1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass reassociates commutative expressions in an order that is designed 11 // to promote better constant propagation, GCSE, LICM, PRE, etc. 12 // 13 // For example: 4 + (x + 5) -> x + (4 + 5) 14 // 15 // In the implementation of this algorithm, constants are assigned rank = 0, 16 // function arguments are rank = 1, and other values are assigned ranks 17 // corresponding to the reverse post order traversal of current function 18 // (starting at 2), which effectively gives values in deep loops higher rank 19 // than values not in loops. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/Transforms/Scalar/Reassociate.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/PostOrderIterator.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/Analysis/GlobalsModRef.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/ValueHandle.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Transforms/Scalar.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include <algorithm> 45 using namespace llvm; 46 using namespace reassociate; 47 48 #define DEBUG_TYPE "reassociate" 49 50 STATISTIC(NumChanged, "Number of insts reassociated"); 51 STATISTIC(NumAnnihil, "Number of expr tree annihilated"); 52 STATISTIC(NumFactor , "Number of multiplies factored"); 53 54 #ifndef NDEBUG 55 /// Print out the expression identified in the Ops list. 56 /// 57 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) { 58 Module *M = I->getModule(); 59 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " " 60 << *Ops[0].Op->getType() << '\t'; 61 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 62 dbgs() << "[ "; 63 Ops[i].Op->printAsOperand(dbgs(), false, M); 64 dbgs() << ", #" << Ops[i].Rank << "] "; 65 } 66 } 67 #endif 68 69 /// Utility class representing a non-constant Xor-operand. We classify 70 /// non-constant Xor-Operands into two categories: 71 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0 72 /// C2) 73 /// C2.1) The operand is in the form of "X | C", where C is a non-zero 74 /// constant. 75 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this 76 /// operand as "E | 0" 77 class llvm::reassociate::XorOpnd { 78 public: 79 XorOpnd(Value *V); 80 81 bool isInvalid() const { return SymbolicPart == nullptr; } 82 bool isOrExpr() const { return isOr; } 83 Value *getValue() const { return OrigVal; } 84 Value *getSymbolicPart() const { return SymbolicPart; } 85 unsigned getSymbolicRank() const { return SymbolicRank; } 86 const APInt &getConstPart() const { return ConstPart; } 87 88 void Invalidate() { SymbolicPart = OrigVal = nullptr; } 89 void setSymbolicRank(unsigned R) { SymbolicRank = R; } 90 91 private: 92 Value *OrigVal; 93 Value *SymbolicPart; 94 APInt ConstPart; 95 unsigned SymbolicRank; 96 bool isOr; 97 }; 98 99 XorOpnd::XorOpnd(Value *V) { 100 assert(!isa<ConstantInt>(V) && "No ConstantInt"); 101 OrigVal = V; 102 Instruction *I = dyn_cast<Instruction>(V); 103 SymbolicRank = 0; 104 105 if (I && (I->getOpcode() == Instruction::Or || 106 I->getOpcode() == Instruction::And)) { 107 Value *V0 = I->getOperand(0); 108 Value *V1 = I->getOperand(1); 109 if (isa<ConstantInt>(V0)) 110 std::swap(V0, V1); 111 112 if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) { 113 ConstPart = C->getValue(); 114 SymbolicPart = V0; 115 isOr = (I->getOpcode() == Instruction::Or); 116 return; 117 } 118 } 119 120 // view the operand as "V | 0" 121 SymbolicPart = V; 122 ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth()); 123 isOr = true; 124 } 125 126 /// Return true if V is an instruction of the specified opcode and if it 127 /// only has one use. 128 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) { 129 if (V->hasOneUse() && isa<Instruction>(V) && 130 cast<Instruction>(V)->getOpcode() == Opcode && 131 (!isa<FPMathOperator>(V) || 132 cast<Instruction>(V)->hasUnsafeAlgebra())) 133 return cast<BinaryOperator>(V); 134 return nullptr; 135 } 136 137 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1, 138 unsigned Opcode2) { 139 if (V->hasOneUse() && isa<Instruction>(V) && 140 (cast<Instruction>(V)->getOpcode() == Opcode1 || 141 cast<Instruction>(V)->getOpcode() == Opcode2) && 142 (!isa<FPMathOperator>(V) || 143 cast<Instruction>(V)->hasUnsafeAlgebra())) 144 return cast<BinaryOperator>(V); 145 return nullptr; 146 } 147 148 void ReassociatePass::BuildRankMap(Function &F, 149 ReversePostOrderTraversal<Function*> &RPOT) { 150 unsigned i = 2; 151 152 // Assign distinct ranks to function arguments. 153 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { 154 ValueRankMap[&*I] = ++i; 155 DEBUG(dbgs() << "Calculated Rank[" << I->getName() << "] = " << i << "\n"); 156 } 157 158 // Traverse basic blocks in ReversePostOrder 159 for (BasicBlock *BB : RPOT) { 160 unsigned BBRank = RankMap[BB] = ++i << 16; 161 162 // Walk the basic block, adding precomputed ranks for any instructions that 163 // we cannot move. This ensures that the ranks for these instructions are 164 // all different in the block. 165 for (Instruction &I : *BB) 166 if (mayBeMemoryDependent(I)) 167 ValueRankMap[&I] = ++BBRank; 168 } 169 } 170 171 unsigned ReassociatePass::getRank(Value *V) { 172 Instruction *I = dyn_cast<Instruction>(V); 173 if (!I) { 174 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument. 175 return 0; // Otherwise it's a global or constant, rank 0. 176 } 177 178 if (unsigned Rank = ValueRankMap[I]) 179 return Rank; // Rank already known? 180 181 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that 182 // we can reassociate expressions for code motion! Since we do not recurse 183 // for PHI nodes, we cannot have infinite recursion here, because there 184 // cannot be loops in the value graph that do not go through PHI nodes. 185 unsigned Rank = 0, MaxRank = RankMap[I->getParent()]; 186 for (unsigned i = 0, e = I->getNumOperands(); 187 i != e && Rank != MaxRank; ++i) 188 Rank = std::max(Rank, getRank(I->getOperand(i))); 189 190 // If this is a not or neg instruction, do not count it for rank. This 191 // assures us that X and ~X will have the same rank. 192 if (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) && 193 !BinaryOperator::isFNeg(I)) 194 ++Rank; 195 196 DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n"); 197 198 return ValueRankMap[I] = Rank; 199 } 200 201 // Canonicalize constants to RHS. Otherwise, sort the operands by rank. 202 void ReassociatePass::canonicalizeOperands(Instruction *I) { 203 assert(isa<BinaryOperator>(I) && "Expected binary operator."); 204 assert(I->isCommutative() && "Expected commutative operator."); 205 206 Value *LHS = I->getOperand(0); 207 Value *RHS = I->getOperand(1); 208 unsigned LHSRank = getRank(LHS); 209 unsigned RHSRank = getRank(RHS); 210 211 if (isa<Constant>(RHS)) 212 return; 213 214 if (isa<Constant>(LHS) || RHSRank < LHSRank) 215 cast<BinaryOperator>(I)->swapOperands(); 216 } 217 218 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name, 219 Instruction *InsertBefore, Value *FlagsOp) { 220 if (S1->getType()->isIntOrIntVectorTy()) 221 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore); 222 else { 223 BinaryOperator *Res = 224 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore); 225 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 226 return Res; 227 } 228 } 229 230 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name, 231 Instruction *InsertBefore, Value *FlagsOp) { 232 if (S1->getType()->isIntOrIntVectorTy()) 233 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore); 234 else { 235 BinaryOperator *Res = 236 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore); 237 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 238 return Res; 239 } 240 } 241 242 static BinaryOperator *CreateNeg(Value *S1, const Twine &Name, 243 Instruction *InsertBefore, Value *FlagsOp) { 244 if (S1->getType()->isIntOrIntVectorTy()) 245 return BinaryOperator::CreateNeg(S1, Name, InsertBefore); 246 else { 247 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore); 248 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 249 return Res; 250 } 251 } 252 253 /// Replace 0-X with X*-1. 254 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) { 255 Type *Ty = Neg->getType(); 256 Constant *NegOne = Ty->isIntOrIntVectorTy() ? 257 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0); 258 259 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg); 260 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op. 261 Res->takeName(Neg); 262 Neg->replaceAllUsesWith(Res); 263 Res->setDebugLoc(Neg->getDebugLoc()); 264 return Res; 265 } 266 267 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael 268 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for 269 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic. 270 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every 271 /// even x in Bitwidth-bit arithmetic. 272 static unsigned CarmichaelShift(unsigned Bitwidth) { 273 if (Bitwidth < 3) 274 return Bitwidth - 1; 275 return Bitwidth - 2; 276 } 277 278 /// Add the extra weight 'RHS' to the existing weight 'LHS', 279 /// reducing the combined weight using any special properties of the operation. 280 /// The existing weight LHS represents the computation X op X op ... op X where 281 /// X occurs LHS times. The combined weight represents X op X op ... op X with 282 /// X occurring LHS + RHS times. If op is "Xor" for example then the combined 283 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even; 284 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second. 285 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) { 286 // If we were working with infinite precision arithmetic then the combined 287 // weight would be LHS + RHS. But we are using finite precision arithmetic, 288 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct 289 // for nilpotent operations and addition, but not for idempotent operations 290 // and multiplication), so it is important to correctly reduce the combined 291 // weight back into range if wrapping would be wrong. 292 293 // If RHS is zero then the weight didn't change. 294 if (RHS.isMinValue()) 295 return; 296 // If LHS is zero then the combined weight is RHS. 297 if (LHS.isMinValue()) { 298 LHS = RHS; 299 return; 300 } 301 // From this point on we know that neither LHS nor RHS is zero. 302 303 if (Instruction::isIdempotent(Opcode)) { 304 // Idempotent means X op X === X, so any non-zero weight is equivalent to a 305 // weight of 1. Keeping weights at zero or one also means that wrapping is 306 // not a problem. 307 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 308 return; // Return a weight of 1. 309 } 310 if (Instruction::isNilpotent(Opcode)) { 311 // Nilpotent means X op X === 0, so reduce weights modulo 2. 312 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 313 LHS = 0; // 1 + 1 === 0 modulo 2. 314 return; 315 } 316 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) { 317 // TODO: Reduce the weight by exploiting nsw/nuw? 318 LHS += RHS; 319 return; 320 } 321 322 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) && 323 "Unknown associative operation!"); 324 unsigned Bitwidth = LHS.getBitWidth(); 325 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth 326 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth 327 // bit number x, since either x is odd in which case x^CM = 1, or x is even in 328 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples 329 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth) 330 // which by a happy accident means that they can always be represented using 331 // Bitwidth bits. 332 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than 333 // the Carmichael number). 334 if (Bitwidth > 3) { 335 /// CM - The value of Carmichael's lambda function. 336 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth)); 337 // Any weight W >= Threshold can be replaced with W - CM. 338 APInt Threshold = CM + Bitwidth; 339 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!"); 340 // For Bitwidth 4 or more the following sum does not overflow. 341 LHS += RHS; 342 while (LHS.uge(Threshold)) 343 LHS -= CM; 344 } else { 345 // To avoid problems with overflow do everything the same as above but using 346 // a larger type. 347 unsigned CM = 1U << CarmichaelShift(Bitwidth); 348 unsigned Threshold = CM + Bitwidth; 349 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold && 350 "Weights not reduced!"); 351 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue(); 352 while (Total >= Threshold) 353 Total -= CM; 354 LHS = Total; 355 } 356 } 357 358 typedef std::pair<Value*, APInt> RepeatedValue; 359 360 /// Given an associative binary expression, return the leaf 361 /// nodes in Ops along with their weights (how many times the leaf occurs). The 362 /// original expression is the same as 363 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times 364 /// op 365 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times 366 /// op 367 /// ... 368 /// op 369 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times 370 /// 371 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct. 372 /// 373 /// This routine may modify the function, in which case it returns 'true'. The 374 /// changes it makes may well be destructive, changing the value computed by 'I' 375 /// to something completely different. Thus if the routine returns 'true' then 376 /// you MUST either replace I with a new expression computed from the Ops array, 377 /// or use RewriteExprTree to put the values back in. 378 /// 379 /// A leaf node is either not a binary operation of the same kind as the root 380 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different 381 /// opcode), or is the same kind of binary operator but has a use which either 382 /// does not belong to the expression, or does belong to the expression but is 383 /// a leaf node. Every leaf node has at least one use that is a non-leaf node 384 /// of the expression, while for non-leaf nodes (except for the root 'I') every 385 /// use is a non-leaf node of the expression. 386 /// 387 /// For example: 388 /// expression graph node names 389 /// 390 /// + | I 391 /// / \ | 392 /// + + | A, B 393 /// / \ / \ | 394 /// * + * | C, D, E 395 /// / \ / \ / \ | 396 /// + * | F, G 397 /// 398 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in 399 /// that order) (C, 1), (E, 1), (F, 2), (G, 2). 400 /// 401 /// The expression is maximal: if some instruction is a binary operator of the 402 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression, 403 /// then the instruction also belongs to the expression, is not a leaf node of 404 /// it, and its operands also belong to the expression (but may be leaf nodes). 405 /// 406 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in 407 /// order to ensure that every non-root node in the expression has *exactly one* 408 /// use by a non-leaf node of the expression. This destruction means that the 409 /// caller MUST either replace 'I' with a new expression or use something like 410 /// RewriteExprTree to put the values back in if the routine indicates that it 411 /// made a change by returning 'true'. 412 /// 413 /// In the above example either the right operand of A or the left operand of B 414 /// will be replaced by undef. If it is B's operand then this gives: 415 /// 416 /// + | I 417 /// / \ | 418 /// + + | A, B - operand of B replaced with undef 419 /// / \ \ | 420 /// * + * | C, D, E 421 /// / \ / \ / \ | 422 /// + * | F, G 423 /// 424 /// Note that such undef operands can only be reached by passing through 'I'. 425 /// For example, if you visit operands recursively starting from a leaf node 426 /// then you will never see such an undef operand unless you get back to 'I', 427 /// which requires passing through a phi node. 428 /// 429 /// Note that this routine may also mutate binary operators of the wrong type 430 /// that have all uses inside the expression (i.e. only used by non-leaf nodes 431 /// of the expression) if it can turn them into binary operators of the right 432 /// type and thus make the expression bigger. 433 434 static bool LinearizeExprTree(BinaryOperator *I, 435 SmallVectorImpl<RepeatedValue> &Ops) { 436 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n'); 437 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits(); 438 unsigned Opcode = I->getOpcode(); 439 assert(I->isAssociative() && I->isCommutative() && 440 "Expected an associative and commutative operation!"); 441 442 // Visit all operands of the expression, keeping track of their weight (the 443 // number of paths from the expression root to the operand, or if you like 444 // the number of times that operand occurs in the linearized expression). 445 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1 446 // while A has weight two. 447 448 // Worklist of non-leaf nodes (their operands are in the expression too) along 449 // with their weights, representing a certain number of paths to the operator. 450 // If an operator occurs in the worklist multiple times then we found multiple 451 // ways to get to it. 452 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight) 453 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1))); 454 bool Changed = false; 455 456 // Leaves of the expression are values that either aren't the right kind of 457 // operation (eg: a constant, or a multiply in an add tree), or are, but have 458 // some uses that are not inside the expression. For example, in I = X + X, 459 // X = A + B, the value X has two uses (by I) that are in the expression. If 460 // X has any other uses, for example in a return instruction, then we consider 461 // X to be a leaf, and won't analyze it further. When we first visit a value, 462 // if it has more than one use then at first we conservatively consider it to 463 // be a leaf. Later, as the expression is explored, we may discover some more 464 // uses of the value from inside the expression. If all uses turn out to be 465 // from within the expression (and the value is a binary operator of the right 466 // kind) then the value is no longer considered to be a leaf, and its operands 467 // are explored. 468 469 // Leaves - Keeps track of the set of putative leaves as well as the number of 470 // paths to each leaf seen so far. 471 typedef DenseMap<Value*, APInt> LeafMap; 472 LeafMap Leaves; // Leaf -> Total weight so far. 473 SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order. 474 475 #ifndef NDEBUG 476 SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme. 477 #endif 478 while (!Worklist.empty()) { 479 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val(); 480 I = P.first; // We examine the operands of this binary operator. 481 482 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands. 483 Value *Op = I->getOperand(OpIdx); 484 APInt Weight = P.second; // Number of paths to this operand. 485 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n"); 486 assert(!Op->use_empty() && "No uses, so how did we get to it?!"); 487 488 // If this is a binary operation of the right kind with only one use then 489 // add its operands to the expression. 490 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 491 assert(Visited.insert(Op).second && "Not first visit!"); 492 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n"); 493 Worklist.push_back(std::make_pair(BO, Weight)); 494 continue; 495 } 496 497 // Appears to be a leaf. Is the operand already in the set of leaves? 498 LeafMap::iterator It = Leaves.find(Op); 499 if (It == Leaves.end()) { 500 // Not in the leaf map. Must be the first time we saw this operand. 501 assert(Visited.insert(Op).second && "Not first visit!"); 502 if (!Op->hasOneUse()) { 503 // This value has uses not accounted for by the expression, so it is 504 // not safe to modify. Mark it as being a leaf. 505 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n"); 506 LeafOrder.push_back(Op); 507 Leaves[Op] = Weight; 508 continue; 509 } 510 // No uses outside the expression, try morphing it. 511 } else { 512 // Already in the leaf map. 513 assert(It != Leaves.end() && Visited.count(Op) && 514 "In leaf map but not visited!"); 515 516 // Update the number of paths to the leaf. 517 IncorporateWeight(It->second, Weight, Opcode); 518 519 #if 0 // TODO: Re-enable once PR13021 is fixed. 520 // The leaf already has one use from inside the expression. As we want 521 // exactly one such use, drop this new use of the leaf. 522 assert(!Op->hasOneUse() && "Only one use, but we got here twice!"); 523 I->setOperand(OpIdx, UndefValue::get(I->getType())); 524 Changed = true; 525 526 // If the leaf is a binary operation of the right kind and we now see 527 // that its multiple original uses were in fact all by nodes belonging 528 // to the expression, then no longer consider it to be a leaf and add 529 // its operands to the expression. 530 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 531 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n"); 532 Worklist.push_back(std::make_pair(BO, It->second)); 533 Leaves.erase(It); 534 continue; 535 } 536 #endif 537 538 // If we still have uses that are not accounted for by the expression 539 // then it is not safe to modify the value. 540 if (!Op->hasOneUse()) 541 continue; 542 543 // No uses outside the expression, try morphing it. 544 Weight = It->second; 545 Leaves.erase(It); // Since the value may be morphed below. 546 } 547 548 // At this point we have a value which, first of all, is not a binary 549 // expression of the right kind, and secondly, is only used inside the 550 // expression. This means that it can safely be modified. See if we 551 // can usefully morph it into an expression of the right kind. 552 assert((!isa<Instruction>(Op) || 553 cast<Instruction>(Op)->getOpcode() != Opcode 554 || (isa<FPMathOperator>(Op) && 555 !cast<Instruction>(Op)->hasUnsafeAlgebra())) && 556 "Should have been handled above!"); 557 assert(Op->hasOneUse() && "Has uses outside the expression tree!"); 558 559 // If this is a multiply expression, turn any internal negations into 560 // multiplies by -1 so they can be reassociated. 561 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) 562 if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) || 563 (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) { 564 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO "); 565 BO = LowerNegateToMultiply(BO); 566 DEBUG(dbgs() << *BO << '\n'); 567 Worklist.push_back(std::make_pair(BO, Weight)); 568 Changed = true; 569 continue; 570 } 571 572 // Failed to morph into an expression of the right type. This really is 573 // a leaf. 574 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n"); 575 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?"); 576 LeafOrder.push_back(Op); 577 Leaves[Op] = Weight; 578 } 579 } 580 581 // The leaves, repeated according to their weights, represent the linearized 582 // form of the expression. 583 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) { 584 Value *V = LeafOrder[i]; 585 LeafMap::iterator It = Leaves.find(V); 586 if (It == Leaves.end()) 587 // Node initially thought to be a leaf wasn't. 588 continue; 589 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!"); 590 APInt Weight = It->second; 591 if (Weight.isMinValue()) 592 // Leaf already output or weight reduction eliminated it. 593 continue; 594 // Ensure the leaf is only output once. 595 It->second = 0; 596 Ops.push_back(std::make_pair(V, Weight)); 597 } 598 599 // For nilpotent operations or addition there may be no operands, for example 600 // because the expression was "X xor X" or consisted of 2^Bitwidth additions: 601 // in both cases the weight reduces to 0 causing the value to be skipped. 602 if (Ops.empty()) { 603 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType()); 604 assert(Identity && "Associative operation without identity!"); 605 Ops.emplace_back(Identity, APInt(Bitwidth, 1)); 606 } 607 608 return Changed; 609 } 610 611 /// Now that the operands for this expression tree are 612 /// linearized and optimized, emit them in-order. 613 void ReassociatePass::RewriteExprTree(BinaryOperator *I, 614 SmallVectorImpl<ValueEntry> &Ops) { 615 assert(Ops.size() > 1 && "Single values should be used directly!"); 616 617 // Since our optimizations should never increase the number of operations, the 618 // new expression can usually be written reusing the existing binary operators 619 // from the original expression tree, without creating any new instructions, 620 // though the rewritten expression may have a completely different topology. 621 // We take care to not change anything if the new expression will be the same 622 // as the original. If more than trivial changes (like commuting operands) 623 // were made then we are obliged to clear out any optional subclass data like 624 // nsw flags. 625 626 /// NodesToRewrite - Nodes from the original expression available for writing 627 /// the new expression into. 628 SmallVector<BinaryOperator*, 8> NodesToRewrite; 629 unsigned Opcode = I->getOpcode(); 630 BinaryOperator *Op = I; 631 632 /// NotRewritable - The operands being written will be the leaves of the new 633 /// expression and must not be used as inner nodes (via NodesToRewrite) by 634 /// mistake. Inner nodes are always reassociable, and usually leaves are not 635 /// (if they were they would have been incorporated into the expression and so 636 /// would not be leaves), so most of the time there is no danger of this. But 637 /// in rare cases a leaf may become reassociable if an optimization kills uses 638 /// of it, or it may momentarily become reassociable during rewriting (below) 639 /// due it being removed as an operand of one of its uses. Ensure that misuse 640 /// of leaf nodes as inner nodes cannot occur by remembering all of the future 641 /// leaves and refusing to reuse any of them as inner nodes. 642 SmallPtrSet<Value*, 8> NotRewritable; 643 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 644 NotRewritable.insert(Ops[i].Op); 645 646 // ExpressionChanged - Non-null if the rewritten expression differs from the 647 // original in some non-trivial way, requiring the clearing of optional flags. 648 // Flags are cleared from the operator in ExpressionChanged up to I inclusive. 649 BinaryOperator *ExpressionChanged = nullptr; 650 for (unsigned i = 0; ; ++i) { 651 // The last operation (which comes earliest in the IR) is special as both 652 // operands will come from Ops, rather than just one with the other being 653 // a subexpression. 654 if (i+2 == Ops.size()) { 655 Value *NewLHS = Ops[i].Op; 656 Value *NewRHS = Ops[i+1].Op; 657 Value *OldLHS = Op->getOperand(0); 658 Value *OldRHS = Op->getOperand(1); 659 660 if (NewLHS == OldLHS && NewRHS == OldRHS) 661 // Nothing changed, leave it alone. 662 break; 663 664 if (NewLHS == OldRHS && NewRHS == OldLHS) { 665 // The order of the operands was reversed. Swap them. 666 DEBUG(dbgs() << "RA: " << *Op << '\n'); 667 Op->swapOperands(); 668 DEBUG(dbgs() << "TO: " << *Op << '\n'); 669 MadeChange = true; 670 ++NumChanged; 671 break; 672 } 673 674 // The new operation differs non-trivially from the original. Overwrite 675 // the old operands with the new ones. 676 DEBUG(dbgs() << "RA: " << *Op << '\n'); 677 if (NewLHS != OldLHS) { 678 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode); 679 if (BO && !NotRewritable.count(BO)) 680 NodesToRewrite.push_back(BO); 681 Op->setOperand(0, NewLHS); 682 } 683 if (NewRHS != OldRHS) { 684 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode); 685 if (BO && !NotRewritable.count(BO)) 686 NodesToRewrite.push_back(BO); 687 Op->setOperand(1, NewRHS); 688 } 689 DEBUG(dbgs() << "TO: " << *Op << '\n'); 690 691 ExpressionChanged = Op; 692 MadeChange = true; 693 ++NumChanged; 694 695 break; 696 } 697 698 // Not the last operation. The left-hand side will be a sub-expression 699 // while the right-hand side will be the current element of Ops. 700 Value *NewRHS = Ops[i].Op; 701 if (NewRHS != Op->getOperand(1)) { 702 DEBUG(dbgs() << "RA: " << *Op << '\n'); 703 if (NewRHS == Op->getOperand(0)) { 704 // The new right-hand side was already present as the left operand. If 705 // we are lucky then swapping the operands will sort out both of them. 706 Op->swapOperands(); 707 } else { 708 // Overwrite with the new right-hand side. 709 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode); 710 if (BO && !NotRewritable.count(BO)) 711 NodesToRewrite.push_back(BO); 712 Op->setOperand(1, NewRHS); 713 ExpressionChanged = Op; 714 } 715 DEBUG(dbgs() << "TO: " << *Op << '\n'); 716 MadeChange = true; 717 ++NumChanged; 718 } 719 720 // Now deal with the left-hand side. If this is already an operation node 721 // from the original expression then just rewrite the rest of the expression 722 // into it. 723 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode); 724 if (BO && !NotRewritable.count(BO)) { 725 Op = BO; 726 continue; 727 } 728 729 // Otherwise, grab a spare node from the original expression and use that as 730 // the left-hand side. If there are no nodes left then the optimizers made 731 // an expression with more nodes than the original! This usually means that 732 // they did something stupid but it might mean that the problem was just too 733 // hard (finding the mimimal number of multiplications needed to realize a 734 // multiplication expression is NP-complete). Whatever the reason, smart or 735 // stupid, create a new node if there are none left. 736 BinaryOperator *NewOp; 737 if (NodesToRewrite.empty()) { 738 Constant *Undef = UndefValue::get(I->getType()); 739 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode), 740 Undef, Undef, "", I); 741 if (NewOp->getType()->isFPOrFPVectorTy()) 742 NewOp->setFastMathFlags(I->getFastMathFlags()); 743 } else { 744 NewOp = NodesToRewrite.pop_back_val(); 745 } 746 747 DEBUG(dbgs() << "RA: " << *Op << '\n'); 748 Op->setOperand(0, NewOp); 749 DEBUG(dbgs() << "TO: " << *Op << '\n'); 750 ExpressionChanged = Op; 751 MadeChange = true; 752 ++NumChanged; 753 Op = NewOp; 754 } 755 756 // If the expression changed non-trivially then clear out all subclass data 757 // starting from the operator specified in ExpressionChanged, and compactify 758 // the operators to just before the expression root to guarantee that the 759 // expression tree is dominated by all of Ops. 760 if (ExpressionChanged) 761 do { 762 // Preserve FastMathFlags. 763 if (isa<FPMathOperator>(I)) { 764 FastMathFlags Flags = I->getFastMathFlags(); 765 ExpressionChanged->clearSubclassOptionalData(); 766 ExpressionChanged->setFastMathFlags(Flags); 767 } else 768 ExpressionChanged->clearSubclassOptionalData(); 769 770 if (ExpressionChanged == I) 771 break; 772 ExpressionChanged->moveBefore(I); 773 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin()); 774 } while (1); 775 776 // Throw away any left over nodes from the original expression. 777 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i) 778 RedoInsts.insert(NodesToRewrite[i]); 779 } 780 781 /// Insert instructions before the instruction pointed to by BI, 782 /// that computes the negative version of the value specified. The negative 783 /// version of the value is returned, and BI is left pointing at the instruction 784 /// that should be processed next by the reassociation pass. 785 /// Also add intermediate instructions to the redo list that are modified while 786 /// pushing the negates through adds. These will be revisited to see if 787 /// additional opportunities have been exposed. 788 static Value *NegateValue(Value *V, Instruction *BI, 789 SetVector<AssertingVH<Instruction>> &ToRedo) { 790 if (Constant *C = dyn_cast<Constant>(V)) { 791 if (C->getType()->isFPOrFPVectorTy()) { 792 return ConstantExpr::getFNeg(C); 793 } 794 return ConstantExpr::getNeg(C); 795 } 796 797 798 // We are trying to expose opportunity for reassociation. One of the things 799 // that we want to do to achieve this is to push a negation as deep into an 800 // expression chain as possible, to expose the add instructions. In practice, 801 // this means that we turn this: 802 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D 803 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate 804 // the constants. We assume that instcombine will clean up the mess later if 805 // we introduce tons of unnecessary negation instructions. 806 // 807 if (BinaryOperator *I = 808 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) { 809 // Push the negates through the add. 810 I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo)); 811 I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo)); 812 if (I->getOpcode() == Instruction::Add) { 813 I->setHasNoUnsignedWrap(false); 814 I->setHasNoSignedWrap(false); 815 } 816 817 // We must move the add instruction here, because the neg instructions do 818 // not dominate the old add instruction in general. By moving it, we are 819 // assured that the neg instructions we just inserted dominate the 820 // instruction we are about to insert after them. 821 // 822 I->moveBefore(BI); 823 I->setName(I->getName()+".neg"); 824 825 // Add the intermediate negates to the redo list as processing them later 826 // could expose more reassociating opportunities. 827 ToRedo.insert(I); 828 return I; 829 } 830 831 // Okay, we need to materialize a negated version of V with an instruction. 832 // Scan the use lists of V to see if we have one already. 833 for (User *U : V->users()) { 834 if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U)) 835 continue; 836 837 // We found one! Now we have to make sure that the definition dominates 838 // this use. We do this by moving it to the entry block (if it is a 839 // non-instruction value) or right after the definition. These negates will 840 // be zapped by reassociate later, so we don't need much finesse here. 841 BinaryOperator *TheNeg = cast<BinaryOperator>(U); 842 843 // Verify that the negate is in this function, V might be a constant expr. 844 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent()) 845 continue; 846 847 BasicBlock::iterator InsertPt; 848 if (Instruction *InstInput = dyn_cast<Instruction>(V)) { 849 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) { 850 InsertPt = II->getNormalDest()->begin(); 851 } else { 852 InsertPt = ++InstInput->getIterator(); 853 } 854 while (isa<PHINode>(InsertPt)) ++InsertPt; 855 } else { 856 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin(); 857 } 858 TheNeg->moveBefore(&*InsertPt); 859 if (TheNeg->getOpcode() == Instruction::Sub) { 860 TheNeg->setHasNoUnsignedWrap(false); 861 TheNeg->setHasNoSignedWrap(false); 862 } else { 863 TheNeg->andIRFlags(BI); 864 } 865 ToRedo.insert(TheNeg); 866 return TheNeg; 867 } 868 869 // Insert a 'neg' instruction that subtracts the value from zero to get the 870 // negation. 871 BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI); 872 ToRedo.insert(NewNeg); 873 return NewNeg; 874 } 875 876 /// Return true if we should break up this subtract of X-Y into (X + -Y). 877 static bool ShouldBreakUpSubtract(Instruction *Sub) { 878 // If this is a negation, we can't split it up! 879 if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub)) 880 return false; 881 882 // Don't breakup X - undef. 883 if (isa<UndefValue>(Sub->getOperand(1))) 884 return false; 885 886 // Don't bother to break this up unless either the LHS is an associable add or 887 // subtract or if this is only used by one. 888 Value *V0 = Sub->getOperand(0); 889 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) || 890 isReassociableOp(V0, Instruction::Sub, Instruction::FSub)) 891 return true; 892 Value *V1 = Sub->getOperand(1); 893 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) || 894 isReassociableOp(V1, Instruction::Sub, Instruction::FSub)) 895 return true; 896 Value *VB = Sub->user_back(); 897 if (Sub->hasOneUse() && 898 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) || 899 isReassociableOp(VB, Instruction::Sub, Instruction::FSub))) 900 return true; 901 902 return false; 903 } 904 905 /// If we have (X-Y), and if either X is an add, or if this is only used by an 906 /// add, transform this into (X+(0-Y)) to promote better reassociation. 907 static BinaryOperator * 908 BreakUpSubtract(Instruction *Sub, SetVector<AssertingVH<Instruction>> &ToRedo) { 909 // Convert a subtract into an add and a neg instruction. This allows sub 910 // instructions to be commuted with other add instructions. 911 // 912 // Calculate the negative value of Operand 1 of the sub instruction, 913 // and set it as the RHS of the add instruction we just made. 914 // 915 Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo); 916 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub); 917 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op. 918 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op. 919 New->takeName(Sub); 920 921 // Everyone now refers to the add instruction. 922 Sub->replaceAllUsesWith(New); 923 New->setDebugLoc(Sub->getDebugLoc()); 924 925 DEBUG(dbgs() << "Negated: " << *New << '\n'); 926 return New; 927 } 928 929 /// If this is a shift of a reassociable multiply or is used by one, change 930 /// this into a multiply by a constant to assist with further reassociation. 931 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) { 932 Constant *MulCst = ConstantInt::get(Shl->getType(), 1); 933 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1))); 934 935 BinaryOperator *Mul = 936 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl); 937 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op. 938 Mul->takeName(Shl); 939 940 // Everyone now refers to the mul instruction. 941 Shl->replaceAllUsesWith(Mul); 942 Mul->setDebugLoc(Shl->getDebugLoc()); 943 944 // We can safely preserve the nuw flag in all cases. It's also safe to turn a 945 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special 946 // handling. 947 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap(); 948 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap(); 949 if (NSW && NUW) 950 Mul->setHasNoSignedWrap(true); 951 Mul->setHasNoUnsignedWrap(NUW); 952 return Mul; 953 } 954 955 /// Scan backwards and forwards among values with the same rank as element i 956 /// to see if X exists. If X does not exist, return i. This is useful when 957 /// scanning for 'x' when we see '-x' because they both get the same rank. 958 static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i, 959 Value *X) { 960 unsigned XRank = Ops[i].Rank; 961 unsigned e = Ops.size(); 962 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) { 963 if (Ops[j].Op == X) 964 return j; 965 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 966 if (Instruction *I2 = dyn_cast<Instruction>(X)) 967 if (I1->isIdenticalTo(I2)) 968 return j; 969 } 970 // Scan backwards. 971 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) { 972 if (Ops[j].Op == X) 973 return j; 974 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 975 if (Instruction *I2 = dyn_cast<Instruction>(X)) 976 if (I1->isIdenticalTo(I2)) 977 return j; 978 } 979 return i; 980 } 981 982 /// Emit a tree of add instructions, summing Ops together 983 /// and returning the result. Insert the tree before I. 984 static Value *EmitAddTreeOfValues(Instruction *I, 985 SmallVectorImpl<WeakTrackingVH> &Ops) { 986 if (Ops.size() == 1) return Ops.back(); 987 988 Value *V1 = Ops.back(); 989 Ops.pop_back(); 990 Value *V2 = EmitAddTreeOfValues(I, Ops); 991 return CreateAdd(V2, V1, "tmp", I, I); 992 } 993 994 /// If V is an expression tree that is a multiplication sequence, 995 /// and if this sequence contains a multiply by Factor, 996 /// remove Factor from the tree and return the new tree. 997 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) { 998 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 999 if (!BO) 1000 return nullptr; 1001 1002 SmallVector<RepeatedValue, 8> Tree; 1003 MadeChange |= LinearizeExprTree(BO, Tree); 1004 SmallVector<ValueEntry, 8> Factors; 1005 Factors.reserve(Tree.size()); 1006 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 1007 RepeatedValue E = Tree[i]; 1008 Factors.append(E.second.getZExtValue(), 1009 ValueEntry(getRank(E.first), E.first)); 1010 } 1011 1012 bool FoundFactor = false; 1013 bool NeedsNegate = false; 1014 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1015 if (Factors[i].Op == Factor) { 1016 FoundFactor = true; 1017 Factors.erase(Factors.begin()+i); 1018 break; 1019 } 1020 1021 // If this is a negative version of this factor, remove it. 1022 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) { 1023 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op)) 1024 if (FC1->getValue() == -FC2->getValue()) { 1025 FoundFactor = NeedsNegate = true; 1026 Factors.erase(Factors.begin()+i); 1027 break; 1028 } 1029 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) { 1030 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) { 1031 const APFloat &F1 = FC1->getValueAPF(); 1032 APFloat F2(FC2->getValueAPF()); 1033 F2.changeSign(); 1034 if (F1.compare(F2) == APFloat::cmpEqual) { 1035 FoundFactor = NeedsNegate = true; 1036 Factors.erase(Factors.begin() + i); 1037 break; 1038 } 1039 } 1040 } 1041 } 1042 1043 if (!FoundFactor) { 1044 // Make sure to restore the operands to the expression tree. 1045 RewriteExprTree(BO, Factors); 1046 return nullptr; 1047 } 1048 1049 BasicBlock::iterator InsertPt = ++BO->getIterator(); 1050 1051 // If this was just a single multiply, remove the multiply and return the only 1052 // remaining operand. 1053 if (Factors.size() == 1) { 1054 RedoInsts.insert(BO); 1055 V = Factors[0].Op; 1056 } else { 1057 RewriteExprTree(BO, Factors); 1058 V = BO; 1059 } 1060 1061 if (NeedsNegate) 1062 V = CreateNeg(V, "neg", &*InsertPt, BO); 1063 1064 return V; 1065 } 1066 1067 /// If V is a single-use multiply, recursively add its operands as factors, 1068 /// otherwise add V to the list of factors. 1069 /// 1070 /// Ops is the top-level list of add operands we're trying to factor. 1071 static void FindSingleUseMultiplyFactors(Value *V, 1072 SmallVectorImpl<Value*> &Factors) { 1073 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1074 if (!BO) { 1075 Factors.push_back(V); 1076 return; 1077 } 1078 1079 // Otherwise, add the LHS and RHS to the list of factors. 1080 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors); 1081 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors); 1082 } 1083 1084 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction. 1085 /// This optimizes based on identities. If it can be reduced to a single Value, 1086 /// it is returned, otherwise the Ops list is mutated as necessary. 1087 static Value *OptimizeAndOrXor(unsigned Opcode, 1088 SmallVectorImpl<ValueEntry> &Ops) { 1089 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs. 1090 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1. 1091 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1092 // First, check for X and ~X in the operand list. 1093 assert(i < Ops.size()); 1094 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^. 1095 Value *X = BinaryOperator::getNotArgument(Ops[i].Op); 1096 unsigned FoundX = FindInOperandList(Ops, i, X); 1097 if (FoundX != i) { 1098 if (Opcode == Instruction::And) // ...&X&~X = 0 1099 return Constant::getNullValue(X->getType()); 1100 1101 if (Opcode == Instruction::Or) // ...|X|~X = -1 1102 return Constant::getAllOnesValue(X->getType()); 1103 } 1104 } 1105 1106 // Next, check for duplicate pairs of values, which we assume are next to 1107 // each other, due to our sorting criteria. 1108 assert(i < Ops.size()); 1109 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) { 1110 if (Opcode == Instruction::And || Opcode == Instruction::Or) { 1111 // Drop duplicate values for And and Or. 1112 Ops.erase(Ops.begin()+i); 1113 --i; --e; 1114 ++NumAnnihil; 1115 continue; 1116 } 1117 1118 // Drop pairs of values for Xor. 1119 assert(Opcode == Instruction::Xor); 1120 if (e == 2) 1121 return Constant::getNullValue(Ops[0].Op->getType()); 1122 1123 // Y ^ X^X -> Y 1124 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1125 i -= 1; e -= 2; 1126 ++NumAnnihil; 1127 } 1128 } 1129 return nullptr; 1130 } 1131 1132 /// Helper function of CombineXorOpnd(). It creates a bitwise-and 1133 /// instruction with the given two operands, and return the resulting 1134 /// instruction. There are two special cases: 1) if the constant operand is 0, 1135 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will 1136 /// be returned. 1137 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd, 1138 const APInt &ConstOpnd) { 1139 if (ConstOpnd != 0) { 1140 if (!ConstOpnd.isAllOnesValue()) { 1141 LLVMContext &Ctx = Opnd->getType()->getContext(); 1142 Instruction *I; 1143 I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd), 1144 "and.ra", InsertBefore); 1145 I->setDebugLoc(InsertBefore->getDebugLoc()); 1146 return I; 1147 } 1148 return Opnd; 1149 } 1150 return nullptr; 1151 } 1152 1153 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd" 1154 // into "R ^ C", where C would be 0, and R is a symbolic value. 1155 // 1156 // If it was successful, true is returned, and the "R" and "C" is returned 1157 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned, 1158 // and both "Res" and "ConstOpnd" remain unchanged. 1159 // 1160 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1161 APInt &ConstOpnd, Value *&Res) { 1162 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2 1163 // = ((x | c1) ^ c1) ^ (c1 ^ c2) 1164 // = (x & ~c1) ^ (c1 ^ c2) 1165 // It is useful only when c1 == c2. 1166 if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) { 1167 if (!Opnd1->getValue()->hasOneUse()) 1168 return false; 1169 1170 const APInt &C1 = Opnd1->getConstPart(); 1171 if (C1 != ConstOpnd) 1172 return false; 1173 1174 Value *X = Opnd1->getSymbolicPart(); 1175 Res = createAndInstr(I, X, ~C1); 1176 // ConstOpnd was C2, now C1 ^ C2. 1177 ConstOpnd ^= C1; 1178 1179 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1180 RedoInsts.insert(T); 1181 return true; 1182 } 1183 return false; 1184 } 1185 1186 1187 // Helper function of OptimizeXor(). It tries to simplify 1188 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a 1189 // symbolic value. 1190 // 1191 // If it was successful, true is returned, and the "R" and "C" is returned 1192 // via "Res" and "ConstOpnd", respectively (If the entire expression is 1193 // evaluated to a constant, the Res is set to NULL); otherwise, false is 1194 // returned, and both "Res" and "ConstOpnd" remain unchanged. 1195 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1196 XorOpnd *Opnd2, APInt &ConstOpnd, 1197 Value *&Res) { 1198 Value *X = Opnd1->getSymbolicPart(); 1199 if (X != Opnd2->getSymbolicPart()) 1200 return false; 1201 1202 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.) 1203 int DeadInstNum = 1; 1204 if (Opnd1->getValue()->hasOneUse()) 1205 DeadInstNum++; 1206 if (Opnd2->getValue()->hasOneUse()) 1207 DeadInstNum++; 1208 1209 // Xor-Rule 2: 1210 // (x | c1) ^ (x & c2) 1211 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1 1212 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1 1213 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3 1214 // 1215 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) { 1216 if (Opnd2->isOrExpr()) 1217 std::swap(Opnd1, Opnd2); 1218 1219 const APInt &C1 = Opnd1->getConstPart(); 1220 const APInt &C2 = Opnd2->getConstPart(); 1221 APInt C3((~C1) ^ C2); 1222 1223 // Do not increase code size! 1224 if (C3 != 0 && !C3.isAllOnesValue()) { 1225 int NewInstNum = ConstOpnd != 0 ? 1 : 2; 1226 if (NewInstNum > DeadInstNum) 1227 return false; 1228 } 1229 1230 Res = createAndInstr(I, X, C3); 1231 ConstOpnd ^= C1; 1232 1233 } else if (Opnd1->isOrExpr()) { 1234 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2 1235 // 1236 const APInt &C1 = Opnd1->getConstPart(); 1237 const APInt &C2 = Opnd2->getConstPart(); 1238 APInt C3 = C1 ^ C2; 1239 1240 // Do not increase code size 1241 if (C3 != 0 && !C3.isAllOnesValue()) { 1242 int NewInstNum = ConstOpnd != 0 ? 1 : 2; 1243 if (NewInstNum > DeadInstNum) 1244 return false; 1245 } 1246 1247 Res = createAndInstr(I, X, C3); 1248 ConstOpnd ^= C3; 1249 } else { 1250 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2)) 1251 // 1252 const APInt &C1 = Opnd1->getConstPart(); 1253 const APInt &C2 = Opnd2->getConstPart(); 1254 APInt C3 = C1 ^ C2; 1255 Res = createAndInstr(I, X, C3); 1256 } 1257 1258 // Put the original operands in the Redo list; hope they will be deleted 1259 // as dead code. 1260 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1261 RedoInsts.insert(T); 1262 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue())) 1263 RedoInsts.insert(T); 1264 1265 return true; 1266 } 1267 1268 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced 1269 /// to a single Value, it is returned, otherwise the Ops list is mutated as 1270 /// necessary. 1271 Value *ReassociatePass::OptimizeXor(Instruction *I, 1272 SmallVectorImpl<ValueEntry> &Ops) { 1273 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops)) 1274 return V; 1275 1276 if (Ops.size() == 1) 1277 return nullptr; 1278 1279 SmallVector<XorOpnd, 8> Opnds; 1280 SmallVector<XorOpnd*, 8> OpndPtrs; 1281 Type *Ty = Ops[0].Op->getType(); 1282 APInt ConstOpnd(Ty->getIntegerBitWidth(), 0); 1283 1284 // Step 1: Convert ValueEntry to XorOpnd 1285 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1286 Value *V = Ops[i].Op; 1287 if (!isa<ConstantInt>(V)) { 1288 XorOpnd O(V); 1289 O.setSymbolicRank(getRank(O.getSymbolicPart())); 1290 Opnds.push_back(O); 1291 } else 1292 ConstOpnd ^= cast<ConstantInt>(V)->getValue(); 1293 } 1294 1295 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds". 1296 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate 1297 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop 1298 // with the previous loop --- the iterator of the "Opnds" may be invalidated 1299 // when new elements are added to the vector. 1300 for (unsigned i = 0, e = Opnds.size(); i != e; ++i) 1301 OpndPtrs.push_back(&Opnds[i]); 1302 1303 // Step 2: Sort the Xor-Operands in a way such that the operands containing 1304 // the same symbolic value cluster together. For instance, the input operand 1305 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into: 1306 // ("x | 123", "x & 789", "y & 456"). 1307 // 1308 // The purpose is twofold: 1309 // 1) Cluster together the operands sharing the same symbolic-value. 1310 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which 1311 // could potentially shorten crital path, and expose more loop-invariants. 1312 // Note that values' rank are basically defined in RPO order (FIXME). 1313 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier 1314 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2", 1315 // "z" in the order of X-Y-Z is better than any other orders. 1316 std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), 1317 [](XorOpnd *LHS, XorOpnd *RHS) { 1318 return LHS->getSymbolicRank() < RHS->getSymbolicRank(); 1319 }); 1320 1321 // Step 3: Combine adjacent operands 1322 XorOpnd *PrevOpnd = nullptr; 1323 bool Changed = false; 1324 for (unsigned i = 0, e = Opnds.size(); i < e; i++) { 1325 XorOpnd *CurrOpnd = OpndPtrs[i]; 1326 // The combined value 1327 Value *CV; 1328 1329 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd" 1330 if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) { 1331 Changed = true; 1332 if (CV) 1333 *CurrOpnd = XorOpnd(CV); 1334 else { 1335 CurrOpnd->Invalidate(); 1336 continue; 1337 } 1338 } 1339 1340 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) { 1341 PrevOpnd = CurrOpnd; 1342 continue; 1343 } 1344 1345 // step 3.2: When previous and current operands share the same symbolic 1346 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd" 1347 // 1348 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) { 1349 // Remove previous operand 1350 PrevOpnd->Invalidate(); 1351 if (CV) { 1352 *CurrOpnd = XorOpnd(CV); 1353 PrevOpnd = CurrOpnd; 1354 } else { 1355 CurrOpnd->Invalidate(); 1356 PrevOpnd = nullptr; 1357 } 1358 Changed = true; 1359 } 1360 } 1361 1362 // Step 4: Reassemble the Ops 1363 if (Changed) { 1364 Ops.clear(); 1365 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) { 1366 XorOpnd &O = Opnds[i]; 1367 if (O.isInvalid()) 1368 continue; 1369 ValueEntry VE(getRank(O.getValue()), O.getValue()); 1370 Ops.push_back(VE); 1371 } 1372 if (ConstOpnd != 0) { 1373 Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd); 1374 ValueEntry VE(getRank(C), C); 1375 Ops.push_back(VE); 1376 } 1377 int Sz = Ops.size(); 1378 if (Sz == 1) 1379 return Ops.back().Op; 1380 else if (Sz == 0) { 1381 assert(ConstOpnd == 0); 1382 return ConstantInt::get(Ty->getContext(), ConstOpnd); 1383 } 1384 } 1385 1386 return nullptr; 1387 } 1388 1389 /// Optimize a series of operands to an 'add' instruction. This 1390 /// optimizes based on identities. If it can be reduced to a single Value, it 1391 /// is returned, otherwise the Ops list is mutated as necessary. 1392 Value *ReassociatePass::OptimizeAdd(Instruction *I, 1393 SmallVectorImpl<ValueEntry> &Ops) { 1394 // Scan the operand lists looking for X and -X pairs. If we find any, we 1395 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it, 1396 // scan for any 1397 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z. 1398 1399 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1400 Value *TheOp = Ops[i].Op; 1401 // Check to see if we've seen this operand before. If so, we factor all 1402 // instances of the operand together. Due to our sorting criteria, we know 1403 // that these need to be next to each other in the vector. 1404 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) { 1405 // Rescan the list, remove all instances of this operand from the expr. 1406 unsigned NumFound = 0; 1407 do { 1408 Ops.erase(Ops.begin()+i); 1409 ++NumFound; 1410 } while (i != Ops.size() && Ops[i].Op == TheOp); 1411 1412 DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n'); 1413 ++NumFactor; 1414 1415 // Insert a new multiply. 1416 Type *Ty = TheOp->getType(); 1417 Constant *C = Ty->isIntOrIntVectorTy() ? 1418 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound); 1419 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I); 1420 1421 // Now that we have inserted a multiply, optimize it. This allows us to 1422 // handle cases that require multiple factoring steps, such as this: 1423 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6 1424 RedoInsts.insert(Mul); 1425 1426 // If every add operand was a duplicate, return the multiply. 1427 if (Ops.empty()) 1428 return Mul; 1429 1430 // Otherwise, we had some input that didn't have the dupe, such as 1431 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of 1432 // things being added by this operation. 1433 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul)); 1434 1435 --i; 1436 e = Ops.size(); 1437 continue; 1438 } 1439 1440 // Check for X and -X or X and ~X in the operand list. 1441 if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) && 1442 !BinaryOperator::isNot(TheOp)) 1443 continue; 1444 1445 Value *X = nullptr; 1446 if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)) 1447 X = BinaryOperator::getNegArgument(TheOp); 1448 else if (BinaryOperator::isNot(TheOp)) 1449 X = BinaryOperator::getNotArgument(TheOp); 1450 1451 unsigned FoundX = FindInOperandList(Ops, i, X); 1452 if (FoundX == i) 1453 continue; 1454 1455 // Remove X and -X from the operand list. 1456 if (Ops.size() == 2 && 1457 (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))) 1458 return Constant::getNullValue(X->getType()); 1459 1460 // Remove X and ~X from the operand list. 1461 if (Ops.size() == 2 && BinaryOperator::isNot(TheOp)) 1462 return Constant::getAllOnesValue(X->getType()); 1463 1464 Ops.erase(Ops.begin()+i); 1465 if (i < FoundX) 1466 --FoundX; 1467 else 1468 --i; // Need to back up an extra one. 1469 Ops.erase(Ops.begin()+FoundX); 1470 ++NumAnnihil; 1471 --i; // Revisit element. 1472 e -= 2; // Removed two elements. 1473 1474 // if X and ~X we append -1 to the operand list. 1475 if (BinaryOperator::isNot(TheOp)) { 1476 Value *V = Constant::getAllOnesValue(X->getType()); 1477 Ops.insert(Ops.end(), ValueEntry(getRank(V), V)); 1478 e += 1; 1479 } 1480 } 1481 1482 // Scan the operand list, checking to see if there are any common factors 1483 // between operands. Consider something like A*A+A*B*C+D. We would like to 1484 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies. 1485 // To efficiently find this, we count the number of times a factor occurs 1486 // for any ADD operands that are MULs. 1487 DenseMap<Value*, unsigned> FactorOccurrences; 1488 1489 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4) 1490 // where they are actually the same multiply. 1491 unsigned MaxOcc = 0; 1492 Value *MaxOccVal = nullptr; 1493 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1494 BinaryOperator *BOp = 1495 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1496 if (!BOp) 1497 continue; 1498 1499 // Compute all of the factors of this added value. 1500 SmallVector<Value*, 8> Factors; 1501 FindSingleUseMultiplyFactors(BOp, Factors); 1502 assert(Factors.size() > 1 && "Bad linearize!"); 1503 1504 // Add one to FactorOccurrences for each unique factor in this op. 1505 SmallPtrSet<Value*, 8> Duplicates; 1506 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1507 Value *Factor = Factors[i]; 1508 if (!Duplicates.insert(Factor).second) 1509 continue; 1510 1511 unsigned Occ = ++FactorOccurrences[Factor]; 1512 if (Occ > MaxOcc) { 1513 MaxOcc = Occ; 1514 MaxOccVal = Factor; 1515 } 1516 1517 // If Factor is a negative constant, add the negated value as a factor 1518 // because we can percolate the negate out. Watch for minint, which 1519 // cannot be positivified. 1520 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) { 1521 if (CI->isNegative() && !CI->isMinValue(true)) { 1522 Factor = ConstantInt::get(CI->getContext(), -CI->getValue()); 1523 if (!Duplicates.insert(Factor).second) 1524 continue; 1525 unsigned Occ = ++FactorOccurrences[Factor]; 1526 if (Occ > MaxOcc) { 1527 MaxOcc = Occ; 1528 MaxOccVal = Factor; 1529 } 1530 } 1531 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) { 1532 if (CF->isNegative()) { 1533 APFloat F(CF->getValueAPF()); 1534 F.changeSign(); 1535 Factor = ConstantFP::get(CF->getContext(), F); 1536 if (!Duplicates.insert(Factor).second) 1537 continue; 1538 unsigned Occ = ++FactorOccurrences[Factor]; 1539 if (Occ > MaxOcc) { 1540 MaxOcc = Occ; 1541 MaxOccVal = Factor; 1542 } 1543 } 1544 } 1545 } 1546 } 1547 1548 // If any factor occurred more than one time, we can pull it out. 1549 if (MaxOcc > 1) { 1550 DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n'); 1551 ++NumFactor; 1552 1553 // Create a new instruction that uses the MaxOccVal twice. If we don't do 1554 // this, we could otherwise run into situations where removing a factor 1555 // from an expression will drop a use of maxocc, and this can cause 1556 // RemoveFactorFromExpression on successive values to behave differently. 1557 Instruction *DummyInst = 1558 I->getType()->isIntOrIntVectorTy() 1559 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal) 1560 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal); 1561 1562 SmallVector<WeakTrackingVH, 4> NewMulOps; 1563 for (unsigned i = 0; i != Ops.size(); ++i) { 1564 // Only try to remove factors from expressions we're allowed to. 1565 BinaryOperator *BOp = 1566 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1567 if (!BOp) 1568 continue; 1569 1570 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) { 1571 // The factorized operand may occur several times. Convert them all in 1572 // one fell swoop. 1573 for (unsigned j = Ops.size(); j != i;) { 1574 --j; 1575 if (Ops[j].Op == Ops[i].Op) { 1576 NewMulOps.push_back(V); 1577 Ops.erase(Ops.begin()+j); 1578 } 1579 } 1580 --i; 1581 } 1582 } 1583 1584 // No need for extra uses anymore. 1585 DummyInst->deleteValue(); 1586 1587 unsigned NumAddedValues = NewMulOps.size(); 1588 Value *V = EmitAddTreeOfValues(I, NewMulOps); 1589 1590 // Now that we have inserted the add tree, optimize it. This allows us to 1591 // handle cases that require multiple factoring steps, such as this: 1592 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C)) 1593 assert(NumAddedValues > 1 && "Each occurrence should contribute a value"); 1594 (void)NumAddedValues; 1595 if (Instruction *VI = dyn_cast<Instruction>(V)) 1596 RedoInsts.insert(VI); 1597 1598 // Create the multiply. 1599 Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I); 1600 1601 // Rerun associate on the multiply in case the inner expression turned into 1602 // a multiply. We want to make sure that we keep things in canonical form. 1603 RedoInsts.insert(V2); 1604 1605 // If every add operand included the factor (e.g. "A*B + A*C"), then the 1606 // entire result expression is just the multiply "A*(B+C)". 1607 if (Ops.empty()) 1608 return V2; 1609 1610 // Otherwise, we had some input that didn't have the factor, such as 1611 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of 1612 // things being added by this operation. 1613 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2)); 1614 } 1615 1616 return nullptr; 1617 } 1618 1619 /// \brief Build up a vector of value/power pairs factoring a product. 1620 /// 1621 /// Given a series of multiplication operands, build a vector of factors and 1622 /// the powers each is raised to when forming the final product. Sort them in 1623 /// the order of descending power. 1624 /// 1625 /// (x*x) -> [(x, 2)] 1626 /// ((x*x)*x) -> [(x, 3)] 1627 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)] 1628 /// 1629 /// \returns Whether any factors have a power greater than one. 1630 bool ReassociatePass::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, 1631 SmallVectorImpl<Factor> &Factors) { 1632 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this. 1633 // Compute the sum of powers of simplifiable factors. 1634 unsigned FactorPowerSum = 0; 1635 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) { 1636 Value *Op = Ops[Idx-1].Op; 1637 1638 // Count the number of occurrences of this value. 1639 unsigned Count = 1; 1640 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx) 1641 ++Count; 1642 // Track for simplification all factors which occur 2 or more times. 1643 if (Count > 1) 1644 FactorPowerSum += Count; 1645 } 1646 1647 // We can only simplify factors if the sum of the powers of our simplifiable 1648 // factors is 4 or higher. When that is the case, we will *always* have 1649 // a simplification. This is an important invariant to prevent cyclicly 1650 // trying to simplify already minimal formations. 1651 if (FactorPowerSum < 4) 1652 return false; 1653 1654 // Now gather the simplifiable factors, removing them from Ops. 1655 FactorPowerSum = 0; 1656 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) { 1657 Value *Op = Ops[Idx-1].Op; 1658 1659 // Count the number of occurrences of this value. 1660 unsigned Count = 1; 1661 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx) 1662 ++Count; 1663 if (Count == 1) 1664 continue; 1665 // Move an even number of occurrences to Factors. 1666 Count &= ~1U; 1667 Idx -= Count; 1668 FactorPowerSum += Count; 1669 Factors.push_back(Factor(Op, Count)); 1670 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count); 1671 } 1672 1673 // None of the adjustments above should have reduced the sum of factor powers 1674 // below our mininum of '4'. 1675 assert(FactorPowerSum >= 4); 1676 1677 std::stable_sort(Factors.begin(), Factors.end(), 1678 [](const Factor &LHS, const Factor &RHS) { 1679 return LHS.Power > RHS.Power; 1680 }); 1681 return true; 1682 } 1683 1684 /// \brief Build a tree of multiplies, computing the product of Ops. 1685 static Value *buildMultiplyTree(IRBuilder<> &Builder, 1686 SmallVectorImpl<Value*> &Ops) { 1687 if (Ops.size() == 1) 1688 return Ops.back(); 1689 1690 Value *LHS = Ops.pop_back_val(); 1691 do { 1692 if (LHS->getType()->isIntOrIntVectorTy()) 1693 LHS = Builder.CreateMul(LHS, Ops.pop_back_val()); 1694 else 1695 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val()); 1696 } while (!Ops.empty()); 1697 1698 return LHS; 1699 } 1700 1701 /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*... 1702 /// 1703 /// Given a vector of values raised to various powers, where no two values are 1704 /// equal and the powers are sorted in decreasing order, compute the minimal 1705 /// DAG of multiplies to compute the final product, and return that product 1706 /// value. 1707 Value * 1708 ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder, 1709 SmallVectorImpl<Factor> &Factors) { 1710 assert(Factors[0].Power); 1711 SmallVector<Value *, 4> OuterProduct; 1712 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size(); 1713 Idx < Size && Factors[Idx].Power > 0; ++Idx) { 1714 if (Factors[Idx].Power != Factors[LastIdx].Power) { 1715 LastIdx = Idx; 1716 continue; 1717 } 1718 1719 // We want to multiply across all the factors with the same power so that 1720 // we can raise them to that power as a single entity. Build a mini tree 1721 // for that. 1722 SmallVector<Value *, 4> InnerProduct; 1723 InnerProduct.push_back(Factors[LastIdx].Base); 1724 do { 1725 InnerProduct.push_back(Factors[Idx].Base); 1726 ++Idx; 1727 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power); 1728 1729 // Reset the base value of the first factor to the new expression tree. 1730 // We'll remove all the factors with the same power in a second pass. 1731 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct); 1732 if (Instruction *MI = dyn_cast<Instruction>(M)) 1733 RedoInsts.insert(MI); 1734 1735 LastIdx = Idx; 1736 } 1737 // Unique factors with equal powers -- we've folded them into the first one's 1738 // base. 1739 Factors.erase(std::unique(Factors.begin(), Factors.end(), 1740 [](const Factor &LHS, const Factor &RHS) { 1741 return LHS.Power == RHS.Power; 1742 }), 1743 Factors.end()); 1744 1745 // Iteratively collect the base of each factor with an add power into the 1746 // outer product, and halve each power in preparation for squaring the 1747 // expression. 1748 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) { 1749 if (Factors[Idx].Power & 1) 1750 OuterProduct.push_back(Factors[Idx].Base); 1751 Factors[Idx].Power >>= 1; 1752 } 1753 if (Factors[0].Power) { 1754 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors); 1755 OuterProduct.push_back(SquareRoot); 1756 OuterProduct.push_back(SquareRoot); 1757 } 1758 if (OuterProduct.size() == 1) 1759 return OuterProduct.front(); 1760 1761 Value *V = buildMultiplyTree(Builder, OuterProduct); 1762 return V; 1763 } 1764 1765 Value *ReassociatePass::OptimizeMul(BinaryOperator *I, 1766 SmallVectorImpl<ValueEntry> &Ops) { 1767 // We can only optimize the multiplies when there is a chain of more than 1768 // three, such that a balanced tree might require fewer total multiplies. 1769 if (Ops.size() < 4) 1770 return nullptr; 1771 1772 // Try to turn linear trees of multiplies without other uses of the 1773 // intermediate stages into minimal multiply DAGs with perfect sub-expression 1774 // re-use. 1775 SmallVector<Factor, 4> Factors; 1776 if (!collectMultiplyFactors(Ops, Factors)) 1777 return nullptr; // All distinct factors, so nothing left for us to do. 1778 1779 IRBuilder<> Builder(I); 1780 // The reassociate transformation for FP operations is performed only 1781 // if unsafe algebra is permitted by FastMathFlags. Propagate those flags 1782 // to the newly generated operations. 1783 if (auto FPI = dyn_cast<FPMathOperator>(I)) 1784 Builder.setFastMathFlags(FPI->getFastMathFlags()); 1785 1786 Value *V = buildMinimalMultiplyDAG(Builder, Factors); 1787 if (Ops.empty()) 1788 return V; 1789 1790 ValueEntry NewEntry = ValueEntry(getRank(V), V); 1791 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry); 1792 return nullptr; 1793 } 1794 1795 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I, 1796 SmallVectorImpl<ValueEntry> &Ops) { 1797 // Now that we have the linearized expression tree, try to optimize it. 1798 // Start by folding any constants that we found. 1799 Constant *Cst = nullptr; 1800 unsigned Opcode = I->getOpcode(); 1801 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) { 1802 Constant *C = cast<Constant>(Ops.pop_back_val().Op); 1803 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C; 1804 } 1805 // If there was nothing but constants then we are done. 1806 if (Ops.empty()) 1807 return Cst; 1808 1809 // Put the combined constant back at the end of the operand list, except if 1810 // there is no point. For example, an add of 0 gets dropped here, while a 1811 // multiplication by zero turns the whole expression into zero. 1812 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) { 1813 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType())) 1814 return Cst; 1815 Ops.push_back(ValueEntry(0, Cst)); 1816 } 1817 1818 if (Ops.size() == 1) return Ops[0].Op; 1819 1820 // Handle destructive annihilation due to identities between elements in the 1821 // argument list here. 1822 unsigned NumOps = Ops.size(); 1823 switch (Opcode) { 1824 default: break; 1825 case Instruction::And: 1826 case Instruction::Or: 1827 if (Value *Result = OptimizeAndOrXor(Opcode, Ops)) 1828 return Result; 1829 break; 1830 1831 case Instruction::Xor: 1832 if (Value *Result = OptimizeXor(I, Ops)) 1833 return Result; 1834 break; 1835 1836 case Instruction::Add: 1837 case Instruction::FAdd: 1838 if (Value *Result = OptimizeAdd(I, Ops)) 1839 return Result; 1840 break; 1841 1842 case Instruction::Mul: 1843 case Instruction::FMul: 1844 if (Value *Result = OptimizeMul(I, Ops)) 1845 return Result; 1846 break; 1847 } 1848 1849 if (Ops.size() != NumOps) 1850 return OptimizeExpression(I, Ops); 1851 return nullptr; 1852 } 1853 1854 // Remove dead instructions and if any operands are trivially dead add them to 1855 // Insts so they will be removed as well. 1856 void ReassociatePass::RecursivelyEraseDeadInsts( 1857 Instruction *I, SetVector<AssertingVH<Instruction>> &Insts) { 1858 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1859 SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end()); 1860 ValueRankMap.erase(I); 1861 Insts.remove(I); 1862 RedoInsts.remove(I); 1863 I->eraseFromParent(); 1864 for (auto Op : Ops) 1865 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1866 if (OpInst->use_empty()) 1867 Insts.insert(OpInst); 1868 } 1869 1870 /// Zap the given instruction, adding interesting operands to the work list. 1871 void ReassociatePass::EraseInst(Instruction *I) { 1872 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1873 DEBUG(dbgs() << "Erasing dead inst: "; I->dump()); 1874 1875 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 1876 // Erase the dead instruction. 1877 ValueRankMap.erase(I); 1878 RedoInsts.remove(I); 1879 I->eraseFromParent(); 1880 // Optimize its operands. 1881 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes. 1882 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1883 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) { 1884 // If this is a node in an expression tree, climb to the expression root 1885 // and add that since that's where optimization actually happens. 1886 unsigned Opcode = Op->getOpcode(); 1887 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode && 1888 Visited.insert(Op).second) 1889 Op = Op->user_back(); 1890 RedoInsts.insert(Op); 1891 } 1892 } 1893 1894 // Canonicalize expressions of the following form: 1895 // x + (-Constant * y) -> x - (Constant * y) 1896 // x - (-Constant * y) -> x + (Constant * y) 1897 Instruction *ReassociatePass::canonicalizeNegConstExpr(Instruction *I) { 1898 if (!I->hasOneUse() || I->getType()->isVectorTy()) 1899 return nullptr; 1900 1901 // Must be a fmul or fdiv instruction. 1902 unsigned Opcode = I->getOpcode(); 1903 if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv) 1904 return nullptr; 1905 1906 auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0)); 1907 auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1)); 1908 1909 // Both operands are constant, let it get constant folded away. 1910 if (C0 && C1) 1911 return nullptr; 1912 1913 ConstantFP *CF = C0 ? C0 : C1; 1914 1915 // Must have one constant operand. 1916 if (!CF) 1917 return nullptr; 1918 1919 // Must be a negative ConstantFP. 1920 if (!CF->isNegative()) 1921 return nullptr; 1922 1923 // User must be a binary operator with one or more uses. 1924 Instruction *User = I->user_back(); 1925 if (!isa<BinaryOperator>(User) || User->use_empty()) 1926 return nullptr; 1927 1928 unsigned UserOpcode = User->getOpcode(); 1929 if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub) 1930 return nullptr; 1931 1932 // Subtraction is not commutative. Explicitly, the following transform is 1933 // not valid: (-Constant * y) - x -> x + (Constant * y) 1934 if (!User->isCommutative() && User->getOperand(1) != I) 1935 return nullptr; 1936 1937 // Change the sign of the constant. 1938 APFloat Val = CF->getValueAPF(); 1939 Val.changeSign(); 1940 I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val)); 1941 1942 // Canonicalize I to RHS to simplify the next bit of logic. E.g., 1943 // ((-Const*y) + x) -> (x + (-Const*y)). 1944 if (User->getOperand(0) == I && User->isCommutative()) 1945 cast<BinaryOperator>(User)->swapOperands(); 1946 1947 Value *Op0 = User->getOperand(0); 1948 Value *Op1 = User->getOperand(1); 1949 BinaryOperator *NI; 1950 switch (UserOpcode) { 1951 default: 1952 llvm_unreachable("Unexpected Opcode!"); 1953 case Instruction::FAdd: 1954 NI = BinaryOperator::CreateFSub(Op0, Op1); 1955 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags()); 1956 break; 1957 case Instruction::FSub: 1958 NI = BinaryOperator::CreateFAdd(Op0, Op1); 1959 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags()); 1960 break; 1961 } 1962 1963 NI->insertBefore(User); 1964 NI->setName(User->getName()); 1965 User->replaceAllUsesWith(NI); 1966 NI->setDebugLoc(I->getDebugLoc()); 1967 RedoInsts.insert(I); 1968 MadeChange = true; 1969 return NI; 1970 } 1971 1972 /// Inspect and optimize the given instruction. Note that erasing 1973 /// instructions is not allowed. 1974 void ReassociatePass::OptimizeInst(Instruction *I) { 1975 // Only consider operations that we understand. 1976 if (!isa<BinaryOperator>(I)) 1977 return; 1978 1979 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1))) 1980 // If an operand of this shift is a reassociable multiply, or if the shift 1981 // is used by a reassociable multiply or add, turn into a multiply. 1982 if (isReassociableOp(I->getOperand(0), Instruction::Mul) || 1983 (I->hasOneUse() && 1984 (isReassociableOp(I->user_back(), Instruction::Mul) || 1985 isReassociableOp(I->user_back(), Instruction::Add)))) { 1986 Instruction *NI = ConvertShiftToMul(I); 1987 RedoInsts.insert(I); 1988 MadeChange = true; 1989 I = NI; 1990 } 1991 1992 // Canonicalize negative constants out of expressions. 1993 if (Instruction *Res = canonicalizeNegConstExpr(I)) 1994 I = Res; 1995 1996 // Commute binary operators, to canonicalize the order of their operands. 1997 // This can potentially expose more CSE opportunities, and makes writing other 1998 // transformations simpler. 1999 if (I->isCommutative()) 2000 canonicalizeOperands(I); 2001 2002 // TODO: We should optimize vector Xor instructions, but they are 2003 // currently unsupported. 2004 if (I->getType()->isVectorTy() && I->getOpcode() == Instruction::Xor) 2005 return; 2006 2007 // Don't optimize floating point instructions that don't have unsafe algebra. 2008 if (I->getType()->isFPOrFPVectorTy() && !I->hasUnsafeAlgebra()) 2009 return; 2010 2011 // Do not reassociate boolean (i1) expressions. We want to preserve the 2012 // original order of evaluation for short-circuited comparisons that 2013 // SimplifyCFG has folded to AND/OR expressions. If the expression 2014 // is not further optimized, it is likely to be transformed back to a 2015 // short-circuited form for code gen, and the source order may have been 2016 // optimized for the most likely conditions. 2017 if (I->getType()->isIntegerTy(1)) 2018 return; 2019 2020 // If this is a subtract instruction which is not already in negate form, 2021 // see if we can convert it to X+-Y. 2022 if (I->getOpcode() == Instruction::Sub) { 2023 if (ShouldBreakUpSubtract(I)) { 2024 Instruction *NI = BreakUpSubtract(I, RedoInsts); 2025 RedoInsts.insert(I); 2026 MadeChange = true; 2027 I = NI; 2028 } else if (BinaryOperator::isNeg(I)) { 2029 // Otherwise, this is a negation. See if the operand is a multiply tree 2030 // and if this is not an inner node of a multiply tree. 2031 if (isReassociableOp(I->getOperand(1), Instruction::Mul) && 2032 (!I->hasOneUse() || 2033 !isReassociableOp(I->user_back(), Instruction::Mul))) { 2034 Instruction *NI = LowerNegateToMultiply(I); 2035 // If the negate was simplified, revisit the users to see if we can 2036 // reassociate further. 2037 for (User *U : NI->users()) { 2038 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U)) 2039 RedoInsts.insert(Tmp); 2040 } 2041 RedoInsts.insert(I); 2042 MadeChange = true; 2043 I = NI; 2044 } 2045 } 2046 } else if (I->getOpcode() == Instruction::FSub) { 2047 if (ShouldBreakUpSubtract(I)) { 2048 Instruction *NI = BreakUpSubtract(I, RedoInsts); 2049 RedoInsts.insert(I); 2050 MadeChange = true; 2051 I = NI; 2052 } else if (BinaryOperator::isFNeg(I)) { 2053 // Otherwise, this is a negation. See if the operand is a multiply tree 2054 // and if this is not an inner node of a multiply tree. 2055 if (isReassociableOp(I->getOperand(1), Instruction::FMul) && 2056 (!I->hasOneUse() || 2057 !isReassociableOp(I->user_back(), Instruction::FMul))) { 2058 // If the negate was simplified, revisit the users to see if we can 2059 // reassociate further. 2060 Instruction *NI = LowerNegateToMultiply(I); 2061 for (User *U : NI->users()) { 2062 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U)) 2063 RedoInsts.insert(Tmp); 2064 } 2065 RedoInsts.insert(I); 2066 MadeChange = true; 2067 I = NI; 2068 } 2069 } 2070 } 2071 2072 // If this instruction is an associative binary operator, process it. 2073 if (!I->isAssociative()) return; 2074 BinaryOperator *BO = cast<BinaryOperator>(I); 2075 2076 // If this is an interior node of a reassociable tree, ignore it until we 2077 // get to the root of the tree, to avoid N^2 analysis. 2078 unsigned Opcode = BO->getOpcode(); 2079 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) { 2080 // During the initial run we will get to the root of the tree. 2081 // But if we get here while we are redoing instructions, there is no 2082 // guarantee that the root will be visited. So Redo later 2083 if (BO->user_back() != BO && 2084 BO->getParent() == BO->user_back()->getParent()) 2085 RedoInsts.insert(BO->user_back()); 2086 return; 2087 } 2088 2089 // If this is an add tree that is used by a sub instruction, ignore it 2090 // until we process the subtract. 2091 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add && 2092 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub) 2093 return; 2094 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd && 2095 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub) 2096 return; 2097 2098 ReassociateExpression(BO); 2099 } 2100 2101 void ReassociatePass::ReassociateExpression(BinaryOperator *I) { 2102 // First, walk the expression tree, linearizing the tree, collecting the 2103 // operand information. 2104 SmallVector<RepeatedValue, 8> Tree; 2105 MadeChange |= LinearizeExprTree(I, Tree); 2106 SmallVector<ValueEntry, 8> Ops; 2107 Ops.reserve(Tree.size()); 2108 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 2109 RepeatedValue E = Tree[i]; 2110 Ops.append(E.second.getZExtValue(), 2111 ValueEntry(getRank(E.first), E.first)); 2112 } 2113 2114 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2115 2116 // Now that we have linearized the tree to a list and have gathered all of 2117 // the operands and their ranks, sort the operands by their rank. Use a 2118 // stable_sort so that values with equal ranks will have their relative 2119 // positions maintained (and so the compiler is deterministic). Note that 2120 // this sorts so that the highest ranking values end up at the beginning of 2121 // the vector. 2122 std::stable_sort(Ops.begin(), Ops.end()); 2123 2124 // Now that we have the expression tree in a convenient 2125 // sorted form, optimize it globally if possible. 2126 if (Value *V = OptimizeExpression(I, Ops)) { 2127 if (V == I) 2128 // Self-referential expression in unreachable code. 2129 return; 2130 // This expression tree simplified to something that isn't a tree, 2131 // eliminate it. 2132 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n'); 2133 I->replaceAllUsesWith(V); 2134 if (Instruction *VI = dyn_cast<Instruction>(V)) 2135 VI->setDebugLoc(I->getDebugLoc()); 2136 RedoInsts.insert(I); 2137 ++NumAnnihil; 2138 return; 2139 } 2140 2141 // We want to sink immediates as deeply as possible except in the case where 2142 // this is a multiply tree used only by an add, and the immediate is a -1. 2143 // In this case we reassociate to put the negation on the outside so that we 2144 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y 2145 if (I->hasOneUse()) { 2146 if (I->getOpcode() == Instruction::Mul && 2147 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add && 2148 isa<ConstantInt>(Ops.back().Op) && 2149 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) { 2150 ValueEntry Tmp = Ops.pop_back_val(); 2151 Ops.insert(Ops.begin(), Tmp); 2152 } else if (I->getOpcode() == Instruction::FMul && 2153 cast<Instruction>(I->user_back())->getOpcode() == 2154 Instruction::FAdd && 2155 isa<ConstantFP>(Ops.back().Op) && 2156 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) { 2157 ValueEntry Tmp = Ops.pop_back_val(); 2158 Ops.insert(Ops.begin(), Tmp); 2159 } 2160 } 2161 2162 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2163 2164 if (Ops.size() == 1) { 2165 if (Ops[0].Op == I) 2166 // Self-referential expression in unreachable code. 2167 return; 2168 2169 // This expression tree simplified to something that isn't a tree, 2170 // eliminate it. 2171 I->replaceAllUsesWith(Ops[0].Op); 2172 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op)) 2173 OI->setDebugLoc(I->getDebugLoc()); 2174 RedoInsts.insert(I); 2175 return; 2176 } 2177 2178 // Now that we ordered and optimized the expressions, splat them back into 2179 // the expression tree, removing any unneeded nodes. 2180 RewriteExprTree(I, Ops); 2181 } 2182 2183 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) { 2184 // Get the functions basic blocks in Reverse Post Order. This order is used by 2185 // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic 2186 // blocks (it has been seen that the analysis in this pass could hang when 2187 // analysing dead basic blocks). 2188 ReversePostOrderTraversal<Function *> RPOT(&F); 2189 2190 // Calculate the rank map for F. 2191 BuildRankMap(F, RPOT); 2192 2193 MadeChange = false; 2194 // Traverse the same blocks that was analysed by BuildRankMap. 2195 for (BasicBlock *BI : RPOT) { 2196 assert(RankMap.count(&*BI) && "BB should be ranked."); 2197 // Optimize every instruction in the basic block. 2198 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;) 2199 if (isInstructionTriviallyDead(&*II)) { 2200 EraseInst(&*II++); 2201 } else { 2202 OptimizeInst(&*II); 2203 assert(II->getParent() == &*BI && "Moved to a different block!"); 2204 ++II; 2205 } 2206 2207 // Make a copy of all the instructions to be redone so we can remove dead 2208 // instructions. 2209 SetVector<AssertingVH<Instruction>> ToRedo(RedoInsts); 2210 // Iterate over all instructions to be reevaluated and remove trivially dead 2211 // instructions. If any operand of the trivially dead instruction becomes 2212 // dead mark it for deletion as well. Continue this process until all 2213 // trivially dead instructions have been removed. 2214 while (!ToRedo.empty()) { 2215 Instruction *I = ToRedo.pop_back_val(); 2216 if (isInstructionTriviallyDead(I)) { 2217 RecursivelyEraseDeadInsts(I, ToRedo); 2218 MadeChange = true; 2219 } 2220 } 2221 2222 // Now that we have removed dead instructions, we can reoptimize the 2223 // remaining instructions. 2224 while (!RedoInsts.empty()) { 2225 Instruction *I = RedoInsts.pop_back_val(); 2226 if (isInstructionTriviallyDead(I)) 2227 EraseInst(I); 2228 else 2229 OptimizeInst(I); 2230 } 2231 } 2232 2233 // We are done with the rank map. 2234 RankMap.clear(); 2235 ValueRankMap.clear(); 2236 2237 if (MadeChange) { 2238 PreservedAnalyses PA; 2239 PA.preserveSet<CFGAnalyses>(); 2240 PA.preserve<GlobalsAA>(); 2241 return PA; 2242 } 2243 2244 return PreservedAnalyses::all(); 2245 } 2246 2247 namespace { 2248 class ReassociateLegacyPass : public FunctionPass { 2249 ReassociatePass Impl; 2250 public: 2251 static char ID; // Pass identification, replacement for typeid 2252 ReassociateLegacyPass() : FunctionPass(ID) { 2253 initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry()); 2254 } 2255 2256 bool runOnFunction(Function &F) override { 2257 if (skipFunction(F)) 2258 return false; 2259 2260 FunctionAnalysisManager DummyFAM; 2261 auto PA = Impl.run(F, DummyFAM); 2262 return !PA.areAllPreserved(); 2263 } 2264 2265 void getAnalysisUsage(AnalysisUsage &AU) const override { 2266 AU.setPreservesCFG(); 2267 AU.addPreserved<GlobalsAAWrapperPass>(); 2268 } 2269 }; 2270 } 2271 2272 char ReassociateLegacyPass::ID = 0; 2273 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate", 2274 "Reassociate expressions", false, false) 2275 2276 // Public interface to the Reassociate pass 2277 FunctionPass *llvm::createReassociatePass() { 2278 return new ReassociateLegacyPass(); 2279 } 2280