1 //===- NewGVN.cpp - Global Value Numbering Pass ---------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file implements the new LLVM's Global Value Numbering pass.
11 /// GVN partitions values computed by a function into congruence classes.
12 /// Values ending up in the same congruence class are guaranteed to be the same
13 /// for every execution of the program. In that respect, congruency is a
14 /// compile-time approximation of equivalence of values at runtime.
15 /// The algorithm implemented here uses a sparse formulation and it's based
16 /// on the ideas described in the paper:
17 /// "A Sparse Algorithm for Predicated Global Value Numbering" from
18 /// Karthik Gargi.
19 ///
20 /// A brief overview of the algorithm: The algorithm is essentially the same as
21 /// the standard RPO value numbering algorithm (a good reference is the paper
22 /// "SCC based value numbering" by L. Taylor Simpson) with one major difference:
23 /// The RPO algorithm proceeds, on every iteration, to process every reachable
24 /// block and every instruction in that block.  This is because the standard RPO
25 /// algorithm does not track what things have the same value number, it only
26 /// tracks what the value number of a given operation is (the mapping is
27 /// operation -> value number).  Thus, when a value number of an operation
28 /// changes, it must reprocess everything to ensure all uses of a value number
29 /// get updated properly.  In constrast, the sparse algorithm we use *also*
30 /// tracks what operations have a given value number (IE it also tracks the
31 /// reverse mapping from value number -> operations with that value number), so
32 /// that it only needs to reprocess the instructions that are affected when
33 /// something's value number changes.  The vast majority of complexity and code
34 /// in this file is devoted to tracking what value numbers could change for what
35 /// instructions when various things happen.  The rest of the algorithm is
36 /// devoted to performing symbolic evaluation, forward propagation, and
37 /// simplification of operations based on the value numbers deduced so far
38 ///
39 /// In order to make the GVN mostly-complete, we use a technique derived from
40 /// "Detection of Redundant Expressions: A Complete and Polynomial-time
41 /// Algorithm in SSA" by R.R. Pai.  The source of incompleteness in most SSA
42 /// based GVN algorithms is related to their inability to detect equivalence
43 /// between phi of ops (IE phi(a+b, c+d)) and op of phis (phi(a,c) + phi(b, d)).
44 /// We resolve this issue by generating the equivalent "phi of ops" form for
45 /// each op of phis we see, in a way that only takes polynomial time to resolve.
46 ///
47 /// We also do not perform elimination by using any published algorithm.  All
48 /// published algorithms are O(Instructions). Instead, we use a technique that
49 /// is O(number of operations with the same value number), enabling us to skip
50 /// trying to eliminate things that have unique value numbers.
51 //
52 //===----------------------------------------------------------------------===//
53 
54 #include "llvm/Transforms/Scalar/NewGVN.h"
55 #include "llvm/ADT/ArrayRef.h"
56 #include "llvm/ADT/BitVector.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseMapInfo.h"
59 #include "llvm/ADT/DenseSet.h"
60 #include "llvm/ADT/DepthFirstIterator.h"
61 #include "llvm/ADT/GraphTraits.h"
62 #include "llvm/ADT/Hashing.h"
63 #include "llvm/ADT/PointerIntPair.h"
64 #include "llvm/ADT/PostOrderIterator.h"
65 #include "llvm/ADT/SetOperations.h"
66 #include "llvm/ADT/SmallPtrSet.h"
67 #include "llvm/ADT/SmallVector.h"
68 #include "llvm/ADT/SparseBitVector.h"
69 #include "llvm/ADT/Statistic.h"
70 #include "llvm/ADT/iterator_range.h"
71 #include "llvm/Analysis/AliasAnalysis.h"
72 #include "llvm/Analysis/AssumptionCache.h"
73 #include "llvm/Analysis/CFGPrinter.h"
74 #include "llvm/Analysis/ConstantFolding.h"
75 #include "llvm/Analysis/GlobalsModRef.h"
76 #include "llvm/Analysis/InstructionSimplify.h"
77 #include "llvm/Analysis/MemoryBuiltins.h"
78 #include "llvm/Analysis/MemorySSA.h"
79 #include "llvm/Analysis/TargetLibraryInfo.h"
80 #include "llvm/Analysis/ValueTracking.h"
81 #include "llvm/IR/Argument.h"
82 #include "llvm/IR/BasicBlock.h"
83 #include "llvm/IR/Constant.h"
84 #include "llvm/IR/Constants.h"
85 #include "llvm/IR/Dominators.h"
86 #include "llvm/IR/Function.h"
87 #include "llvm/IR/InstrTypes.h"
88 #include "llvm/IR/Instruction.h"
89 #include "llvm/IR/Instructions.h"
90 #include "llvm/IR/IntrinsicInst.h"
91 #include "llvm/IR/PatternMatch.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/Use.h"
94 #include "llvm/IR/User.h"
95 #include "llvm/IR/Value.h"
96 #include "llvm/InitializePasses.h"
97 #include "llvm/Pass.h"
98 #include "llvm/Support/Allocator.h"
99 #include "llvm/Support/ArrayRecycler.h"
100 #include "llvm/Support/Casting.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Debug.h"
103 #include "llvm/Support/DebugCounter.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/PointerLikeTypeTraits.h"
106 #include "llvm/Support/raw_ostream.h"
107 #include "llvm/Transforms/Scalar.h"
108 #include "llvm/Transforms/Scalar/GVNExpression.h"
109 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
110 #include "llvm/Transforms/Utils/Local.h"
111 #include "llvm/Transforms/Utils/PredicateInfo.h"
112 #include "llvm/Transforms/Utils/VNCoercion.h"
113 #include <algorithm>
114 #include <cassert>
115 #include <cstdint>
116 #include <iterator>
117 #include <map>
118 #include <memory>
119 #include <set>
120 #include <string>
121 #include <tuple>
122 #include <utility>
123 #include <vector>
124 
125 using namespace llvm;
126 using namespace llvm::GVNExpression;
127 using namespace llvm::VNCoercion;
128 using namespace llvm::PatternMatch;
129 
130 #define DEBUG_TYPE "newgvn"
131 
132 STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted");
133 STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted");
134 STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified");
135 STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same");
136 STATISTIC(NumGVNMaxIterations,
137           "Maximum Number of iterations it took to converge GVN");
138 STATISTIC(NumGVNLeaderChanges, "Number of leader changes");
139 STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes");
140 STATISTIC(NumGVNAvoidedSortedLeaderChanges,
141           "Number of avoided sorted leader changes");
142 STATISTIC(NumGVNDeadStores, "Number of redundant/dead stores eliminated");
143 STATISTIC(NumGVNPHIOfOpsCreated, "Number of PHI of ops created");
144 STATISTIC(NumGVNPHIOfOpsEliminations,
145           "Number of things eliminated using PHI of ops");
146 DEBUG_COUNTER(VNCounter, "newgvn-vn",
147               "Controls which instructions are value numbered");
148 DEBUG_COUNTER(PHIOfOpsCounter, "newgvn-phi",
149               "Controls which instructions we create phi of ops for");
150 // Currently store defining access refinement is too slow due to basicaa being
151 // egregiously slow.  This flag lets us keep it working while we work on this
152 // issue.
153 static cl::opt<bool> EnableStoreRefinement("enable-store-refinement",
154                                            cl::init(false), cl::Hidden);
155 
156 /// Currently, the generation "phi of ops" can result in correctness issues.
157 static cl::opt<bool> EnablePhiOfOps("enable-phi-of-ops", cl::init(true),
158                                     cl::Hidden);
159 
160 //===----------------------------------------------------------------------===//
161 //                                GVN Pass
162 //===----------------------------------------------------------------------===//
163 
164 // Anchor methods.
165 namespace llvm {
166 namespace GVNExpression {
167 
168 Expression::~Expression() = default;
169 BasicExpression::~BasicExpression() = default;
170 CallExpression::~CallExpression() = default;
171 LoadExpression::~LoadExpression() = default;
172 StoreExpression::~StoreExpression() = default;
173 AggregateValueExpression::~AggregateValueExpression() = default;
174 PHIExpression::~PHIExpression() = default;
175 
176 } // end namespace GVNExpression
177 } // end namespace llvm
178 
179 namespace {
180 
181 // Tarjan's SCC finding algorithm with Nuutila's improvements
182 // SCCIterator is actually fairly complex for the simple thing we want.
183 // It also wants to hand us SCC's that are unrelated to the phi node we ask
184 // about, and have us process them there or risk redoing work.
185 // Graph traits over a filter iterator also doesn't work that well here.
186 // This SCC finder is specialized to walk use-def chains, and only follows
187 // instructions,
188 // not generic values (arguments, etc).
189 struct TarjanSCC {
190   TarjanSCC() : Components(1) {}
191 
192   void Start(const Instruction *Start) {
193     if (Root.lookup(Start) == 0)
194       FindSCC(Start);
195   }
196 
197   const SmallPtrSetImpl<const Value *> &getComponentFor(const Value *V) const {
198     unsigned ComponentID = ValueToComponent.lookup(V);
199 
200     assert(ComponentID > 0 &&
201            "Asking for a component for a value we never processed");
202     return Components[ComponentID];
203   }
204 
205 private:
206   void FindSCC(const Instruction *I) {
207     Root[I] = ++DFSNum;
208     // Store the DFS Number we had before it possibly gets incremented.
209     unsigned int OurDFS = DFSNum;
210     for (auto &Op : I->operands()) {
211       if (auto *InstOp = dyn_cast<Instruction>(Op)) {
212         if (Root.lookup(Op) == 0)
213           FindSCC(InstOp);
214         if (!InComponent.count(Op))
215           Root[I] = std::min(Root.lookup(I), Root.lookup(Op));
216       }
217     }
218     // See if we really were the root of a component, by seeing if we still have
219     // our DFSNumber.  If we do, we are the root of the component, and we have
220     // completed a component. If we do not, we are not the root of a component,
221     // and belong on the component stack.
222     if (Root.lookup(I) == OurDFS) {
223       unsigned ComponentID = Components.size();
224       Components.resize(Components.size() + 1);
225       auto &Component = Components.back();
226       Component.insert(I);
227       LLVM_DEBUG(dbgs() << "Component root is " << *I << "\n");
228       InComponent.insert(I);
229       ValueToComponent[I] = ComponentID;
230       // Pop a component off the stack and label it.
231       while (!Stack.empty() && Root.lookup(Stack.back()) >= OurDFS) {
232         auto *Member = Stack.back();
233         LLVM_DEBUG(dbgs() << "Component member is " << *Member << "\n");
234         Component.insert(Member);
235         InComponent.insert(Member);
236         ValueToComponent[Member] = ComponentID;
237         Stack.pop_back();
238       }
239     } else {
240       // Part of a component, push to stack
241       Stack.push_back(I);
242     }
243   }
244 
245   unsigned int DFSNum = 1;
246   SmallPtrSet<const Value *, 8> InComponent;
247   DenseMap<const Value *, unsigned int> Root;
248   SmallVector<const Value *, 8> Stack;
249 
250   // Store the components as vector of ptr sets, because we need the topo order
251   // of SCC's, but not individual member order
252   SmallVector<SmallPtrSet<const Value *, 8>, 8> Components;
253 
254   DenseMap<const Value *, unsigned> ValueToComponent;
255 };
256 
257 // Congruence classes represent the set of expressions/instructions
258 // that are all the same *during some scope in the function*.
259 // That is, because of the way we perform equality propagation, and
260 // because of memory value numbering, it is not correct to assume
261 // you can willy-nilly replace any member with any other at any
262 // point in the function.
263 //
264 // For any Value in the Member set, it is valid to replace any dominated member
265 // with that Value.
266 //
267 // Every congruence class has a leader, and the leader is used to symbolize
268 // instructions in a canonical way (IE every operand of an instruction that is a
269 // member of the same congruence class will always be replaced with leader
270 // during symbolization).  To simplify symbolization, we keep the leader as a
271 // constant if class can be proved to be a constant value.  Otherwise, the
272 // leader is the member of the value set with the smallest DFS number.  Each
273 // congruence class also has a defining expression, though the expression may be
274 // null.  If it exists, it can be used for forward propagation and reassociation
275 // of values.
276 
277 // For memory, we also track a representative MemoryAccess, and a set of memory
278 // members for MemoryPhis (which have no real instructions). Note that for
279 // memory, it seems tempting to try to split the memory members into a
280 // MemoryCongruenceClass or something.  Unfortunately, this does not work
281 // easily.  The value numbering of a given memory expression depends on the
282 // leader of the memory congruence class, and the leader of memory congruence
283 // class depends on the value numbering of a given memory expression.  This
284 // leads to wasted propagation, and in some cases, missed optimization.  For
285 // example: If we had value numbered two stores together before, but now do not,
286 // we move them to a new value congruence class.  This in turn will move at one
287 // of the memorydefs to a new memory congruence class.  Which in turn, affects
288 // the value numbering of the stores we just value numbered (because the memory
289 // congruence class is part of the value number).  So while theoretically
290 // possible to split them up, it turns out to be *incredibly* complicated to get
291 // it to work right, because of the interdependency.  While structurally
292 // slightly messier, it is algorithmically much simpler and faster to do what we
293 // do here, and track them both at once in the same class.
294 // Note: The default iterators for this class iterate over values
295 class CongruenceClass {
296 public:
297   using MemberType = Value;
298   using MemberSet = SmallPtrSet<MemberType *, 4>;
299   using MemoryMemberType = MemoryPhi;
300   using MemoryMemberSet = SmallPtrSet<const MemoryMemberType *, 2>;
301 
302   explicit CongruenceClass(unsigned ID) : ID(ID) {}
303   CongruenceClass(unsigned ID, Value *Leader, const Expression *E)
304       : ID(ID), RepLeader(Leader), DefiningExpr(E) {}
305 
306   unsigned getID() const { return ID; }
307 
308   // True if this class has no members left.  This is mainly used for assertion
309   // purposes, and for skipping empty classes.
310   bool isDead() const {
311     // If it's both dead from a value perspective, and dead from a memory
312     // perspective, it's really dead.
313     return empty() && memory_empty();
314   }
315 
316   // Leader functions
317   Value *getLeader() const { return RepLeader; }
318   void setLeader(Value *Leader) { RepLeader = Leader; }
319   const std::pair<Value *, unsigned int> &getNextLeader() const {
320     return NextLeader;
321   }
322   void resetNextLeader() { NextLeader = {nullptr, ~0}; }
323   void addPossibleNextLeader(std::pair<Value *, unsigned int> LeaderPair) {
324     if (LeaderPair.second < NextLeader.second)
325       NextLeader = LeaderPair;
326   }
327 
328   Value *getStoredValue() const { return RepStoredValue; }
329   void setStoredValue(Value *Leader) { RepStoredValue = Leader; }
330   const MemoryAccess *getMemoryLeader() const { return RepMemoryAccess; }
331   void setMemoryLeader(const MemoryAccess *Leader) { RepMemoryAccess = Leader; }
332 
333   // Forward propagation info
334   const Expression *getDefiningExpr() const { return DefiningExpr; }
335 
336   // Value member set
337   bool empty() const { return Members.empty(); }
338   unsigned size() const { return Members.size(); }
339   MemberSet::const_iterator begin() const { return Members.begin(); }
340   MemberSet::const_iterator end() const { return Members.end(); }
341   void insert(MemberType *M) { Members.insert(M); }
342   void erase(MemberType *M) { Members.erase(M); }
343   void swap(MemberSet &Other) { Members.swap(Other); }
344 
345   // Memory member set
346   bool memory_empty() const { return MemoryMembers.empty(); }
347   unsigned memory_size() const { return MemoryMembers.size(); }
348   MemoryMemberSet::const_iterator memory_begin() const {
349     return MemoryMembers.begin();
350   }
351   MemoryMemberSet::const_iterator memory_end() const {
352     return MemoryMembers.end();
353   }
354   iterator_range<MemoryMemberSet::const_iterator> memory() const {
355     return make_range(memory_begin(), memory_end());
356   }
357 
358   void memory_insert(const MemoryMemberType *M) { MemoryMembers.insert(M); }
359   void memory_erase(const MemoryMemberType *M) { MemoryMembers.erase(M); }
360 
361   // Store count
362   unsigned getStoreCount() const { return StoreCount; }
363   void incStoreCount() { ++StoreCount; }
364   void decStoreCount() {
365     assert(StoreCount != 0 && "Store count went negative");
366     --StoreCount;
367   }
368 
369   // True if this class has no memory members.
370   bool definesNoMemory() const { return StoreCount == 0 && memory_empty(); }
371 
372   // Return true if two congruence classes are equivalent to each other. This
373   // means that every field but the ID number and the dead field are equivalent.
374   bool isEquivalentTo(const CongruenceClass *Other) const {
375     if (!Other)
376       return false;
377     if (this == Other)
378       return true;
379 
380     if (std::tie(StoreCount, RepLeader, RepStoredValue, RepMemoryAccess) !=
381         std::tie(Other->StoreCount, Other->RepLeader, Other->RepStoredValue,
382                  Other->RepMemoryAccess))
383       return false;
384     if (DefiningExpr != Other->DefiningExpr)
385       if (!DefiningExpr || !Other->DefiningExpr ||
386           *DefiningExpr != *Other->DefiningExpr)
387         return false;
388 
389     if (Members.size() != Other->Members.size())
390       return false;
391 
392     return llvm::set_is_subset(Members, Other->Members);
393   }
394 
395 private:
396   unsigned ID;
397 
398   // Representative leader.
399   Value *RepLeader = nullptr;
400 
401   // The most dominating leader after our current leader, because the member set
402   // is not sorted and is expensive to keep sorted all the time.
403   std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U};
404 
405   // If this is represented by a store, the value of the store.
406   Value *RepStoredValue = nullptr;
407 
408   // If this class contains MemoryDefs or MemoryPhis, this is the leading memory
409   // access.
410   const MemoryAccess *RepMemoryAccess = nullptr;
411 
412   // Defining Expression.
413   const Expression *DefiningExpr = nullptr;
414 
415   // Actual members of this class.
416   MemberSet Members;
417 
418   // This is the set of MemoryPhis that exist in the class. MemoryDefs and
419   // MemoryUses have real instructions representing them, so we only need to
420   // track MemoryPhis here.
421   MemoryMemberSet MemoryMembers;
422 
423   // Number of stores in this congruence class.
424   // This is used so we can detect store equivalence changes properly.
425   int StoreCount = 0;
426 };
427 
428 } // end anonymous namespace
429 
430 namespace llvm {
431 
432 struct ExactEqualsExpression {
433   const Expression &E;
434 
435   explicit ExactEqualsExpression(const Expression &E) : E(E) {}
436 
437   hash_code getComputedHash() const { return E.getComputedHash(); }
438 
439   bool operator==(const Expression &Other) const {
440     return E.exactlyEquals(Other);
441   }
442 };
443 
444 template <> struct DenseMapInfo<const Expression *> {
445   static const Expression *getEmptyKey() {
446     auto Val = static_cast<uintptr_t>(-1);
447     Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
448     return reinterpret_cast<const Expression *>(Val);
449   }
450 
451   static const Expression *getTombstoneKey() {
452     auto Val = static_cast<uintptr_t>(~1U);
453     Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
454     return reinterpret_cast<const Expression *>(Val);
455   }
456 
457   static unsigned getHashValue(const Expression *E) {
458     return E->getComputedHash();
459   }
460 
461   static unsigned getHashValue(const ExactEqualsExpression &E) {
462     return E.getComputedHash();
463   }
464 
465   static bool isEqual(const ExactEqualsExpression &LHS, const Expression *RHS) {
466     if (RHS == getTombstoneKey() || RHS == getEmptyKey())
467       return false;
468     return LHS == *RHS;
469   }
470 
471   static bool isEqual(const Expression *LHS, const Expression *RHS) {
472     if (LHS == RHS)
473       return true;
474     if (LHS == getTombstoneKey() || RHS == getTombstoneKey() ||
475         LHS == getEmptyKey() || RHS == getEmptyKey())
476       return false;
477     // Compare hashes before equality.  This is *not* what the hashtable does,
478     // since it is computing it modulo the number of buckets, whereas we are
479     // using the full hash keyspace.  Since the hashes are precomputed, this
480     // check is *much* faster than equality.
481     if (LHS->getComputedHash() != RHS->getComputedHash())
482       return false;
483     return *LHS == *RHS;
484   }
485 };
486 
487 } // end namespace llvm
488 
489 namespace {
490 
491 class NewGVN {
492   Function &F;
493   DominatorTree *DT = nullptr;
494   const TargetLibraryInfo *TLI = nullptr;
495   AliasAnalysis *AA = nullptr;
496   MemorySSA *MSSA = nullptr;
497   MemorySSAWalker *MSSAWalker = nullptr;
498   AssumptionCache *AC = nullptr;
499   const DataLayout &DL;
500   std::unique_ptr<PredicateInfo> PredInfo;
501 
502   // These are the only two things the create* functions should have
503   // side-effects on due to allocating memory.
504   mutable BumpPtrAllocator ExpressionAllocator;
505   mutable ArrayRecycler<Value *> ArgRecycler;
506   mutable TarjanSCC SCCFinder;
507   const SimplifyQuery SQ;
508 
509   // Number of function arguments, used by ranking
510   unsigned int NumFuncArgs = 0;
511 
512   // RPOOrdering of basic blocks
513   DenseMap<const DomTreeNode *, unsigned> RPOOrdering;
514 
515   // Congruence class info.
516 
517   // This class is called INITIAL in the paper. It is the class everything
518   // startsout in, and represents any value. Being an optimistic analysis,
519   // anything in the TOP class has the value TOP, which is indeterminate and
520   // equivalent to everything.
521   CongruenceClass *TOPClass = nullptr;
522   std::vector<CongruenceClass *> CongruenceClasses;
523   unsigned NextCongruenceNum = 0;
524 
525   // Value Mappings.
526   DenseMap<Value *, CongruenceClass *> ValueToClass;
527   DenseMap<Value *, const Expression *> ValueToExpression;
528 
529   // Value PHI handling, used to make equivalence between phi(op, op) and
530   // op(phi, phi).
531   // These mappings just store various data that would normally be part of the
532   // IR.
533   SmallPtrSet<const Instruction *, 8> PHINodeUses;
534 
535   DenseMap<const Value *, bool> OpSafeForPHIOfOps;
536 
537   // Map a temporary instruction we created to a parent block.
538   DenseMap<const Value *, BasicBlock *> TempToBlock;
539 
540   // Map between the already in-program instructions and the temporary phis we
541   // created that they are known equivalent to.
542   DenseMap<const Value *, PHINode *> RealToTemp;
543 
544   // In order to know when we should re-process instructions that have
545   // phi-of-ops, we track the set of expressions that they needed as
546   // leaders. When we discover new leaders for those expressions, we process the
547   // associated phi-of-op instructions again in case they have changed.  The
548   // other way they may change is if they had leaders, and those leaders
549   // disappear.  However, at the point they have leaders, there are uses of the
550   // relevant operands in the created phi node, and so they will get reprocessed
551   // through the normal user marking we perform.
552   mutable DenseMap<const Value *, SmallPtrSet<Value *, 2>> AdditionalUsers;
553   DenseMap<const Expression *, SmallPtrSet<Instruction *, 2>>
554       ExpressionToPhiOfOps;
555 
556   // Map from temporary operation to MemoryAccess.
557   DenseMap<const Instruction *, MemoryUseOrDef *> TempToMemory;
558 
559   // Set of all temporary instructions we created.
560   // Note: This will include instructions that were just created during value
561   // numbering.  The way to test if something is using them is to check
562   // RealToTemp.
563   DenseSet<Instruction *> AllTempInstructions;
564 
565   // This is the set of instructions to revisit on a reachability change.  At
566   // the end of the main iteration loop it will contain at least all the phi of
567   // ops instructions that will be changed to phis, as well as regular phis.
568   // During the iteration loop, it may contain other things, such as phi of ops
569   // instructions that used edge reachability to reach a result, and so need to
570   // be revisited when the edge changes, independent of whether the phi they
571   // depended on changes.
572   DenseMap<BasicBlock *, SparseBitVector<>> RevisitOnReachabilityChange;
573 
574   // Mapping from predicate info we used to the instructions we used it with.
575   // In order to correctly ensure propagation, we must keep track of what
576   // comparisons we used, so that when the values of the comparisons change, we
577   // propagate the information to the places we used the comparison.
578   mutable DenseMap<const Value *, SmallPtrSet<Instruction *, 2>>
579       PredicateToUsers;
580 
581   // the same reasoning as PredicateToUsers.  When we skip MemoryAccesses for
582   // stores, we no longer can rely solely on the def-use chains of MemorySSA.
583   mutable DenseMap<const MemoryAccess *, SmallPtrSet<MemoryAccess *, 2>>
584       MemoryToUsers;
585 
586   // A table storing which memorydefs/phis represent a memory state provably
587   // equivalent to another memory state.
588   // We could use the congruence class machinery, but the MemoryAccess's are
589   // abstract memory states, so they can only ever be equivalent to each other,
590   // and not to constants, etc.
591   DenseMap<const MemoryAccess *, CongruenceClass *> MemoryAccessToClass;
592 
593   // We could, if we wanted, build MemoryPhiExpressions and
594   // MemoryVariableExpressions, etc, and value number them the same way we value
595   // number phi expressions.  For the moment, this seems like overkill.  They
596   // can only exist in one of three states: they can be TOP (equal to
597   // everything), Equivalent to something else, or unique.  Because we do not
598   // create expressions for them, we need to simulate leader change not just
599   // when they change class, but when they change state.  Note: We can do the
600   // same thing for phis, and avoid having phi expressions if we wanted, We
601   // should eventually unify in one direction or the other, so this is a little
602   // bit of an experiment in which turns out easier to maintain.
603   enum MemoryPhiState { MPS_Invalid, MPS_TOP, MPS_Equivalent, MPS_Unique };
604   DenseMap<const MemoryPhi *, MemoryPhiState> MemoryPhiState;
605 
606   enum InstCycleState { ICS_Unknown, ICS_CycleFree, ICS_Cycle };
607   mutable DenseMap<const Instruction *, InstCycleState> InstCycleState;
608 
609   // Expression to class mapping.
610   using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>;
611   ExpressionClassMap ExpressionToClass;
612 
613   // We have a single expression that represents currently DeadExpressions.
614   // For dead expressions we can prove will stay dead, we mark them with
615   // DFS number zero.  However, it's possible in the case of phi nodes
616   // for us to assume/prove all arguments are dead during fixpointing.
617   // We use DeadExpression for that case.
618   DeadExpression *SingletonDeadExpression = nullptr;
619 
620   // Which values have changed as a result of leader changes.
621   SmallPtrSet<Value *, 8> LeaderChanges;
622 
623   // Reachability info.
624   using BlockEdge = BasicBlockEdge;
625   DenseSet<BlockEdge> ReachableEdges;
626   SmallPtrSet<const BasicBlock *, 8> ReachableBlocks;
627 
628   // This is a bitvector because, on larger functions, we may have
629   // thousands of touched instructions at once (entire blocks,
630   // instructions with hundreds of uses, etc).  Even with optimization
631   // for when we mark whole blocks as touched, when this was a
632   // SmallPtrSet or DenseSet, for some functions, we spent >20% of all
633   // the time in GVN just managing this list.  The bitvector, on the
634   // other hand, efficiently supports test/set/clear of both
635   // individual and ranges, as well as "find next element" This
636   // enables us to use it as a worklist with essentially 0 cost.
637   BitVector TouchedInstructions;
638 
639   DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange;
640   mutable DenseMap<const IntrinsicInst *, const Value *> IntrinsicInstPred;
641 
642 #ifndef NDEBUG
643   // Debugging for how many times each block and instruction got processed.
644   DenseMap<const Value *, unsigned> ProcessedCount;
645 #endif
646 
647   // DFS info.
648   // This contains a mapping from Instructions to DFS numbers.
649   // The numbering starts at 1. An instruction with DFS number zero
650   // means that the instruction is dead.
651   DenseMap<const Value *, unsigned> InstrDFS;
652 
653   // This contains the mapping DFS numbers to instructions.
654   SmallVector<Value *, 32> DFSToInstr;
655 
656   // Deletion info.
657   SmallPtrSet<Instruction *, 8> InstructionsToErase;
658 
659 public:
660   NewGVN(Function &F, DominatorTree *DT, AssumptionCache *AC,
661          TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA,
662          const DataLayout &DL)
663       : F(F), DT(DT), TLI(TLI), AA(AA), MSSA(MSSA), AC(AC), DL(DL),
664         PredInfo(std::make_unique<PredicateInfo>(F, *DT, *AC)),
665         SQ(DL, TLI, DT, AC, /*CtxI=*/nullptr, /*UseInstrInfo=*/false,
666            /*CanUseUndef=*/false) {}
667 
668   bool runGVN();
669 
670 private:
671   /// Helper struct return a Expression with an optional extra dependency.
672   struct ExprResult {
673     const Expression *Expr;
674     Value *ExtraDep;
675     const PredicateBase *PredDep;
676 
677     ExprResult(const Expression *Expr, Value *ExtraDep = nullptr,
678                const PredicateBase *PredDep = nullptr)
679         : Expr(Expr), ExtraDep(ExtraDep), PredDep(PredDep) {}
680     ExprResult(const ExprResult &) = delete;
681     ExprResult(ExprResult &&Other)
682         : Expr(Other.Expr), ExtraDep(Other.ExtraDep), PredDep(Other.PredDep) {
683       Other.Expr = nullptr;
684       Other.ExtraDep = nullptr;
685       Other.PredDep = nullptr;
686     }
687     ExprResult &operator=(const ExprResult &Other) = delete;
688     ExprResult &operator=(ExprResult &&Other) = delete;
689 
690     ~ExprResult() { assert(!ExtraDep && "unhandled ExtraDep"); }
691 
692     operator bool() const { return Expr; }
693 
694     static ExprResult none() { return {nullptr, nullptr, nullptr}; }
695     static ExprResult some(const Expression *Expr, Value *ExtraDep = nullptr) {
696       return {Expr, ExtraDep, nullptr};
697     }
698     static ExprResult some(const Expression *Expr,
699                            const PredicateBase *PredDep) {
700       return {Expr, nullptr, PredDep};
701     }
702     static ExprResult some(const Expression *Expr, Value *ExtraDep,
703                            const PredicateBase *PredDep) {
704       return {Expr, ExtraDep, PredDep};
705     }
706   };
707 
708   // Expression handling.
709   ExprResult createExpression(Instruction *) const;
710   const Expression *createBinaryExpression(unsigned, Type *, Value *, Value *,
711                                            Instruction *) const;
712 
713   // Our canonical form for phi arguments is a pair of incoming value, incoming
714   // basic block.
715   using ValPair = std::pair<Value *, BasicBlock *>;
716 
717   PHIExpression *createPHIExpression(ArrayRef<ValPair>, const Instruction *,
718                                      BasicBlock *, bool &HasBackEdge,
719                                      bool &OriginalOpsConstant) const;
720   const DeadExpression *createDeadExpression() const;
721   const VariableExpression *createVariableExpression(Value *) const;
722   const ConstantExpression *createConstantExpression(Constant *) const;
723   const Expression *createVariableOrConstant(Value *V) const;
724   const UnknownExpression *createUnknownExpression(Instruction *) const;
725   const StoreExpression *createStoreExpression(StoreInst *,
726                                                const MemoryAccess *) const;
727   LoadExpression *createLoadExpression(Type *, Value *, LoadInst *,
728                                        const MemoryAccess *) const;
729   const CallExpression *createCallExpression(CallInst *,
730                                              const MemoryAccess *) const;
731   const AggregateValueExpression *
732   createAggregateValueExpression(Instruction *) const;
733   bool setBasicExpressionInfo(Instruction *, BasicExpression *) const;
734 
735   // Congruence class handling.
736   CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) {
737     auto *result = new CongruenceClass(NextCongruenceNum++, Leader, E);
738     CongruenceClasses.emplace_back(result);
739     return result;
740   }
741 
742   CongruenceClass *createMemoryClass(MemoryAccess *MA) {
743     auto *CC = createCongruenceClass(nullptr, nullptr);
744     CC->setMemoryLeader(MA);
745     return CC;
746   }
747 
748   CongruenceClass *ensureLeaderOfMemoryClass(MemoryAccess *MA) {
749     auto *CC = getMemoryClass(MA);
750     if (CC->getMemoryLeader() != MA)
751       CC = createMemoryClass(MA);
752     return CC;
753   }
754 
755   CongruenceClass *createSingletonCongruenceClass(Value *Member) {
756     CongruenceClass *CClass = createCongruenceClass(Member, nullptr);
757     CClass->insert(Member);
758     ValueToClass[Member] = CClass;
759     return CClass;
760   }
761 
762   void initializeCongruenceClasses(Function &F);
763   const Expression *makePossiblePHIOfOps(Instruction *,
764                                          SmallPtrSetImpl<Value *> &);
765   Value *findLeaderForInst(Instruction *ValueOp,
766                            SmallPtrSetImpl<Value *> &Visited,
767                            MemoryAccess *MemAccess, Instruction *OrigInst,
768                            BasicBlock *PredBB);
769   bool OpIsSafeForPHIOfOpsHelper(Value *V, const BasicBlock *PHIBlock,
770                                  SmallPtrSetImpl<const Value *> &Visited,
771                                  SmallVectorImpl<Instruction *> &Worklist);
772   bool OpIsSafeForPHIOfOps(Value *Op, const BasicBlock *PHIBlock,
773                            SmallPtrSetImpl<const Value *> &);
774   void addPhiOfOps(PHINode *Op, BasicBlock *BB, Instruction *ExistingValue);
775   void removePhiOfOps(Instruction *I, PHINode *PHITemp);
776 
777   // Value number an Instruction or MemoryPhi.
778   void valueNumberMemoryPhi(MemoryPhi *);
779   void valueNumberInstruction(Instruction *);
780 
781   // Symbolic evaluation.
782   ExprResult checkExprResults(Expression *, Instruction *, Value *) const;
783   ExprResult performSymbolicEvaluation(Value *,
784                                        SmallPtrSetImpl<Value *> &) const;
785   const Expression *performSymbolicLoadCoercion(Type *, Value *, LoadInst *,
786                                                 Instruction *,
787                                                 MemoryAccess *) const;
788   const Expression *performSymbolicLoadEvaluation(Instruction *) const;
789   const Expression *performSymbolicStoreEvaluation(Instruction *) const;
790   ExprResult performSymbolicCallEvaluation(Instruction *) const;
791   void sortPHIOps(MutableArrayRef<ValPair> Ops) const;
792   const Expression *performSymbolicPHIEvaluation(ArrayRef<ValPair>,
793                                                  Instruction *I,
794                                                  BasicBlock *PHIBlock) const;
795   const Expression *performSymbolicAggrValueEvaluation(Instruction *) const;
796   ExprResult performSymbolicCmpEvaluation(Instruction *) const;
797   ExprResult performSymbolicPredicateInfoEvaluation(IntrinsicInst *) const;
798 
799   // Congruence finding.
800   bool someEquivalentDominates(const Instruction *, const Instruction *) const;
801   Value *lookupOperandLeader(Value *) const;
802   CongruenceClass *getClassForExpression(const Expression *E) const;
803   void performCongruenceFinding(Instruction *, const Expression *);
804   void moveValueToNewCongruenceClass(Instruction *, const Expression *,
805                                      CongruenceClass *, CongruenceClass *);
806   void moveMemoryToNewCongruenceClass(Instruction *, MemoryAccess *,
807                                       CongruenceClass *, CongruenceClass *);
808   Value *getNextValueLeader(CongruenceClass *) const;
809   const MemoryAccess *getNextMemoryLeader(CongruenceClass *) const;
810   bool setMemoryClass(const MemoryAccess *From, CongruenceClass *To);
811   CongruenceClass *getMemoryClass(const MemoryAccess *MA) const;
812   const MemoryAccess *lookupMemoryLeader(const MemoryAccess *) const;
813   bool isMemoryAccessTOP(const MemoryAccess *) const;
814 
815   // Ranking
816   unsigned int getRank(const Value *) const;
817   bool shouldSwapOperands(const Value *, const Value *) const;
818   bool shouldSwapOperandsForIntrinsic(const Value *, const Value *,
819                                       const IntrinsicInst *I) const;
820 
821   // Reachability handling.
822   void updateReachableEdge(BasicBlock *, BasicBlock *);
823   void processOutgoingEdges(Instruction *, BasicBlock *);
824   Value *findConditionEquivalence(Value *) const;
825 
826   // Elimination.
827   struct ValueDFS;
828   void convertClassToDFSOrdered(const CongruenceClass &,
829                                 SmallVectorImpl<ValueDFS> &,
830                                 DenseMap<const Value *, unsigned int> &,
831                                 SmallPtrSetImpl<Instruction *> &) const;
832   void convertClassToLoadsAndStores(const CongruenceClass &,
833                                     SmallVectorImpl<ValueDFS> &) const;
834 
835   bool eliminateInstructions(Function &);
836   void replaceInstruction(Instruction *, Value *);
837   void markInstructionForDeletion(Instruction *);
838   void deleteInstructionsInBlock(BasicBlock *);
839   Value *findPHIOfOpsLeader(const Expression *, const Instruction *,
840                             const BasicBlock *) const;
841 
842   // Various instruction touch utilities
843   template <typename Map, typename KeyType>
844   void touchAndErase(Map &, const KeyType &);
845   void markUsersTouched(Value *);
846   void markMemoryUsersTouched(const MemoryAccess *);
847   void markMemoryDefTouched(const MemoryAccess *);
848   void markPredicateUsersTouched(Instruction *);
849   void markValueLeaderChangeTouched(CongruenceClass *CC);
850   void markMemoryLeaderChangeTouched(CongruenceClass *CC);
851   void markPhiOfOpsChanged(const Expression *E);
852   void addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const;
853   void addAdditionalUsers(Value *To, Value *User) const;
854   void addAdditionalUsers(ExprResult &Res, Instruction *User) const;
855 
856   // Main loop of value numbering
857   void iterateTouchedInstructions();
858 
859   // Utilities.
860   void cleanupTables();
861   std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned);
862   void updateProcessedCount(const Value *V);
863   void verifyMemoryCongruency() const;
864   void verifyIterationSettled(Function &F);
865   void verifyStoreExpressions() const;
866   bool singleReachablePHIPath(SmallPtrSet<const MemoryAccess *, 8> &,
867                               const MemoryAccess *, const MemoryAccess *) const;
868   BasicBlock *getBlockForValue(Value *V) const;
869   void deleteExpression(const Expression *E) const;
870   MemoryUseOrDef *getMemoryAccess(const Instruction *) const;
871   MemoryPhi *getMemoryAccess(const BasicBlock *) const;
872   template <class T, class Range> T *getMinDFSOfRange(const Range &) const;
873 
874   unsigned InstrToDFSNum(const Value *V) const {
875     assert(isa<Instruction>(V) && "This should not be used for MemoryAccesses");
876     return InstrDFS.lookup(V);
877   }
878 
879   unsigned InstrToDFSNum(const MemoryAccess *MA) const {
880     return MemoryToDFSNum(MA);
881   }
882 
883   Value *InstrFromDFSNum(unsigned DFSNum) { return DFSToInstr[DFSNum]; }
884 
885   // Given a MemoryAccess, return the relevant instruction DFS number.  Note:
886   // This deliberately takes a value so it can be used with Use's, which will
887   // auto-convert to Value's but not to MemoryAccess's.
888   unsigned MemoryToDFSNum(const Value *MA) const {
889     assert(isa<MemoryAccess>(MA) &&
890            "This should not be used with instructions");
891     return isa<MemoryUseOrDef>(MA)
892                ? InstrToDFSNum(cast<MemoryUseOrDef>(MA)->getMemoryInst())
893                : InstrDFS.lookup(MA);
894   }
895 
896   bool isCycleFree(const Instruction *) const;
897   bool isBackedge(BasicBlock *From, BasicBlock *To) const;
898 
899   // Debug counter info.  When verifying, we have to reset the value numbering
900   // debug counter to the same state it started in to get the same results.
901   int64_t StartingVNCounter = 0;
902 };
903 
904 } // end anonymous namespace
905 
906 template <typename T>
907 static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) {
908   if (!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS))
909     return false;
910   return LHS.MemoryExpression::equals(RHS);
911 }
912 
913 bool LoadExpression::equals(const Expression &Other) const {
914   return equalsLoadStoreHelper(*this, Other);
915 }
916 
917 bool StoreExpression::equals(const Expression &Other) const {
918   if (!equalsLoadStoreHelper(*this, Other))
919     return false;
920   // Make sure that store vs store includes the value operand.
921   if (const auto *S = dyn_cast<StoreExpression>(&Other))
922     if (getStoredValue() != S->getStoredValue())
923       return false;
924   return true;
925 }
926 
927 // Determine if the edge From->To is a backedge
928 bool NewGVN::isBackedge(BasicBlock *From, BasicBlock *To) const {
929   return From == To ||
930          RPOOrdering.lookup(DT->getNode(From)) >=
931              RPOOrdering.lookup(DT->getNode(To));
932 }
933 
934 #ifndef NDEBUG
935 static std::string getBlockName(const BasicBlock *B) {
936   return DOTGraphTraits<DOTFuncInfo *>::getSimpleNodeLabel(B, nullptr);
937 }
938 #endif
939 
940 // Get a MemoryAccess for an instruction, fake or real.
941 MemoryUseOrDef *NewGVN::getMemoryAccess(const Instruction *I) const {
942   auto *Result = MSSA->getMemoryAccess(I);
943   return Result ? Result : TempToMemory.lookup(I);
944 }
945 
946 // Get a MemoryPhi for a basic block. These are all real.
947 MemoryPhi *NewGVN::getMemoryAccess(const BasicBlock *BB) const {
948   return MSSA->getMemoryAccess(BB);
949 }
950 
951 // Get the basic block from an instruction/memory value.
952 BasicBlock *NewGVN::getBlockForValue(Value *V) const {
953   if (auto *I = dyn_cast<Instruction>(V)) {
954     auto *Parent = I->getParent();
955     if (Parent)
956       return Parent;
957     Parent = TempToBlock.lookup(V);
958     assert(Parent && "Every fake instruction should have a block");
959     return Parent;
960   }
961 
962   auto *MP = dyn_cast<MemoryPhi>(V);
963   assert(MP && "Should have been an instruction or a MemoryPhi");
964   return MP->getBlock();
965 }
966 
967 // Delete a definitely dead expression, so it can be reused by the expression
968 // allocator.  Some of these are not in creation functions, so we have to accept
969 // const versions.
970 void NewGVN::deleteExpression(const Expression *E) const {
971   assert(isa<BasicExpression>(E));
972   auto *BE = cast<BasicExpression>(E);
973   const_cast<BasicExpression *>(BE)->deallocateOperands(ArgRecycler);
974   ExpressionAllocator.Deallocate(E);
975 }
976 
977 // If V is a predicateinfo copy, get the thing it is a copy of.
978 static Value *getCopyOf(const Value *V) {
979   if (auto *II = dyn_cast<IntrinsicInst>(V))
980     if (II->getIntrinsicID() == Intrinsic::ssa_copy)
981       return II->getOperand(0);
982   return nullptr;
983 }
984 
985 // Return true if V is really PN, even accounting for predicateinfo copies.
986 static bool isCopyOfPHI(const Value *V, const PHINode *PN) {
987   return V == PN || getCopyOf(V) == PN;
988 }
989 
990 static bool isCopyOfAPHI(const Value *V) {
991   auto *CO = getCopyOf(V);
992   return CO && isa<PHINode>(CO);
993 }
994 
995 // Sort PHI Operands into a canonical order.  What we use here is an RPO
996 // order. The BlockInstRange numbers are generated in an RPO walk of the basic
997 // blocks.
998 void NewGVN::sortPHIOps(MutableArrayRef<ValPair> Ops) const {
999   llvm::sort(Ops, [&](const ValPair &P1, const ValPair &P2) {
1000     return BlockInstRange.lookup(P1.second).first <
1001            BlockInstRange.lookup(P2.second).first;
1002   });
1003 }
1004 
1005 // Return true if V is a value that will always be available (IE can
1006 // be placed anywhere) in the function.  We don't do globals here
1007 // because they are often worse to put in place.
1008 static bool alwaysAvailable(Value *V) {
1009   return isa<Constant>(V) || isa<Argument>(V);
1010 }
1011 
1012 // Create a PHIExpression from an array of {incoming edge, value} pairs.  I is
1013 // the original instruction we are creating a PHIExpression for (but may not be
1014 // a phi node). We require, as an invariant, that all the PHIOperands in the
1015 // same block are sorted the same way. sortPHIOps will sort them into a
1016 // canonical order.
1017 PHIExpression *NewGVN::createPHIExpression(ArrayRef<ValPair> PHIOperands,
1018                                            const Instruction *I,
1019                                            BasicBlock *PHIBlock,
1020                                            bool &HasBackedge,
1021                                            bool &OriginalOpsConstant) const {
1022   unsigned NumOps = PHIOperands.size();
1023   auto *E = new (ExpressionAllocator) PHIExpression(NumOps, PHIBlock);
1024 
1025   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1026   E->setType(PHIOperands.begin()->first->getType());
1027   E->setOpcode(Instruction::PHI);
1028 
1029   // Filter out unreachable phi operands.
1030   auto Filtered = make_filter_range(PHIOperands, [&](const ValPair &P) {
1031     auto *BB = P.second;
1032     if (auto *PHIOp = dyn_cast<PHINode>(I))
1033       if (isCopyOfPHI(P.first, PHIOp))
1034         return false;
1035     if (!ReachableEdges.count({BB, PHIBlock}))
1036       return false;
1037     // Things in TOPClass are equivalent to everything.
1038     if (ValueToClass.lookup(P.first) == TOPClass)
1039       return false;
1040     OriginalOpsConstant = OriginalOpsConstant && isa<Constant>(P.first);
1041     HasBackedge = HasBackedge || isBackedge(BB, PHIBlock);
1042     return lookupOperandLeader(P.first) != I;
1043   });
1044   std::transform(Filtered.begin(), Filtered.end(), op_inserter(E),
1045                  [&](const ValPair &P) -> Value * {
1046                    return lookupOperandLeader(P.first);
1047                  });
1048   return E;
1049 }
1050 
1051 // Set basic expression info (Arguments, type, opcode) for Expression
1052 // E from Instruction I in block B.
1053 bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E) const {
1054   bool AllConstant = true;
1055   if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
1056     E->setType(GEP->getSourceElementType());
1057   else
1058     E->setType(I->getType());
1059   E->setOpcode(I->getOpcode());
1060   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1061 
1062   // Transform the operand array into an operand leader array, and keep track of
1063   // whether all members are constant.
1064   std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) {
1065     auto Operand = lookupOperandLeader(O);
1066     AllConstant = AllConstant && isa<Constant>(Operand);
1067     return Operand;
1068   });
1069 
1070   return AllConstant;
1071 }
1072 
1073 const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T,
1074                                                  Value *Arg1, Value *Arg2,
1075                                                  Instruction *I) const {
1076   auto *E = new (ExpressionAllocator) BasicExpression(2);
1077 
1078   E->setType(T);
1079   E->setOpcode(Opcode);
1080   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1081   if (Instruction::isCommutative(Opcode)) {
1082     // Ensure that commutative instructions that only differ by a permutation
1083     // of their operands get the same value number by sorting the operand value
1084     // numbers.  Since all commutative instructions have two operands it is more
1085     // efficient to sort by hand rather than using, say, std::sort.
1086     if (shouldSwapOperands(Arg1, Arg2))
1087       std::swap(Arg1, Arg2);
1088   }
1089   E->op_push_back(lookupOperandLeader(Arg1));
1090   E->op_push_back(lookupOperandLeader(Arg2));
1091 
1092   Value *V = simplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), SQ);
1093   if (auto Simplified = checkExprResults(E, I, V)) {
1094     addAdditionalUsers(Simplified, I);
1095     return Simplified.Expr;
1096   }
1097   return E;
1098 }
1099 
1100 // Take a Value returned by simplification of Expression E/Instruction
1101 // I, and see if it resulted in a simpler expression. If so, return
1102 // that expression.
1103 NewGVN::ExprResult NewGVN::checkExprResults(Expression *E, Instruction *I,
1104                                             Value *V) const {
1105   if (!V)
1106     return ExprResult::none();
1107 
1108   if (auto *C = dyn_cast<Constant>(V)) {
1109     if (I)
1110       LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1111                         << " constant " << *C << "\n");
1112     NumGVNOpsSimplified++;
1113     assert(isa<BasicExpression>(E) &&
1114            "We should always have had a basic expression here");
1115     deleteExpression(E);
1116     return ExprResult::some(createConstantExpression(C));
1117   } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1118     if (I)
1119       LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1120                         << " variable " << *V << "\n");
1121     deleteExpression(E);
1122     return ExprResult::some(createVariableExpression(V));
1123   }
1124 
1125   CongruenceClass *CC = ValueToClass.lookup(V);
1126   if (CC) {
1127     if (CC->getLeader() && CC->getLeader() != I) {
1128       return ExprResult::some(createVariableOrConstant(CC->getLeader()), V);
1129     }
1130     if (CC->getDefiningExpr()) {
1131       if (I)
1132         LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1133                           << " expression " << *CC->getDefiningExpr() << "\n");
1134       NumGVNOpsSimplified++;
1135       deleteExpression(E);
1136       return ExprResult::some(CC->getDefiningExpr(), V);
1137     }
1138   }
1139 
1140   return ExprResult::none();
1141 }
1142 
1143 // Create a value expression from the instruction I, replacing operands with
1144 // their leaders.
1145 
1146 NewGVN::ExprResult NewGVN::createExpression(Instruction *I) const {
1147   auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands());
1148 
1149   bool AllConstant = setBasicExpressionInfo(I, E);
1150 
1151   if (I->isCommutative()) {
1152     // Ensure that commutative instructions that only differ by a permutation
1153     // of their operands get the same value number by sorting the operand value
1154     // numbers.  Since all commutative instructions have two operands it is more
1155     // efficient to sort by hand rather than using, say, std::sort.
1156     assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
1157     if (shouldSwapOperands(E->getOperand(0), E->getOperand(1)))
1158       E->swapOperands(0, 1);
1159   }
1160   // Perform simplification.
1161   if (auto *CI = dyn_cast<CmpInst>(I)) {
1162     // Sort the operand value numbers so x<y and y>x get the same value
1163     // number.
1164     CmpInst::Predicate Predicate = CI->getPredicate();
1165     if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) {
1166       E->swapOperands(0, 1);
1167       Predicate = CmpInst::getSwappedPredicate(Predicate);
1168     }
1169     E->setOpcode((CI->getOpcode() << 8) | Predicate);
1170     // TODO: 25% of our time is spent in simplifyCmpInst with pointer operands
1171     assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() &&
1172            "Wrong types on cmp instruction");
1173     assert((E->getOperand(0)->getType() == I->getOperand(0)->getType() &&
1174             E->getOperand(1)->getType() == I->getOperand(1)->getType()));
1175     Value *V =
1176         simplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), SQ);
1177     if (auto Simplified = checkExprResults(E, I, V))
1178       return Simplified;
1179   } else if (isa<SelectInst>(I)) {
1180     if (isa<Constant>(E->getOperand(0)) ||
1181         E->getOperand(1) == E->getOperand(2)) {
1182       assert(E->getOperand(1)->getType() == I->getOperand(1)->getType() &&
1183              E->getOperand(2)->getType() == I->getOperand(2)->getType());
1184       Value *V = simplifySelectInst(E->getOperand(0), E->getOperand(1),
1185                                     E->getOperand(2), SQ);
1186       if (auto Simplified = checkExprResults(E, I, V))
1187         return Simplified;
1188     }
1189   } else if (I->isBinaryOp()) {
1190     Value *V =
1191         simplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), SQ);
1192     if (auto Simplified = checkExprResults(E, I, V))
1193       return Simplified;
1194   } else if (auto *CI = dyn_cast<CastInst>(I)) {
1195     Value *V =
1196         simplifyCastInst(CI->getOpcode(), E->getOperand(0), CI->getType(), SQ);
1197     if (auto Simplified = checkExprResults(E, I, V))
1198       return Simplified;
1199   } else if (auto *GEPI = dyn_cast<GetElementPtrInst>(I)) {
1200     Value *V =
1201         simplifyGEPInst(GEPI->getSourceElementType(), *E->op_begin(),
1202                         makeArrayRef(std::next(E->op_begin()), E->op_end()),
1203                         GEPI->isInBounds(), SQ);
1204     if (auto Simplified = checkExprResults(E, I, V))
1205       return Simplified;
1206   } else if (AllConstant) {
1207     // We don't bother trying to simplify unless all of the operands
1208     // were constant.
1209     // TODO: There are a lot of Simplify*'s we could call here, if we
1210     // wanted to.  The original motivating case for this code was a
1211     // zext i1 false to i8, which we don't have an interface to
1212     // simplify (IE there is no SimplifyZExt).
1213 
1214     SmallVector<Constant *, 8> C;
1215     for (Value *Arg : E->operands())
1216       C.emplace_back(cast<Constant>(Arg));
1217 
1218     if (Value *V = ConstantFoldInstOperands(I, C, DL, TLI))
1219       if (auto Simplified = checkExprResults(E, I, V))
1220         return Simplified;
1221   }
1222   return ExprResult::some(E);
1223 }
1224 
1225 const AggregateValueExpression *
1226 NewGVN::createAggregateValueExpression(Instruction *I) const {
1227   if (auto *II = dyn_cast<InsertValueInst>(I)) {
1228     auto *E = new (ExpressionAllocator)
1229         AggregateValueExpression(I->getNumOperands(), II->getNumIndices());
1230     setBasicExpressionInfo(I, E);
1231     E->allocateIntOperands(ExpressionAllocator);
1232     std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E));
1233     return E;
1234   } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1235     auto *E = new (ExpressionAllocator)
1236         AggregateValueExpression(I->getNumOperands(), EI->getNumIndices());
1237     setBasicExpressionInfo(EI, E);
1238     E->allocateIntOperands(ExpressionAllocator);
1239     std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E));
1240     return E;
1241   }
1242   llvm_unreachable("Unhandled type of aggregate value operation");
1243 }
1244 
1245 const DeadExpression *NewGVN::createDeadExpression() const {
1246   // DeadExpression has no arguments and all DeadExpression's are the same,
1247   // so we only need one of them.
1248   return SingletonDeadExpression;
1249 }
1250 
1251 const VariableExpression *NewGVN::createVariableExpression(Value *V) const {
1252   auto *E = new (ExpressionAllocator) VariableExpression(V);
1253   E->setOpcode(V->getValueID());
1254   return E;
1255 }
1256 
1257 const Expression *NewGVN::createVariableOrConstant(Value *V) const {
1258   if (auto *C = dyn_cast<Constant>(V))
1259     return createConstantExpression(C);
1260   return createVariableExpression(V);
1261 }
1262 
1263 const ConstantExpression *NewGVN::createConstantExpression(Constant *C) const {
1264   auto *E = new (ExpressionAllocator) ConstantExpression(C);
1265   E->setOpcode(C->getValueID());
1266   return E;
1267 }
1268 
1269 const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) const {
1270   auto *E = new (ExpressionAllocator) UnknownExpression(I);
1271   E->setOpcode(I->getOpcode());
1272   return E;
1273 }
1274 
1275 const CallExpression *
1276 NewGVN::createCallExpression(CallInst *CI, const MemoryAccess *MA) const {
1277   // FIXME: Add operand bundles for calls.
1278   // FIXME: Allow commutative matching for intrinsics.
1279   auto *E =
1280       new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, MA);
1281   setBasicExpressionInfo(CI, E);
1282   return E;
1283 }
1284 
1285 // Return true if some equivalent of instruction Inst dominates instruction U.
1286 bool NewGVN::someEquivalentDominates(const Instruction *Inst,
1287                                      const Instruction *U) const {
1288   auto *CC = ValueToClass.lookup(Inst);
1289    // This must be an instruction because we are only called from phi nodes
1290   // in the case that the value it needs to check against is an instruction.
1291 
1292   // The most likely candidates for dominance are the leader and the next leader.
1293   // The leader or nextleader will dominate in all cases where there is an
1294   // equivalent that is higher up in the dom tree.
1295   // We can't *only* check them, however, because the
1296   // dominator tree could have an infinite number of non-dominating siblings
1297   // with instructions that are in the right congruence class.
1298   //       A
1299   // B C D E F G
1300   // |
1301   // H
1302   // Instruction U could be in H,  with equivalents in every other sibling.
1303   // Depending on the rpo order picked, the leader could be the equivalent in
1304   // any of these siblings.
1305   if (!CC)
1306     return false;
1307   if (alwaysAvailable(CC->getLeader()))
1308     return true;
1309   if (DT->dominates(cast<Instruction>(CC->getLeader()), U))
1310     return true;
1311   if (CC->getNextLeader().first &&
1312       DT->dominates(cast<Instruction>(CC->getNextLeader().first), U))
1313     return true;
1314   return llvm::any_of(*CC, [&](const Value *Member) {
1315     return Member != CC->getLeader() &&
1316            DT->dominates(cast<Instruction>(Member), U);
1317   });
1318 }
1319 
1320 // See if we have a congruence class and leader for this operand, and if so,
1321 // return it. Otherwise, return the operand itself.
1322 Value *NewGVN::lookupOperandLeader(Value *V) const {
1323   CongruenceClass *CC = ValueToClass.lookup(V);
1324   if (CC) {
1325     // Everything in TOP is represented by poison, as it can be any value.
1326     // We do have to make sure we get the type right though, so we can't set the
1327     // RepLeader to poison.
1328     if (CC == TOPClass)
1329       return PoisonValue::get(V->getType());
1330     return CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
1331   }
1332 
1333   return V;
1334 }
1335 
1336 const MemoryAccess *NewGVN::lookupMemoryLeader(const MemoryAccess *MA) const {
1337   auto *CC = getMemoryClass(MA);
1338   assert(CC->getMemoryLeader() &&
1339          "Every MemoryAccess should be mapped to a congruence class with a "
1340          "representative memory access");
1341   return CC->getMemoryLeader();
1342 }
1343 
1344 // Return true if the MemoryAccess is really equivalent to everything. This is
1345 // equivalent to the lattice value "TOP" in most lattices.  This is the initial
1346 // state of all MemoryAccesses.
1347 bool NewGVN::isMemoryAccessTOP(const MemoryAccess *MA) const {
1348   return getMemoryClass(MA) == TOPClass;
1349 }
1350 
1351 LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp,
1352                                              LoadInst *LI,
1353                                              const MemoryAccess *MA) const {
1354   auto *E =
1355       new (ExpressionAllocator) LoadExpression(1, LI, lookupMemoryLeader(MA));
1356   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1357   E->setType(LoadType);
1358 
1359   // Give store and loads same opcode so they value number together.
1360   E->setOpcode(0);
1361   E->op_push_back(PointerOp);
1362 
1363   // TODO: Value number heap versions. We may be able to discover
1364   // things alias analysis can't on it's own (IE that a store and a
1365   // load have the same value, and thus, it isn't clobbering the load).
1366   return E;
1367 }
1368 
1369 const StoreExpression *
1370 NewGVN::createStoreExpression(StoreInst *SI, const MemoryAccess *MA) const {
1371   auto *StoredValueLeader = lookupOperandLeader(SI->getValueOperand());
1372   auto *E = new (ExpressionAllocator)
1373       StoreExpression(SI->getNumOperands(), SI, StoredValueLeader, MA);
1374   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1375   E->setType(SI->getValueOperand()->getType());
1376 
1377   // Give store and loads same opcode so they value number together.
1378   E->setOpcode(0);
1379   E->op_push_back(lookupOperandLeader(SI->getPointerOperand()));
1380 
1381   // TODO: Value number heap versions. We may be able to discover
1382   // things alias analysis can't on it's own (IE that a store and a
1383   // load have the same value, and thus, it isn't clobbering the load).
1384   return E;
1385 }
1386 
1387 const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I) const {
1388   // Unlike loads, we never try to eliminate stores, so we do not check if they
1389   // are simple and avoid value numbering them.
1390   auto *SI = cast<StoreInst>(I);
1391   auto *StoreAccess = getMemoryAccess(SI);
1392   // Get the expression, if any, for the RHS of the MemoryDef.
1393   const MemoryAccess *StoreRHS = StoreAccess->getDefiningAccess();
1394   if (EnableStoreRefinement)
1395     StoreRHS = MSSAWalker->getClobberingMemoryAccess(StoreAccess);
1396   // If we bypassed the use-def chains, make sure we add a use.
1397   StoreRHS = lookupMemoryLeader(StoreRHS);
1398   if (StoreRHS != StoreAccess->getDefiningAccess())
1399     addMemoryUsers(StoreRHS, StoreAccess);
1400   // If we are defined by ourselves, use the live on entry def.
1401   if (StoreRHS == StoreAccess)
1402     StoreRHS = MSSA->getLiveOnEntryDef();
1403 
1404   if (SI->isSimple()) {
1405     // See if we are defined by a previous store expression, it already has a
1406     // value, and it's the same value as our current store. FIXME: Right now, we
1407     // only do this for simple stores, we should expand to cover memcpys, etc.
1408     const auto *LastStore = createStoreExpression(SI, StoreRHS);
1409     const auto *LastCC = ExpressionToClass.lookup(LastStore);
1410     // We really want to check whether the expression we matched was a store. No
1411     // easy way to do that. However, we can check that the class we found has a
1412     // store, which, assuming the value numbering state is not corrupt, is
1413     // sufficient, because we must also be equivalent to that store's expression
1414     // for it to be in the same class as the load.
1415     if (LastCC && LastCC->getStoredValue() == LastStore->getStoredValue())
1416       return LastStore;
1417     // Also check if our value operand is defined by a load of the same memory
1418     // location, and the memory state is the same as it was then (otherwise, it
1419     // could have been overwritten later. See test32 in
1420     // transforms/DeadStoreElimination/simple.ll).
1421     if (auto *LI = dyn_cast<LoadInst>(LastStore->getStoredValue()))
1422       if ((lookupOperandLeader(LI->getPointerOperand()) ==
1423            LastStore->getOperand(0)) &&
1424           (lookupMemoryLeader(getMemoryAccess(LI)->getDefiningAccess()) ==
1425            StoreRHS))
1426         return LastStore;
1427     deleteExpression(LastStore);
1428   }
1429 
1430   // If the store is not equivalent to anything, value number it as a store that
1431   // produces a unique memory state (instead of using it's MemoryUse, we use
1432   // it's MemoryDef).
1433   return createStoreExpression(SI, StoreAccess);
1434 }
1435 
1436 // See if we can extract the value of a loaded pointer from a load, a store, or
1437 // a memory instruction.
1438 const Expression *
1439 NewGVN::performSymbolicLoadCoercion(Type *LoadType, Value *LoadPtr,
1440                                     LoadInst *LI, Instruction *DepInst,
1441                                     MemoryAccess *DefiningAccess) const {
1442   assert((!LI || LI->isSimple()) && "Not a simple load");
1443   if (auto *DepSI = dyn_cast<StoreInst>(DepInst)) {
1444     // Can't forward from non-atomic to atomic without violating memory model.
1445     // Also don't need to coerce if they are the same type, we will just
1446     // propagate.
1447     if (LI->isAtomic() > DepSI->isAtomic() ||
1448         LoadType == DepSI->getValueOperand()->getType())
1449       return nullptr;
1450     int Offset = analyzeLoadFromClobberingStore(LoadType, LoadPtr, DepSI, DL);
1451     if (Offset >= 0) {
1452       if (auto *C = dyn_cast<Constant>(
1453               lookupOperandLeader(DepSI->getValueOperand()))) {
1454         LLVM_DEBUG(dbgs() << "Coercing load from store " << *DepSI
1455                           << " to constant " << *C << "\n");
1456         return createConstantExpression(
1457             getConstantStoreValueForLoad(C, Offset, LoadType, DL));
1458       }
1459     }
1460   } else if (auto *DepLI = dyn_cast<LoadInst>(DepInst)) {
1461     // Can't forward from non-atomic to atomic without violating memory model.
1462     if (LI->isAtomic() > DepLI->isAtomic())
1463       return nullptr;
1464     int Offset = analyzeLoadFromClobberingLoad(LoadType, LoadPtr, DepLI, DL);
1465     if (Offset >= 0) {
1466       // We can coerce a constant load into a load.
1467       if (auto *C = dyn_cast<Constant>(lookupOperandLeader(DepLI)))
1468         if (auto *PossibleConstant =
1469                 getConstantLoadValueForLoad(C, Offset, LoadType, DL)) {
1470           LLVM_DEBUG(dbgs() << "Coercing load from load " << *LI
1471                             << " to constant " << *PossibleConstant << "\n");
1472           return createConstantExpression(PossibleConstant);
1473         }
1474     }
1475   } else if (auto *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
1476     int Offset = analyzeLoadFromClobberingMemInst(LoadType, LoadPtr, DepMI, DL);
1477     if (Offset >= 0) {
1478       if (auto *PossibleConstant =
1479               getConstantMemInstValueForLoad(DepMI, Offset, LoadType, DL)) {
1480         LLVM_DEBUG(dbgs() << "Coercing load from meminst " << *DepMI
1481                           << " to constant " << *PossibleConstant << "\n");
1482         return createConstantExpression(PossibleConstant);
1483       }
1484     }
1485   }
1486 
1487   // All of the below are only true if the loaded pointer is produced
1488   // by the dependent instruction.
1489   if (LoadPtr != lookupOperandLeader(DepInst) &&
1490       !AA->isMustAlias(LoadPtr, DepInst))
1491     return nullptr;
1492   // If this load really doesn't depend on anything, then we must be loading an
1493   // undef value.  This can happen when loading for a fresh allocation with no
1494   // intervening stores, for example.  Note that this is only true in the case
1495   // that the result of the allocation is pointer equal to the load ptr.
1496   if (isa<AllocaInst>(DepInst)) {
1497     return createConstantExpression(UndefValue::get(LoadType));
1498   }
1499   // If this load occurs either right after a lifetime begin,
1500   // then the loaded value is undefined.
1501   else if (auto *II = dyn_cast<IntrinsicInst>(DepInst)) {
1502     if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1503       return createConstantExpression(UndefValue::get(LoadType));
1504   } else if (isAllocationFn(DepInst, TLI))
1505     if (auto *InitVal = getInitialValueOfAllocation(cast<CallBase>(DepInst),
1506                                                     TLI, LoadType))
1507       return createConstantExpression(InitVal);
1508 
1509   return nullptr;
1510 }
1511 
1512 const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I) const {
1513   auto *LI = cast<LoadInst>(I);
1514 
1515   // We can eliminate in favor of non-simple loads, but we won't be able to
1516   // eliminate the loads themselves.
1517   if (!LI->isSimple())
1518     return nullptr;
1519 
1520   Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand());
1521   // Load of undef is UB.
1522   if (isa<UndefValue>(LoadAddressLeader))
1523     return createConstantExpression(PoisonValue::get(LI->getType()));
1524   MemoryAccess *OriginalAccess = getMemoryAccess(I);
1525   MemoryAccess *DefiningAccess =
1526       MSSAWalker->getClobberingMemoryAccess(OriginalAccess);
1527 
1528   if (!MSSA->isLiveOnEntryDef(DefiningAccess)) {
1529     if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) {
1530       Instruction *DefiningInst = MD->getMemoryInst();
1531       // If the defining instruction is not reachable, replace with poison.
1532       if (!ReachableBlocks.count(DefiningInst->getParent()))
1533         return createConstantExpression(PoisonValue::get(LI->getType()));
1534       // This will handle stores and memory insts.  We only do if it the
1535       // defining access has a different type, or it is a pointer produced by
1536       // certain memory operations that cause the memory to have a fixed value
1537       // (IE things like calloc).
1538       if (const auto *CoercionResult =
1539               performSymbolicLoadCoercion(LI->getType(), LoadAddressLeader, LI,
1540                                           DefiningInst, DefiningAccess))
1541         return CoercionResult;
1542     }
1543   }
1544 
1545   const auto *LE = createLoadExpression(LI->getType(), LoadAddressLeader, LI,
1546                                         DefiningAccess);
1547   // If our MemoryLeader is not our defining access, add a use to the
1548   // MemoryLeader, so that we get reprocessed when it changes.
1549   if (LE->getMemoryLeader() != DefiningAccess)
1550     addMemoryUsers(LE->getMemoryLeader(), OriginalAccess);
1551   return LE;
1552 }
1553 
1554 NewGVN::ExprResult
1555 NewGVN::performSymbolicPredicateInfoEvaluation(IntrinsicInst *I) const {
1556   auto *PI = PredInfo->getPredicateInfoFor(I);
1557   if (!PI)
1558     return ExprResult::none();
1559 
1560   LLVM_DEBUG(dbgs() << "Found predicate info from instruction !\n");
1561 
1562   const Optional<PredicateConstraint> &Constraint = PI->getConstraint();
1563   if (!Constraint)
1564     return ExprResult::none();
1565 
1566   CmpInst::Predicate Predicate = Constraint->Predicate;
1567   Value *CmpOp0 = I->getOperand(0);
1568   Value *CmpOp1 = Constraint->OtherOp;
1569 
1570   Value *FirstOp = lookupOperandLeader(CmpOp0);
1571   Value *SecondOp = lookupOperandLeader(CmpOp1);
1572   Value *AdditionallyUsedValue = CmpOp0;
1573 
1574   // Sort the ops.
1575   if (shouldSwapOperandsForIntrinsic(FirstOp, SecondOp, I)) {
1576     std::swap(FirstOp, SecondOp);
1577     Predicate = CmpInst::getSwappedPredicate(Predicate);
1578     AdditionallyUsedValue = CmpOp1;
1579   }
1580 
1581   if (Predicate == CmpInst::ICMP_EQ)
1582     return ExprResult::some(createVariableOrConstant(FirstOp),
1583                             AdditionallyUsedValue, PI);
1584 
1585   // Handle the special case of floating point.
1586   if (Predicate == CmpInst::FCMP_OEQ && isa<ConstantFP>(FirstOp) &&
1587       !cast<ConstantFP>(FirstOp)->isZero())
1588     return ExprResult::some(createConstantExpression(cast<Constant>(FirstOp)),
1589                             AdditionallyUsedValue, PI);
1590 
1591   return ExprResult::none();
1592 }
1593 
1594 // Evaluate read only and pure calls, and create an expression result.
1595 NewGVN::ExprResult NewGVN::performSymbolicCallEvaluation(Instruction *I) const {
1596   auto *CI = cast<CallInst>(I);
1597   if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1598     // Intrinsics with the returned attribute are copies of arguments.
1599     if (auto *ReturnedValue = II->getReturnedArgOperand()) {
1600       if (II->getIntrinsicID() == Intrinsic::ssa_copy)
1601         if (auto Res = performSymbolicPredicateInfoEvaluation(II))
1602           return Res;
1603       return ExprResult::some(createVariableOrConstant(ReturnedValue));
1604     }
1605   }
1606   if (AA->doesNotAccessMemory(CI)) {
1607     return ExprResult::some(
1608         createCallExpression(CI, TOPClass->getMemoryLeader()));
1609   } else if (AA->onlyReadsMemory(CI)) {
1610     if (auto *MA = MSSA->getMemoryAccess(CI)) {
1611       auto *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(MA);
1612       return ExprResult::some(createCallExpression(CI, DefiningAccess));
1613     } else // MSSA determined that CI does not access memory.
1614       return ExprResult::some(
1615           createCallExpression(CI, TOPClass->getMemoryLeader()));
1616   }
1617   return ExprResult::none();
1618 }
1619 
1620 // Retrieve the memory class for a given MemoryAccess.
1621 CongruenceClass *NewGVN::getMemoryClass(const MemoryAccess *MA) const {
1622   auto *Result = MemoryAccessToClass.lookup(MA);
1623   assert(Result && "Should have found memory class");
1624   return Result;
1625 }
1626 
1627 // Update the MemoryAccess equivalence table to say that From is equal to To,
1628 // and return true if this is different from what already existed in the table.
1629 bool NewGVN::setMemoryClass(const MemoryAccess *From,
1630                             CongruenceClass *NewClass) {
1631   assert(NewClass &&
1632          "Every MemoryAccess should be getting mapped to a non-null class");
1633   LLVM_DEBUG(dbgs() << "Setting " << *From);
1634   LLVM_DEBUG(dbgs() << " equivalent to congruence class ");
1635   LLVM_DEBUG(dbgs() << NewClass->getID()
1636                     << " with current MemoryAccess leader ");
1637   LLVM_DEBUG(dbgs() << *NewClass->getMemoryLeader() << "\n");
1638 
1639   auto LookupResult = MemoryAccessToClass.find(From);
1640   bool Changed = false;
1641   // If it's already in the table, see if the value changed.
1642   if (LookupResult != MemoryAccessToClass.end()) {
1643     auto *OldClass = LookupResult->second;
1644     if (OldClass != NewClass) {
1645       // If this is a phi, we have to handle memory member updates.
1646       if (auto *MP = dyn_cast<MemoryPhi>(From)) {
1647         OldClass->memory_erase(MP);
1648         NewClass->memory_insert(MP);
1649         // This may have killed the class if it had no non-memory members
1650         if (OldClass->getMemoryLeader() == From) {
1651           if (OldClass->definesNoMemory()) {
1652             OldClass->setMemoryLeader(nullptr);
1653           } else {
1654             OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
1655             LLVM_DEBUG(dbgs() << "Memory class leader change for class "
1656                               << OldClass->getID() << " to "
1657                               << *OldClass->getMemoryLeader()
1658                               << " due to removal of a memory member " << *From
1659                               << "\n");
1660             markMemoryLeaderChangeTouched(OldClass);
1661           }
1662         }
1663       }
1664       // It wasn't equivalent before, and now it is.
1665       LookupResult->second = NewClass;
1666       Changed = true;
1667     }
1668   }
1669 
1670   return Changed;
1671 }
1672 
1673 // Determine if a instruction is cycle-free.  That means the values in the
1674 // instruction don't depend on any expressions that can change value as a result
1675 // of the instruction.  For example, a non-cycle free instruction would be v =
1676 // phi(0, v+1).
1677 bool NewGVN::isCycleFree(const Instruction *I) const {
1678   // In order to compute cycle-freeness, we do SCC finding on the instruction,
1679   // and see what kind of SCC it ends up in.  If it is a singleton, it is
1680   // cycle-free.  If it is not in a singleton, it is only cycle free if the
1681   // other members are all phi nodes (as they do not compute anything, they are
1682   // copies).
1683   auto ICS = InstCycleState.lookup(I);
1684   if (ICS == ICS_Unknown) {
1685     SCCFinder.Start(I);
1686     auto &SCC = SCCFinder.getComponentFor(I);
1687     // It's cycle free if it's size 1 or the SCC is *only* phi nodes.
1688     if (SCC.size() == 1)
1689       InstCycleState.insert({I, ICS_CycleFree});
1690     else {
1691       bool AllPhis = llvm::all_of(SCC, [](const Value *V) {
1692         return isa<PHINode>(V) || isCopyOfAPHI(V);
1693       });
1694       ICS = AllPhis ? ICS_CycleFree : ICS_Cycle;
1695       for (auto *Member : SCC)
1696         if (auto *MemberPhi = dyn_cast<PHINode>(Member))
1697           InstCycleState.insert({MemberPhi, ICS});
1698     }
1699   }
1700   if (ICS == ICS_Cycle)
1701     return false;
1702   return true;
1703 }
1704 
1705 // Evaluate PHI nodes symbolically and create an expression result.
1706 const Expression *
1707 NewGVN::performSymbolicPHIEvaluation(ArrayRef<ValPair> PHIOps,
1708                                      Instruction *I,
1709                                      BasicBlock *PHIBlock) const {
1710   // True if one of the incoming phi edges is a backedge.
1711   bool HasBackedge = false;
1712   // All constant tracks the state of whether all the *original* phi operands
1713   // This is really shorthand for "this phi cannot cycle due to forward
1714   // change in value of the phi is guaranteed not to later change the value of
1715   // the phi. IE it can't be v = phi(undef, v+1)
1716   bool OriginalOpsConstant = true;
1717   auto *E = cast<PHIExpression>(createPHIExpression(
1718       PHIOps, I, PHIBlock, HasBackedge, OriginalOpsConstant));
1719   // We match the semantics of SimplifyPhiNode from InstructionSimplify here.
1720   // See if all arguments are the same.
1721   // We track if any were undef because they need special handling.
1722   bool HasUndef = false, HasPoison = false;
1723   auto Filtered = make_filter_range(E->operands(), [&](Value *Arg) {
1724     if (isa<PoisonValue>(Arg)) {
1725       HasPoison = true;
1726       return false;
1727     }
1728     if (isa<UndefValue>(Arg)) {
1729       HasUndef = true;
1730       return false;
1731     }
1732     return true;
1733   });
1734   // If we are left with no operands, it's dead.
1735   if (Filtered.empty()) {
1736     // If it has undef or poison at this point, it means there are no-non-undef
1737     // arguments, and thus, the value of the phi node must be undef.
1738     if (HasUndef) {
1739       LLVM_DEBUG(
1740           dbgs() << "PHI Node " << *I
1741                  << " has no non-undef arguments, valuing it as undef\n");
1742       return createConstantExpression(UndefValue::get(I->getType()));
1743     }
1744     if (HasPoison) {
1745       LLVM_DEBUG(
1746           dbgs() << "PHI Node " << *I
1747                  << " has no non-poison arguments, valuing it as poison\n");
1748       return createConstantExpression(PoisonValue::get(I->getType()));
1749     }
1750 
1751     LLVM_DEBUG(dbgs() << "No arguments of PHI node " << *I << " are live\n");
1752     deleteExpression(E);
1753     return createDeadExpression();
1754   }
1755   Value *AllSameValue = *(Filtered.begin());
1756   ++Filtered.begin();
1757   // Can't use std::equal here, sadly, because filter.begin moves.
1758   if (llvm::all_of(Filtered, [&](Value *Arg) { return Arg == AllSameValue; })) {
1759     // Can't fold phi(undef, X) -> X unless X can't be poison (thus X is undef
1760     // in the worst case).
1761     if (HasUndef && !isGuaranteedNotToBePoison(AllSameValue, AC, nullptr, DT))
1762       return E;
1763 
1764     // In LLVM's non-standard representation of phi nodes, it's possible to have
1765     // phi nodes with cycles (IE dependent on other phis that are .... dependent
1766     // on the original phi node), especially in weird CFG's where some arguments
1767     // are unreachable, or uninitialized along certain paths.  This can cause
1768     // infinite loops during evaluation. We work around this by not trying to
1769     // really evaluate them independently, but instead using a variable
1770     // expression to say if one is equivalent to the other.
1771     // We also special case undef/poison, so that if we have an undef, we can't
1772     // use the common value unless it dominates the phi block.
1773     if (HasPoison || HasUndef) {
1774       // If we have undef and at least one other value, this is really a
1775       // multivalued phi, and we need to know if it's cycle free in order to
1776       // evaluate whether we can ignore the undef.  The other parts of this are
1777       // just shortcuts.  If there is no backedge, or all operands are
1778       // constants, it also must be cycle free.
1779       if (HasBackedge && !OriginalOpsConstant &&
1780           !isa<UndefValue>(AllSameValue) && !isCycleFree(I))
1781         return E;
1782 
1783       // Only have to check for instructions
1784       if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue))
1785         if (!someEquivalentDominates(AllSameInst, I))
1786           return E;
1787     }
1788     // Can't simplify to something that comes later in the iteration.
1789     // Otherwise, when and if it changes congruence class, we will never catch
1790     // up. We will always be a class behind it.
1791     if (isa<Instruction>(AllSameValue) &&
1792         InstrToDFSNum(AllSameValue) > InstrToDFSNum(I))
1793       return E;
1794     NumGVNPhisAllSame++;
1795     LLVM_DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue
1796                       << "\n");
1797     deleteExpression(E);
1798     return createVariableOrConstant(AllSameValue);
1799   }
1800   return E;
1801 }
1802 
1803 const Expression *
1804 NewGVN::performSymbolicAggrValueEvaluation(Instruction *I) const {
1805   if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1806     auto *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand());
1807     if (WO && EI->getNumIndices() == 1 && *EI->idx_begin() == 0)
1808       // EI is an extract from one of our with.overflow intrinsics. Synthesize
1809       // a semantically equivalent expression instead of an extract value
1810       // expression.
1811       return createBinaryExpression(WO->getBinaryOp(), EI->getType(),
1812                                     WO->getLHS(), WO->getRHS(), I);
1813   }
1814 
1815   return createAggregateValueExpression(I);
1816 }
1817 
1818 NewGVN::ExprResult NewGVN::performSymbolicCmpEvaluation(Instruction *I) const {
1819   assert(isa<CmpInst>(I) && "Expected a cmp instruction.");
1820 
1821   auto *CI = cast<CmpInst>(I);
1822   // See if our operands are equal to those of a previous predicate, and if so,
1823   // if it implies true or false.
1824   auto Op0 = lookupOperandLeader(CI->getOperand(0));
1825   auto Op1 = lookupOperandLeader(CI->getOperand(1));
1826   auto OurPredicate = CI->getPredicate();
1827   if (shouldSwapOperands(Op0, Op1)) {
1828     std::swap(Op0, Op1);
1829     OurPredicate = CI->getSwappedPredicate();
1830   }
1831 
1832   // Avoid processing the same info twice.
1833   const PredicateBase *LastPredInfo = nullptr;
1834   // See if we know something about the comparison itself, like it is the target
1835   // of an assume.
1836   auto *CmpPI = PredInfo->getPredicateInfoFor(I);
1837   if (isa_and_nonnull<PredicateAssume>(CmpPI))
1838     return ExprResult::some(
1839         createConstantExpression(ConstantInt::getTrue(CI->getType())));
1840 
1841   if (Op0 == Op1) {
1842     // This condition does not depend on predicates, no need to add users
1843     if (CI->isTrueWhenEqual())
1844       return ExprResult::some(
1845           createConstantExpression(ConstantInt::getTrue(CI->getType())));
1846     else if (CI->isFalseWhenEqual())
1847       return ExprResult::some(
1848           createConstantExpression(ConstantInt::getFalse(CI->getType())));
1849   }
1850 
1851   // NOTE: Because we are comparing both operands here and below, and using
1852   // previous comparisons, we rely on fact that predicateinfo knows to mark
1853   // comparisons that use renamed operands as users of the earlier comparisons.
1854   // It is *not* enough to just mark predicateinfo renamed operands as users of
1855   // the earlier comparisons, because the *other* operand may have changed in a
1856   // previous iteration.
1857   // Example:
1858   // icmp slt %a, %b
1859   // %b.0 = ssa.copy(%b)
1860   // false branch:
1861   // icmp slt %c, %b.0
1862 
1863   // %c and %a may start out equal, and thus, the code below will say the second
1864   // %icmp is false.  c may become equal to something else, and in that case the
1865   // %second icmp *must* be reexamined, but would not if only the renamed
1866   // %operands are considered users of the icmp.
1867 
1868   // *Currently* we only check one level of comparisons back, and only mark one
1869   // level back as touched when changes happen.  If you modify this code to look
1870   // back farther through comparisons, you *must* mark the appropriate
1871   // comparisons as users in PredicateInfo.cpp, or you will cause bugs.  See if
1872   // we know something just from the operands themselves
1873 
1874   // See if our operands have predicate info, so that we may be able to derive
1875   // something from a previous comparison.
1876   for (const auto &Op : CI->operands()) {
1877     auto *PI = PredInfo->getPredicateInfoFor(Op);
1878     if (const auto *PBranch = dyn_cast_or_null<PredicateBranch>(PI)) {
1879       if (PI == LastPredInfo)
1880         continue;
1881       LastPredInfo = PI;
1882       // In phi of ops cases, we may have predicate info that we are evaluating
1883       // in a different context.
1884       if (!DT->dominates(PBranch->To, getBlockForValue(I)))
1885         continue;
1886       // TODO: Along the false edge, we may know more things too, like
1887       // icmp of
1888       // same operands is false.
1889       // TODO: We only handle actual comparison conditions below, not
1890       // and/or.
1891       auto *BranchCond = dyn_cast<CmpInst>(PBranch->Condition);
1892       if (!BranchCond)
1893         continue;
1894       auto *BranchOp0 = lookupOperandLeader(BranchCond->getOperand(0));
1895       auto *BranchOp1 = lookupOperandLeader(BranchCond->getOperand(1));
1896       auto BranchPredicate = BranchCond->getPredicate();
1897       if (shouldSwapOperands(BranchOp0, BranchOp1)) {
1898         std::swap(BranchOp0, BranchOp1);
1899         BranchPredicate = BranchCond->getSwappedPredicate();
1900       }
1901       if (BranchOp0 == Op0 && BranchOp1 == Op1) {
1902         if (PBranch->TrueEdge) {
1903           // If we know the previous predicate is true and we are in the true
1904           // edge then we may be implied true or false.
1905           if (CmpInst::isImpliedTrueByMatchingCmp(BranchPredicate,
1906                                                   OurPredicate)) {
1907             return ExprResult::some(
1908                 createConstantExpression(ConstantInt::getTrue(CI->getType())),
1909                 PI);
1910           }
1911 
1912           if (CmpInst::isImpliedFalseByMatchingCmp(BranchPredicate,
1913                                                    OurPredicate)) {
1914             return ExprResult::some(
1915                 createConstantExpression(ConstantInt::getFalse(CI->getType())),
1916                 PI);
1917           }
1918         } else {
1919           // Just handle the ne and eq cases, where if we have the same
1920           // operands, we may know something.
1921           if (BranchPredicate == OurPredicate) {
1922             // Same predicate, same ops,we know it was false, so this is false.
1923             return ExprResult::some(
1924                 createConstantExpression(ConstantInt::getFalse(CI->getType())),
1925                 PI);
1926           } else if (BranchPredicate ==
1927                      CmpInst::getInversePredicate(OurPredicate)) {
1928             // Inverse predicate, we know the other was false, so this is true.
1929             return ExprResult::some(
1930                 createConstantExpression(ConstantInt::getTrue(CI->getType())),
1931                 PI);
1932           }
1933         }
1934       }
1935     }
1936   }
1937   // Create expression will take care of simplifyCmpInst
1938   return createExpression(I);
1939 }
1940 
1941 // Substitute and symbolize the value before value numbering.
1942 NewGVN::ExprResult
1943 NewGVN::performSymbolicEvaluation(Value *V,
1944                                   SmallPtrSetImpl<Value *> &Visited) const {
1945 
1946   const Expression *E = nullptr;
1947   if (auto *C = dyn_cast<Constant>(V))
1948     E = createConstantExpression(C);
1949   else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1950     E = createVariableExpression(V);
1951   } else {
1952     // TODO: memory intrinsics.
1953     // TODO: Some day, we should do the forward propagation and reassociation
1954     // parts of the algorithm.
1955     auto *I = cast<Instruction>(V);
1956     switch (I->getOpcode()) {
1957     case Instruction::ExtractValue:
1958     case Instruction::InsertValue:
1959       E = performSymbolicAggrValueEvaluation(I);
1960       break;
1961     case Instruction::PHI: {
1962       SmallVector<ValPair, 3> Ops;
1963       auto *PN = cast<PHINode>(I);
1964       for (unsigned i = 0; i < PN->getNumOperands(); ++i)
1965         Ops.push_back({PN->getIncomingValue(i), PN->getIncomingBlock(i)});
1966       // Sort to ensure the invariant createPHIExpression requires is met.
1967       sortPHIOps(Ops);
1968       E = performSymbolicPHIEvaluation(Ops, I, getBlockForValue(I));
1969     } break;
1970     case Instruction::Call:
1971       return performSymbolicCallEvaluation(I);
1972       break;
1973     case Instruction::Store:
1974       E = performSymbolicStoreEvaluation(I);
1975       break;
1976     case Instruction::Load:
1977       E = performSymbolicLoadEvaluation(I);
1978       break;
1979     case Instruction::BitCast:
1980     case Instruction::AddrSpaceCast:
1981       return createExpression(I);
1982       break;
1983     case Instruction::ICmp:
1984     case Instruction::FCmp:
1985       return performSymbolicCmpEvaluation(I);
1986       break;
1987     case Instruction::FNeg:
1988     case Instruction::Add:
1989     case Instruction::FAdd:
1990     case Instruction::Sub:
1991     case Instruction::FSub:
1992     case Instruction::Mul:
1993     case Instruction::FMul:
1994     case Instruction::UDiv:
1995     case Instruction::SDiv:
1996     case Instruction::FDiv:
1997     case Instruction::URem:
1998     case Instruction::SRem:
1999     case Instruction::FRem:
2000     case Instruction::Shl:
2001     case Instruction::LShr:
2002     case Instruction::AShr:
2003     case Instruction::And:
2004     case Instruction::Or:
2005     case Instruction::Xor:
2006     case Instruction::Trunc:
2007     case Instruction::ZExt:
2008     case Instruction::SExt:
2009     case Instruction::FPToUI:
2010     case Instruction::FPToSI:
2011     case Instruction::UIToFP:
2012     case Instruction::SIToFP:
2013     case Instruction::FPTrunc:
2014     case Instruction::FPExt:
2015     case Instruction::PtrToInt:
2016     case Instruction::IntToPtr:
2017     case Instruction::Select:
2018     case Instruction::ExtractElement:
2019     case Instruction::InsertElement:
2020     case Instruction::GetElementPtr:
2021       return createExpression(I);
2022       break;
2023     case Instruction::ShuffleVector:
2024       // FIXME: Add support for shufflevector to createExpression.
2025       return ExprResult::none();
2026     default:
2027       return ExprResult::none();
2028     }
2029   }
2030   return ExprResult::some(E);
2031 }
2032 
2033 // Look up a container of values/instructions in a map, and touch all the
2034 // instructions in the container.  Then erase value from the map.
2035 template <typename Map, typename KeyType>
2036 void NewGVN::touchAndErase(Map &M, const KeyType &Key) {
2037   const auto Result = M.find_as(Key);
2038   if (Result != M.end()) {
2039     for (const typename Map::mapped_type::value_type Mapped : Result->second)
2040       TouchedInstructions.set(InstrToDFSNum(Mapped));
2041     M.erase(Result);
2042   }
2043 }
2044 
2045 void NewGVN::addAdditionalUsers(Value *To, Value *User) const {
2046   assert(User && To != User);
2047   if (isa<Instruction>(To))
2048     AdditionalUsers[To].insert(User);
2049 }
2050 
2051 void NewGVN::addAdditionalUsers(ExprResult &Res, Instruction *User) const {
2052   if (Res.ExtraDep && Res.ExtraDep != User)
2053     addAdditionalUsers(Res.ExtraDep, User);
2054   Res.ExtraDep = nullptr;
2055 
2056   if (Res.PredDep) {
2057     if (const auto *PBranch = dyn_cast<PredicateBranch>(Res.PredDep))
2058       PredicateToUsers[PBranch->Condition].insert(User);
2059     else if (const auto *PAssume = dyn_cast<PredicateAssume>(Res.PredDep))
2060       PredicateToUsers[PAssume->Condition].insert(User);
2061   }
2062   Res.PredDep = nullptr;
2063 }
2064 
2065 void NewGVN::markUsersTouched(Value *V) {
2066   // Now mark the users as touched.
2067   for (auto *User : V->users()) {
2068     assert(isa<Instruction>(User) && "Use of value not within an instruction?");
2069     TouchedInstructions.set(InstrToDFSNum(User));
2070   }
2071   touchAndErase(AdditionalUsers, V);
2072 }
2073 
2074 void NewGVN::addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const {
2075   LLVM_DEBUG(dbgs() << "Adding memory user " << *U << " to " << *To << "\n");
2076   MemoryToUsers[To].insert(U);
2077 }
2078 
2079 void NewGVN::markMemoryDefTouched(const MemoryAccess *MA) {
2080   TouchedInstructions.set(MemoryToDFSNum(MA));
2081 }
2082 
2083 void NewGVN::markMemoryUsersTouched(const MemoryAccess *MA) {
2084   if (isa<MemoryUse>(MA))
2085     return;
2086   for (auto U : MA->users())
2087     TouchedInstructions.set(MemoryToDFSNum(U));
2088   touchAndErase(MemoryToUsers, MA);
2089 }
2090 
2091 // Touch all the predicates that depend on this instruction.
2092 void NewGVN::markPredicateUsersTouched(Instruction *I) {
2093   touchAndErase(PredicateToUsers, I);
2094 }
2095 
2096 // Mark users affected by a memory leader change.
2097 void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass *CC) {
2098   for (auto M : CC->memory())
2099     markMemoryDefTouched(M);
2100 }
2101 
2102 // Touch the instructions that need to be updated after a congruence class has a
2103 // leader change, and mark changed values.
2104 void NewGVN::markValueLeaderChangeTouched(CongruenceClass *CC) {
2105   for (auto M : *CC) {
2106     if (auto *I = dyn_cast<Instruction>(M))
2107       TouchedInstructions.set(InstrToDFSNum(I));
2108     LeaderChanges.insert(M);
2109   }
2110 }
2111 
2112 // Give a range of things that have instruction DFS numbers, this will return
2113 // the member of the range with the smallest dfs number.
2114 template <class T, class Range>
2115 T *NewGVN::getMinDFSOfRange(const Range &R) const {
2116   std::pair<T *, unsigned> MinDFS = {nullptr, ~0U};
2117   for (const auto X : R) {
2118     auto DFSNum = InstrToDFSNum(X);
2119     if (DFSNum < MinDFS.second)
2120       MinDFS = {X, DFSNum};
2121   }
2122   return MinDFS.first;
2123 }
2124 
2125 // This function returns the MemoryAccess that should be the next leader of
2126 // congruence class CC, under the assumption that the current leader is going to
2127 // disappear.
2128 const MemoryAccess *NewGVN::getNextMemoryLeader(CongruenceClass *CC) const {
2129   // TODO: If this ends up to slow, we can maintain a next memory leader like we
2130   // do for regular leaders.
2131   // Make sure there will be a leader to find.
2132   assert(!CC->definesNoMemory() && "Can't get next leader if there is none");
2133   if (CC->getStoreCount() > 0) {
2134     if (auto *NL = dyn_cast_or_null<StoreInst>(CC->getNextLeader().first))
2135       return getMemoryAccess(NL);
2136     // Find the store with the minimum DFS number.
2137     auto *V = getMinDFSOfRange<Value>(make_filter_range(
2138         *CC, [&](const Value *V) { return isa<StoreInst>(V); }));
2139     return getMemoryAccess(cast<StoreInst>(V));
2140   }
2141   assert(CC->getStoreCount() == 0);
2142 
2143   // Given our assertion, hitting this part must mean
2144   // !OldClass->memory_empty()
2145   if (CC->memory_size() == 1)
2146     return *CC->memory_begin();
2147   return getMinDFSOfRange<const MemoryPhi>(CC->memory());
2148 }
2149 
2150 // This function returns the next value leader of a congruence class, under the
2151 // assumption that the current leader is going away.  This should end up being
2152 // the next most dominating member.
2153 Value *NewGVN::getNextValueLeader(CongruenceClass *CC) const {
2154   // We don't need to sort members if there is only 1, and we don't care about
2155   // sorting the TOP class because everything either gets out of it or is
2156   // unreachable.
2157 
2158   if (CC->size() == 1 || CC == TOPClass) {
2159     return *(CC->begin());
2160   } else if (CC->getNextLeader().first) {
2161     ++NumGVNAvoidedSortedLeaderChanges;
2162     return CC->getNextLeader().first;
2163   } else {
2164     ++NumGVNSortedLeaderChanges;
2165     // NOTE: If this ends up to slow, we can maintain a dual structure for
2166     // member testing/insertion, or keep things mostly sorted, and sort only
2167     // here, or use SparseBitVector or ....
2168     return getMinDFSOfRange<Value>(*CC);
2169   }
2170 }
2171 
2172 // Move a MemoryAccess, currently in OldClass, to NewClass, including updates to
2173 // the memory members, etc for the move.
2174 //
2175 // The invariants of this function are:
2176 //
2177 // - I must be moving to NewClass from OldClass
2178 // - The StoreCount of OldClass and NewClass is expected to have been updated
2179 //   for I already if it is a store.
2180 // - The OldClass memory leader has not been updated yet if I was the leader.
2181 void NewGVN::moveMemoryToNewCongruenceClass(Instruction *I,
2182                                             MemoryAccess *InstMA,
2183                                             CongruenceClass *OldClass,
2184                                             CongruenceClass *NewClass) {
2185   // If the leader is I, and we had a representative MemoryAccess, it should
2186   // be the MemoryAccess of OldClass.
2187   assert((!InstMA || !OldClass->getMemoryLeader() ||
2188           OldClass->getLeader() != I ||
2189           MemoryAccessToClass.lookup(OldClass->getMemoryLeader()) ==
2190               MemoryAccessToClass.lookup(InstMA)) &&
2191          "Representative MemoryAccess mismatch");
2192   // First, see what happens to the new class
2193   if (!NewClass->getMemoryLeader()) {
2194     // Should be a new class, or a store becoming a leader of a new class.
2195     assert(NewClass->size() == 1 ||
2196            (isa<StoreInst>(I) && NewClass->getStoreCount() == 1));
2197     NewClass->setMemoryLeader(InstMA);
2198     // Mark it touched if we didn't just create a singleton
2199     LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2200                       << NewClass->getID()
2201                       << " due to new memory instruction becoming leader\n");
2202     markMemoryLeaderChangeTouched(NewClass);
2203   }
2204   setMemoryClass(InstMA, NewClass);
2205   // Now, fixup the old class if necessary
2206   if (OldClass->getMemoryLeader() == InstMA) {
2207     if (!OldClass->definesNoMemory()) {
2208       OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
2209       LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2210                         << OldClass->getID() << " to "
2211                         << *OldClass->getMemoryLeader()
2212                         << " due to removal of old leader " << *InstMA << "\n");
2213       markMemoryLeaderChangeTouched(OldClass);
2214     } else
2215       OldClass->setMemoryLeader(nullptr);
2216   }
2217 }
2218 
2219 // Move a value, currently in OldClass, to be part of NewClass
2220 // Update OldClass and NewClass for the move (including changing leaders, etc).
2221 void NewGVN::moveValueToNewCongruenceClass(Instruction *I, const Expression *E,
2222                                            CongruenceClass *OldClass,
2223                                            CongruenceClass *NewClass) {
2224   if (I == OldClass->getNextLeader().first)
2225     OldClass->resetNextLeader();
2226 
2227   OldClass->erase(I);
2228   NewClass->insert(I);
2229 
2230   if (NewClass->getLeader() != I)
2231     NewClass->addPossibleNextLeader({I, InstrToDFSNum(I)});
2232   // Handle our special casing of stores.
2233   if (auto *SI = dyn_cast<StoreInst>(I)) {
2234     OldClass->decStoreCount();
2235     // Okay, so when do we want to make a store a leader of a class?
2236     // If we have a store defined by an earlier load, we want the earlier load
2237     // to lead the class.
2238     // If we have a store defined by something else, we want the store to lead
2239     // the class so everything else gets the "something else" as a value.
2240     // If we have a store as the single member of the class, we want the store
2241     // as the leader
2242     if (NewClass->getStoreCount() == 0 && !NewClass->getStoredValue()) {
2243       // If it's a store expression we are using, it means we are not equivalent
2244       // to something earlier.
2245       if (auto *SE = dyn_cast<StoreExpression>(E)) {
2246         NewClass->setStoredValue(SE->getStoredValue());
2247         markValueLeaderChangeTouched(NewClass);
2248         // Shift the new class leader to be the store
2249         LLVM_DEBUG(dbgs() << "Changing leader of congruence class "
2250                           << NewClass->getID() << " from "
2251                           << *NewClass->getLeader() << " to  " << *SI
2252                           << " because store joined class\n");
2253         // If we changed the leader, we have to mark it changed because we don't
2254         // know what it will do to symbolic evaluation.
2255         NewClass->setLeader(SI);
2256       }
2257       // We rely on the code below handling the MemoryAccess change.
2258     }
2259     NewClass->incStoreCount();
2260   }
2261   // True if there is no memory instructions left in a class that had memory
2262   // instructions before.
2263 
2264   // If it's not a memory use, set the MemoryAccess equivalence
2265   auto *InstMA = dyn_cast_or_null<MemoryDef>(getMemoryAccess(I));
2266   if (InstMA)
2267     moveMemoryToNewCongruenceClass(I, InstMA, OldClass, NewClass);
2268   ValueToClass[I] = NewClass;
2269   // See if we destroyed the class or need to swap leaders.
2270   if (OldClass->empty() && OldClass != TOPClass) {
2271     if (OldClass->getDefiningExpr()) {
2272       LLVM_DEBUG(dbgs() << "Erasing expression " << *OldClass->getDefiningExpr()
2273                         << " from table\n");
2274       // We erase it as an exact expression to make sure we don't just erase an
2275       // equivalent one.
2276       auto Iter = ExpressionToClass.find_as(
2277           ExactEqualsExpression(*OldClass->getDefiningExpr()));
2278       if (Iter != ExpressionToClass.end())
2279         ExpressionToClass.erase(Iter);
2280 #ifdef EXPENSIVE_CHECKS
2281       assert(
2282           (*OldClass->getDefiningExpr() != *E || ExpressionToClass.lookup(E)) &&
2283           "We erased the expression we just inserted, which should not happen");
2284 #endif
2285     }
2286   } else if (OldClass->getLeader() == I) {
2287     // When the leader changes, the value numbering of
2288     // everything may change due to symbolization changes, so we need to
2289     // reprocess.
2290     LLVM_DEBUG(dbgs() << "Value class leader change for class "
2291                       << OldClass->getID() << "\n");
2292     ++NumGVNLeaderChanges;
2293     // Destroy the stored value if there are no more stores to represent it.
2294     // Note that this is basically clean up for the expression removal that
2295     // happens below.  If we remove stores from a class, we may leave it as a
2296     // class of equivalent memory phis.
2297     if (OldClass->getStoreCount() == 0) {
2298       if (OldClass->getStoredValue())
2299         OldClass->setStoredValue(nullptr);
2300     }
2301     OldClass->setLeader(getNextValueLeader(OldClass));
2302     OldClass->resetNextLeader();
2303     markValueLeaderChangeTouched(OldClass);
2304   }
2305 }
2306 
2307 // For a given expression, mark the phi of ops instructions that could have
2308 // changed as a result.
2309 void NewGVN::markPhiOfOpsChanged(const Expression *E) {
2310   touchAndErase(ExpressionToPhiOfOps, E);
2311 }
2312 
2313 // Perform congruence finding on a given value numbering expression.
2314 void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) {
2315   // This is guaranteed to return something, since it will at least find
2316   // TOP.
2317 
2318   CongruenceClass *IClass = ValueToClass.lookup(I);
2319   assert(IClass && "Should have found a IClass");
2320   // Dead classes should have been eliminated from the mapping.
2321   assert(!IClass->isDead() && "Found a dead class");
2322 
2323   CongruenceClass *EClass = nullptr;
2324   if (const auto *VE = dyn_cast<VariableExpression>(E)) {
2325     EClass = ValueToClass.lookup(VE->getVariableValue());
2326   } else if (isa<DeadExpression>(E)) {
2327     EClass = TOPClass;
2328   }
2329   if (!EClass) {
2330     auto lookupResult = ExpressionToClass.insert({E, nullptr});
2331 
2332     // If it's not in the value table, create a new congruence class.
2333     if (lookupResult.second) {
2334       CongruenceClass *NewClass = createCongruenceClass(nullptr, E);
2335       auto place = lookupResult.first;
2336       place->second = NewClass;
2337 
2338       // Constants and variables should always be made the leader.
2339       if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
2340         NewClass->setLeader(CE->getConstantValue());
2341       } else if (const auto *SE = dyn_cast<StoreExpression>(E)) {
2342         StoreInst *SI = SE->getStoreInst();
2343         NewClass->setLeader(SI);
2344         NewClass->setStoredValue(SE->getStoredValue());
2345         // The RepMemoryAccess field will be filled in properly by the
2346         // moveValueToNewCongruenceClass call.
2347       } else {
2348         NewClass->setLeader(I);
2349       }
2350       assert(!isa<VariableExpression>(E) &&
2351              "VariableExpression should have been handled already");
2352 
2353       EClass = NewClass;
2354       LLVM_DEBUG(dbgs() << "Created new congruence class for " << *I
2355                         << " using expression " << *E << " at "
2356                         << NewClass->getID() << " and leader "
2357                         << *(NewClass->getLeader()));
2358       if (NewClass->getStoredValue())
2359         LLVM_DEBUG(dbgs() << " and stored value "
2360                           << *(NewClass->getStoredValue()));
2361       LLVM_DEBUG(dbgs() << "\n");
2362     } else {
2363       EClass = lookupResult.first->second;
2364       if (isa<ConstantExpression>(E))
2365         assert((isa<Constant>(EClass->getLeader()) ||
2366                 (EClass->getStoredValue() &&
2367                  isa<Constant>(EClass->getStoredValue()))) &&
2368                "Any class with a constant expression should have a "
2369                "constant leader");
2370 
2371       assert(EClass && "Somehow don't have an eclass");
2372 
2373       assert(!EClass->isDead() && "We accidentally looked up a dead class");
2374     }
2375   }
2376   bool ClassChanged = IClass != EClass;
2377   bool LeaderChanged = LeaderChanges.erase(I);
2378   if (ClassChanged || LeaderChanged) {
2379     LLVM_DEBUG(dbgs() << "New class " << EClass->getID() << " for expression "
2380                       << *E << "\n");
2381     if (ClassChanged) {
2382       moveValueToNewCongruenceClass(I, E, IClass, EClass);
2383       markPhiOfOpsChanged(E);
2384     }
2385 
2386     markUsersTouched(I);
2387     if (MemoryAccess *MA = getMemoryAccess(I))
2388       markMemoryUsersTouched(MA);
2389     if (auto *CI = dyn_cast<CmpInst>(I))
2390       markPredicateUsersTouched(CI);
2391   }
2392   // If we changed the class of the store, we want to ensure nothing finds the
2393   // old store expression.  In particular, loads do not compare against stored
2394   // value, so they will find old store expressions (and associated class
2395   // mappings) if we leave them in the table.
2396   if (ClassChanged && isa<StoreInst>(I)) {
2397     auto *OldE = ValueToExpression.lookup(I);
2398     // It could just be that the old class died. We don't want to erase it if we
2399     // just moved classes.
2400     if (OldE && isa<StoreExpression>(OldE) && *E != *OldE) {
2401       // Erase this as an exact expression to ensure we don't erase expressions
2402       // equivalent to it.
2403       auto Iter = ExpressionToClass.find_as(ExactEqualsExpression(*OldE));
2404       if (Iter != ExpressionToClass.end())
2405         ExpressionToClass.erase(Iter);
2406     }
2407   }
2408   ValueToExpression[I] = E;
2409 }
2410 
2411 // Process the fact that Edge (from, to) is reachable, including marking
2412 // any newly reachable blocks and instructions for processing.
2413 void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) {
2414   // Check if the Edge was reachable before.
2415   if (ReachableEdges.insert({From, To}).second) {
2416     // If this block wasn't reachable before, all instructions are touched.
2417     if (ReachableBlocks.insert(To).second) {
2418       LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2419                         << " marked reachable\n");
2420       const auto &InstRange = BlockInstRange.lookup(To);
2421       TouchedInstructions.set(InstRange.first, InstRange.second);
2422     } else {
2423       LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2424                         << " was reachable, but new edge {"
2425                         << getBlockName(From) << "," << getBlockName(To)
2426                         << "} to it found\n");
2427 
2428       // We've made an edge reachable to an existing block, which may
2429       // impact predicates. Otherwise, only mark the phi nodes as touched, as
2430       // they are the only thing that depend on new edges. Anything using their
2431       // values will get propagated to if necessary.
2432       if (MemoryAccess *MemPhi = getMemoryAccess(To))
2433         TouchedInstructions.set(InstrToDFSNum(MemPhi));
2434 
2435       // FIXME: We should just add a union op on a Bitvector and
2436       // SparseBitVector.  We can do it word by word faster than we are doing it
2437       // here.
2438       for (auto InstNum : RevisitOnReachabilityChange[To])
2439         TouchedInstructions.set(InstNum);
2440     }
2441   }
2442 }
2443 
2444 // Given a predicate condition (from a switch, cmp, or whatever) and a block,
2445 // see if we know some constant value for it already.
2446 Value *NewGVN::findConditionEquivalence(Value *Cond) const {
2447   auto Result = lookupOperandLeader(Cond);
2448   return isa<Constant>(Result) ? Result : nullptr;
2449 }
2450 
2451 // Process the outgoing edges of a block for reachability.
2452 void NewGVN::processOutgoingEdges(Instruction *TI, BasicBlock *B) {
2453   // Evaluate reachability of terminator instruction.
2454   Value *Cond;
2455   BasicBlock *TrueSucc, *FalseSucc;
2456   if (match(TI, m_Br(m_Value(Cond), TrueSucc, FalseSucc))) {
2457     Value *CondEvaluated = findConditionEquivalence(Cond);
2458     if (!CondEvaluated) {
2459       if (auto *I = dyn_cast<Instruction>(Cond)) {
2460         SmallPtrSet<Value *, 4> Visited;
2461         auto Res = performSymbolicEvaluation(I, Visited);
2462         if (const auto *CE = dyn_cast_or_null<ConstantExpression>(Res.Expr)) {
2463           CondEvaluated = CE->getConstantValue();
2464           addAdditionalUsers(Res, I);
2465         } else {
2466           // Did not use simplification result, no need to add the extra
2467           // dependency.
2468           Res.ExtraDep = nullptr;
2469         }
2470       } else if (isa<ConstantInt>(Cond)) {
2471         CondEvaluated = Cond;
2472       }
2473     }
2474     ConstantInt *CI;
2475     if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) {
2476       if (CI->isOne()) {
2477         LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2478                           << " evaluated to true\n");
2479         updateReachableEdge(B, TrueSucc);
2480       } else if (CI->isZero()) {
2481         LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2482                           << " evaluated to false\n");
2483         updateReachableEdge(B, FalseSucc);
2484       }
2485     } else {
2486       updateReachableEdge(B, TrueSucc);
2487       updateReachableEdge(B, FalseSucc);
2488     }
2489   } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
2490     // For switches, propagate the case values into the case
2491     // destinations.
2492 
2493     Value *SwitchCond = SI->getCondition();
2494     Value *CondEvaluated = findConditionEquivalence(SwitchCond);
2495     // See if we were able to turn this switch statement into a constant.
2496     if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) {
2497       auto *CondVal = cast<ConstantInt>(CondEvaluated);
2498       // We should be able to get case value for this.
2499       auto Case = *SI->findCaseValue(CondVal);
2500       if (Case.getCaseSuccessor() == SI->getDefaultDest()) {
2501         // We proved the value is outside of the range of the case.
2502         // We can't do anything other than mark the default dest as reachable,
2503         // and go home.
2504         updateReachableEdge(B, SI->getDefaultDest());
2505         return;
2506       }
2507       // Now get where it goes and mark it reachable.
2508       BasicBlock *TargetBlock = Case.getCaseSuccessor();
2509       updateReachableEdge(B, TargetBlock);
2510     } else {
2511       for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
2512         BasicBlock *TargetBlock = SI->getSuccessor(i);
2513         updateReachableEdge(B, TargetBlock);
2514       }
2515     }
2516   } else {
2517     // Otherwise this is either unconditional, or a type we have no
2518     // idea about. Just mark successors as reachable.
2519     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
2520       BasicBlock *TargetBlock = TI->getSuccessor(i);
2521       updateReachableEdge(B, TargetBlock);
2522     }
2523 
2524     // This also may be a memory defining terminator, in which case, set it
2525     // equivalent only to itself.
2526     //
2527     auto *MA = getMemoryAccess(TI);
2528     if (MA && !isa<MemoryUse>(MA)) {
2529       auto *CC = ensureLeaderOfMemoryClass(MA);
2530       if (setMemoryClass(MA, CC))
2531         markMemoryUsersTouched(MA);
2532     }
2533   }
2534 }
2535 
2536 // Remove the PHI of Ops PHI for I
2537 void NewGVN::removePhiOfOps(Instruction *I, PHINode *PHITemp) {
2538   InstrDFS.erase(PHITemp);
2539   // It's still a temp instruction. We keep it in the array so it gets erased.
2540   // However, it's no longer used by I, or in the block
2541   TempToBlock.erase(PHITemp);
2542   RealToTemp.erase(I);
2543   // We don't remove the users from the phi node uses. This wastes a little
2544   // time, but such is life.  We could use two sets to track which were there
2545   // are the start of NewGVN, and which were added, but right nowt he cost of
2546   // tracking is more than the cost of checking for more phi of ops.
2547 }
2548 
2549 // Add PHI Op in BB as a PHI of operations version of ExistingValue.
2550 void NewGVN::addPhiOfOps(PHINode *Op, BasicBlock *BB,
2551                          Instruction *ExistingValue) {
2552   InstrDFS[Op] = InstrToDFSNum(ExistingValue);
2553   AllTempInstructions.insert(Op);
2554   TempToBlock[Op] = BB;
2555   RealToTemp[ExistingValue] = Op;
2556   // Add all users to phi node use, as they are now uses of the phi of ops phis
2557   // and may themselves be phi of ops.
2558   for (auto *U : ExistingValue->users())
2559     if (auto *UI = dyn_cast<Instruction>(U))
2560       PHINodeUses.insert(UI);
2561 }
2562 
2563 static bool okayForPHIOfOps(const Instruction *I) {
2564   if (!EnablePhiOfOps)
2565     return false;
2566   return isa<BinaryOperator>(I) || isa<SelectInst>(I) || isa<CmpInst>(I) ||
2567          isa<LoadInst>(I);
2568 }
2569 
2570 bool NewGVN::OpIsSafeForPHIOfOpsHelper(
2571     Value *V, const BasicBlock *PHIBlock,
2572     SmallPtrSetImpl<const Value *> &Visited,
2573     SmallVectorImpl<Instruction *> &Worklist) {
2574 
2575   if (!isa<Instruction>(V))
2576     return true;
2577   auto OISIt = OpSafeForPHIOfOps.find(V);
2578   if (OISIt != OpSafeForPHIOfOps.end())
2579     return OISIt->second;
2580 
2581   // Keep walking until we either dominate the phi block, or hit a phi, or run
2582   // out of things to check.
2583   if (DT->properlyDominates(getBlockForValue(V), PHIBlock)) {
2584     OpSafeForPHIOfOps.insert({V, true});
2585     return true;
2586   }
2587   // PHI in the same block.
2588   if (isa<PHINode>(V) && getBlockForValue(V) == PHIBlock) {
2589     OpSafeForPHIOfOps.insert({V, false});
2590     return false;
2591   }
2592 
2593   auto *OrigI = cast<Instruction>(V);
2594   // When we hit an instruction that reads memory (load, call, etc), we must
2595   // consider any store that may happen in the loop. For now, we assume the
2596   // worst: there is a store in the loop that alias with this read.
2597   // The case where the load is outside the loop is already covered by the
2598   // dominator check above.
2599   // TODO: relax this condition
2600   if (OrigI->mayReadFromMemory())
2601     return false;
2602 
2603   for (auto *Op : OrigI->operand_values()) {
2604     if (!isa<Instruction>(Op))
2605       continue;
2606     // Stop now if we find an unsafe operand.
2607     auto OISIt = OpSafeForPHIOfOps.find(OrigI);
2608     if (OISIt != OpSafeForPHIOfOps.end()) {
2609       if (!OISIt->second) {
2610         OpSafeForPHIOfOps.insert({V, false});
2611         return false;
2612       }
2613       continue;
2614     }
2615     if (!Visited.insert(Op).second)
2616       continue;
2617     Worklist.push_back(cast<Instruction>(Op));
2618   }
2619   return true;
2620 }
2621 
2622 // Return true if this operand will be safe to use for phi of ops.
2623 //
2624 // The reason some operands are unsafe is that we are not trying to recursively
2625 // translate everything back through phi nodes.  We actually expect some lookups
2626 // of expressions to fail.  In particular, a lookup where the expression cannot
2627 // exist in the predecessor.  This is true even if the expression, as shown, can
2628 // be determined to be constant.
2629 bool NewGVN::OpIsSafeForPHIOfOps(Value *V, const BasicBlock *PHIBlock,
2630                                  SmallPtrSetImpl<const Value *> &Visited) {
2631   SmallVector<Instruction *, 4> Worklist;
2632   if (!OpIsSafeForPHIOfOpsHelper(V, PHIBlock, Visited, Worklist))
2633     return false;
2634   while (!Worklist.empty()) {
2635     auto *I = Worklist.pop_back_val();
2636     if (!OpIsSafeForPHIOfOpsHelper(I, PHIBlock, Visited, Worklist))
2637       return false;
2638   }
2639   OpSafeForPHIOfOps.insert({V, true});
2640   return true;
2641 }
2642 
2643 // Try to find a leader for instruction TransInst, which is a phi translated
2644 // version of something in our original program.  Visited is used to ensure we
2645 // don't infinite loop during translations of cycles.  OrigInst is the
2646 // instruction in the original program, and PredBB is the predecessor we
2647 // translated it through.
2648 Value *NewGVN::findLeaderForInst(Instruction *TransInst,
2649                                  SmallPtrSetImpl<Value *> &Visited,
2650                                  MemoryAccess *MemAccess, Instruction *OrigInst,
2651                                  BasicBlock *PredBB) {
2652   unsigned IDFSNum = InstrToDFSNum(OrigInst);
2653   // Make sure it's marked as a temporary instruction.
2654   AllTempInstructions.insert(TransInst);
2655   // and make sure anything that tries to add it's DFS number is
2656   // redirected to the instruction we are making a phi of ops
2657   // for.
2658   TempToBlock.insert({TransInst, PredBB});
2659   InstrDFS.insert({TransInst, IDFSNum});
2660 
2661   auto Res = performSymbolicEvaluation(TransInst, Visited);
2662   const Expression *E = Res.Expr;
2663   addAdditionalUsers(Res, OrigInst);
2664   InstrDFS.erase(TransInst);
2665   AllTempInstructions.erase(TransInst);
2666   TempToBlock.erase(TransInst);
2667   if (MemAccess)
2668     TempToMemory.erase(TransInst);
2669   if (!E)
2670     return nullptr;
2671   auto *FoundVal = findPHIOfOpsLeader(E, OrigInst, PredBB);
2672   if (!FoundVal) {
2673     ExpressionToPhiOfOps[E].insert(OrigInst);
2674     LLVM_DEBUG(dbgs() << "Cannot find phi of ops operand for " << *TransInst
2675                       << " in block " << getBlockName(PredBB) << "\n");
2676     return nullptr;
2677   }
2678   if (auto *SI = dyn_cast<StoreInst>(FoundVal))
2679     FoundVal = SI->getValueOperand();
2680   return FoundVal;
2681 }
2682 
2683 // When we see an instruction that is an op of phis, generate the equivalent phi
2684 // of ops form.
2685 const Expression *
2686 NewGVN::makePossiblePHIOfOps(Instruction *I,
2687                              SmallPtrSetImpl<Value *> &Visited) {
2688   if (!okayForPHIOfOps(I))
2689     return nullptr;
2690 
2691   if (!Visited.insert(I).second)
2692     return nullptr;
2693   // For now, we require the instruction be cycle free because we don't
2694   // *always* create a phi of ops for instructions that could be done as phi
2695   // of ops, we only do it if we think it is useful.  If we did do it all the
2696   // time, we could remove the cycle free check.
2697   if (!isCycleFree(I))
2698     return nullptr;
2699 
2700   SmallPtrSet<const Value *, 8> ProcessedPHIs;
2701   // TODO: We don't do phi translation on memory accesses because it's
2702   // complicated. For a load, we'd need to be able to simulate a new memoryuse,
2703   // which we don't have a good way of doing ATM.
2704   auto *MemAccess = getMemoryAccess(I);
2705   // If the memory operation is defined by a memory operation this block that
2706   // isn't a MemoryPhi, transforming the pointer backwards through a scalar phi
2707   // can't help, as it would still be killed by that memory operation.
2708   if (MemAccess && !isa<MemoryPhi>(MemAccess->getDefiningAccess()) &&
2709       MemAccess->getDefiningAccess()->getBlock() == I->getParent())
2710     return nullptr;
2711 
2712   // Convert op of phis to phi of ops
2713   SmallPtrSet<const Value *, 10> VisitedOps;
2714   SmallVector<Value *, 4> Ops(I->operand_values());
2715   BasicBlock *SamePHIBlock = nullptr;
2716   PHINode *OpPHI = nullptr;
2717   if (!DebugCounter::shouldExecute(PHIOfOpsCounter))
2718     return nullptr;
2719   for (auto *Op : Ops) {
2720     if (!isa<PHINode>(Op)) {
2721       auto *ValuePHI = RealToTemp.lookup(Op);
2722       if (!ValuePHI)
2723         continue;
2724       LLVM_DEBUG(dbgs() << "Found possible dependent phi of ops\n");
2725       Op = ValuePHI;
2726     }
2727     OpPHI = cast<PHINode>(Op);
2728     if (!SamePHIBlock) {
2729       SamePHIBlock = getBlockForValue(OpPHI);
2730     } else if (SamePHIBlock != getBlockForValue(OpPHI)) {
2731       LLVM_DEBUG(
2732           dbgs()
2733           << "PHIs for operands are not all in the same block, aborting\n");
2734       return nullptr;
2735     }
2736     // No point in doing this for one-operand phis.
2737     if (OpPHI->getNumOperands() == 1) {
2738       OpPHI = nullptr;
2739       continue;
2740     }
2741   }
2742 
2743   if (!OpPHI)
2744     return nullptr;
2745 
2746   SmallVector<ValPair, 4> PHIOps;
2747   SmallPtrSet<Value *, 4> Deps;
2748   auto *PHIBlock = getBlockForValue(OpPHI);
2749   RevisitOnReachabilityChange[PHIBlock].reset(InstrToDFSNum(I));
2750   for (unsigned PredNum = 0; PredNum < OpPHI->getNumOperands(); ++PredNum) {
2751     auto *PredBB = OpPHI->getIncomingBlock(PredNum);
2752     Value *FoundVal = nullptr;
2753     SmallPtrSet<Value *, 4> CurrentDeps;
2754     // We could just skip unreachable edges entirely but it's tricky to do
2755     // with rewriting existing phi nodes.
2756     if (ReachableEdges.count({PredBB, PHIBlock})) {
2757       // Clone the instruction, create an expression from it that is
2758       // translated back into the predecessor, and see if we have a leader.
2759       Instruction *ValueOp = I->clone();
2760       if (MemAccess)
2761         TempToMemory.insert({ValueOp, MemAccess});
2762       bool SafeForPHIOfOps = true;
2763       VisitedOps.clear();
2764       for (auto &Op : ValueOp->operands()) {
2765         auto *OrigOp = &*Op;
2766         // When these operand changes, it could change whether there is a
2767         // leader for us or not, so we have to add additional users.
2768         if (isa<PHINode>(Op)) {
2769           Op = Op->DoPHITranslation(PHIBlock, PredBB);
2770           if (Op != OrigOp && Op != I)
2771             CurrentDeps.insert(Op);
2772         } else if (auto *ValuePHI = RealToTemp.lookup(Op)) {
2773           if (getBlockForValue(ValuePHI) == PHIBlock)
2774             Op = ValuePHI->getIncomingValueForBlock(PredBB);
2775         }
2776         // If we phi-translated the op, it must be safe.
2777         SafeForPHIOfOps =
2778             SafeForPHIOfOps &&
2779             (Op != OrigOp || OpIsSafeForPHIOfOps(Op, PHIBlock, VisitedOps));
2780       }
2781       // FIXME: For those things that are not safe we could generate
2782       // expressions all the way down, and see if this comes out to a
2783       // constant.  For anything where that is true, and unsafe, we should
2784       // have made a phi-of-ops (or value numbered it equivalent to something)
2785       // for the pieces already.
2786       FoundVal = !SafeForPHIOfOps ? nullptr
2787                                   : findLeaderForInst(ValueOp, Visited,
2788                                                       MemAccess, I, PredBB);
2789       ValueOp->deleteValue();
2790       if (!FoundVal) {
2791         // We failed to find a leader for the current ValueOp, but this might
2792         // change in case of the translated operands change.
2793         if (SafeForPHIOfOps)
2794           for (auto Dep : CurrentDeps)
2795             addAdditionalUsers(Dep, I);
2796 
2797         return nullptr;
2798       }
2799       Deps.insert(CurrentDeps.begin(), CurrentDeps.end());
2800     } else {
2801       LLVM_DEBUG(dbgs() << "Skipping phi of ops operand for incoming block "
2802                         << getBlockName(PredBB)
2803                         << " because the block is unreachable\n");
2804       FoundVal = PoisonValue::get(I->getType());
2805       RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2806     }
2807 
2808     PHIOps.push_back({FoundVal, PredBB});
2809     LLVM_DEBUG(dbgs() << "Found phi of ops operand " << *FoundVal << " in "
2810                       << getBlockName(PredBB) << "\n");
2811   }
2812   for (auto Dep : Deps)
2813     addAdditionalUsers(Dep, I);
2814   sortPHIOps(PHIOps);
2815   auto *E = performSymbolicPHIEvaluation(PHIOps, I, PHIBlock);
2816   if (isa<ConstantExpression>(E) || isa<VariableExpression>(E)) {
2817     LLVM_DEBUG(
2818         dbgs()
2819         << "Not creating real PHI of ops because it simplified to existing "
2820            "value or constant\n");
2821     // We have leaders for all operands, but do not create a real PHI node with
2822     // those leaders as operands, so the link between the operands and the
2823     // PHI-of-ops is not materialized in the IR. If any of those leaders
2824     // changes, the PHI-of-op may change also, so we need to add the operands as
2825     // additional users.
2826     for (auto &O : PHIOps)
2827       addAdditionalUsers(O.first, I);
2828 
2829     return E;
2830   }
2831   auto *ValuePHI = RealToTemp.lookup(I);
2832   bool NewPHI = false;
2833   if (!ValuePHI) {
2834     ValuePHI =
2835         PHINode::Create(I->getType(), OpPHI->getNumOperands(), "phiofops");
2836     addPhiOfOps(ValuePHI, PHIBlock, I);
2837     NewPHI = true;
2838     NumGVNPHIOfOpsCreated++;
2839   }
2840   if (NewPHI) {
2841     for (auto PHIOp : PHIOps)
2842       ValuePHI->addIncoming(PHIOp.first, PHIOp.second);
2843   } else {
2844     TempToBlock[ValuePHI] = PHIBlock;
2845     unsigned int i = 0;
2846     for (auto PHIOp : PHIOps) {
2847       ValuePHI->setIncomingValue(i, PHIOp.first);
2848       ValuePHI->setIncomingBlock(i, PHIOp.second);
2849       ++i;
2850     }
2851   }
2852   RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2853   LLVM_DEBUG(dbgs() << "Created phi of ops " << *ValuePHI << " for " << *I
2854                     << "\n");
2855 
2856   return E;
2857 }
2858 
2859 // The algorithm initially places the values of the routine in the TOP
2860 // congruence class. The leader of TOP is the undetermined value `poison`.
2861 // When the algorithm has finished, values still in TOP are unreachable.
2862 void NewGVN::initializeCongruenceClasses(Function &F) {
2863   NextCongruenceNum = 0;
2864 
2865   // Note that even though we use the live on entry def as a representative
2866   // MemoryAccess, it is *not* the same as the actual live on entry def. We
2867   // have no real equivalent to poison for MemoryAccesses, and so we really
2868   // should be checking whether the MemoryAccess is top if we want to know if it
2869   // is equivalent to everything.  Otherwise, what this really signifies is that
2870   // the access "it reaches all the way back to the beginning of the function"
2871 
2872   // Initialize all other instructions to be in TOP class.
2873   TOPClass = createCongruenceClass(nullptr, nullptr);
2874   TOPClass->setMemoryLeader(MSSA->getLiveOnEntryDef());
2875   //  The live on entry def gets put into it's own class
2876   MemoryAccessToClass[MSSA->getLiveOnEntryDef()] =
2877       createMemoryClass(MSSA->getLiveOnEntryDef());
2878 
2879   for (auto DTN : nodes(DT)) {
2880     BasicBlock *BB = DTN->getBlock();
2881     // All MemoryAccesses are equivalent to live on entry to start. They must
2882     // be initialized to something so that initial changes are noticed. For
2883     // the maximal answer, we initialize them all to be the same as
2884     // liveOnEntry.
2885     auto *MemoryBlockDefs = MSSA->getBlockDefs(BB);
2886     if (MemoryBlockDefs)
2887       for (const auto &Def : *MemoryBlockDefs) {
2888         MemoryAccessToClass[&Def] = TOPClass;
2889         auto *MD = dyn_cast<MemoryDef>(&Def);
2890         // Insert the memory phis into the member list.
2891         if (!MD) {
2892           const MemoryPhi *MP = cast<MemoryPhi>(&Def);
2893           TOPClass->memory_insert(MP);
2894           MemoryPhiState.insert({MP, MPS_TOP});
2895         }
2896 
2897         if (MD && isa<StoreInst>(MD->getMemoryInst()))
2898           TOPClass->incStoreCount();
2899       }
2900 
2901     // FIXME: This is trying to discover which instructions are uses of phi
2902     // nodes.  We should move this into one of the myriad of places that walk
2903     // all the operands already.
2904     for (auto &I : *BB) {
2905       if (isa<PHINode>(&I))
2906         for (auto *U : I.users())
2907           if (auto *UInst = dyn_cast<Instruction>(U))
2908             if (InstrToDFSNum(UInst) != 0 && okayForPHIOfOps(UInst))
2909               PHINodeUses.insert(UInst);
2910       // Don't insert void terminators into the class. We don't value number
2911       // them, and they just end up sitting in TOP.
2912       if (I.isTerminator() && I.getType()->isVoidTy())
2913         continue;
2914       TOPClass->insert(&I);
2915       ValueToClass[&I] = TOPClass;
2916     }
2917   }
2918 
2919   // Initialize arguments to be in their own unique congruence classes
2920   for (auto &FA : F.args())
2921     createSingletonCongruenceClass(&FA);
2922 }
2923 
2924 void NewGVN::cleanupTables() {
2925   for (unsigned i = 0, e = CongruenceClasses.size(); i != e; ++i) {
2926     LLVM_DEBUG(dbgs() << "Congruence class " << CongruenceClasses[i]->getID()
2927                       << " has " << CongruenceClasses[i]->size()
2928                       << " members\n");
2929     // Make sure we delete the congruence class (probably worth switching to
2930     // a unique_ptr at some point.
2931     delete CongruenceClasses[i];
2932     CongruenceClasses[i] = nullptr;
2933   }
2934 
2935   // Destroy the value expressions
2936   SmallVector<Instruction *, 8> TempInst(AllTempInstructions.begin(),
2937                                          AllTempInstructions.end());
2938   AllTempInstructions.clear();
2939 
2940   // We have to drop all references for everything first, so there are no uses
2941   // left as we delete them.
2942   for (auto *I : TempInst) {
2943     I->dropAllReferences();
2944   }
2945 
2946   while (!TempInst.empty()) {
2947     auto *I = TempInst.pop_back_val();
2948     I->deleteValue();
2949   }
2950 
2951   ValueToClass.clear();
2952   ArgRecycler.clear(ExpressionAllocator);
2953   ExpressionAllocator.Reset();
2954   CongruenceClasses.clear();
2955   ExpressionToClass.clear();
2956   ValueToExpression.clear();
2957   RealToTemp.clear();
2958   AdditionalUsers.clear();
2959   ExpressionToPhiOfOps.clear();
2960   TempToBlock.clear();
2961   TempToMemory.clear();
2962   PHINodeUses.clear();
2963   OpSafeForPHIOfOps.clear();
2964   ReachableBlocks.clear();
2965   ReachableEdges.clear();
2966 #ifndef NDEBUG
2967   ProcessedCount.clear();
2968 #endif
2969   InstrDFS.clear();
2970   InstructionsToErase.clear();
2971   DFSToInstr.clear();
2972   BlockInstRange.clear();
2973   TouchedInstructions.clear();
2974   MemoryAccessToClass.clear();
2975   PredicateToUsers.clear();
2976   MemoryToUsers.clear();
2977   RevisitOnReachabilityChange.clear();
2978   IntrinsicInstPred.clear();
2979 }
2980 
2981 // Assign local DFS number mapping to instructions, and leave space for Value
2982 // PHI's.
2983 std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B,
2984                                                        unsigned Start) {
2985   unsigned End = Start;
2986   if (MemoryAccess *MemPhi = getMemoryAccess(B)) {
2987     InstrDFS[MemPhi] = End++;
2988     DFSToInstr.emplace_back(MemPhi);
2989   }
2990 
2991   // Then the real block goes next.
2992   for (auto &I : *B) {
2993     // There's no need to call isInstructionTriviallyDead more than once on
2994     // an instruction. Therefore, once we know that an instruction is dead
2995     // we change its DFS number so that it doesn't get value numbered.
2996     if (isInstructionTriviallyDead(&I, TLI)) {
2997       InstrDFS[&I] = 0;
2998       LLVM_DEBUG(dbgs() << "Skipping trivially dead instruction " << I << "\n");
2999       markInstructionForDeletion(&I);
3000       continue;
3001     }
3002     if (isa<PHINode>(&I))
3003       RevisitOnReachabilityChange[B].set(End);
3004     InstrDFS[&I] = End++;
3005     DFSToInstr.emplace_back(&I);
3006   }
3007 
3008   // All of the range functions taken half-open ranges (open on the end side).
3009   // So we do not subtract one from count, because at this point it is one
3010   // greater than the last instruction.
3011   return std::make_pair(Start, End);
3012 }
3013 
3014 void NewGVN::updateProcessedCount(const Value *V) {
3015 #ifndef NDEBUG
3016   if (ProcessedCount.count(V) == 0) {
3017     ProcessedCount.insert({V, 1});
3018   } else {
3019     ++ProcessedCount[V];
3020     assert(ProcessedCount[V] < 100 &&
3021            "Seem to have processed the same Value a lot");
3022   }
3023 #endif
3024 }
3025 
3026 // Evaluate MemoryPhi nodes symbolically, just like PHI nodes
3027 void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) {
3028   // If all the arguments are the same, the MemoryPhi has the same value as the
3029   // argument.  Filter out unreachable blocks and self phis from our operands.
3030   // TODO: We could do cycle-checking on the memory phis to allow valueizing for
3031   // self-phi checking.
3032   const BasicBlock *PHIBlock = MP->getBlock();
3033   auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) {
3034     return cast<MemoryAccess>(U) != MP &&
3035            !isMemoryAccessTOP(cast<MemoryAccess>(U)) &&
3036            ReachableEdges.count({MP->getIncomingBlock(U), PHIBlock});
3037   });
3038   // If all that is left is nothing, our memoryphi is poison. We keep it as
3039   // InitialClass.  Note: The only case this should happen is if we have at
3040   // least one self-argument.
3041   if (Filtered.begin() == Filtered.end()) {
3042     if (setMemoryClass(MP, TOPClass))
3043       markMemoryUsersTouched(MP);
3044     return;
3045   }
3046 
3047   // Transform the remaining operands into operand leaders.
3048   // FIXME: mapped_iterator should have a range version.
3049   auto LookupFunc = [&](const Use &U) {
3050     return lookupMemoryLeader(cast<MemoryAccess>(U));
3051   };
3052   auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc);
3053   auto MappedEnd = map_iterator(Filtered.end(), LookupFunc);
3054 
3055   // and now check if all the elements are equal.
3056   // Sadly, we can't use std::equals since these are random access iterators.
3057   const auto *AllSameValue = *MappedBegin;
3058   ++MappedBegin;
3059   bool AllEqual = std::all_of(
3060       MappedBegin, MappedEnd,
3061       [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; });
3062 
3063   if (AllEqual)
3064     LLVM_DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue
3065                       << "\n");
3066   else
3067     LLVM_DEBUG(dbgs() << "Memory Phi value numbered to itself\n");
3068   // If it's equal to something, it's in that class. Otherwise, it has to be in
3069   // a class where it is the leader (other things may be equivalent to it, but
3070   // it needs to start off in its own class, which means it must have been the
3071   // leader, and it can't have stopped being the leader because it was never
3072   // removed).
3073   CongruenceClass *CC =
3074       AllEqual ? getMemoryClass(AllSameValue) : ensureLeaderOfMemoryClass(MP);
3075   auto OldState = MemoryPhiState.lookup(MP);
3076   assert(OldState != MPS_Invalid && "Invalid memory phi state");
3077   auto NewState = AllEqual ? MPS_Equivalent : MPS_Unique;
3078   MemoryPhiState[MP] = NewState;
3079   if (setMemoryClass(MP, CC) || OldState != NewState)
3080     markMemoryUsersTouched(MP);
3081 }
3082 
3083 // Value number a single instruction, symbolically evaluating, performing
3084 // congruence finding, and updating mappings.
3085 void NewGVN::valueNumberInstruction(Instruction *I) {
3086   LLVM_DEBUG(dbgs() << "Processing instruction " << *I << "\n");
3087   if (!I->isTerminator()) {
3088     const Expression *Symbolized = nullptr;
3089     SmallPtrSet<Value *, 2> Visited;
3090     if (DebugCounter::shouldExecute(VNCounter)) {
3091       auto Res = performSymbolicEvaluation(I, Visited);
3092       Symbolized = Res.Expr;
3093       addAdditionalUsers(Res, I);
3094 
3095       // Make a phi of ops if necessary
3096       if (Symbolized && !isa<ConstantExpression>(Symbolized) &&
3097           !isa<VariableExpression>(Symbolized) && PHINodeUses.count(I)) {
3098         auto *PHIE = makePossiblePHIOfOps(I, Visited);
3099         // If we created a phi of ops, use it.
3100         // If we couldn't create one, make sure we don't leave one lying around
3101         if (PHIE) {
3102           Symbolized = PHIE;
3103         } else if (auto *Op = RealToTemp.lookup(I)) {
3104           removePhiOfOps(I, Op);
3105         }
3106       }
3107     } else {
3108       // Mark the instruction as unused so we don't value number it again.
3109       InstrDFS[I] = 0;
3110     }
3111     // If we couldn't come up with a symbolic expression, use the unknown
3112     // expression
3113     if (Symbolized == nullptr)
3114       Symbolized = createUnknownExpression(I);
3115     performCongruenceFinding(I, Symbolized);
3116   } else {
3117     // Handle terminators that return values. All of them produce values we
3118     // don't currently understand.  We don't place non-value producing
3119     // terminators in a class.
3120     if (!I->getType()->isVoidTy()) {
3121       auto *Symbolized = createUnknownExpression(I);
3122       performCongruenceFinding(I, Symbolized);
3123     }
3124     processOutgoingEdges(I, I->getParent());
3125   }
3126 }
3127 
3128 // Check if there is a path, using single or equal argument phi nodes, from
3129 // First to Second.
3130 bool NewGVN::singleReachablePHIPath(
3131     SmallPtrSet<const MemoryAccess *, 8> &Visited, const MemoryAccess *First,
3132     const MemoryAccess *Second) const {
3133   if (First == Second)
3134     return true;
3135   if (MSSA->isLiveOnEntryDef(First))
3136     return false;
3137 
3138   // This is not perfect, but as we're just verifying here, we can live with
3139   // the loss of precision. The real solution would be that of doing strongly
3140   // connected component finding in this routine, and it's probably not worth
3141   // the complexity for the time being. So, we just keep a set of visited
3142   // MemoryAccess and return true when we hit a cycle.
3143   if (Visited.count(First))
3144     return true;
3145   Visited.insert(First);
3146 
3147   const auto *EndDef = First;
3148   for (auto *ChainDef : optimized_def_chain(First)) {
3149     if (ChainDef == Second)
3150       return true;
3151     if (MSSA->isLiveOnEntryDef(ChainDef))
3152       return false;
3153     EndDef = ChainDef;
3154   }
3155   auto *MP = cast<MemoryPhi>(EndDef);
3156   auto ReachableOperandPred = [&](const Use &U) {
3157     return ReachableEdges.count({MP->getIncomingBlock(U), MP->getBlock()});
3158   };
3159   auto FilteredPhiArgs =
3160       make_filter_range(MP->operands(), ReachableOperandPred);
3161   SmallVector<const Value *, 32> OperandList;
3162   llvm::copy(FilteredPhiArgs, std::back_inserter(OperandList));
3163   bool Okay = is_splat(OperandList);
3164   if (Okay)
3165     return singleReachablePHIPath(Visited, cast<MemoryAccess>(OperandList[0]),
3166                                   Second);
3167   return false;
3168 }
3169 
3170 // Verify the that the memory equivalence table makes sense relative to the
3171 // congruence classes.  Note that this checking is not perfect, and is currently
3172 // subject to very rare false negatives. It is only useful for
3173 // testing/debugging.
3174 void NewGVN::verifyMemoryCongruency() const {
3175 #ifndef NDEBUG
3176   // Verify that the memory table equivalence and memory member set match
3177   for (const auto *CC : CongruenceClasses) {
3178     if (CC == TOPClass || CC->isDead())
3179       continue;
3180     if (CC->getStoreCount() != 0) {
3181       assert((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) &&
3182              "Any class with a store as a leader should have a "
3183              "representative stored value");
3184       assert(CC->getMemoryLeader() &&
3185              "Any congruence class with a store should have a "
3186              "representative access");
3187     }
3188 
3189     if (CC->getMemoryLeader())
3190       assert(MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC &&
3191              "Representative MemoryAccess does not appear to be reverse "
3192              "mapped properly");
3193     for (auto M : CC->memory())
3194       assert(MemoryAccessToClass.lookup(M) == CC &&
3195              "Memory member does not appear to be reverse mapped properly");
3196   }
3197 
3198   // Anything equivalent in the MemoryAccess table should be in the same
3199   // congruence class.
3200 
3201   // Filter out the unreachable and trivially dead entries, because they may
3202   // never have been updated if the instructions were not processed.
3203   auto ReachableAccessPred =
3204       [&](const std::pair<const MemoryAccess *, CongruenceClass *> Pair) {
3205         bool Result = ReachableBlocks.count(Pair.first->getBlock());
3206         if (!Result || MSSA->isLiveOnEntryDef(Pair.first) ||
3207             MemoryToDFSNum(Pair.first) == 0)
3208           return false;
3209         if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first))
3210           return !isInstructionTriviallyDead(MemDef->getMemoryInst());
3211 
3212         // We could have phi nodes which operands are all trivially dead,
3213         // so we don't process them.
3214         if (auto *MemPHI = dyn_cast<MemoryPhi>(Pair.first)) {
3215           for (auto &U : MemPHI->incoming_values()) {
3216             if (auto *I = dyn_cast<Instruction>(&*U)) {
3217               if (!isInstructionTriviallyDead(I))
3218                 return true;
3219             }
3220           }
3221           return false;
3222         }
3223 
3224         return true;
3225       };
3226 
3227   auto Filtered = make_filter_range(MemoryAccessToClass, ReachableAccessPred);
3228   for (auto KV : Filtered) {
3229     if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) {
3230       auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second->getMemoryLeader());
3231       if (FirstMUD && SecondMUD) {
3232         SmallPtrSet<const MemoryAccess *, 8> VisitedMAS;
3233         assert((singleReachablePHIPath(VisitedMAS, FirstMUD, SecondMUD) ||
3234                 ValueToClass.lookup(FirstMUD->getMemoryInst()) ==
3235                     ValueToClass.lookup(SecondMUD->getMemoryInst())) &&
3236                "The instructions for these memory operations should have "
3237                "been in the same congruence class or reachable through"
3238                "a single argument phi");
3239       }
3240     } else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) {
3241       // We can only sanely verify that MemoryDefs in the operand list all have
3242       // the same class.
3243       auto ReachableOperandPred = [&](const Use &U) {
3244         return ReachableEdges.count(
3245                    {FirstMP->getIncomingBlock(U), FirstMP->getBlock()}) &&
3246                isa<MemoryDef>(U);
3247 
3248       };
3249       // All arguments should in the same class, ignoring unreachable arguments
3250       auto FilteredPhiArgs =
3251           make_filter_range(FirstMP->operands(), ReachableOperandPred);
3252       SmallVector<const CongruenceClass *, 16> PhiOpClasses;
3253       std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
3254                      std::back_inserter(PhiOpClasses), [&](const Use &U) {
3255                        const MemoryDef *MD = cast<MemoryDef>(U);
3256                        return ValueToClass.lookup(MD->getMemoryInst());
3257                      });
3258       assert(is_splat(PhiOpClasses) &&
3259              "All MemoryPhi arguments should be in the same class");
3260     }
3261   }
3262 #endif
3263 }
3264 
3265 // Verify that the sparse propagation we did actually found the maximal fixpoint
3266 // We do this by storing the value to class mapping, touching all instructions,
3267 // and redoing the iteration to see if anything changed.
3268 void NewGVN::verifyIterationSettled(Function &F) {
3269 #ifndef NDEBUG
3270   LLVM_DEBUG(dbgs() << "Beginning iteration verification\n");
3271   if (DebugCounter::isCounterSet(VNCounter))
3272     DebugCounter::setCounterValue(VNCounter, StartingVNCounter);
3273 
3274   // Note that we have to store the actual classes, as we may change existing
3275   // classes during iteration.  This is because our memory iteration propagation
3276   // is not perfect, and so may waste a little work.  But it should generate
3277   // exactly the same congruence classes we have now, with different IDs.
3278   std::map<const Value *, CongruenceClass> BeforeIteration;
3279 
3280   for (auto &KV : ValueToClass) {
3281     if (auto *I = dyn_cast<Instruction>(KV.first))
3282       // Skip unused/dead instructions.
3283       if (InstrToDFSNum(I) == 0)
3284         continue;
3285     BeforeIteration.insert({KV.first, *KV.second});
3286   }
3287 
3288   TouchedInstructions.set();
3289   TouchedInstructions.reset(0);
3290   iterateTouchedInstructions();
3291   DenseSet<std::pair<const CongruenceClass *, const CongruenceClass *>>
3292       EqualClasses;
3293   for (const auto &KV : ValueToClass) {
3294     if (auto *I = dyn_cast<Instruction>(KV.first))
3295       // Skip unused/dead instructions.
3296       if (InstrToDFSNum(I) == 0)
3297         continue;
3298     // We could sink these uses, but i think this adds a bit of clarity here as
3299     // to what we are comparing.
3300     auto *BeforeCC = &BeforeIteration.find(KV.first)->second;
3301     auto *AfterCC = KV.second;
3302     // Note that the classes can't change at this point, so we memoize the set
3303     // that are equal.
3304     if (!EqualClasses.count({BeforeCC, AfterCC})) {
3305       assert(BeforeCC->isEquivalentTo(AfterCC) &&
3306              "Value number changed after main loop completed!");
3307       EqualClasses.insert({BeforeCC, AfterCC});
3308     }
3309   }
3310 #endif
3311 }
3312 
3313 // Verify that for each store expression in the expression to class mapping,
3314 // only the latest appears, and multiple ones do not appear.
3315 // Because loads do not use the stored value when doing equality with stores,
3316 // if we don't erase the old store expressions from the table, a load can find
3317 // a no-longer valid StoreExpression.
3318 void NewGVN::verifyStoreExpressions() const {
3319 #ifndef NDEBUG
3320   // This is the only use of this, and it's not worth defining a complicated
3321   // densemapinfo hash/equality function for it.
3322   std::set<
3323       std::pair<const Value *,
3324                 std::tuple<const Value *, const CongruenceClass *, Value *>>>
3325       StoreExpressionSet;
3326   for (const auto &KV : ExpressionToClass) {
3327     if (auto *SE = dyn_cast<StoreExpression>(KV.first)) {
3328       // Make sure a version that will conflict with loads is not already there
3329       auto Res = StoreExpressionSet.insert(
3330           {SE->getOperand(0), std::make_tuple(SE->getMemoryLeader(), KV.second,
3331                                               SE->getStoredValue())});
3332       bool Okay = Res.second;
3333       // It's okay to have the same expression already in there if it is
3334       // identical in nature.
3335       // This can happen when the leader of the stored value changes over time.
3336       if (!Okay)
3337         Okay = (std::get<1>(Res.first->second) == KV.second) &&
3338                (lookupOperandLeader(std::get<2>(Res.first->second)) ==
3339                 lookupOperandLeader(SE->getStoredValue()));
3340       assert(Okay && "Stored expression conflict exists in expression table");
3341       auto *ValueExpr = ValueToExpression.lookup(SE->getStoreInst());
3342       assert(ValueExpr && ValueExpr->equals(*SE) &&
3343              "StoreExpression in ExpressionToClass is not latest "
3344              "StoreExpression for value");
3345     }
3346   }
3347 #endif
3348 }
3349 
3350 // This is the main value numbering loop, it iterates over the initial touched
3351 // instruction set, propagating value numbers, marking things touched, etc,
3352 // until the set of touched instructions is completely empty.
3353 void NewGVN::iterateTouchedInstructions() {
3354   unsigned int Iterations = 0;
3355   // Figure out where touchedinstructions starts
3356   int FirstInstr = TouchedInstructions.find_first();
3357   // Nothing set, nothing to iterate, just return.
3358   if (FirstInstr == -1)
3359     return;
3360   const BasicBlock *LastBlock = getBlockForValue(InstrFromDFSNum(FirstInstr));
3361   while (TouchedInstructions.any()) {
3362     ++Iterations;
3363     // Walk through all the instructions in all the blocks in RPO.
3364     // TODO: As we hit a new block, we should push and pop equalities into a
3365     // table lookupOperandLeader can use, to catch things PredicateInfo
3366     // might miss, like edge-only equivalences.
3367     for (unsigned InstrNum : TouchedInstructions.set_bits()) {
3368 
3369       // This instruction was found to be dead. We don't bother looking
3370       // at it again.
3371       if (InstrNum == 0) {
3372         TouchedInstructions.reset(InstrNum);
3373         continue;
3374       }
3375 
3376       Value *V = InstrFromDFSNum(InstrNum);
3377       const BasicBlock *CurrBlock = getBlockForValue(V);
3378 
3379       // If we hit a new block, do reachability processing.
3380       if (CurrBlock != LastBlock) {
3381         LastBlock = CurrBlock;
3382         bool BlockReachable = ReachableBlocks.count(CurrBlock);
3383         const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock);
3384 
3385         // If it's not reachable, erase any touched instructions and move on.
3386         if (!BlockReachable) {
3387           TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second);
3388           LLVM_DEBUG(dbgs() << "Skipping instructions in block "
3389                             << getBlockName(CurrBlock)
3390                             << " because it is unreachable\n");
3391           continue;
3392         }
3393         updateProcessedCount(CurrBlock);
3394       }
3395       // Reset after processing (because we may mark ourselves as touched when
3396       // we propagate equalities).
3397       TouchedInstructions.reset(InstrNum);
3398 
3399       if (auto *MP = dyn_cast<MemoryPhi>(V)) {
3400         LLVM_DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n");
3401         valueNumberMemoryPhi(MP);
3402       } else if (auto *I = dyn_cast<Instruction>(V)) {
3403         valueNumberInstruction(I);
3404       } else {
3405         llvm_unreachable("Should have been a MemoryPhi or Instruction");
3406       }
3407       updateProcessedCount(V);
3408     }
3409   }
3410   NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations);
3411 }
3412 
3413 // This is the main transformation entry point.
3414 bool NewGVN::runGVN() {
3415   if (DebugCounter::isCounterSet(VNCounter))
3416     StartingVNCounter = DebugCounter::getCounterValue(VNCounter);
3417   bool Changed = false;
3418   NumFuncArgs = F.arg_size();
3419   MSSAWalker = MSSA->getWalker();
3420   SingletonDeadExpression = new (ExpressionAllocator) DeadExpression();
3421 
3422   // Count number of instructions for sizing of hash tables, and come
3423   // up with a global dfs numbering for instructions.
3424   unsigned ICount = 1;
3425   // Add an empty instruction to account for the fact that we start at 1
3426   DFSToInstr.emplace_back(nullptr);
3427   // Note: We want ideal RPO traversal of the blocks, which is not quite the
3428   // same as dominator tree order, particularly with regard whether backedges
3429   // get visited first or second, given a block with multiple successors.
3430   // If we visit in the wrong order, we will end up performing N times as many
3431   // iterations.
3432   // The dominator tree does guarantee that, for a given dom tree node, it's
3433   // parent must occur before it in the RPO ordering. Thus, we only need to sort
3434   // the siblings.
3435   ReversePostOrderTraversal<Function *> RPOT(&F);
3436   unsigned Counter = 0;
3437   for (auto &B : RPOT) {
3438     auto *Node = DT->getNode(B);
3439     assert(Node && "RPO and Dominator tree should have same reachability");
3440     RPOOrdering[Node] = ++Counter;
3441   }
3442   // Sort dominator tree children arrays into RPO.
3443   for (auto &B : RPOT) {
3444     auto *Node = DT->getNode(B);
3445     if (Node->getNumChildren() > 1)
3446       llvm::sort(*Node, [&](const DomTreeNode *A, const DomTreeNode *B) {
3447         return RPOOrdering[A] < RPOOrdering[B];
3448       });
3449   }
3450 
3451   // Now a standard depth first ordering of the domtree is equivalent to RPO.
3452   for (auto DTN : depth_first(DT->getRootNode())) {
3453     BasicBlock *B = DTN->getBlock();
3454     const auto &BlockRange = assignDFSNumbers(B, ICount);
3455     BlockInstRange.insert({B, BlockRange});
3456     ICount += BlockRange.second - BlockRange.first;
3457   }
3458   initializeCongruenceClasses(F);
3459 
3460   TouchedInstructions.resize(ICount);
3461   // Ensure we don't end up resizing the expressionToClass map, as
3462   // that can be quite expensive. At most, we have one expression per
3463   // instruction.
3464   ExpressionToClass.reserve(ICount);
3465 
3466   // Initialize the touched instructions to include the entry block.
3467   const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock());
3468   TouchedInstructions.set(InstRange.first, InstRange.second);
3469   LLVM_DEBUG(dbgs() << "Block " << getBlockName(&F.getEntryBlock())
3470                     << " marked reachable\n");
3471   ReachableBlocks.insert(&F.getEntryBlock());
3472 
3473   iterateTouchedInstructions();
3474   verifyMemoryCongruency();
3475   verifyIterationSettled(F);
3476   verifyStoreExpressions();
3477 
3478   Changed |= eliminateInstructions(F);
3479 
3480   // Delete all instructions marked for deletion.
3481   for (Instruction *ToErase : InstructionsToErase) {
3482     if (!ToErase->use_empty())
3483       ToErase->replaceAllUsesWith(PoisonValue::get(ToErase->getType()));
3484 
3485     assert(ToErase->getParent() &&
3486            "BB containing ToErase deleted unexpectedly!");
3487     ToErase->eraseFromParent();
3488   }
3489   Changed |= !InstructionsToErase.empty();
3490 
3491   // Delete all unreachable blocks.
3492   auto UnreachableBlockPred = [&](const BasicBlock &BB) {
3493     return !ReachableBlocks.count(&BB);
3494   };
3495 
3496   for (auto &BB : make_filter_range(F, UnreachableBlockPred)) {
3497     LLVM_DEBUG(dbgs() << "We believe block " << getBlockName(&BB)
3498                       << " is unreachable\n");
3499     deleteInstructionsInBlock(&BB);
3500     Changed = true;
3501   }
3502 
3503   cleanupTables();
3504   return Changed;
3505 }
3506 
3507 struct NewGVN::ValueDFS {
3508   int DFSIn = 0;
3509   int DFSOut = 0;
3510   int LocalNum = 0;
3511 
3512   // Only one of Def and U will be set.
3513   // The bool in the Def tells us whether the Def is the stored value of a
3514   // store.
3515   PointerIntPair<Value *, 1, bool> Def;
3516   Use *U = nullptr;
3517 
3518   bool operator<(const ValueDFS &Other) const {
3519     // It's not enough that any given field be less than - we have sets
3520     // of fields that need to be evaluated together to give a proper ordering.
3521     // For example, if you have;
3522     // DFS (1, 3)
3523     // Val 0
3524     // DFS (1, 2)
3525     // Val 50
3526     // We want the second to be less than the first, but if we just go field
3527     // by field, we will get to Val 0 < Val 50 and say the first is less than
3528     // the second. We only want it to be less than if the DFS orders are equal.
3529     //
3530     // Each LLVM instruction only produces one value, and thus the lowest-level
3531     // differentiator that really matters for the stack (and what we use as as a
3532     // replacement) is the local dfs number.
3533     // Everything else in the structure is instruction level, and only affects
3534     // the order in which we will replace operands of a given instruction.
3535     //
3536     // For a given instruction (IE things with equal dfsin, dfsout, localnum),
3537     // the order of replacement of uses does not matter.
3538     // IE given,
3539     //  a = 5
3540     //  b = a + a
3541     // When you hit b, you will have two valuedfs with the same dfsin, out, and
3542     // localnum.
3543     // The .val will be the same as well.
3544     // The .u's will be different.
3545     // You will replace both, and it does not matter what order you replace them
3546     // in (IE whether you replace operand 2, then operand 1, or operand 1, then
3547     // operand 2).
3548     // Similarly for the case of same dfsin, dfsout, localnum, but different
3549     // .val's
3550     //  a = 5
3551     //  b  = 6
3552     //  c = a + b
3553     // in c, we will a valuedfs for a, and one for b,with everything the same
3554     // but .val  and .u.
3555     // It does not matter what order we replace these operands in.
3556     // You will always end up with the same IR, and this is guaranteed.
3557     return std::tie(DFSIn, DFSOut, LocalNum, Def, U) <
3558            std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Def,
3559                     Other.U);
3560   }
3561 };
3562 
3563 // This function converts the set of members for a congruence class from values,
3564 // to sets of defs and uses with associated DFS info.  The total number of
3565 // reachable uses for each value is stored in UseCount, and instructions that
3566 // seem
3567 // dead (have no non-dead uses) are stored in ProbablyDead.
3568 void NewGVN::convertClassToDFSOrdered(
3569     const CongruenceClass &Dense, SmallVectorImpl<ValueDFS> &DFSOrderedSet,
3570     DenseMap<const Value *, unsigned int> &UseCounts,
3571     SmallPtrSetImpl<Instruction *> &ProbablyDead) const {
3572   for (auto D : Dense) {
3573     // First add the value.
3574     BasicBlock *BB = getBlockForValue(D);
3575     // Constants are handled prior to ever calling this function, so
3576     // we should only be left with instructions as members.
3577     assert(BB && "Should have figured out a basic block for value");
3578     ValueDFS VDDef;
3579     DomTreeNode *DomNode = DT->getNode(BB);
3580     VDDef.DFSIn = DomNode->getDFSNumIn();
3581     VDDef.DFSOut = DomNode->getDFSNumOut();
3582     // If it's a store, use the leader of the value operand, if it's always
3583     // available, or the value operand.  TODO: We could do dominance checks to
3584     // find a dominating leader, but not worth it ATM.
3585     if (auto *SI = dyn_cast<StoreInst>(D)) {
3586       auto Leader = lookupOperandLeader(SI->getValueOperand());
3587       if (alwaysAvailable(Leader)) {
3588         VDDef.Def.setPointer(Leader);
3589       } else {
3590         VDDef.Def.setPointer(SI->getValueOperand());
3591         VDDef.Def.setInt(true);
3592       }
3593     } else {
3594       VDDef.Def.setPointer(D);
3595     }
3596     assert(isa<Instruction>(D) &&
3597            "The dense set member should always be an instruction");
3598     Instruction *Def = cast<Instruction>(D);
3599     VDDef.LocalNum = InstrToDFSNum(D);
3600     DFSOrderedSet.push_back(VDDef);
3601     // If there is a phi node equivalent, add it
3602     if (auto *PN = RealToTemp.lookup(Def)) {
3603       auto *PHIE =
3604           dyn_cast_or_null<PHIExpression>(ValueToExpression.lookup(Def));
3605       if (PHIE) {
3606         VDDef.Def.setInt(false);
3607         VDDef.Def.setPointer(PN);
3608         VDDef.LocalNum = 0;
3609         DFSOrderedSet.push_back(VDDef);
3610       }
3611     }
3612 
3613     unsigned int UseCount = 0;
3614     // Now add the uses.
3615     for (auto &U : Def->uses()) {
3616       if (auto *I = dyn_cast<Instruction>(U.getUser())) {
3617         // Don't try to replace into dead uses
3618         if (InstructionsToErase.count(I))
3619           continue;
3620         ValueDFS VDUse;
3621         // Put the phi node uses in the incoming block.
3622         BasicBlock *IBlock;
3623         if (auto *P = dyn_cast<PHINode>(I)) {
3624           IBlock = P->getIncomingBlock(U);
3625           // Make phi node users appear last in the incoming block
3626           // they are from.
3627           VDUse.LocalNum = InstrDFS.size() + 1;
3628         } else {
3629           IBlock = getBlockForValue(I);
3630           VDUse.LocalNum = InstrToDFSNum(I);
3631         }
3632 
3633         // Skip uses in unreachable blocks, as we're going
3634         // to delete them.
3635         if (!ReachableBlocks.contains(IBlock))
3636           continue;
3637 
3638         DomTreeNode *DomNode = DT->getNode(IBlock);
3639         VDUse.DFSIn = DomNode->getDFSNumIn();
3640         VDUse.DFSOut = DomNode->getDFSNumOut();
3641         VDUse.U = &U;
3642         ++UseCount;
3643         DFSOrderedSet.emplace_back(VDUse);
3644       }
3645     }
3646 
3647     // If there are no uses, it's probably dead (but it may have side-effects,
3648     // so not definitely dead. Otherwise, store the number of uses so we can
3649     // track if it becomes dead later).
3650     if (UseCount == 0)
3651       ProbablyDead.insert(Def);
3652     else
3653       UseCounts[Def] = UseCount;
3654   }
3655 }
3656 
3657 // This function converts the set of members for a congruence class from values,
3658 // to the set of defs for loads and stores, with associated DFS info.
3659 void NewGVN::convertClassToLoadsAndStores(
3660     const CongruenceClass &Dense,
3661     SmallVectorImpl<ValueDFS> &LoadsAndStores) const {
3662   for (auto D : Dense) {
3663     if (!isa<LoadInst>(D) && !isa<StoreInst>(D))
3664       continue;
3665 
3666     BasicBlock *BB = getBlockForValue(D);
3667     ValueDFS VD;
3668     DomTreeNode *DomNode = DT->getNode(BB);
3669     VD.DFSIn = DomNode->getDFSNumIn();
3670     VD.DFSOut = DomNode->getDFSNumOut();
3671     VD.Def.setPointer(D);
3672 
3673     // If it's an instruction, use the real local dfs number.
3674     if (auto *I = dyn_cast<Instruction>(D))
3675       VD.LocalNum = InstrToDFSNum(I);
3676     else
3677       llvm_unreachable("Should have been an instruction");
3678 
3679     LoadsAndStores.emplace_back(VD);
3680   }
3681 }
3682 
3683 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
3684   patchReplacementInstruction(I, Repl);
3685   I->replaceAllUsesWith(Repl);
3686 }
3687 
3688 void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) {
3689   LLVM_DEBUG(dbgs() << "  BasicBlock Dead:" << *BB);
3690   ++NumGVNBlocksDeleted;
3691 
3692   // Delete the instructions backwards, as it has a reduced likelihood of having
3693   // to update as many def-use and use-def chains. Start after the terminator.
3694   auto StartPoint = BB->rbegin();
3695   ++StartPoint;
3696   // Note that we explicitly recalculate BB->rend() on each iteration,
3697   // as it may change when we remove the first instruction.
3698   for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) {
3699     Instruction &Inst = *I++;
3700     if (!Inst.use_empty())
3701       Inst.replaceAllUsesWith(PoisonValue::get(Inst.getType()));
3702     if (isa<LandingPadInst>(Inst))
3703       continue;
3704     salvageKnowledge(&Inst, AC);
3705 
3706     Inst.eraseFromParent();
3707     ++NumGVNInstrDeleted;
3708   }
3709   // Now insert something that simplifycfg will turn into an unreachable.
3710   Type *Int8Ty = Type::getInt8Ty(BB->getContext());
3711   new StoreInst(PoisonValue::get(Int8Ty),
3712                 Constant::getNullValue(Int8Ty->getPointerTo()),
3713                 BB->getTerminator());
3714 }
3715 
3716 void NewGVN::markInstructionForDeletion(Instruction *I) {
3717   LLVM_DEBUG(dbgs() << "Marking " << *I << " for deletion\n");
3718   InstructionsToErase.insert(I);
3719 }
3720 
3721 void NewGVN::replaceInstruction(Instruction *I, Value *V) {
3722   LLVM_DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n");
3723   patchAndReplaceAllUsesWith(I, V);
3724   // We save the actual erasing to avoid invalidating memory
3725   // dependencies until we are done with everything.
3726   markInstructionForDeletion(I);
3727 }
3728 
3729 namespace {
3730 
3731 // This is a stack that contains both the value and dfs info of where
3732 // that value is valid.
3733 class ValueDFSStack {
3734 public:
3735   Value *back() const { return ValueStack.back(); }
3736   std::pair<int, int> dfs_back() const { return DFSStack.back(); }
3737 
3738   void push_back(Value *V, int DFSIn, int DFSOut) {
3739     ValueStack.emplace_back(V);
3740     DFSStack.emplace_back(DFSIn, DFSOut);
3741   }
3742 
3743   bool empty() const { return DFSStack.empty(); }
3744 
3745   bool isInScope(int DFSIn, int DFSOut) const {
3746     if (empty())
3747       return false;
3748     return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second;
3749   }
3750 
3751   void popUntilDFSScope(int DFSIn, int DFSOut) {
3752 
3753     // These two should always be in sync at this point.
3754     assert(ValueStack.size() == DFSStack.size() &&
3755            "Mismatch between ValueStack and DFSStack");
3756     while (
3757         !DFSStack.empty() &&
3758         !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) {
3759       DFSStack.pop_back();
3760       ValueStack.pop_back();
3761     }
3762   }
3763 
3764 private:
3765   SmallVector<Value *, 8> ValueStack;
3766   SmallVector<std::pair<int, int>, 8> DFSStack;
3767 };
3768 
3769 } // end anonymous namespace
3770 
3771 // Given an expression, get the congruence class for it.
3772 CongruenceClass *NewGVN::getClassForExpression(const Expression *E) const {
3773   if (auto *VE = dyn_cast<VariableExpression>(E))
3774     return ValueToClass.lookup(VE->getVariableValue());
3775   else if (isa<DeadExpression>(E))
3776     return TOPClass;
3777   return ExpressionToClass.lookup(E);
3778 }
3779 
3780 // Given a value and a basic block we are trying to see if it is available in,
3781 // see if the value has a leader available in that block.
3782 Value *NewGVN::findPHIOfOpsLeader(const Expression *E,
3783                                   const Instruction *OrigInst,
3784                                   const BasicBlock *BB) const {
3785   // It would already be constant if we could make it constant
3786   if (auto *CE = dyn_cast<ConstantExpression>(E))
3787     return CE->getConstantValue();
3788   if (auto *VE = dyn_cast<VariableExpression>(E)) {
3789     auto *V = VE->getVariableValue();
3790     if (alwaysAvailable(V) || DT->dominates(getBlockForValue(V), BB))
3791       return VE->getVariableValue();
3792   }
3793 
3794   auto *CC = getClassForExpression(E);
3795   if (!CC)
3796     return nullptr;
3797   if (alwaysAvailable(CC->getLeader()))
3798     return CC->getLeader();
3799 
3800   for (auto Member : *CC) {
3801     auto *MemberInst = dyn_cast<Instruction>(Member);
3802     if (MemberInst == OrigInst)
3803       continue;
3804     // Anything that isn't an instruction is always available.
3805     if (!MemberInst)
3806       return Member;
3807     if (DT->dominates(getBlockForValue(MemberInst), BB))
3808       return Member;
3809   }
3810   return nullptr;
3811 }
3812 
3813 bool NewGVN::eliminateInstructions(Function &F) {
3814   // This is a non-standard eliminator. The normal way to eliminate is
3815   // to walk the dominator tree in order, keeping track of available
3816   // values, and eliminating them.  However, this is mildly
3817   // pointless. It requires doing lookups on every instruction,
3818   // regardless of whether we will ever eliminate it.  For
3819   // instructions part of most singleton congruence classes, we know we
3820   // will never eliminate them.
3821 
3822   // Instead, this eliminator looks at the congruence classes directly, sorts
3823   // them into a DFS ordering of the dominator tree, and then we just
3824   // perform elimination straight on the sets by walking the congruence
3825   // class member uses in order, and eliminate the ones dominated by the
3826   // last member.   This is worst case O(E log E) where E = number of
3827   // instructions in a single congruence class.  In theory, this is all
3828   // instructions.   In practice, it is much faster, as most instructions are
3829   // either in singleton congruence classes or can't possibly be eliminated
3830   // anyway (if there are no overlapping DFS ranges in class).
3831   // When we find something not dominated, it becomes the new leader
3832   // for elimination purposes.
3833   // TODO: If we wanted to be faster, We could remove any members with no
3834   // overlapping ranges while sorting, as we will never eliminate anything
3835   // with those members, as they don't dominate anything else in our set.
3836 
3837   bool AnythingReplaced = false;
3838 
3839   // Since we are going to walk the domtree anyway, and we can't guarantee the
3840   // DFS numbers are updated, we compute some ourselves.
3841   DT->updateDFSNumbers();
3842 
3843   // Go through all of our phi nodes, and kill the arguments associated with
3844   // unreachable edges.
3845   auto ReplaceUnreachablePHIArgs = [&](PHINode *PHI, BasicBlock *BB) {
3846     for (auto &Operand : PHI->incoming_values())
3847       if (!ReachableEdges.count({PHI->getIncomingBlock(Operand), BB})) {
3848         LLVM_DEBUG(dbgs() << "Replacing incoming value of " << PHI
3849                           << " for block "
3850                           << getBlockName(PHI->getIncomingBlock(Operand))
3851                           << " with poison due to it being unreachable\n");
3852         Operand.set(PoisonValue::get(PHI->getType()));
3853       }
3854   };
3855   // Replace unreachable phi arguments.
3856   // At this point, RevisitOnReachabilityChange only contains:
3857   //
3858   // 1. PHIs
3859   // 2. Temporaries that will convert to PHIs
3860   // 3. Operations that are affected by an unreachable edge but do not fit into
3861   // 1 or 2 (rare).
3862   // So it is a slight overshoot of what we want. We could make it exact by
3863   // using two SparseBitVectors per block.
3864   DenseMap<const BasicBlock *, unsigned> ReachablePredCount;
3865   for (auto &KV : ReachableEdges)
3866     ReachablePredCount[KV.getEnd()]++;
3867   for (auto &BBPair : RevisitOnReachabilityChange) {
3868     for (auto InstNum : BBPair.second) {
3869       auto *Inst = InstrFromDFSNum(InstNum);
3870       auto *PHI = dyn_cast<PHINode>(Inst);
3871       PHI = PHI ? PHI : dyn_cast_or_null<PHINode>(RealToTemp.lookup(Inst));
3872       if (!PHI)
3873         continue;
3874       auto *BB = BBPair.first;
3875       if (ReachablePredCount.lookup(BB) != PHI->getNumIncomingValues())
3876         ReplaceUnreachablePHIArgs(PHI, BB);
3877     }
3878   }
3879 
3880   // Map to store the use counts
3881   DenseMap<const Value *, unsigned int> UseCounts;
3882   for (auto *CC : reverse(CongruenceClasses)) {
3883     LLVM_DEBUG(dbgs() << "Eliminating in congruence class " << CC->getID()
3884                       << "\n");
3885     // Track the equivalent store info so we can decide whether to try
3886     // dead store elimination.
3887     SmallVector<ValueDFS, 8> PossibleDeadStores;
3888     SmallPtrSet<Instruction *, 8> ProbablyDead;
3889     if (CC->isDead() || CC->empty())
3890       continue;
3891     // Everything still in the TOP class is unreachable or dead.
3892     if (CC == TOPClass) {
3893       for (auto M : *CC) {
3894         auto *VTE = ValueToExpression.lookup(M);
3895         if (VTE && isa<DeadExpression>(VTE))
3896           markInstructionForDeletion(cast<Instruction>(M));
3897         assert((!ReachableBlocks.count(cast<Instruction>(M)->getParent()) ||
3898                 InstructionsToErase.count(cast<Instruction>(M))) &&
3899                "Everything in TOP should be unreachable or dead at this "
3900                "point");
3901       }
3902       continue;
3903     }
3904 
3905     assert(CC->getLeader() && "We should have had a leader");
3906     // If this is a leader that is always available, and it's a
3907     // constant or has no equivalences, just replace everything with
3908     // it. We then update the congruence class with whatever members
3909     // are left.
3910     Value *Leader =
3911         CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
3912     if (alwaysAvailable(Leader)) {
3913       CongruenceClass::MemberSet MembersLeft;
3914       for (auto M : *CC) {
3915         Value *Member = M;
3916         // Void things have no uses we can replace.
3917         if (Member == Leader || !isa<Instruction>(Member) ||
3918             Member->getType()->isVoidTy()) {
3919           MembersLeft.insert(Member);
3920           continue;
3921         }
3922         LLVM_DEBUG(dbgs() << "Found replacement " << *(Leader) << " for "
3923                           << *Member << "\n");
3924         auto *I = cast<Instruction>(Member);
3925         assert(Leader != I && "About to accidentally remove our leader");
3926         replaceInstruction(I, Leader);
3927         AnythingReplaced = true;
3928       }
3929       CC->swap(MembersLeft);
3930     } else {
3931       // If this is a singleton, we can skip it.
3932       if (CC->size() != 1 || RealToTemp.count(Leader)) {
3933         // This is a stack because equality replacement/etc may place
3934         // constants in the middle of the member list, and we want to use
3935         // those constant values in preference to the current leader, over
3936         // the scope of those constants.
3937         ValueDFSStack EliminationStack;
3938 
3939         // Convert the members to DFS ordered sets and then merge them.
3940         SmallVector<ValueDFS, 8> DFSOrderedSet;
3941         convertClassToDFSOrdered(*CC, DFSOrderedSet, UseCounts, ProbablyDead);
3942 
3943         // Sort the whole thing.
3944         llvm::sort(DFSOrderedSet);
3945         for (auto &VD : DFSOrderedSet) {
3946           int MemberDFSIn = VD.DFSIn;
3947           int MemberDFSOut = VD.DFSOut;
3948           Value *Def = VD.Def.getPointer();
3949           bool FromStore = VD.Def.getInt();
3950           Use *U = VD.U;
3951           // We ignore void things because we can't get a value from them.
3952           if (Def && Def->getType()->isVoidTy())
3953             continue;
3954           auto *DefInst = dyn_cast_or_null<Instruction>(Def);
3955           if (DefInst && AllTempInstructions.count(DefInst)) {
3956             auto *PN = cast<PHINode>(DefInst);
3957 
3958             // If this is a value phi and that's the expression we used, insert
3959             // it into the program
3960             // remove from temp instruction list.
3961             AllTempInstructions.erase(PN);
3962             auto *DefBlock = getBlockForValue(Def);
3963             LLVM_DEBUG(dbgs() << "Inserting fully real phi of ops" << *Def
3964                               << " into block "
3965                               << getBlockName(getBlockForValue(Def)) << "\n");
3966             PN->insertBefore(&DefBlock->front());
3967             Def = PN;
3968             NumGVNPHIOfOpsEliminations++;
3969           }
3970 
3971           if (EliminationStack.empty()) {
3972             LLVM_DEBUG(dbgs() << "Elimination Stack is empty\n");
3973           } else {
3974             LLVM_DEBUG(dbgs() << "Elimination Stack Top DFS numbers are ("
3975                               << EliminationStack.dfs_back().first << ","
3976                               << EliminationStack.dfs_back().second << ")\n");
3977           }
3978 
3979           LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << ","
3980                             << MemberDFSOut << ")\n");
3981           // First, we see if we are out of scope or empty.  If so,
3982           // and there equivalences, we try to replace the top of
3983           // stack with equivalences (if it's on the stack, it must
3984           // not have been eliminated yet).
3985           // Then we synchronize to our current scope, by
3986           // popping until we are back within a DFS scope that
3987           // dominates the current member.
3988           // Then, what happens depends on a few factors
3989           // If the stack is now empty, we need to push
3990           // If we have a constant or a local equivalence we want to
3991           // start using, we also push.
3992           // Otherwise, we walk along, processing members who are
3993           // dominated by this scope, and eliminate them.
3994           bool ShouldPush = Def && EliminationStack.empty();
3995           bool OutOfScope =
3996               !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut);
3997 
3998           if (OutOfScope || ShouldPush) {
3999             // Sync to our current scope.
4000             EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
4001             bool ShouldPush = Def && EliminationStack.empty();
4002             if (ShouldPush) {
4003               EliminationStack.push_back(Def, MemberDFSIn, MemberDFSOut);
4004             }
4005           }
4006 
4007           // Skip the Def's, we only want to eliminate on their uses.  But mark
4008           // dominated defs as dead.
4009           if (Def) {
4010             // For anything in this case, what and how we value number
4011             // guarantees that any side-effets that would have occurred (ie
4012             // throwing, etc) can be proven to either still occur (because it's
4013             // dominated by something that has the same side-effects), or never
4014             // occur.  Otherwise, we would not have been able to prove it value
4015             // equivalent to something else. For these things, we can just mark
4016             // it all dead.  Note that this is different from the "ProbablyDead"
4017             // set, which may not be dominated by anything, and thus, are only
4018             // easy to prove dead if they are also side-effect free. Note that
4019             // because stores are put in terms of the stored value, we skip
4020             // stored values here. If the stored value is really dead, it will
4021             // still be marked for deletion when we process it in its own class.
4022             if (!EliminationStack.empty() && Def != EliminationStack.back() &&
4023                 isa<Instruction>(Def) && !FromStore)
4024               markInstructionForDeletion(cast<Instruction>(Def));
4025             continue;
4026           }
4027           // At this point, we know it is a Use we are trying to possibly
4028           // replace.
4029 
4030           assert(isa<Instruction>(U->get()) &&
4031                  "Current def should have been an instruction");
4032           assert(isa<Instruction>(U->getUser()) &&
4033                  "Current user should have been an instruction");
4034 
4035           // If the thing we are replacing into is already marked to be dead,
4036           // this use is dead.  Note that this is true regardless of whether
4037           // we have anything dominating the use or not.  We do this here
4038           // because we are already walking all the uses anyway.
4039           Instruction *InstUse = cast<Instruction>(U->getUser());
4040           if (InstructionsToErase.count(InstUse)) {
4041             auto &UseCount = UseCounts[U->get()];
4042             if (--UseCount == 0) {
4043               ProbablyDead.insert(cast<Instruction>(U->get()));
4044             }
4045           }
4046 
4047           // If we get to this point, and the stack is empty we must have a use
4048           // with nothing we can use to eliminate this use, so just skip it.
4049           if (EliminationStack.empty())
4050             continue;
4051 
4052           Value *DominatingLeader = EliminationStack.back();
4053 
4054           auto *II = dyn_cast<IntrinsicInst>(DominatingLeader);
4055           bool isSSACopy = II && II->getIntrinsicID() == Intrinsic::ssa_copy;
4056           if (isSSACopy)
4057             DominatingLeader = II->getOperand(0);
4058 
4059           // Don't replace our existing users with ourselves.
4060           if (U->get() == DominatingLeader)
4061             continue;
4062           LLVM_DEBUG(dbgs()
4063                      << "Found replacement " << *DominatingLeader << " for "
4064                      << *U->get() << " in " << *(U->getUser()) << "\n");
4065 
4066           // If we replaced something in an instruction, handle the patching of
4067           // metadata.  Skip this if we are replacing predicateinfo with its
4068           // original operand, as we already know we can just drop it.
4069           auto *ReplacedInst = cast<Instruction>(U->get());
4070           auto *PI = PredInfo->getPredicateInfoFor(ReplacedInst);
4071           if (!PI || DominatingLeader != PI->OriginalOp)
4072             patchReplacementInstruction(ReplacedInst, DominatingLeader);
4073           U->set(DominatingLeader);
4074           // This is now a use of the dominating leader, which means if the
4075           // dominating leader was dead, it's now live!
4076           auto &LeaderUseCount = UseCounts[DominatingLeader];
4077           // It's about to be alive again.
4078           if (LeaderUseCount == 0 && isa<Instruction>(DominatingLeader))
4079             ProbablyDead.erase(cast<Instruction>(DominatingLeader));
4080           // For copy instructions, we use their operand as a leader,
4081           // which means we remove a user of the copy and it may become dead.
4082           if (isSSACopy) {
4083             unsigned &IIUseCount = UseCounts[II];
4084             if (--IIUseCount == 0)
4085               ProbablyDead.insert(II);
4086           }
4087           ++LeaderUseCount;
4088           AnythingReplaced = true;
4089         }
4090       }
4091     }
4092 
4093     // At this point, anything still in the ProbablyDead set is actually dead if
4094     // would be trivially dead.
4095     for (auto *I : ProbablyDead)
4096       if (wouldInstructionBeTriviallyDead(I))
4097         markInstructionForDeletion(I);
4098 
4099     // Cleanup the congruence class.
4100     CongruenceClass::MemberSet MembersLeft;
4101     for (auto *Member : *CC)
4102       if (!isa<Instruction>(Member) ||
4103           !InstructionsToErase.count(cast<Instruction>(Member)))
4104         MembersLeft.insert(Member);
4105     CC->swap(MembersLeft);
4106 
4107     // If we have possible dead stores to look at, try to eliminate them.
4108     if (CC->getStoreCount() > 0) {
4109       convertClassToLoadsAndStores(*CC, PossibleDeadStores);
4110       llvm::sort(PossibleDeadStores);
4111       ValueDFSStack EliminationStack;
4112       for (auto &VD : PossibleDeadStores) {
4113         int MemberDFSIn = VD.DFSIn;
4114         int MemberDFSOut = VD.DFSOut;
4115         Instruction *Member = cast<Instruction>(VD.Def.getPointer());
4116         if (EliminationStack.empty() ||
4117             !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut)) {
4118           // Sync to our current scope.
4119           EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
4120           if (EliminationStack.empty()) {
4121             EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut);
4122             continue;
4123           }
4124         }
4125         // We already did load elimination, so nothing to do here.
4126         if (isa<LoadInst>(Member))
4127           continue;
4128         assert(!EliminationStack.empty());
4129         Instruction *Leader = cast<Instruction>(EliminationStack.back());
4130         (void)Leader;
4131         assert(DT->dominates(Leader->getParent(), Member->getParent()));
4132         // Member is dominater by Leader, and thus dead
4133         LLVM_DEBUG(dbgs() << "Marking dead store " << *Member
4134                           << " that is dominated by " << *Leader << "\n");
4135         markInstructionForDeletion(Member);
4136         CC->erase(Member);
4137         ++NumGVNDeadStores;
4138       }
4139     }
4140   }
4141   return AnythingReplaced;
4142 }
4143 
4144 // This function provides global ranking of operations so that we can place them
4145 // in a canonical order.  Note that rank alone is not necessarily enough for a
4146 // complete ordering, as constants all have the same rank.  However, generally,
4147 // we will simplify an operation with all constants so that it doesn't matter
4148 // what order they appear in.
4149 unsigned int NewGVN::getRank(const Value *V) const {
4150   // Prefer constants to undef to anything else
4151   // Undef is a constant, have to check it first.
4152   // Prefer poison to undef as it's less defined.
4153   // Prefer smaller constants to constantexprs
4154   // Note that the order here matters because of class inheritance
4155   if (isa<ConstantExpr>(V))
4156     return 3;
4157   if (isa<PoisonValue>(V))
4158     return 1;
4159   if (isa<UndefValue>(V))
4160     return 2;
4161   if (isa<Constant>(V))
4162     return 0;
4163   if (auto *A = dyn_cast<Argument>(V))
4164     return 4 + A->getArgNo();
4165 
4166   // Need to shift the instruction DFS by number of arguments + 5 to account for
4167   // the constant and argument ranking above.
4168   unsigned Result = InstrToDFSNum(V);
4169   if (Result > 0)
4170     return 5 + NumFuncArgs + Result;
4171   // Unreachable or something else, just return a really large number.
4172   return ~0;
4173 }
4174 
4175 // This is a function that says whether two commutative operations should
4176 // have their order swapped when canonicalizing.
4177 bool NewGVN::shouldSwapOperands(const Value *A, const Value *B) const {
4178   // Because we only care about a total ordering, and don't rewrite expressions
4179   // in this order, we order by rank, which will give a strict weak ordering to
4180   // everything but constants, and then we order by pointer address.
4181   return std::make_pair(getRank(A), A) > std::make_pair(getRank(B), B);
4182 }
4183 
4184 bool NewGVN::shouldSwapOperandsForIntrinsic(const Value *A, const Value *B,
4185                                             const IntrinsicInst *I) const {
4186   auto LookupResult = IntrinsicInstPred.find(I);
4187   if (shouldSwapOperands(A, B)) {
4188     if (LookupResult == IntrinsicInstPred.end())
4189       IntrinsicInstPred.insert({I, B});
4190     else
4191       LookupResult->second = B;
4192     return true;
4193   }
4194 
4195   if (LookupResult != IntrinsicInstPred.end()) {
4196     auto *SeenPredicate = LookupResult->second;
4197     if (SeenPredicate) {
4198       if (SeenPredicate == B)
4199         return true;
4200       else
4201         LookupResult->second = nullptr;
4202     }
4203   }
4204   return false;
4205 }
4206 
4207 namespace {
4208 
4209 class NewGVNLegacyPass : public FunctionPass {
4210 public:
4211   // Pass identification, replacement for typeid.
4212   static char ID;
4213 
4214   NewGVNLegacyPass() : FunctionPass(ID) {
4215     initializeNewGVNLegacyPassPass(*PassRegistry::getPassRegistry());
4216   }
4217 
4218   bool runOnFunction(Function &F) override;
4219 
4220 private:
4221   void getAnalysisUsage(AnalysisUsage &AU) const override {
4222     AU.addRequired<AssumptionCacheTracker>();
4223     AU.addRequired<DominatorTreeWrapperPass>();
4224     AU.addRequired<TargetLibraryInfoWrapperPass>();
4225     AU.addRequired<MemorySSAWrapperPass>();
4226     AU.addRequired<AAResultsWrapperPass>();
4227     AU.addPreserved<DominatorTreeWrapperPass>();
4228     AU.addPreserved<GlobalsAAWrapperPass>();
4229   }
4230 };
4231 
4232 } // end anonymous namespace
4233 
4234 bool NewGVNLegacyPass::runOnFunction(Function &F) {
4235   if (skipFunction(F))
4236     return false;
4237   return NewGVN(F, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
4238                 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
4239                 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
4240                 &getAnalysis<AAResultsWrapperPass>().getAAResults(),
4241                 &getAnalysis<MemorySSAWrapperPass>().getMSSA(),
4242                 F.getParent()->getDataLayout())
4243       .runGVN();
4244 }
4245 
4246 char NewGVNLegacyPass::ID = 0;
4247 
4248 INITIALIZE_PASS_BEGIN(NewGVNLegacyPass, "newgvn", "Global Value Numbering",
4249                       false, false)
4250 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4251 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
4252 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4253 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
4254 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
4255 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
4256 INITIALIZE_PASS_END(NewGVNLegacyPass, "newgvn", "Global Value Numbering", false,
4257                     false)
4258 
4259 // createGVNPass - The public interface to this file.
4260 FunctionPass *llvm::createNewGVNPass() { return new NewGVNLegacyPass(); }
4261 
4262 PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) {
4263   // Apparently the order in which we get these results matter for
4264   // the old GVN (see Chandler's comment in GVN.cpp). I'll keep
4265   // the same order here, just in case.
4266   auto &AC = AM.getResult<AssumptionAnalysis>(F);
4267   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
4268   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
4269   auto &AA = AM.getResult<AAManager>(F);
4270   auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
4271   bool Changed =
4272       NewGVN(F, &DT, &AC, &TLI, &AA, &MSSA, F.getParent()->getDataLayout())
4273           .runGVN();
4274   if (!Changed)
4275     return PreservedAnalyses::all();
4276   PreservedAnalyses PA;
4277   PA.preserve<DominatorTreeAnalysis>();
4278   return PA;
4279 }
4280