as dead code.
1272   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1273     RedoInsts.insert(T);
1274   if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1275     RedoInsts.insert(T);
1276 
1277   return true;
1278 }
1279 
1280 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1281 /// to a single Value, it is returned, otherwise the Ops list is mutated as
1282 /// necessary.
1283 Value *ReassociatePass::OptimizeXor(Instruction *I,
1284                                     SmallVectorImpl<ValueEntry> &Ops) {
1285   if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1286     return V;
1287 
1288   if (Ops.size() == 1)
1289     return nullptr;
1290 
1291   SmallVector<XorOpnd, 8> Opnds;
1292   SmallVector<XorOpnd*, 8> OpndPtrs;
1293   Type *Ty = Ops[0].Op->getType();
1294   APInt ConstOpnd(Ty->getScalarSizeInBits(), 0);
1295 
1296   // Step 1: Convert ValueEntry to XorOpnd
1297   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1298     Value *V = Ops[i].Op;
1299     const APInt *C;
1300     // TODO: Support non-splat vectors.
1301     if (match(V, m_APInt(C))) {
1302       ConstOpnd ^= *C;
1303     } else {
1304       XorOpnd O(V);
1305       O.setSymbolicRank(getRank(O.getSymbolicPart()));
1306       Opnds.push_back(O);
1307     }
1308   }
1309 
1310   // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1311   //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1312   //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1313   //  with the previous loop --- the iterator of the "Opnds" may be invalidated
1314   //  when new elements are added to the vector.
1315   for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1316     OpndPtrs.push_back(&Opnds[i]);
1317 
1318   // Step 2: Sort the Xor-Operands in a way such that the operands containing
1319   //  the same symbolic value cluster together. For instance, the input operand
1320   //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1321   //  ("x | 123", "x & 789", "y & 456").
1322   //
1323   //  The purpose is twofold:
1324   //  1) Cluster together the operands sharing the same symbolic-value.
1325   //  2) Operand having smaller symbolic-value-rank is permuted earlier, which
1326   //     could potentially shorten crital path, and expose more loop-invariants.
1327   //     Note that values' rank are basically defined in RPO order (FIXME).
1328   //     So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
1329   //     than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
1330   //     "z" in the order of X-Y-Z is better than any other orders.
1331   std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(),
1332                    [](XorOpnd *LHS, XorOpnd *RHS) {
1333     return LHS->getSymbolicRank() < RHS->getSymbolicRank();
1334   });
1335 
1336   // Step 3: Combine adjacent operands
1337   XorOpnd *PrevOpnd = nullptr;
1338   bool Changed = false;
1339   for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
1340     XorOpnd *CurrOpnd = OpndPtrs[i];
1341     // The combined value
1342     Value *CV;
1343 
1344     // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1345     if (!ConstOpnd.isNullValue() &&
1346         CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1347       Changed = true;
1348       if (CV)
1349         *CurrOpnd = XorOpnd(CV);
1350       else {
1351         CurrOpnd->Invalidate();
1352         continue;
1353       }
1354     }
1355 
1356     if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1357       PrevOpnd = CurrOpnd;
1358       continue;
1359     }
1360 
1361     // step 3.2: When previous and current operands share the same symbolic
1362     //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1363     if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1364       // Remove previous operand
1365       PrevOpnd->Invalidate();
1366       if (CV) {
1367         *CurrOpnd = XorOpnd(CV);
1368         PrevOpnd = CurrOpnd;
1369       } else {
1370         CurrOpnd->Invalidate();
1371         PrevOpnd = nullptr;
1372       }
1373       Changed = true;
1374     }
1375   }
1376 
1377   // Step 4: Reassemble the Ops
1378   if (Changed) {
1379     Ops.clear();
1380     for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1381       XorOpnd &O = Opnds[i];
1382       if (O.isInvalid())
1383         continue;
1384       ValueEntry VE(getRank(O.getValue()), O.getValue());
1385       Ops.push_back(VE);
1386     }
1387     if (!ConstOpnd.isNullValue()) {
1388       Value *C = ConstantInt::get(Ty, ConstOpnd);
1389       ValueEntry VE(getRank(C), C);
1390       Ops.push_back(VE);
1391     }
1392     unsigned Sz = Ops.size();
1393     if (Sz == 1)
1394       return Ops.back().Op;
1395     if (Sz == 0) {
1396       assert(ConstOpnd.isNullValue());
1397       return ConstantInt::get(Ty, ConstOpnd);
1398     }
1399   }
1400 
1401   return nullptr;
1402 }
1403 
1404 /// Optimize a series of operands to an 'add' instruction.  This
1405 /// optimizes based on identities.  If it can be reduced to a single Value, it
1406 /// is returned, otherwise the Ops list is mutated as necessary.
1407 Value *ReassociatePass::OptimizeAdd(Instruction *I,
1408                                     SmallVectorImpl<ValueEntry> &Ops) {
1409   // Scan the operand lists looking for X and -X pairs.  If we find any, we
1410   // can simplify expressions like X+-X == 0 and X+~X ==-1.  While we're at it,
1411   // scan for any
1412   // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1413 
1414   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1415     Value *TheOp = Ops[i].Op;
1416     // Check to see if we've seen this operand before.  If so, we factor all
1417     // instances of the operand together.  Due to our sorting criteria, we know
1418     // that these need to be next to each other in the vector.
1419     if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1420       // Rescan the list, remove all instances of this operand from the expr.
1421       unsigned NumFound = 0;
1422       do {
1423         Ops.erase(Ops.begin()+i);
1424         ++NumFound;
1425       } while (i != Ops.size() && Ops[i].Op == TheOp);
1426 
1427       LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp
1428                         << '\n');
1429       ++NumFactor;
1430 
1431       // Insert a new multiply.
1432       Type *Ty = TheOp->getType();
1433       Constant *C = Ty->isIntOrIntVectorTy() ?
1434         ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
1435       Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
1436 
1437       // Now that we have inserted a multiply, optimize it. This allows us to
1438       // handle cases that require multiple factoring steps, such as this:
1439       // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1440       RedoInsts.insert(Mul);
1441 
1442       // If every add operand was a duplicate, return the multiply.
1443       if (Ops.empty())
1444         return Mul;
1445 
1446       // Otherwise, we had some input that didn't have the dupe, such as
1447       // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
1448       // things being added by this operation.
1449       Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1450 
1451       --i;
1452       e = Ops.size();
1453       continue;
1454     }
1455 
1456     // Check for X and -X or X and ~X in the operand list.
1457     Value *X;
1458     if (!match(TheOp, m_Neg(m_Value(X))) && !match(TheOp, m_Not(m_Value(X))) &&
1459         !match(TheOp, m_FNeg(m_Value(X))))
1460       continue;
1461 
1462     unsigned FoundX = FindInOperandList(Ops, i, X);
1463     if (FoundX == i)
1464       continue;
1465 
1466     // Remove X and -X from the operand list.
1467     if (Ops.size() == 2 &&
1468         (match(TheOp, m_Neg(m_Value())) || match(TheOp, m_FNeg(m_Value()))))
1469       return Constant::getNullValue(X->getType());
1470 
1471     // Remove X and ~X from the operand list.
1472     if (Ops.size() == 2 && match(TheOp, m_Not(m_Value())))
1473       return Constant::getAllOnesValue(X->getType());
1474 
1475     Ops.erase(Ops.begin()+i);
1476     if (i < FoundX)
1477       --FoundX;
1478     else
1479       --i;   // Need to back up an extra one.
1480     Ops.erase(Ops.begin()+FoundX);
1481     ++NumAnnihil;
1482     --i;     // Revisit element.
1483     e -= 2;  // Removed two elements.
1484 
1485     // if X and ~X we append -1 to the operand list.
1486     if (match(TheOp, m_Not(m_Value()))) {
1487       Value *V = Constant::getAllOnesValue(X->getType());
1488       Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1489       e += 1;
1490     }
1491   }
1492 
1493   // Scan the operand list, checking to see if there are any common factors
1494   // between operands.  Consider something like A*A+A*B*C+D.  We would like to
1495   // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1496   // To efficiently find this, we count the number of times a factor occurs
1497   // for any ADD operands that are MULs.
1498   DenseMap<Value*, unsigned> FactorOccurrences;
1499 
1500   // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1501   // where they are actually the same multiply.
1502   unsigned MaxOcc = 0;
1503   Value *MaxOccVal = nullptr;
1504   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1505     BinaryOperator *BOp =
1506         isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1507     if (!BOp)
1508       continue;
1509 
1510     // Compute all of the factors of this added value.
1511     SmallVector<Value*, 8> Factors;
1512     FindSingleUseMultiplyFactors(BOp, Factors);
1513     assert(Factors.size() > 1 && "Bad linearize!");
1514 
1515     // Add one to FactorOccurrences for each unique factor in this op.
1516     SmallPtrSet<Value*, 8> Duplicates;
1517     for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1518       Value *Factor = Factors[i];
1519       if (!Duplicates.insert(Factor).second)
1520         continue;
1521 
1522       unsigned Occ = ++FactorOccurrences[Factor];
1523       if (Occ > MaxOcc) {
1524         MaxOcc = Occ;
1525         MaxOccVal = Factor;
1526       }
1527 
1528       // If Factor is a negative constant, add the negated value as a factor
1529       // because we can percolate the negate out.  Watch for minint, which
1530       // cannot be positivified.
1531       if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
1532         if (CI->isNegative() && !CI->isMinValue(true)) {
1533           Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1534           if (!Duplicates.insert(Factor).second)
1535             continue;
1536           unsigned Occ = ++FactorOccurrences[Factor];
1537           if (Occ > MaxOcc) {
1538             MaxOcc = Occ;
1539             MaxOccVal = Factor;
1540           }
1541         }
1542       } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1543         if (CF->isNegative()) {
1544           APFloat F(CF->getValueAPF());
1545           F.changeSign();
1546           Factor = ConstantFP::get(CF->getContext(), F);
1547           if (!Duplicates.insert(Factor).second)
1548             continue;
1549           unsigned Occ = ++FactorOccurrences[Factor];
1550           if (Occ > MaxOcc) {
1551             MaxOcc = Occ;
1552             MaxOccVal = Factor;
1553           }
1554         }
1555       }
1556     }
1557   }
1558 
1559   // If any factor occurred more than one time, we can pull it out.
1560   if (MaxOcc > 1) {
1561     LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal
1562                       << '\n');
1563     ++NumFactor;
1564 
1565     // Create a new instruction that uses the MaxOccVal twice.  If we don't do
1566     // this, we could otherwise run into situations where removing a factor
1567     // from an expression will drop a use of maxocc, and this can cause
1568     // RemoveFactorFromExpression on successive values to behave differently.
1569     Instruction *DummyInst =
1570         I->getType()->isIntOrIntVectorTy()
1571             ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1572             : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1573 
1574     SmallVector<WeakTrackingVH, 4> NewMulOps;
1575     for (unsigned i = 0; i != Ops.size(); ++i) {
1576       // Only try to remove factors from expressions we're allowed to.
1577       BinaryOperator *BOp =
1578           isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1579       if (!BOp)
1580         continue;
1581 
1582       if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1583         // The factorized operand may occur several times.  Convert them all in
1584         // one fell swoop.
1585         for (unsigned j = Ops.size(); j != i;) {
1586           --j;
1587           if (Ops[j].Op == Ops[i].Op) {
1588             NewMulOps.push_back(V);
1589             Ops.erase(Ops.begin()+j);
1590           }
1591         }
1592         --i;
1593       }
1594     }
1595 
1596     // No need for extra uses anymore.
1597     DummyInst->deleteValue();
1598 
1599     unsigned NumAddedValues = NewMulOps.size();
1600     Value *V = EmitAddTreeOfValues(I, NewMulOps);
1601 
1602     // Now that we have inserted the add tree, optimize it. This allows us to
1603     // handle cases that require multiple factoring steps, such as this:
1604     // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
1605     assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1606     (void)NumAddedValues;
1607     if (Instruction *VI = dyn_cast<Instruction>(V))
1608       RedoInsts.insert(VI);
1609 
1610     // Create the multiply.
1611     Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I);
1612 
1613     // Rerun associate on the multiply in case the inner expression turned into
1614     // a multiply.  We want to make sure that we keep things in canonical form.
1615     RedoInsts.insert(V2);
1616 
1617     // If every add operand included the factor (e.g. "A*B + A*C"), then the
1618     // entire result expression is just the multiply "A*(B+C)".
1619     if (Ops.empty())
1620       return V2;
1621 
1622     // Otherwise, we had some input that didn't have the factor, such as
1623     // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
1624     // things being added by this operation.
1625     Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1626   }
1627 
1628   return nullptr;
1629 }
1630 
1631 /// Build up a vector of value/power pairs factoring a product.
1632 ///
1633 /// Given a series of multiplication operands, build a vector of factors and
1634 /// the powers each is raised to when forming the final product. Sort them in
1635 /// the order of descending power.
1636 ///
1637 ///      (x*x)          -> [(x, 2)]
1638 ///     ((x*x)*x)       -> [(x, 3)]
1639 ///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1640 ///
1641 /// \returns Whether any factors have a power greater than one.
1642 static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1643                                    SmallVectorImpl<Factor> &Factors) {
1644   // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1645   // Compute the sum of powers of simplifiable factors.
1646   unsigned FactorPowerSum = 0;
1647   for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1648     Value *Op = Ops[Idx-1].Op;
1649 
1650     // Count the number of occurrences of this value.
1651     unsigned Count = 1;
1652     for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1653       ++Count;
1654     // Track for simplification all factors which occur 2 or more times.
1655     if (Count > 1)
1656       FactorPowerSum += Count;
1657   }
1658 
1659   // We can only simplify factors if the sum of the powers of our simplifiable
1660   // factors is 4 or higher. When that is the case, we will *always* have
1661   // a simplification. This is an important invariant to prevent cyclicly
1662   // trying to simplify already minimal formations.
1663   if (FactorPowerSum < 4)
1664     return false;
1665 
1666   // Now gather the simplifiable factors, removing them from Ops.
1667   FactorPowerSum = 0;
1668   for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1669     Value *Op = Ops[Idx-1].Op;
1670 
1671     // Count the number of occurrences of this value.
1672     unsigned Count = 1;
1673     for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1674       ++Count;
1675     if (Count == 1)
1676       continue;
1677     // Move an even number of occurrences to Factors.
1678     Count &= ~1U;
1679     Idx -= Count;
1680     FactorPowerSum += Count;
1681     Factors.push_back(Factor(Op, Count));
1682     Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1683   }
1684 
1685   // None of the adjustments above should have reduced the sum of factor powers
1686   // below our mininum of '4'.
1687   assert(FactorPowerSum >= 4);
1688 
1689   std::stable_sort(Factors.begin(), Factors.end(),
1690                    [](const Factor &LHS, const Factor &RHS) {
1691     return LHS.Power > RHS.Power;
1692   });
1693   return true;
1694 }
1695 
1696 /// Build a tree of multiplies, computing the product of Ops.
1697 static Value *buildMultiplyTree(IRBuilder<> &Builder,
1698                                 SmallVectorImpl<Value*> &Ops) {
1699   if (Ops.size() == 1)
1700     return Ops.back();
1701 
1702   Value *LHS = Ops.pop_back_val();
1703   do {
1704     if (LHS->getType()->isIntOrIntVectorTy())
1705       LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1706     else
1707       LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
1708   } while (!Ops.empty());
1709 
1710   return LHS;
1711 }
1712 
1713 /// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1714 ///
1715 /// Given a vector of values raised to various powers, where no two values are
1716 /// equal and the powers are sorted in decreasing order, compute the minimal
1717 /// DAG of multiplies to compute the final product, and return that product
1718 /// value.
1719 Value *
1720 ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1721                                          SmallVectorImpl<Factor> &Factors) {
1722   assert(Factors[0].Power);
1723   SmallVector<Value *, 4> OuterProduct;
1724   for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1725        Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1726     if (Factors[Idx].Power != Factors[LastIdx].Power) {
1727       LastIdx = Idx;
1728       continue;
1729     }
1730 
1731     // We want to multiply across all the factors with the same power so that
1732     // we can raise them to that power as a single entity. Build a mini tree
1733     // for that.
1734     SmallVector<Value *, 4> InnerProduct;
1735     InnerProduct.push_back(Factors[LastIdx].Base);
1736     do {
1737       InnerProduct.push_back(Factors[Idx].Base);
1738       ++Idx;
1739     } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1740 
1741     // Reset the base value of the first factor to the new expression tree.
1742     // We'll remove all the factors with the same power in a second pass.
1743     Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1744     if (Instruction *MI = dyn_cast<Instruction>(M))
1745       RedoInsts.insert(MI);
1746 
1747     LastIdx = Idx;
1748   }
1749   // Unique factors with equal powers -- we've folded them into the first one's
1750   // base.
1751   Factors.erase(std::unique(Factors.begin(), Factors.end(),
1752                             [](const Factor &LHS, const Factor &RHS) {
1753                               return LHS.Power == RHS.Power;
1754                             }),
1755                 Factors.end());
1756 
1757   // Iteratively collect the base of each factor with an add power into the
1758   // outer product, and halve each power in preparation for squaring the
1759   // expression.
1760   for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1761     if (Factors[Idx].Power & 1)
1762       OuterProduct.push_back(Factors[Idx].Base);
1763     Factors[Idx].Power >>= 1;
1764   }
1765   if (Factors[0].Power) {
1766     Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1767     OuterProduct.push_back(SquareRoot);
1768     OuterProduct.push_back(SquareRoot);
1769   }
1770   if (OuterProduct.size() == 1)
1771     return OuterProduct.front();
1772 
1773   Value *V = buildMultiplyTree(Builder, OuterProduct);
1774   return V;
1775 }
1776 
1777 Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
1778                                     SmallVectorImpl<ValueEntry> &Ops) {
1779   // We can only optimize the multiplies when there is a chain of more than
1780   // three, such that a balanced tree might require fewer total multiplies.
1781   if (Ops.size() < 4)
1782     return nullptr;
1783 
1784   // Try to turn linear trees of multiplies without other uses of the
1785   // intermediate stages into minimal multiply DAGs with perfect sub-expression
1786   // re-use.
1787   SmallVector<Factor, 4> Factors;
1788   if (!collectMultiplyFactors(Ops, Factors))
1789     return nullptr; // All distinct factors, so nothing left for us to do.
1790 
1791   IRBuilder<> Builder(I);
1792   // The reassociate transformation for FP operations is performed only
1793   // if unsafe algebra is permitted by FastMathFlags. Propagate those flags
1794   // to the newly generated operations.
1795   if (auto FPI = dyn_cast<FPMathOperator>(I))
1796     Builder.setFastMathFlags(FPI->getFastMathFlags());
1797 
1798   Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1799   if (Ops.empty())
1800     return V;
1801 
1802   ValueEntry NewEntry = ValueEntry(getRank(V), V);
1803   Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
1804   return nullptr;
1805 }
1806 
1807 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
1808                                            SmallVectorImpl<ValueEntry> &Ops) {
1809   // Now that we have the linearized expression tree, try to optimize it.
1810   // Start by folding any constants that we found.
1811   Constant *Cst = nullptr;
1812   unsigned Opcode = I->getOpcode();
1813   while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1814     Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1815     Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1816   }
1817   // If there was nothing but constants then we are done.
1818   if (Ops.empty())
1819     return Cst;
1820 
1821   // Put the combined constant back at the end of the operand list, except if
1822   // there is no point.  For example, an add of 0 gets dropped here, while a
1823   // multiplication by zero turns the whole expression into zero.
1824   if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1825     if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1826       return Cst;
1827     Ops.push_back(ValueEntry(0, Cst));
1828   }
1829 
1830   if (Ops.size() == 1) return Ops[0].Op;
1831 
1832   // Handle destructive annihilation due to identities between elements in the
1833   // argument list here.
1834   unsigned NumOps = Ops.size();
1835   switch (Opcode) {
1836   default: break;
1837   case Instruction::And:
1838   case Instruction::Or:
1839     if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1840       return Result;
1841     break;
1842 
1843   case Instruction::Xor:
1844     if (Value *Result = OptimizeXor(I, Ops))
1845       return Result;
1846     break;
1847 
1848   case Instruction::Add:
1849   case Instruction::FAdd:
1850     if (Value *Result = OptimizeAdd(I, Ops))
1851       return Result;
1852     break;
1853 
1854   case Instruction::Mul:
1855   case Instruction::FMul:
1856     if (Value *Result = OptimizeMul(I, Ops))
1857       return Result;
1858     break;
1859   }
1860 
1861   if (Ops.size() != NumOps)
1862     return OptimizeExpression(I, Ops);
1863   return nullptr;
1864 }
1865 
1866 // Remove dead instructions and if any operands are trivially dead add them to
1867 // Insts so they will be removed as well.
1868 void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I,
1869                                                 OrderedSet &Insts) {
1870   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1871   SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end());
1872   ValueRankMap.erase(I);
1873   Insts.remove(I);
1874   RedoInsts.remove(I);
1875   I->eraseFromParent();
1876   for (auto Op : Ops)
1877     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1878       if (OpInst->use_empty())
1879         Insts.insert(OpInst);
1880 }
1881 
1882 /// Zap the given instruction, adding interesting operands to the work list.
1883 void ReassociatePass::EraseInst(Instruction *I) {
1884   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1885   LLVM_DEBUG(dbgs() << "Erasing dead inst: "; I->dump());
1886 
1887   SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1888   // Erase the dead instruction.
1889   ValueRankMap.erase(I);
1890   RedoInsts.remove(I);
1891   I->eraseFromParent();
1892   // Optimize its operands.
1893   SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
1894   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1895     if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1896       // If this is a node in an expression tree, climb to the expression root
1897       // and add that since that's where optimization actually happens.
1898       unsigned Opcode = Op->getOpcode();
1899       while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
1900              Visited.insert(Op).second)
1901         Op = Op->user_back();
1902 
1903       // The instruction we're going to push may be coming from a
1904       // dead block, and Reassociate skips the processing of unreachable
1905       // blocks because it's a waste of time and also because it can
1906       // lead to infinite loop due to LLVM's non-standard definition
1907       // of dominance.
1908       if (ValueRankMap.find(Op) != ValueRankMap.end())
1909         RedoInsts.insert(Op);
1910     }
1911 
1912   MadeChange = true;
1913 }
1914 
1915 // Canonicalize expressions of the following form:
1916 //  x + (-Constant * y) -> x - (Constant * y)
1917 //  x - (-Constant * y) -> x + (Constant * y)
1918 Instruction *ReassociatePass::canonicalizeNegConstExpr(Instruction *I) {
1919   if (!I->hasOneUse() || I->getType()->isVectorTy())
1920     return nullptr;
1921 
1922   // Must be a fmul or fdiv instruction.
1923   unsigned Opcode = I->getOpcode();
1924   if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv)
1925     return nullptr;
1926 
1927   auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
1928   auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
1929 
1930   // Both operands are constant, let it get constant folded away.
1931   if (C0 && C1)
1932     return nullptr;
1933 
1934   ConstantFP *CF = C0 ? C0 : C1;
1935 
1936   // Must have one constant operand.
1937   if (!CF)
1938     return nullptr;
1939 
1940   // Must be a negative ConstantFP.
1941   if (!CF->isNegative())
1942     return nullptr;
1943 
1944   // User must be a binary operator with one or more uses.
1945   Instruction *User = I->user_back();
1946   if (!isa<BinaryOperator>(User) || User->use_empty())
1947     return nullptr;
1948 
1949   unsigned UserOpcode = User->getOpcode();
1950   if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub)
1951     return nullptr;
1952 
1953   // Subtraction is not commutative. Explicitly, the following transform is
1954   // not valid: (-Constant * y) - x  -> x + (Constant * y)
1955   if (!User->isCommutative() && User->getOperand(1) != I)
1956     return nullptr;
1957 
1958   // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the
1959   // resulting subtract will be broken up later.  This can get us into an
1960   // infinite loop during reassociation.
1961   if (UserOpcode == Instruction::FAdd && ShouldBreakUpSubtract(User))
1962     return nullptr;
1963 
1964   // Change the sign of the constant.
1965   APFloat Val = CF->getValueAPF();
1966   Val.changeSign();
1967   I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val));
1968 
1969   // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
1970   // ((-Const*y) + x) -> (x + (-Const*y)).
1971   if (User->getOperand(0) == I && User->isCommutative())
1972     cast<BinaryOperator>(User)->swapOperands();
1973 
1974   Value *Op0 = User->getOperand(0);
1975   Value *Op1 = User->getOperand(1);
1976   BinaryOperator *NI;
1977   switch (UserOpcode) {
1978   default:
1979     llvm_unreachable("Unexpected Opcode!");
1980   case Instruction::FAdd:
1981     NI = BinaryOperator::CreateFSub(Op0, Op1);
1982     NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1983     break;
1984   case Instruction::FSub:
1985     NI = BinaryOperator::CreateFAdd(Op0, Op1);
1986     NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1987     break;
1988   }
1989 
1990   NI->insertBefore(User);
1991   NI->setName(User->getName());
1992   User->replaceAllUsesWith(NI);
1993   NI->setDebugLoc(I->getDebugLoc());
1994   RedoInsts.insert(I);
1995   MadeChange = true;
1996   return NI;
1997 }
1998 
1999 /// Inspect and optimize the given instruction. Note that erasing
2000 /// instructions is not allowed.
2001 void ReassociatePass::OptimizeInst(Instruction *I) {
2002   // Only consider operations that we understand.
2003   if (!isa<BinaryOperator>(I))
2004     return;
2005 
2006   if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
2007     // If an operand of this shift is a reassociable multiply, or if the shift
2008     // is used by a reassociable multiply or add, turn into a multiply.
2009     if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
2010         (I->hasOneUse() &&
2011          (isReassociableOp(I->user_back(), Instruction::Mul) ||
2012           isReassociableOp(I->user_back(), Instruction::Add)))) {
2013       Instruction *NI = ConvertShiftToMul(I);
2014       RedoInsts.insert(I);
2015       MadeChange = true;
2016       I = NI;
2017     }
2018 
2019   // Canonicalize negative constants out of expressions.
2020   if (Instruction *Res = canonicalizeNegConstExpr(I))
2021     I = Res;
2022 
2023   // Commute binary operators, to canonicalize the order of their operands.
2024   // This can potentially expose more CSE opportunities, and makes writing other
2025   // transformations simpler.
2026   if (I->isCommutative())
2027     canonicalizeOperands(I);
2028 
2029   // Don't optimize floating-point instructions unless they are 'fast'.
2030   if (I->getType()->isFPOrFPVectorTy() && !I->isFast())
2031     return;
2032 
2033   // Do not reassociate boolean (i1) expressions.  We want to preserve the
2034   // original order of evaluation for short-circuited comparisons that
2035   // SimplifyCFG has folded to AND/OR expressions.  If the expression
2036   // is not further optimized, it is likely to be transformed back to a
2037   // short-circuited form for code gen, and the source order may have been
2038   // optimized for the most likely conditions.
2039   if (I->getType()->isIntegerTy(1))
2040     return;
2041 
2042   // If this is a subtract instruction which is not already in negate form,
2043   // see if we can convert it to X+-Y.
2044   if (I->getOpcode() == Instruction::Sub) {
2045     if (ShouldBreakUpSubtract(I)) {
2046       Instruction *NI = BreakUpSubtract(I, RedoInsts);
2047       RedoInsts.insert(I);
2048       MadeChange = true;
2049       I = NI;
2050     } else if (match(I, m_Neg(m_Value()))) {
2051       // Otherwise, this is a negation.  See if the operand is a multiply tree
2052       // and if this is not an inner node of a multiply tree.
2053       if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2054           (!I->hasOneUse() ||
2055            !isReassociableOp(I->user_back(), Instruction::Mul))) {
2056         Instruction *NI = LowerNegateToMultiply(I);
2057         // If the negate was simplified, revisit the users to see if we can
2058         // reassociate further.
2059         for (User *U : NI->users()) {
2060           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2061             RedoInsts.insert(Tmp);
2062         }
2063         RedoInsts.insert(I);
2064         MadeChange = true;
2065         I = NI;
2066       }
2067     }
2068   } else if (I->getOpcode() == Instruction::FSub) {
2069     if (ShouldBreakUpSubtract(I)) {
2070       Instruction *NI = BreakUpSubtract(I, RedoInsts);
2071       RedoInsts.insert(I);
2072       MadeChange = true;
2073       I = NI;
2074     } else if (match(I, m_FNeg(m_Value()))) {
2075       // Otherwise, this is a negation.  See if the operand is a multiply tree
2076       // and if this is not an inner node of a multiply tree.
2077       if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
2078           (!I->hasOneUse() ||
2079            !isReassociableOp(I->user_back(), Instruction::FMul))) {
2080         // If the negate was simplified, revisit the users to see if we can
2081         // reassociate further.
2082         Instruction *NI = LowerNegateToMultiply(I);
2083         for (User *U : NI->users()) {
2084           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2085             RedoInsts.insert(Tmp);
2086         }
2087         RedoInsts.insert(I);
2088         MadeChange = true;
2089         I = NI;
2090       }
2091     }
2092   }
2093 
2094   // If this instruction is an associative binary operator, process it.
2095   if (!I->isAssociative()) return;
2096   BinaryOperator *BO = cast<BinaryOperator>(I);
2097 
2098   // If this is an interior node of a reassociable tree, ignore it until we
2099   // get to the root of the tree, to avoid N^2 analysis.
2100   unsigned Opcode = BO->getOpcode();
2101   if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2102     // During the initial run we will get to the root of the tree.
2103     // But if we get here while we are redoing instructions, there is no
2104     // guarantee that the root will be visited. So Redo later
2105     if (BO->user_back() != BO &&
2106         BO->getParent() == BO->user_back()->getParent())
2107       RedoInsts.insert(BO->user_back());
2108     return;
2109   }
2110 
2111   // If this is an add tree that is used by a sub instruction, ignore it
2112   // until we process the subtract.
2113   if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
2114       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
2115     return;
2116   if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2117       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2118     return;
2119 
2120   ReassociateExpression(BO);
2121 }
2122 
2123 void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
2124   // First, walk the expression tree, linearizing the tree, collecting the
2125   // operand information.
2126   SmallVector<RepeatedValue, 8> Tree;
2127   MadeChange |= LinearizeExprTree(I, Tree);
2128   SmallVector<ValueEntry, 8> Ops;
2129   Ops.reserve(Tree.size());
2130   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
2131     RepeatedValue E = Tree[i];
2132     Ops.append(E.second.getZExtValue(),
2133                ValueEntry(getRank(E.first), E.first));
2134   }
2135 
2136   LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2137 
2138   // Now that we have linearized the tree to a list and have gathered all of
2139   // the operands and their ranks, sort the operands by their rank.  Use a
2140   // stable_sort so that values with equal ranks will have their relative
2141   // positions maintained (and so the compiler is deterministic).  Note that
2142   // this sorts so that the highest ranking values end up at the beginning of
2143   // the vector.
2144   std::stable_sort(Ops.begin(), Ops.end());
2145 
2146   // Now that we have the expression tree in a convenient
2147   // sorted form, optimize it globally if possible.
2148   if (Value *V = OptimizeExpression(I, Ops)) {
2149     if (V == I)
2150       // Self-referential expression in unreachable code.
2151       return;
2152     // This expression tree simplified to something that isn't a tree,
2153     // eliminate it.
2154     LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
2155     I->replaceAllUsesWith(V);
2156     if (Instruction *VI = dyn_cast<Instruction>(V))
2157       if (I->getDebugLoc())
2158         VI->setDebugLoc(I->getDebugLoc());
2159     RedoInsts.insert(I);
2160     ++NumAnnihil;
2161     return;
2162   }
2163 
2164   // We want to sink immediates as deeply as possible except in the case where
2165   // this is a multiply tree used only by an add, and the immediate is a -1.
2166   // In this case we reassociate to put the negation on the outside so that we
2167   // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
2168   if (I->hasOneUse()) {
2169     if (I->getOpcode() == Instruction::Mul &&
2170         cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2171         isa<ConstantInt>(Ops.back().Op) &&
2172         cast<ConstantInt>(Ops.back().Op)->isMinusOne()) {
2173       ValueEntry Tmp = Ops.pop_back_val();
2174       Ops.insert(Ops.begin(), Tmp);
2175     } else if (I->getOpcode() == Instruction::FMul &&
2176                cast<Instruction>(I->user_back())->getOpcode() ==
2177                    Instruction::FAdd &&
2178                isa<ConstantFP>(Ops.back().Op) &&
2179                cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2180       ValueEntry Tmp = Ops.pop_back_val();
2181       Ops.insert(Ops.begin(), Tmp);
2182     }
2183   }
2184 
2185   LLVM_DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
2186 
2187   if (Ops.size() == 1) {
2188     if (Ops[0].Op == I)
2189       // Self-referential expression in unreachable code.
2190       return;
2191 
2192     // This expression tree simplified to something that isn't a tree,
2193     // eliminate it.
2194     I->replaceAllUsesWith(Ops[0].Op);
2195     if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2196       OI->setDebugLoc(I->getDebugLoc());
2197     RedoInsts.insert(I);
2198     return;
2199   }
2200 
2201   if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) {
2202     // Find the pair with the highest count in the pairmap and move it to the
2203     // back of the list so that it can later be CSE'd.
2204     // example:
2205     //   a*b*c*d*e
2206     // if c*e is the most "popular" pair, we can express this as
2207     //   (((c*e)*d)*b)*a
2208     unsigned Max = 1;
2209     unsigned BestRank = 0;
2210     std::pair<unsigned, unsigned> BestPair;
2211     unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin;
2212     for (unsigned i = 0; i < Ops.size() - 1; ++i)
2213       for (unsigned j = i + 1; j < Ops.size(); ++j) {
2214         unsigned Score = 0;
2215         Value *Op0 = Ops[i].Op;
2216         Value *Op1 = Ops[j].Op;
2217         if (std::less<Value *>()(Op1, Op0))
2218           std::swap(Op0, Op1);
2219         auto it = PairMap[Idx].find({Op0, Op1});
2220         if (it != PairMap[Idx].end())
2221           Score += it->second;
2222 
2223         unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank);
2224         if (Score > Max || (Score == Max && MaxRank < BestRank)) {
2225           BestPair = {i, j};
2226           Max = Score;
2227           BestRank = MaxRank;
2228         }
2229       }
2230     if (Max > 1) {
2231       auto Op0 = Ops[BestPair.first];
2232       auto Op1 = Ops[BestPair.second];
2233       Ops.erase(&Ops[BestPair.second]);
2234       Ops.erase(&Ops[BestPair.first]);
2235       Ops.push_back(Op0);
2236       Ops.push_back(Op1);
2237     }
2238   }
2239   // Now that we ordered and optimized the expressions, splat them back into
2240   // the expression tree, removing any unneeded nodes.
2241   RewriteExprTree(I, Ops);
2242 }
2243 
2244 void
2245 ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) {
2246   // Make a "pairmap" of how often each operand pair occurs.
2247   for (BasicBlock *BI : RPOT) {
2248     for (Instruction &I : *BI) {
2249       if (!I.isAssociative())
2250         continue;
2251 
2252       // Ignore nodes that aren't at the root of trees.
2253       if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode())
2254         continue;
2255 
2256       // Collect all operands in a single reassociable expression.
2257       // Since Reassociate has already been run once, we can assume things
2258       // are already canonical according to Reassociation's regime.
2259       SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) };
2260       SmallVector<Value *, 8> Ops;
2261       while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) {
2262         Value *Op = Worklist.pop_back_val();
2263         Instruction *OpI = dyn_cast<Instruction>(Op);
2264         if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) {
2265           Ops.push_back(Op);
2266           continue;
2267         }
2268         // Be paranoid about self-referencing expressions in unreachable code.
2269         if (OpI->getOperand(0) != OpI)
2270           Worklist.push_back(OpI->getOperand(0));
2271         if (OpI->getOperand(1) != OpI)
2272           Worklist.push_back(OpI->getOperand(1));
2273       }
2274       // Skip extremely long expressions.
2275       if (Ops.size() > GlobalReassociateLimit)
2276         continue;
2277 
2278       // Add all pairwise combinations of operands to the pair map.
2279       unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin;
2280       SmallSet<std::pair<Value *, Value*>, 32> Visited;
2281       for (unsigned i = 0; i < Ops.size() - 1; ++i) {
2282         for (unsigned j = i + 1; j < Ops.size(); ++j) {
2283           // Canonicalize operand orderings.
2284           Value *Op0 = Ops[i];
2285           Value *Op1 = Ops[j];
2286           if (std::less<Value *>()(Op1, Op0))
2287             std::swap(Op0, Op1);
2288           if (!Visited.insert({Op0, Op1}).second)
2289             continue;
2290           auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, 1});
2291           if (!res.second)
2292             ++res.first->second;
2293         }
2294       }
2295     }
2296   }
2297 }
2298 
2299 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
2300   // Get the functions basic blocks in Reverse Post Order. This order is used by
2301   // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic
2302   // blocks (it has been seen that the analysis in this pass could hang when
2303   // analysing dead basic blocks).
2304   ReversePostOrderTraversal<Function *> RPOT(&F);
2305 
2306   // Calculate the rank map for F.
2307   BuildRankMap(F, RPOT);
2308 
2309   // Build the pair map before running reassociate.
2310   // Technically this would be more accurate if we did it after one round
2311   // of reassociation, but in practice it doesn't seem to help much on
2312   // real-world code, so don't waste the compile time running reassociate
2313   // twice.
2314   // If a user wants, they could expicitly run reassociate twice in their
2315   // pass pipeline for further potential gains.
2316   // It might also be possible to update the pair map during runtime, but the
2317   // overhead of that may be large if there's many reassociable chains.
2318   BuildPairMap(RPOT);
2319 
2320   MadeChange = false;
2321 
2322   // Traverse the same blocks that were analysed by BuildRankMap.
2323   for (BasicBlock *BI : RPOT) {
2324     assert(RankMap.count(&*BI) && "BB should be ranked.");
2325     // Optimize every instruction in the basic block.
2326     for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;)
2327       if (isInstructionTriviallyDead(&*II)) {
2328         EraseInst(&*II++);
2329       } else {
2330         OptimizeInst(&*II);
2331         assert(II->getParent() == &*BI && "Moved to a different block!");
2332         ++II;
2333       }
2334 
2335     // Make a copy of all the instructions to be redone so we can remove dead
2336     // instructions.
2337     OrderedSet ToRedo(RedoInsts);
2338     // Iterate over all instructions to be reevaluated and remove trivially dead
2339     // instructions. If any operand of the trivially dead instruction becomes
2340     // dead mark it for deletion as well. Continue this process until all
2341     // trivially dead instructions have been removed.
2342     while (!ToRedo.empty()) {
2343       Instruction *I = ToRedo.pop_back_val();
2344       if (isInstructionTriviallyDead(I)) {
2345         RecursivelyEraseDeadInsts(I, ToRedo);
2346         MadeChange = true;
2347       }
2348     }
2349 
2350     // Now that we have removed dead instructions, we can reoptimize the
2351     // remaining instructions.
2352     while (!RedoInsts.empty()) {
2353       Instruction *I = RedoInsts.front();
2354       RedoInsts.erase(RedoInsts.begin());
2355       if (isInstructionTriviallyDead(I))
2356         EraseInst(I);
2357       else
2358         OptimizeInst(I);
2359     }
2360   }
2361 
2362   // We are done with the rank map and pair map.
2363   RankMap.clear();
2364   ValueRankMap.clear();
2365   for (auto &Entry : PairMap)
2366     Entry.clear();
2367 
2368   if (MadeChange) {
2369     PreservedAnalyses PA;
2370     PA.preserveSet<CFGAnalyses>();
2371     PA.preserve<GlobalsAA>();
2372     return PA;
2373   }
2374 
2375   return PreservedAnalyses::all();
2376 }
2377 
2378 namespace {
2379 
2380   class ReassociateLegacyPass : public FunctionPass {
2381     ReassociatePass Impl;
2382 
2383   public:
2384     static char ID; // Pass identification, replacement for typeid
2385 
2386     ReassociateLegacyPass() : FunctionPass(ID) {
2387       initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
2388     }
2389 
2390     bool runOnFunction(Function &F) override {
2391       if (skipFunction(F))
2392         return false;
2393 
2394       FunctionAnalysisManager DummyFAM;
2395       auto PA = Impl.run(F, DummyFAM);
2396       return !PA.areAllPreserved();
2397     }
2398 
2399     void getAnalysisUsage(AnalysisUsage &AU) const override {
2400       AU.setPreservesCFG();
2401       AU.addPreserved<GlobalsAAWrapperPass>();
2402     }
2403   };
2404 
2405 } // end anonymous namespace
2406 
2407 char ReassociateLegacyPass::ID = 0;
2408 
2409 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
2410                 "Reassociate expressions", false, false)
2411 
2412 // Public interface to the Reassociate pass
2413 FunctionPass *llvm::createReassociatePass() {
2414   return new ReassociateLegacyPass();
2415 }
2416