1 //===- NewGVN.cpp - Global Value Numbering Pass ---------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file implements the new LLVM's Global Value Numbering pass.
11 /// GVN partitions values computed by a function into congruence classes.
12 /// Values ending up in the same congruence class are guaranteed to be the same
13 /// for every execution of the program. In that respect, congruency is a
14 /// compile-time approximation of equivalence of values at runtime.
15 /// The algorithm implemented here uses a sparse formulation and it's based
16 /// on the ideas described in the paper:
17 /// "A Sparse Algorithm for Predicated Global Value Numbering" from
18 /// Karthik Gargi.
19 ///
20 /// A brief overview of the algorithm: The algorithm is essentially the same as
21 /// the standard RPO value numbering algorithm (a good reference is the paper
22 /// "SCC based value numbering" by L. Taylor Simpson) with one major difference:
23 /// The RPO algorithm proceeds, on every iteration, to process every reachable
24 /// block and every instruction in that block. This is because the standard RPO
25 /// algorithm does not track what things have the same value number, it only
26 /// tracks what the value number of a given operation is (the mapping is
27 /// operation -> value number). Thus, when a value number of an operation
28 /// changes, it must reprocess everything to ensure all uses of a value number
29 /// get updated properly. In constrast, the sparse algorithm we use *also*
30 /// tracks what operations have a given value number (IE it also tracks the
31 /// reverse mapping from value number -> operations with that value number), so
32 /// that it only needs to reprocess the instructions that are affected when
33 /// something's value number changes. The vast majority of complexity and code
34 /// in this file is devoted to tracking what value numbers could change for what
35 /// instructions when various things happen. The rest of the algorithm is
36 /// devoted to performing symbolic evaluation, forward propagation, and
37 /// simplification of operations based on the value numbers deduced so far
38 ///
39 /// In order to make the GVN mostly-complete, we use a technique derived from
40 /// "Detection of Redundant Expressions: A Complete and Polynomial-time
41 /// Algorithm in SSA" by R.R. Pai. The source of incompleteness in most SSA
42 /// based GVN algorithms is related to their inability to detect equivalence
43 /// between phi of ops (IE phi(a+b, c+d)) and op of phis (phi(a,c) + phi(b, d)).
44 /// We resolve this issue by generating the equivalent "phi of ops" form for
45 /// each op of phis we see, in a way that only takes polynomial time to resolve.
46 ///
47 /// We also do not perform elimination by using any published algorithm. All
48 /// published algorithms are O(Instructions). Instead, we use a technique that
49 /// is O(number of operations with the same value number), enabling us to skip
50 /// trying to eliminate things that have unique value numbers.
51 //
52 //===----------------------------------------------------------------------===//
53
54 #include "llvm/Transforms/Scalar/NewGVN.h"
55 #include "llvm/ADT/ArrayRef.h"
56 #include "llvm/ADT/BitVector.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseMapInfo.h"
59 #include "llvm/ADT/DenseSet.h"
60 #include "llvm/ADT/DepthFirstIterator.h"
61 #include "llvm/ADT/GraphTraits.h"
62 #include "llvm/ADT/Hashing.h"
63 #include "llvm/ADT/PointerIntPair.h"
64 #include "llvm/ADT/PostOrderIterator.h"
65 #include "llvm/ADT/SetOperations.h"
66 #include "llvm/ADT/SmallPtrSet.h"
67 #include "llvm/ADT/SmallVector.h"
68 #include "llvm/ADT/SparseBitVector.h"
69 #include "llvm/ADT/Statistic.h"
70 #include "llvm/ADT/iterator_range.h"
71 #include "llvm/Analysis/AliasAnalysis.h"
72 #include "llvm/Analysis/AssumptionCache.h"
73 #include "llvm/Analysis/CFGPrinter.h"
74 #include "llvm/Analysis/ConstantFolding.h"
75 #include "llvm/Analysis/GlobalsModRef.h"
76 #include "llvm/Analysis/InstructionSimplify.h"
77 #include "llvm/Analysis/MemoryBuiltins.h"
78 #include "llvm/Analysis/MemorySSA.h"
79 #include "llvm/Analysis/TargetLibraryInfo.h"
80 #include "llvm/Analysis/ValueTracking.h"
81 #include "llvm/IR/Argument.h"
82 #include "llvm/IR/BasicBlock.h"
83 #include "llvm/IR/Constant.h"
84 #include "llvm/IR/Constants.h"
85 #include "llvm/IR/Dominators.h"
86 #include "llvm/IR/Function.h"
87 #include "llvm/IR/InstrTypes.h"
88 #include "llvm/IR/Instruction.h"
89 #include "llvm/IR/Instructions.h"
90 #include "llvm/IR/IntrinsicInst.h"
91 #include "llvm/IR/PatternMatch.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/Use.h"
94 #include "llvm/IR/User.h"
95 #include "llvm/IR/Value.h"
96 #include "llvm/InitializePasses.h"
97 #include "llvm/Pass.h"
98 #include "llvm/Support/Allocator.h"
99 #include "llvm/Support/ArrayRecycler.h"
100 #include "llvm/Support/Casting.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Debug.h"
103 #include "llvm/Support/DebugCounter.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/PointerLikeTypeTraits.h"
106 #include "llvm/Support/raw_ostream.h"
107 #include "llvm/Transforms/Scalar.h"
108 #include "llvm/Transforms/Scalar/GVNExpression.h"
109 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
110 #include "llvm/Transforms/Utils/Local.h"
111 #include "llvm/Transforms/Utils/PredicateInfo.h"
112 #include "llvm/Transforms/Utils/VNCoercion.h"
113 #include <algorithm>
114 #include <cassert>
115 #include <cstdint>
116 #include <iterator>
117 #include <map>
118 #include <memory>
119 #include <set>
120 #include <string>
121 #include <tuple>
122 #include <utility>
123 #include <vector>
124
125 using namespace llvm;
126 using namespace llvm::GVNExpression;
127 using namespace llvm::VNCoercion;
128 using namespace llvm::PatternMatch;
129
130 #define DEBUG_TYPE "newgvn"
131
132 STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted");
133 STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted");
134 STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified");
135 STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same");
136 STATISTIC(NumGVNMaxIterations,
137 "Maximum Number of iterations it took to converge GVN");
138 STATISTIC(NumGVNLeaderChanges, "Number of leader changes");
139 STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes");
140 STATISTIC(NumGVNAvoidedSortedLeaderChanges,
141 "Number of avoided sorted leader changes");
142 STATISTIC(NumGVNDeadStores, "Number of redundant/dead stores eliminated");
143 STATISTIC(NumGVNPHIOfOpsCreated, "Number of PHI of ops created");
144 STATISTIC(NumGVNPHIOfOpsEliminations,
145 "Number of things eliminated using PHI of ops");
146 DEBUG_COUNTER(VNCounter, "newgvn-vn",
147 "Controls which instructions are value numbered");
148 DEBUG_COUNTER(PHIOfOpsCounter, "newgvn-phi",
149 "Controls which instructions we create phi of ops for");
150 // Currently store defining access refinement is too slow due to basicaa being
151 // egregiously slow. This flag lets us keep it working while we work on this
152 // issue.
153 static cl::opt<bool> EnableStoreRefinement("enable-store-refinement",
154 cl::init(false), cl::Hidden);
155
156 /// Currently, the generation "phi of ops" can result in correctness issues.
157 static cl::opt<bool> EnablePhiOfOps("enable-phi-of-ops", cl::init(true),
158 cl::Hidden);
159
160 //===----------------------------------------------------------------------===//
161 // GVN Pass
162 //===----------------------------------------------------------------------===//
163
164 // Anchor methods.
165 namespace llvm {
166 namespace GVNExpression {
167
168 Expression::~Expression() = default;
169 BasicExpression::~BasicExpression() = default;
170 CallExpression::~CallExpression() = default;
171 LoadExpression::~LoadExpression() = default;
172 StoreExpression::~StoreExpression() = default;
173 AggregateValueExpression::~AggregateValueExpression() = default;
174 PHIExpression::~PHIExpression() = default;
175
176 } // end namespace GVNExpression
177 } // end namespace llvm
178
179 namespace {
180
181 // Tarjan's SCC finding algorithm with Nuutila's improvements
182 // SCCIterator is actually fairly complex for the simple thing we want.
183 // It also wants to hand us SCC's that are unrelated to the phi node we ask
184 // about, and have us process them there or risk redoing work.
185 // Graph traits over a filter iterator also doesn't work that well here.
186 // This SCC finder is specialized to walk use-def chains, and only follows
187 // instructions,
188 // not generic values (arguments, etc).
189 struct TarjanSCC {
TarjanSCC__anonf7cb05f80111::TarjanSCC190 TarjanSCC() : Components(1) {}
191
Start__anonf7cb05f80111::TarjanSCC192 void Start(const Instruction *Start) {
193 if (Root.lookup(Start) == 0)
194 FindSCC(Start);
195 }
196
getComponentFor__anonf7cb05f80111::TarjanSCC197 const SmallPtrSetImpl<const Value *> &getComponentFor(const Value *V) const {
198 unsigned ComponentID = ValueToComponent.lookup(V);
199
200 assert(ComponentID > 0 &&
201 "Asking for a component for a value we never processed");
202 return Components[ComponentID];
203 }
204
205 private:
FindSCC__anonf7cb05f80111::TarjanSCC206 void FindSCC(const Instruction *I) {
207 Root[I] = ++DFSNum;
208 // Store the DFS Number we had before it possibly gets incremented.
209 unsigned int OurDFS = DFSNum;
210 for (auto &Op : I->operands()) {
211 if (auto *InstOp = dyn_cast<Instruction>(Op)) {
212 if (Root.lookup(Op) == 0)
213 FindSCC(InstOp);
214 if (!InComponent.count(Op))
215 Root[I] = std::min(Root.lookup(I), Root.lookup(Op));
216 }
217 }
218 // See if we really were the root of a component, by seeing if we still have
219 // our DFSNumber. If we do, we are the root of the component, and we have
220 // completed a component. If we do not, we are not the root of a component,
221 // and belong on the component stack.
222 if (Root.lookup(I) == OurDFS) {
223 unsigned ComponentID = Components.size();
224 Components.resize(Components.size() + 1);
225 auto &Component = Components.back();
226 Component.insert(I);
227 LLVM_DEBUG(dbgs() << "Component root is " << *I << "\n");
228 InComponent.insert(I);
229 ValueToComponent[I] = ComponentID;
230 // Pop a component off the stack and label it.
231 while (!Stack.empty() && Root.lookup(Stack.back()) >= OurDFS) {
232 auto *Member = Stack.back();
233 LLVM_DEBUG(dbgs() << "Component member is " << *Member << "\n");
234 Component.insert(Member);
235 InComponent.insert(Member);
236 ValueToComponent[Member] = ComponentID;
237 Stack.pop_back();
238 }
239 } else {
240 // Part of a component, push to stack
241 Stack.push_back(I);
242 }
243 }
244
245 unsigned int DFSNum = 1;
246 SmallPtrSet<const Value *, 8> InComponent;
247 DenseMap<const Value *, unsigned int> Root;
248 SmallVector<const Value *, 8> Stack;
249
250 // Store the components as vector of ptr sets, because we need the topo order
251 // of SCC's, but not individual member order
252 SmallVector<SmallPtrSet<const Value *, 8>, 8> Components;
253
254 DenseMap<const Value *, unsigned> ValueToComponent;
255 };
256
257 // Congruence classes represent the set of expressions/instructions
258 // that are all the same *during some scope in the function*.
259 // That is, because of the way we perform equality propagation, and
260 // because of memory value numbering, it is not correct to assume
261 // you can willy-nilly replace any member with any other at any
262 // point in the function.
263 //
264 // For any Value in the Member set, it is valid to replace any dominated member
265 // with that Value.
266 //
267 // Every congruence class has a leader, and the leader is used to symbolize
268 // instructions in a canonical way (IE every operand of an instruction that is a
269 // member of the same congruence class will always be replaced with leader
270 // during symbolization). To simplify symbolization, we keep the leader as a
271 // constant if class can be proved to be a constant value. Otherwise, the
272 // leader is the member of the value set with the smallest DFS number. Each
273 // congruence class also has a defining expression, though the expression may be
274 // null. If it exists, it can be used for forward propagation and reassociation
275 // of values.
276
277 // For memory, we also track a representative MemoryAccess, and a set of memory
278 // members for MemoryPhis (which have no real instructions). Note that for
279 // memory, it seems tempting to try to split the memory members into a
280 // MemoryCongruenceClass or something. Unfortunately, this does not work
281 // easily. The value numbering of a given memory expression depends on the
282 // leader of the memory congruence class, and the leader of memory congruence
283 // class depends on the value numbering of a given memory expression. This
284 // leads to wasted propagation, and in some cases, missed optimization. For
285 // example: If we had value numbered two stores together before, but now do not,
286 // we move them to a new value congruence class. This in turn will move at one
287 // of the memorydefs to a new memory congruence class. Which in turn, affects
288 // the value numbering of the stores we just value numbered (because the memory
289 // congruence class is part of the value number). So while theoretically
290 // possible to split them up, it turns out to be *incredibly* complicated to get
291 // it to work right, because of the interdependency. While structurally
292 // slightly messier, it is algorithmically much simpler and faster to do what we
293 // do here, and track them both at once in the same class.
294 // Note: The default iterators for this class iterate over values
295 class CongruenceClass {
296 public:
297 using MemberType = Value;
298 using MemberSet = SmallPtrSet<MemberType *, 4>;
299 using MemoryMemberType = MemoryPhi;
300 using MemoryMemberSet = SmallPtrSet<const MemoryMemberType *, 2>;
301
CongruenceClass(unsigned ID)302 explicit CongruenceClass(unsigned ID) : ID(ID) {}
CongruenceClass(unsigned ID,Value * Leader,const Expression * E)303 CongruenceClass(unsigned ID, Value *Leader, const Expression *E)
304 : ID(ID), RepLeader(Leader), DefiningExpr(E) {}
305
getID() const306 unsigned getID() const { return ID; }
307
308 // True if this class has no members left. This is mainly used for assertion
309 // purposes, and for skipping empty classes.
isDead() const310 bool isDead() const {
311 // If it's both dead from a value perspective, and dead from a memory
312 // perspective, it's really dead.
313 return empty() && memory_empty();
314 }
315
316 // Leader functions
getLeader() const317 Value *getLeader() const { return RepLeader; }
setLeader(Value * Leader)318 void setLeader(Value *Leader) { RepLeader = Leader; }
getNextLeader() const319 const std::pair<Value *, unsigned int> &getNextLeader() const {
320 return NextLeader;
321 }
resetNextLeader()322 void resetNextLeader() { NextLeader = {nullptr, ~0}; }
addPossibleNextLeader(std::pair<Value *,unsigned int> LeaderPair)323 void addPossibleNextLeader(std::pair<Value *, unsigned int> LeaderPair) {
324 if (LeaderPair.second < NextLeader.second)
325 NextLeader = LeaderPair;
326 }
327
getStoredValue() const328 Value *getStoredValue() const { return RepStoredValue; }
setStoredValue(Value * Leader)329 void setStoredValue(Value *Leader) { RepStoredValue = Leader; }
getMemoryLeader() const330 const MemoryAccess *getMemoryLeader() const { return RepMemoryAccess; }
setMemoryLeader(const MemoryAccess * Leader)331 void setMemoryLeader(const MemoryAccess *Leader) { RepMemoryAccess = Leader; }
332
333 // Forward propagation info
getDefiningExpr() const334 const Expression *getDefiningExpr() const { return DefiningExpr; }
335
336 // Value member set
empty() const337 bool empty() const { return Members.empty(); }
size() const338 unsigned size() const { return Members.size(); }
begin() const339 MemberSet::const_iterator begin() const { return Members.begin(); }
end() const340 MemberSet::const_iterator end() const { return Members.end(); }
insert(MemberType * M)341 void insert(MemberType *M) { Members.insert(M); }
erase(MemberType * M)342 void erase(MemberType *M) { Members.erase(M); }
swap(MemberSet & Other)343 void swap(MemberSet &Other) { Members.swap(Other); }
344
345 // Memory member set
memory_empty() const346 bool memory_empty() const { return MemoryMembers.empty(); }
memory_size() const347 unsigned memory_size() const { return MemoryMembers.size(); }
memory_begin() const348 MemoryMemberSet::const_iterator memory_begin() const {
349 return MemoryMembers.begin();
350 }
memory_end() const351 MemoryMemberSet::const_iterator memory_end() const {
352 return MemoryMembers.end();
353 }
memory() const354 iterator_range<MemoryMemberSet::const_iterator> memory() const {
355 return make_range(memory_begin(), memory_end());
356 }
357
memory_insert(const MemoryMemberType * M)358 void memory_insert(const MemoryMemberType *M) { MemoryMembers.insert(M); }
memory_erase(const MemoryMemberType * M)359 void memory_erase(const MemoryMemberType *M) { MemoryMembers.erase(M); }
360
361 // Store count
getStoreCount() const362 unsigned getStoreCount() const { return StoreCount; }
incStoreCount()363 void incStoreCount() { ++StoreCount; }
decStoreCount()364 void decStoreCount() {
365 assert(StoreCount != 0 && "Store count went negative");
366 --StoreCount;
367 }
368
369 // True if this class has no memory members.
definesNoMemory() const370 bool definesNoMemory() const { return StoreCount == 0 && memory_empty(); }
371
372 // Return true if two congruence classes are equivalent to each other. This
373 // means that every field but the ID number and the dead field are equivalent.
isEquivalentTo(const CongruenceClass * Other) const374 bool isEquivalentTo(const CongruenceClass *Other) const {
375 if (!Other)
376 return false;
377 if (this == Other)
378 return true;
379
380 if (std::tie(StoreCount, RepLeader, RepStoredValue, RepMemoryAccess) !=
381 std::tie(Other->StoreCount, Other->RepLeader, Other->RepStoredValue,
382 Other->RepMemoryAccess))
383 return false;
384 if (DefiningExpr != Other->DefiningExpr)
385 if (!DefiningExpr || !Other->DefiningExpr ||
386 *DefiningExpr != *Other->DefiningExpr)
387 return false;
388
389 if (Members.size() != Other->Members.size())
390 return false;
391
392 return llvm::set_is_subset(Members, Other->Members);
393 }
394
395 private:
396 unsigned ID;
397
398 // Representative leader.
399 Value *RepLeader = nullptr;
400
401 // The most dominating leader after our current leader, because the member set
402 // is not sorted and is expensive to keep sorted all the time.
403 std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U};
404
405 // If this is represented by a store, the value of the store.
406 Value *RepStoredValue = nullptr;
407
408 // If this class contains MemoryDefs or MemoryPhis, this is the leading memory
409 // access.
410 const MemoryAccess *RepMemoryAccess = nullptr;
411
412 // Defining Expression.
413 const Expression *DefiningExpr = nullptr;
414
415 // Actual members of this class.
416 MemberSet Members;
417
418 // This is the set of MemoryPhis that exist in the class. MemoryDefs and
419 // MemoryUses have real instructions representing them, so we only need to
420 // track MemoryPhis here.
421 MemoryMemberSet MemoryMembers;
422
423 // Number of stores in this congruence class.
424 // This is used so we can detect store equivalence changes properly.
425 int StoreCount = 0;
426 };
427
428 } // end anonymous namespace
429
430 namespace llvm {
431
432 struct ExactEqualsExpression {
433 const Expression &E;
434
ExactEqualsExpressionllvm::ExactEqualsExpression435 explicit ExactEqualsExpression(const Expression &E) : E(E) {}
436
getComputedHashllvm::ExactEqualsExpression437 hash_code getComputedHash() const { return E.getComputedHash(); }
438
operator ==llvm::ExactEqualsExpression439 bool operator==(const Expression &Other) const {
440 return E.exactlyEquals(Other);
441 }
442 };
443
444 template <> struct DenseMapInfo<const Expression *> {
getEmptyKeyllvm::DenseMapInfo445 static const Expression *getEmptyKey() {
446 auto Val = static_cast<uintptr_t>(-1);
447 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
448 return reinterpret_cast<const Expression *>(Val);
449 }
450
getTombstoneKeyllvm::DenseMapInfo451 static const Expression *getTombstoneKey() {
452 auto Val = static_cast<uintptr_t>(~1U);
453 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
454 return reinterpret_cast<const Expression *>(Val);
455 }
456
getHashValuellvm::DenseMapInfo457 static unsigned getHashValue(const Expression *E) {
458 return E->getComputedHash();
459 }
460
getHashValuellvm::DenseMapInfo461 static unsigned getHashValue(const ExactEqualsExpression &E) {
462 return E.getComputedHash();
463 }
464
isEqualllvm::DenseMapInfo465 static bool isEqual(const ExactEqualsExpression &LHS, const Expression *RHS) {
466 if (RHS == getTombstoneKey() || RHS == getEmptyKey())
467 return false;
468 return LHS == *RHS;
469 }
470
isEqualllvm::DenseMapInfo471 static bool isEqual(const Expression *LHS, const Expression *RHS) {
472 if (LHS == RHS)
473 return true;
474 if (LHS == getTombstoneKey() || RHS == getTombstoneKey() ||
475 LHS == getEmptyKey() || RHS == getEmptyKey())
476 return false;
477 // Compare hashes before equality. This is *not* what the hashtable does,
478 // since it is computing it modulo the number of buckets, whereas we are
479 // using the full hash keyspace. Since the hashes are precomputed, this
480 // check is *much* faster than equality.
481 if (LHS->getComputedHash() != RHS->getComputedHash())
482 return false;
483 return *LHS == *RHS;
484 }
485 };
486
487 } // end namespace llvm
488
489 namespace {
490
491 class NewGVN {
492 Function &F;
493 DominatorTree *DT = nullptr;
494 const TargetLibraryInfo *TLI = nullptr;
495 AliasAnalysis *AA = nullptr;
496 MemorySSA *MSSA = nullptr;
497 MemorySSAWalker *MSSAWalker = nullptr;
498 AssumptionCache *AC = nullptr;
499 const DataLayout &DL;
500 std::unique_ptr<PredicateInfo> PredInfo;
501
502 // These are the only two things the create* functions should have
503 // side-effects on due to allocating memory.
504 mutable BumpPtrAllocator ExpressionAllocator;
505 mutable ArrayRecycler<Value *> ArgRecycler;
506 mutable TarjanSCC SCCFinder;
507 const SimplifyQuery SQ;
508
509 // Number of function arguments, used by ranking
510 unsigned int NumFuncArgs = 0;
511
512 // RPOOrdering of basic blocks
513 DenseMap<const DomTreeNode *, unsigned> RPOOrdering;
514
515 // Congruence class info.
516
517 // This class is called INITIAL in the paper. It is the class everything
518 // startsout in, and represents any value. Being an optimistic analysis,
519 // anything in the TOP class has the value TOP, which is indeterminate and
520 // equivalent to everything.
521 CongruenceClass *TOPClass = nullptr;
522 std::vector<CongruenceClass *> CongruenceClasses;
523 unsigned NextCongruenceNum = 0;
524
525 // Value Mappings.
526 DenseMap<Value *, CongruenceClass *> ValueToClass;
527 DenseMap<Value *, const Expression *> ValueToExpression;
528
529 // Value PHI handling, used to make equivalence between phi(op, op) and
530 // op(phi, phi).
531 // These mappings just store various data that would normally be part of the
532 // IR.
533 SmallPtrSet<const Instruction *, 8> PHINodeUses;
534
535 DenseMap<const Value *, bool> OpSafeForPHIOfOps;
536
537 // Map a temporary instruction we created to a parent block.
538 DenseMap<const Value *, BasicBlock *> TempToBlock;
539
540 // Map between the already in-program instructions and the temporary phis we
541 // created that they are known equivalent to.
542 DenseMap<const Value *, PHINode *> RealToTemp;
543
544 // In order to know when we should re-process instructions that have
545 // phi-of-ops, we track the set of expressions that they needed as
546 // leaders. When we discover new leaders for those expressions, we process the
547 // associated phi-of-op instructions again in case they have changed. The
548 // other way they may change is if they had leaders, and those leaders
549 // disappear. However, at the point they have leaders, there are uses of the
550 // relevant operands in the created phi node, and so they will get reprocessed
551 // through the normal user marking we perform.
552 mutable DenseMap<const Value *, SmallPtrSet<Value *, 2>> AdditionalUsers;
553 DenseMap<const Expression *, SmallPtrSet<Instruction *, 2>>
554 ExpressionToPhiOfOps;
555
556 // Map from temporary operation to MemoryAccess.
557 DenseMap<const Instruction *, MemoryUseOrDef *> TempToMemory;
558
559 // Set of all temporary instructions we created.
560 // Note: This will include instructions that were just created during value
561 // numbering. The way to test if something is using them is to check
562 // RealToTemp.
563 DenseSet<Instruction *> AllTempInstructions;
564
565 // This is the set of instructions to revisit on a reachability change. At
566 // the end of the main iteration loop it will contain at least all the phi of
567 // ops instructions that will be changed to phis, as well as regular phis.
568 // During the iteration loop, it may contain other things, such as phi of ops
569 // instructions that used edge reachability to reach a result, and so need to
570 // be revisited when the edge changes, independent of whether the phi they
571 // depended on changes.
572 DenseMap<BasicBlock *, SparseBitVector<>> RevisitOnReachabilityChange;
573
574 // Mapping from predicate info we used to the instructions we used it with.
575 // In order to correctly ensure propagation, we must keep track of what
576 // comparisons we used, so that when the values of the comparisons change, we
577 // propagate the information to the places we used the comparison.
578 mutable DenseMap<const Value *, SmallPtrSet<Instruction *, 2>>
579 PredicateToUsers;
580
581 // the same reasoning as PredicateToUsers. When we skip MemoryAccesses for
582 // stores, we no longer can rely solely on the def-use chains of MemorySSA.
583 mutable DenseMap<const MemoryAccess *, SmallPtrSet<MemoryAccess *, 2>>
584 MemoryToUsers;
585
586 // A table storing which memorydefs/phis represent a memory state provably
587 // equivalent to another memory state.
588 // We could use the congruence class machinery, but the MemoryAccess's are
589 // abstract memory states, so they can only ever be equivalent to each other,
590 // and not to constants, etc.
591 DenseMap<const MemoryAccess *, CongruenceClass *> MemoryAccessToClass;
592
593 // We could, if we wanted, build MemoryPhiExpressions and
594 // MemoryVariableExpressions, etc, and value number them the same way we value
595 // number phi expressions. For the moment, this seems like overkill. They
596 // can only exist in one of three states: they can be TOP (equal to
597 // everything), Equivalent to something else, or unique. Because we do not
598 // create expressions for them, we need to simulate leader change not just
599 // when they change class, but when they change state. Note: We can do the
600 // same thing for phis, and avoid having phi expressions if we wanted, We
601 // should eventually unify in one direction or the other, so this is a little
602 // bit of an experiment in which turns out easier to maintain.
603 enum MemoryPhiState { MPS_Invalid, MPS_TOP, MPS_Equivalent, MPS_Unique };
604 DenseMap<const MemoryPhi *, MemoryPhiState> MemoryPhiState;
605
606 enum InstCycleState { ICS_Unknown, ICS_CycleFree, ICS_Cycle };
607 mutable DenseMap<const Instruction *, InstCycleState> InstCycleState;
608
609 // Expression to class mapping.
610 using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>;
611 ExpressionClassMap ExpressionToClass;
612
613 // We have a single expression that represents currently DeadExpressions.
614 // For dead expressions we can prove will stay dead, we mark them with
615 // DFS number zero. However, it's possible in the case of phi nodes
616 // for us to assume/prove all arguments are dead during fixpointing.
617 // We use DeadExpression for that case.
618 DeadExpression *SingletonDeadExpression = nullptr;
619
620 // Which values have changed as a result of leader changes.
621 SmallPtrSet<Value *, 8> LeaderChanges;
622
623 // Reachability info.
624 using BlockEdge = BasicBlockEdge;
625 DenseSet<BlockEdge> ReachableEdges;
626 SmallPtrSet<const BasicBlock *, 8> ReachableBlocks;
627
628 // This is a bitvector because, on larger functions, we may have
629 // thousands of touched instructions at once (entire blocks,
630 // instructions with hundreds of uses, etc). Even with optimization
631 // for when we mark whole blocks as touched, when this was a
632 // SmallPtrSet or DenseSet, for some functions, we spent >20% of all
633 // the time in GVN just managing this list. The bitvector, on the
634 // other hand, efficiently supports test/set/clear of both
635 // individual and ranges, as well as "find next element" This
636 // enables us to use it as a worklist with essentially 0 cost.
637 BitVector TouchedInstructions;
638
639 DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange;
640 mutable DenseMap<const IntrinsicInst *, const Value *> IntrinsicInstPred;
641
642 #ifndef NDEBUG
643 // Debugging for how many times each block and instruction got processed.
644 DenseMap<const Value *, unsigned> ProcessedCount;
645 #endif
646
647 // DFS info.
648 // This contains a mapping from Instructions to DFS numbers.
649 // The numbering starts at 1. An instruction with DFS number zero
650 // means that the instruction is dead.
651 DenseMap<const Value *, unsigned> InstrDFS;
652
653 // This contains the mapping DFS numbers to instructions.
654 SmallVector<Value *, 32> DFSToInstr;
655
656 // Deletion info.
657 SmallPtrSet<Instruction *, 8> InstructionsToErase;
658
659 public:
NewGVN(Function & F,DominatorTree * DT,AssumptionCache * AC,TargetLibraryInfo * TLI,AliasAnalysis * AA,MemorySSA * MSSA,const DataLayout & DL)660 NewGVN(Function &F, DominatorTree *DT, AssumptionCache *AC,
661 TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA,
662 const DataLayout &DL)
663 : F(F), DT(DT), TLI(TLI), AA(AA), MSSA(MSSA), AC(AC), DL(DL),
664 PredInfo(std::make_unique<PredicateInfo>(F, *DT, *AC)),
665 SQ(DL, TLI, DT, AC, /*CtxI=*/nullptr, /*UseInstrInfo=*/false,
666 /*CanUseUndef=*/false) {}
667
668 bool runGVN();
669
670 private:
671 /// Helper struct return a Expression with an optional extra dependency.
672 struct ExprResult {
673 const Expression *Expr;
674 Value *ExtraDep;
675 const PredicateBase *PredDep;
676
ExprResult__anonf7cb05f80211::NewGVN::ExprResult677 ExprResult(const Expression *Expr, Value *ExtraDep = nullptr,
678 const PredicateBase *PredDep = nullptr)
679 : Expr(Expr), ExtraDep(ExtraDep), PredDep(PredDep) {}
680 ExprResult(const ExprResult &) = delete;
ExprResult__anonf7cb05f80211::NewGVN::ExprResult681 ExprResult(ExprResult &&Other)
682 : Expr(Other.Expr), ExtraDep(Other.ExtraDep), PredDep(Other.PredDep) {
683 Other.Expr = nullptr;
684 Other.ExtraDep = nullptr;
685 Other.PredDep = nullptr;
686 }
687 ExprResult &operator=(const ExprResult &Other) = delete;
688 ExprResult &operator=(ExprResult &&Other) = delete;
689
~ExprResult__anonf7cb05f80211::NewGVN::ExprResult690 ~ExprResult() { assert(!ExtraDep && "unhandled ExtraDep"); }
691
operator bool__anonf7cb05f80211::NewGVN::ExprResult692 operator bool() const { return Expr; }
693
none__anonf7cb05f80211::NewGVN::ExprResult694 static ExprResult none() { return {nullptr, nullptr, nullptr}; }
some__anonf7cb05f80211::NewGVN::ExprResult695 static ExprResult some(const Expression *Expr, Value *ExtraDep = nullptr) {
696 return {Expr, ExtraDep, nullptr};
697 }
some__anonf7cb05f80211::NewGVN::ExprResult698 static ExprResult some(const Expression *Expr,
699 const PredicateBase *PredDep) {
700 return {Expr, nullptr, PredDep};
701 }
some__anonf7cb05f80211::NewGVN::ExprResult702 static ExprResult some(const Expression *Expr, Value *ExtraDep,
703 const PredicateBase *PredDep) {
704 return {Expr, ExtraDep, PredDep};
705 }
706 };
707
708 // Expression handling.
709 ExprResult createExpression(Instruction *) const;
710 const Expression *createBinaryExpression(unsigned, Type *, Value *, Value *,
711 Instruction *) const;
712
713 // Our canonical form for phi arguments is a pair of incoming value, incoming
714 // basic block.
715 using ValPair = std::pair<Value *, BasicBlock *>;
716
717 PHIExpression *createPHIExpression(ArrayRef<ValPair>, const Instruction *,
718 BasicBlock *, bool &HasBackEdge,
719 bool &OriginalOpsConstant) const;
720 const DeadExpression *createDeadExpression() const;
721 const VariableExpression *createVariableExpression(Value *) const;
722 const ConstantExpression *createConstantExpression(Constant *) const;
723 const Expression *createVariableOrConstant(Value *V) const;
724 const UnknownExpression *createUnknownExpression(Instruction *) const;
725 const StoreExpression *createStoreExpression(StoreInst *,
726 const MemoryAccess *) const;
727 LoadExpression *createLoadExpression(Type *, Value *, LoadInst *,
728 const MemoryAccess *) const;
729 const CallExpression *createCallExpression(CallInst *,
730 const MemoryAccess *) const;
731 const AggregateValueExpression *
732 createAggregateValueExpression(Instruction *) const;
733 bool setBasicExpressionInfo(Instruction *, BasicExpression *) const;
734
735 // Congruence class handling.
createCongruenceClass(Value * Leader,const Expression * E)736 CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) {
737 auto *result = new CongruenceClass(NextCongruenceNum++, Leader, E);
738 CongruenceClasses.emplace_back(result);
739 return result;
740 }
741
createMemoryClass(MemoryAccess * MA)742 CongruenceClass *createMemoryClass(MemoryAccess *MA) {
743 auto *CC = createCongruenceClass(nullptr, nullptr);
744 CC->setMemoryLeader(MA);
745 return CC;
746 }
747
ensureLeaderOfMemoryClass(MemoryAccess * MA)748 CongruenceClass *ensureLeaderOfMemoryClass(MemoryAccess *MA) {
749 auto *CC = getMemoryClass(MA);
750 if (CC->getMemoryLeader() != MA)
751 CC = createMemoryClass(MA);
752 return CC;
753 }
754
createSingletonCongruenceClass(Value * Member)755 CongruenceClass *createSingletonCongruenceClass(Value *Member) {
756 CongruenceClass *CClass = createCongruenceClass(Member, nullptr);
757 CClass->insert(Member);
758 ValueToClass[Member] = CClass;
759 return CClass;
760 }
761
762 void initializeCongruenceClasses(Function &F);
763 const Expression *makePossiblePHIOfOps(Instruction *,
764 SmallPtrSetImpl<Value *> &);
765 Value *findLeaderForInst(Instruction *ValueOp,
766 SmallPtrSetImpl<Value *> &Visited,
767 MemoryAccess *MemAccess, Instruction *OrigInst,
768 BasicBlock *PredBB);
769 bool OpIsSafeForPHIOfOpsHelper(Value *V, const BasicBlock *PHIBlock,
770 SmallPtrSetImpl<const Value *> &Visited,
771 SmallVectorImpl<Instruction *> &Worklist);
772 bool OpIsSafeForPHIOfOps(Value *Op, const BasicBlock *PHIBlock,
773 SmallPtrSetImpl<const Value *> &);
774 void addPhiOfOps(PHINode *Op, BasicBlock *BB, Instruction *ExistingValue);
775 void removePhiOfOps(Instruction *I, PHINode *PHITemp);
776
777 // Value number an Instruction or MemoryPhi.
778 void valueNumberMemoryPhi(MemoryPhi *);
779 void valueNumberInstruction(Instruction *);
780
781 // Symbolic evaluation.
782 ExprResult checkExprResults(Expression *, Instruction *, Value *) const;
783 ExprResult performSymbolicEvaluation(Value *,
784 SmallPtrSetImpl<Value *> &) const;
785 const Expression *performSymbolicLoadCoercion(Type *, Value *, LoadInst *,
786 Instruction *,
787 MemoryAccess *) const;
788 const Expression *performSymbolicLoadEvaluation(Instruction *) const;
789 const Expression *performSymbolicStoreEvaluation(Instruction *) const;
790 ExprResult performSymbolicCallEvaluation(Instruction *) const;
791 void sortPHIOps(MutableArrayRef<ValPair> Ops) const;
792 const Expression *performSymbolicPHIEvaluation(ArrayRef<ValPair>,
793 Instruction *I,
794 BasicBlock *PHIBlock) const;
795 const Expression *performSymbolicAggrValueEvaluation(Instruction *) const;
796 ExprResult performSymbolicCmpEvaluation(Instruction *) const;
797 ExprResult performSymbolicPredicateInfoEvaluation(IntrinsicInst *) const;
798
799 // Congruence finding.
800 bool someEquivalentDominates(const Instruction *, const Instruction *) const;
801 Value *lookupOperandLeader(Value *) const;
802 CongruenceClass *getClassForExpression(const Expression *E) const;
803 void performCongruenceFinding(Instruction *, const Expression *);
804 void moveValueToNewCongruenceClass(Instruction *, const Expression *,
805 CongruenceClass *, CongruenceClass *);
806 void moveMemoryToNewCongruenceClass(Instruction *, MemoryAccess *,
807 CongruenceClass *, CongruenceClass *);
808 Value *getNextValueLeader(CongruenceClass *) const;
809 const MemoryAccess *getNextMemoryLeader(CongruenceClass *) const;
810 bool setMemoryClass(const MemoryAccess *From, CongruenceClass *To);
811 CongruenceClass *getMemoryClass(const MemoryAccess *MA) const;
812 const MemoryAccess *lookupMemoryLeader(const MemoryAccess *) const;
813 bool isMemoryAccessTOP(const MemoryAccess *) const;
814
815 // Ranking
816 unsigned int getRank(const Value *) const;
817 bool shouldSwapOperands(const Value *, const Value *) const;
818 bool shouldSwapOperandsForIntrinsic(const Value *, const Value *,
819 const IntrinsicInst *I) const;
820
821 // Reachability handling.
822 void updateReachableEdge(BasicBlock *, BasicBlock *);
823 void processOutgoingEdges(Instruction *, BasicBlock *);
824 Value *findConditionEquivalence(Value *) const;
825
826 // Elimination.
827 struct ValueDFS;
828 void convertClassToDFSOrdered(const CongruenceClass &,
829 SmallVectorImpl<ValueDFS> &,
830 DenseMap<const Value *, unsigned int> &,
831 SmallPtrSetImpl<Instruction *> &) const;
832 void convertClassToLoadsAndStores(const CongruenceClass &,
833 SmallVectorImpl<ValueDFS> &) const;
834
835 bool eliminateInstructions(Function &);
836 void replaceInstruction(Instruction *, Value *);
837 void markInstructionForDeletion(Instruction *);
838 void deleteInstructionsInBlock(BasicBlock *);
839 Value *findPHIOfOpsLeader(const Expression *, const Instruction *,
840 const BasicBlock *) const;
841
842 // Various instruction touch utilities
843 template <typename Map, typename KeyType>
844 void touchAndErase(Map &, const KeyType &);
845 void markUsersTouched(Value *);
846 void markMemoryUsersTouched(const MemoryAccess *);
847 void markMemoryDefTouched(const MemoryAccess *);
848 void markPredicateUsersTouched(Instruction *);
849 void markValueLeaderChangeTouched(CongruenceClass *CC);
850 void markMemoryLeaderChangeTouched(CongruenceClass *CC);
851 void markPhiOfOpsChanged(const Expression *E);
852 void addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const;
853 void addAdditionalUsers(Value *To, Value *User) const;
854 void addAdditionalUsers(ExprResult &Res, Instruction *User) const;
855
856 // Main loop of value numbering
857 void iterateTouchedInstructions();
858
859 // Utilities.
860 void cleanupTables();
861 std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned);
862 void updateProcessedCount(const Value *V);
863 void verifyMemoryCongruency() const;
864 void verifyIterationSettled(Function &F);
865 void verifyStoreExpressions() const;
866 bool singleReachablePHIPath(SmallPtrSet<const MemoryAccess *, 8> &,
867 const MemoryAccess *, const MemoryAccess *) const;
868 BasicBlock *getBlockForValue(Value *V) const;
869 void deleteExpression(const Expression *E) const;
870 MemoryUseOrDef *getMemoryAccess(const Instruction *) const;
871 MemoryPhi *getMemoryAccess(const BasicBlock *) const;
872 template <class T, class Range> T *getMinDFSOfRange(const Range &) const;
873
InstrToDFSNum(const Value * V) const874 unsigned InstrToDFSNum(const Value *V) const {
875 assert(isa<Instruction>(V) && "This should not be used for MemoryAccesses");
876 return InstrDFS.lookup(V);
877 }
878
InstrToDFSNum(const MemoryAccess * MA) const879 unsigned InstrToDFSNum(const MemoryAccess *MA) const {
880 return MemoryToDFSNum(MA);
881 }
882
InstrFromDFSNum(unsigned DFSNum)883 Value *InstrFromDFSNum(unsigned DFSNum) { return DFSToInstr[DFSNum]; }
884
885 // Given a MemoryAccess, return the relevant instruction DFS number. Note:
886 // This deliberately takes a value so it can be used with Use's, which will
887 // auto-convert to Value's but not to MemoryAccess's.
MemoryToDFSNum(const Value * MA) const888 unsigned MemoryToDFSNum(const Value *MA) const {
889 assert(isa<MemoryAccess>(MA) &&
890 "This should not be used with instructions");
891 return isa<MemoryUseOrDef>(MA)
892 ? InstrToDFSNum(cast<MemoryUseOrDef>(MA)->getMemoryInst())
893 : InstrDFS.lookup(MA);
894 }
895
896 bool isCycleFree(const Instruction *) const;
897 bool isBackedge(BasicBlock *From, BasicBlock *To) const;
898
899 // Debug counter info. When verifying, we have to reset the value numbering
900 // debug counter to the same state it started in to get the same results.
901 int64_t StartingVNCounter = 0;
902 };
903
904 } // end anonymous namespace
905
906 template <typename T>
equalsLoadStoreHelper(const T & LHS,const Expression & RHS)907 static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) {
908 if (!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS))
909 return false;
910 return LHS.MemoryExpression::equals(RHS);
911 }
912
equals(const Expression & Other) const913 bool LoadExpression::equals(const Expression &Other) const {
914 return equalsLoadStoreHelper(*this, Other);
915 }
916
equals(const Expression & Other) const917 bool StoreExpression::equals(const Expression &Other) const {
918 if (!equalsLoadStoreHelper(*this, Other))
919 return false;
920 // Make sure that store vs store includes the value operand.
921 if (const auto *S = dyn_cast<StoreExpression>(&Other))
922 if (getStoredValue() != S->getStoredValue())
923 return false;
924 return true;
925 }
926
927 // Determine if the edge From->To is a backedge
isBackedge(BasicBlock * From,BasicBlock * To) const928 bool NewGVN::isBackedge(BasicBlock *From, BasicBlock *To) const {
929 return From == To ||
930 RPOOrdering.lookup(DT->getNode(From)) >=
931 RPOOrdering.lookup(DT->getNode(To));
932 }
933
934 #ifndef NDEBUG
getBlockName(const BasicBlock * B)935 static std::string getBlockName(const BasicBlock *B) {
936 return DOTGraphTraits<DOTFuncInfo *>::getSimpleNodeLabel(B, nullptr);
937 }
938 #endif
939
940 // Get a MemoryAccess for an instruction, fake or real.
getMemoryAccess(const Instruction * I) const941 MemoryUseOrDef *NewGVN::getMemoryAccess(const Instruction *I) const {
942 auto *Result = MSSA->getMemoryAccess(I);
943 return Result ? Result : TempToMemory.lookup(I);
944 }
945
946 // Get a MemoryPhi for a basic block. These are all real.
getMemoryAccess(const BasicBlock * BB) const947 MemoryPhi *NewGVN::getMemoryAccess(const BasicBlock *BB) const {
948 return MSSA->getMemoryAccess(BB);
949 }
950
951 // Get the basic block from an instruction/memory value.
getBlockForValue(Value * V) const952 BasicBlock *NewGVN::getBlockForValue(Value *V) const {
953 if (auto *I = dyn_cast<Instruction>(V)) {
954 auto *Parent = I->getParent();
955 if (Parent)
956 return Parent;
957 Parent = TempToBlock.lookup(V);
958 assert(Parent && "Every fake instruction should have a block");
959 return Parent;
960 }
961
962 auto *MP = dyn_cast<MemoryPhi>(V);
963 assert(MP && "Should have been an instruction or a MemoryPhi");
964 return MP->getBlock();
965 }
966
967 // Delete a definitely dead expression, so it can be reused by the expression
968 // allocator. Some of these are not in creation functions, so we have to accept
969 // const versions.
deleteExpression(const Expression * E) const970 void NewGVN::deleteExpression(const Expression *E) const {
971 assert(isa<BasicExpression>(E));
972 auto *BE = cast<BasicExpression>(E);
973 const_cast<BasicExpression *>(BE)->deallocateOperands(ArgRecycler);
974 ExpressionAllocator.Deallocate(E);
975 }
976
977 // If V is a predicateinfo copy, get the thing it is a copy of.
getCopyOf(const Value * V)978 static Value *getCopyOf(const Value *V) {
979 if (auto *II = dyn_cast<IntrinsicInst>(V))
980 if (II->getIntrinsicID() == Intrinsic::ssa_copy)
981 return II->getOperand(0);
982 return nullptr;
983 }
984
985 // Return true if V is really PN, even accounting for predicateinfo copies.
isCopyOfPHI(const Value * V,const PHINode * PN)986 static bool isCopyOfPHI(const Value *V, const PHINode *PN) {
987 return V == PN || getCopyOf(V) == PN;
988 }
989
isCopyOfAPHI(const Value * V)990 static bool isCopyOfAPHI(const Value *V) {
991 auto *CO = getCopyOf(V);
992 return CO && isa<PHINode>(CO);
993 }
994
995 // Sort PHI Operands into a canonical order. What we use here is an RPO
996 // order. The BlockInstRange numbers are generated in an RPO walk of the basic
997 // blocks.
sortPHIOps(MutableArrayRef<ValPair> Ops) const998 void NewGVN::sortPHIOps(MutableArrayRef<ValPair> Ops) const {
999 llvm::sort(Ops, [&](const ValPair &P1, const ValPair &P2) {
1000 return BlockInstRange.lookup(P1.second).first <
1001 BlockInstRange.lookup(P2.second).first;
1002 });
1003 }
1004
1005 // Return true if V is a value that will always be available (IE can
1006 // be placed anywhere) in the function. We don't do globals here
1007 // because they are often worse to put in place.
alwaysAvailable(Value * V)1008 static bool alwaysAvailable(Value *V) {
1009 return isa<Constant>(V) || isa<Argument>(V);
1010 }
1011
1012 // Create a PHIExpression from an array of {incoming edge, value} pairs. I is
1013 // the original instruction we are creating a PHIExpression for (but may not be
1014 // a phi node). We require, as an invariant, that all the PHIOperands in the
1015 // same block are sorted the same way. sortPHIOps will sort them into a
1016 // canonical order.
createPHIExpression(ArrayRef<ValPair> PHIOperands,const Instruction * I,BasicBlock * PHIBlock,bool & HasBackedge,bool & OriginalOpsConstant) const1017 PHIExpression *NewGVN::createPHIExpression(ArrayRef<ValPair> PHIOperands,
1018 const Instruction *I,
1019 BasicBlock *PHIBlock,
1020 bool &HasBackedge,
1021 bool &OriginalOpsConstant) const {
1022 unsigned NumOps = PHIOperands.size();
1023 auto *E = new (ExpressionAllocator) PHIExpression(NumOps, PHIBlock);
1024
1025 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1026 E->setType(PHIOperands.begin()->first->getType());
1027 E->setOpcode(Instruction::PHI);
1028
1029 // Filter out unreachable phi operands.
1030 auto Filtered = make_filter_range(PHIOperands, [&](const ValPair &P) {
1031 auto *BB = P.second;
1032 if (auto *PHIOp = dyn_cast<PHINode>(I))
1033 if (isCopyOfPHI(P.first, PHIOp))
1034 return false;
1035 if (!ReachableEdges.count({BB, PHIBlock}))
1036 return false;
1037 // Things in TOPClass are equivalent to everything.
1038 if (ValueToClass.lookup(P.first) == TOPClass)
1039 return false;
1040 OriginalOpsConstant = OriginalOpsConstant && isa<Constant>(P.first);
1041 HasBackedge = HasBackedge || isBackedge(BB, PHIBlock);
1042 return lookupOperandLeader(P.first) != I;
1043 });
1044 std::transform(Filtered.begin(), Filtered.end(), op_inserter(E),
1045 [&](const ValPair &P) -> Value * {
1046 return lookupOperandLeader(P.first);
1047 });
1048 return E;
1049 }
1050
1051 // Set basic expression info (Arguments, type, opcode) for Expression
1052 // E from Instruction I in block B.
setBasicExpressionInfo(Instruction * I,BasicExpression * E) const1053 bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E) const {
1054 bool AllConstant = true;
1055 if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
1056 E->setType(GEP->getSourceElementType());
1057 else
1058 E->setType(I->getType());
1059 E->setOpcode(I->getOpcode());
1060 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1061
1062 // Transform the operand array into an operand leader array, and keep track of
1063 // whether all members are constant.
1064 std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) {
1065 auto Operand = lookupOperandLeader(O);
1066 AllConstant = AllConstant && isa<Constant>(Operand);
1067 return Operand;
1068 });
1069
1070 return AllConstant;
1071 }
1072
createBinaryExpression(unsigned Opcode,Type * T,Value * Arg1,Value * Arg2,Instruction * I) const1073 const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T,
1074 Value *Arg1, Value *Arg2,
1075 Instruction *I) const {
1076 auto *E = new (ExpressionAllocator) BasicExpression(2);
1077 // TODO: we need to remove context instruction after Value Tracking
1078 // can run without context instruction
1079 const SimplifyQuery Q = SQ.getWithInstruction(I);
1080
1081 E->setType(T);
1082 E->setOpcode(Opcode);
1083 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1084 if (Instruction::isCommutative(Opcode)) {
1085 // Ensure that commutative instructions that only differ by a permutation
1086 // of their operands get the same value number by sorting the operand value
1087 // numbers. Since all commutative instructions have two operands it is more
1088 // efficient to sort by hand rather than using, say, std::sort.
1089 if (shouldSwapOperands(Arg1, Arg2))
1090 std::swap(Arg1, Arg2);
1091 }
1092 E->op_push_back(lookupOperandLeader(Arg1));
1093 E->op_push_back(lookupOperandLeader(Arg2));
1094
1095 Value *V = simplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), Q);
1096 if (auto Simplified = checkExprResults(E, I, V)) {
1097 addAdditionalUsers(Simplified, I);
1098 return Simplified.Expr;
1099 }
1100 return E;
1101 }
1102
1103 // Take a Value returned by simplification of Expression E/Instruction
1104 // I, and see if it resulted in a simpler expression. If so, return
1105 // that expression.
checkExprResults(Expression * E,Instruction * I,Value * V) const1106 NewGVN::ExprResult NewGVN::checkExprResults(Expression *E, Instruction *I,
1107 Value *V) const {
1108 if (!V)
1109 return ExprResult::none();
1110
1111 if (auto *C = dyn_cast<Constant>(V)) {
1112 if (I)
1113 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1114 << " constant " << *C << "\n");
1115 NumGVNOpsSimplified++;
1116 assert(isa<BasicExpression>(E) &&
1117 "We should always have had a basic expression here");
1118 deleteExpression(E);
1119 return ExprResult::some(createConstantExpression(C));
1120 } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1121 if (I)
1122 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1123 << " variable " << *V << "\n");
1124 deleteExpression(E);
1125 return ExprResult::some(createVariableExpression(V));
1126 }
1127
1128 CongruenceClass *CC = ValueToClass.lookup(V);
1129 if (CC) {
1130 if (CC->getLeader() && CC->getLeader() != I) {
1131 return ExprResult::some(createVariableOrConstant(CC->getLeader()), V);
1132 }
1133 if (CC->getDefiningExpr()) {
1134 if (I)
1135 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1136 << " expression " << *CC->getDefiningExpr() << "\n");
1137 NumGVNOpsSimplified++;
1138 deleteExpression(E);
1139 return ExprResult::some(CC->getDefiningExpr(), V);
1140 }
1141 }
1142
1143 return ExprResult::none();
1144 }
1145
1146 // Create a value expression from the instruction I, replacing operands with
1147 // their leaders.
1148
createExpression(Instruction * I) const1149 NewGVN::ExprResult NewGVN::createExpression(Instruction *I) const {
1150 auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands());
1151 // TODO: we need to remove context instruction after Value Tracking
1152 // can run without context instruction
1153 const SimplifyQuery Q = SQ.getWithInstruction(I);
1154
1155 bool AllConstant = setBasicExpressionInfo(I, E);
1156
1157 if (I->isCommutative()) {
1158 // Ensure that commutative instructions that only differ by a permutation
1159 // of their operands get the same value number by sorting the operand value
1160 // numbers. Since all commutative instructions have two operands it is more
1161 // efficient to sort by hand rather than using, say, std::sort.
1162 assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
1163 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1)))
1164 E->swapOperands(0, 1);
1165 }
1166 // Perform simplification.
1167 if (auto *CI = dyn_cast<CmpInst>(I)) {
1168 // Sort the operand value numbers so x<y and y>x get the same value
1169 // number.
1170 CmpInst::Predicate Predicate = CI->getPredicate();
1171 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) {
1172 E->swapOperands(0, 1);
1173 Predicate = CmpInst::getSwappedPredicate(Predicate);
1174 }
1175 E->setOpcode((CI->getOpcode() << 8) | Predicate);
1176 // TODO: 25% of our time is spent in simplifyCmpInst with pointer operands
1177 assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() &&
1178 "Wrong types on cmp instruction");
1179 assert((E->getOperand(0)->getType() == I->getOperand(0)->getType() &&
1180 E->getOperand(1)->getType() == I->getOperand(1)->getType()));
1181 Value *V =
1182 simplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), Q);
1183 if (auto Simplified = checkExprResults(E, I, V))
1184 return Simplified;
1185 } else if (isa<SelectInst>(I)) {
1186 if (isa<Constant>(E->getOperand(0)) ||
1187 E->getOperand(1) == E->getOperand(2)) {
1188 assert(E->getOperand(1)->getType() == I->getOperand(1)->getType() &&
1189 E->getOperand(2)->getType() == I->getOperand(2)->getType());
1190 Value *V = simplifySelectInst(E->getOperand(0), E->getOperand(1),
1191 E->getOperand(2), Q);
1192 if (auto Simplified = checkExprResults(E, I, V))
1193 return Simplified;
1194 }
1195 } else if (I->isBinaryOp()) {
1196 Value *V =
1197 simplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), Q);
1198 if (auto Simplified = checkExprResults(E, I, V))
1199 return Simplified;
1200 } else if (auto *CI = dyn_cast<CastInst>(I)) {
1201 Value *V =
1202 simplifyCastInst(CI->getOpcode(), E->getOperand(0), CI->getType(), Q);
1203 if (auto Simplified = checkExprResults(E, I, V))
1204 return Simplified;
1205 } else if (auto *GEPI = dyn_cast<GetElementPtrInst>(I)) {
1206 Value *V =
1207 simplifyGEPInst(GEPI->getSourceElementType(), *E->op_begin(),
1208 makeArrayRef(std::next(E->op_begin()), E->op_end()),
1209 GEPI->isInBounds(), Q);
1210 if (auto Simplified = checkExprResults(E, I, V))
1211 return Simplified;
1212 } else if (AllConstant) {
1213 // We don't bother trying to simplify unless all of the operands
1214 // were constant.
1215 // TODO: There are a lot of Simplify*'s we could call here, if we
1216 // wanted to. The original motivating case for this code was a
1217 // zext i1 false to i8, which we don't have an interface to
1218 // simplify (IE there is no SimplifyZExt).
1219
1220 SmallVector<Constant *, 8> C;
1221 for (Value *Arg : E->operands())
1222 C.emplace_back(cast<Constant>(Arg));
1223
1224 if (Value *V = ConstantFoldInstOperands(I, C, DL, TLI))
1225 if (auto Simplified = checkExprResults(E, I, V))
1226 return Simplified;
1227 }
1228 return ExprResult::some(E);
1229 }
1230
1231 const AggregateValueExpression *
createAggregateValueExpression(Instruction * I) const1232 NewGVN::createAggregateValueExpression(Instruction *I) const {
1233 if (auto *II = dyn_cast<InsertValueInst>(I)) {
1234 auto *E = new (ExpressionAllocator)
1235 AggregateValueExpression(I->getNumOperands(), II->getNumIndices());
1236 setBasicExpressionInfo(I, E);
1237 E->allocateIntOperands(ExpressionAllocator);
1238 std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E));
1239 return E;
1240 } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1241 auto *E = new (ExpressionAllocator)
1242 AggregateValueExpression(I->getNumOperands(), EI->getNumIndices());
1243 setBasicExpressionInfo(EI, E);
1244 E->allocateIntOperands(ExpressionAllocator);
1245 std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E));
1246 return E;
1247 }
1248 llvm_unreachable("Unhandled type of aggregate value operation");
1249 }
1250
createDeadExpression() const1251 const DeadExpression *NewGVN::createDeadExpression() const {
1252 // DeadExpression has no arguments and all DeadExpression's are the same,
1253 // so we only need one of them.
1254 return SingletonDeadExpression;
1255 }
1256
createVariableExpression(Value * V) const1257 const VariableExpression *NewGVN::createVariableExpression(Value *V) const {
1258 auto *E = new (ExpressionAllocator) VariableExpression(V);
1259 E->setOpcode(V->getValueID());
1260 return E;
1261 }
1262
createVariableOrConstant(Value * V) const1263 const Expression *NewGVN::createVariableOrConstant(Value *V) const {
1264 if (auto *C = dyn_cast<Constant>(V))
1265 return createConstantExpression(C);
1266 return createVariableExpression(V);
1267 }
1268
createConstantExpression(Constant * C) const1269 const ConstantExpression *NewGVN::createConstantExpression(Constant *C) const {
1270 auto *E = new (ExpressionAllocator) ConstantExpression(C);
1271 E->setOpcode(C->getValueID());
1272 return E;
1273 }
1274
createUnknownExpression(Instruction * I) const1275 const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) const {
1276 auto *E = new (ExpressionAllocator) UnknownExpression(I);
1277 E->setOpcode(I->getOpcode());
1278 return E;
1279 }
1280
1281 const CallExpression *
createCallExpression(CallInst * CI,const MemoryAccess * MA) const1282 NewGVN::createCallExpression(CallInst *CI, const MemoryAccess *MA) const {
1283 // FIXME: Add operand bundles for calls.
1284 // FIXME: Allow commutative matching for intrinsics.
1285 auto *E =
1286 new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, MA);
1287 setBasicExpressionInfo(CI, E);
1288 return E;
1289 }
1290
1291 // Return true if some equivalent of instruction Inst dominates instruction U.
someEquivalentDominates(const Instruction * Inst,const Instruction * U) const1292 bool NewGVN::someEquivalentDominates(const Instruction *Inst,
1293 const Instruction *U) const {
1294 auto *CC = ValueToClass.lookup(Inst);
1295 // This must be an instruction because we are only called from phi nodes
1296 // in the case that the value it needs to check against is an instruction.
1297
1298 // The most likely candidates for dominance are the leader and the next leader.
1299 // The leader or nextleader will dominate in all cases where there is an
1300 // equivalent that is higher up in the dom tree.
1301 // We can't *only* check them, however, because the
1302 // dominator tree could have an infinite number of non-dominating siblings
1303 // with instructions that are in the right congruence class.
1304 // A
1305 // B C D E F G
1306 // |
1307 // H
1308 // Instruction U could be in H, with equivalents in every other sibling.
1309 // Depending on the rpo order picked, the leader could be the equivalent in
1310 // any of these siblings.
1311 if (!CC)
1312 return false;
1313 if (alwaysAvailable(CC->getLeader()))
1314 return true;
1315 if (DT->dominates(cast<Instruction>(CC->getLeader()), U))
1316 return true;
1317 if (CC->getNextLeader().first &&
1318 DT->dominates(cast<Instruction>(CC->getNextLeader().first), U))
1319 return true;
1320 return llvm::any_of(*CC, [&](const Value *Member) {
1321 return Member != CC->getLeader() &&
1322 DT->dominates(cast<Instruction>(Member), U);
1323 });
1324 }
1325
1326 // See if we have a congruence class and leader for this operand, and if so,
1327 // return it. Otherwise, return the operand itself.
lookupOperandLeader(Value * V) const1328 Value *NewGVN::lookupOperandLeader(Value *V) const {
1329 CongruenceClass *CC = ValueToClass.lookup(V);
1330 if (CC) {
1331 // Everything in TOP is represented by poison, as it can be any value.
1332 // We do have to make sure we get the type right though, so we can't set the
1333 // RepLeader to poison.
1334 if (CC == TOPClass)
1335 return PoisonValue::get(V->getType());
1336 return CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
1337 }
1338
1339 return V;
1340 }
1341
lookupMemoryLeader(const MemoryAccess * MA) const1342 const MemoryAccess *NewGVN::lookupMemoryLeader(const MemoryAccess *MA) const {
1343 auto *CC = getMemoryClass(MA);
1344 assert(CC->getMemoryLeader() &&
1345 "Every MemoryAccess should be mapped to a congruence class with a "
1346 "representative memory access");
1347 return CC->getMemoryLeader();
1348 }
1349
1350 // Return true if the MemoryAccess is really equivalent to everything. This is
1351 // equivalent to the lattice value "TOP" in most lattices. This is the initial
1352 // state of all MemoryAccesses.
isMemoryAccessTOP(const MemoryAccess * MA) const1353 bool NewGVN::isMemoryAccessTOP(const MemoryAccess *MA) const {
1354 return getMemoryClass(MA) == TOPClass;
1355 }
1356
createLoadExpression(Type * LoadType,Value * PointerOp,LoadInst * LI,const MemoryAccess * MA) const1357 LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp,
1358 LoadInst *LI,
1359 const MemoryAccess *MA) const {
1360 auto *E =
1361 new (ExpressionAllocator) LoadExpression(1, LI, lookupMemoryLeader(MA));
1362 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1363 E->setType(LoadType);
1364
1365 // Give store and loads same opcode so they value number together.
1366 E->setOpcode(0);
1367 E->op_push_back(PointerOp);
1368
1369 // TODO: Value number heap versions. We may be able to discover
1370 // things alias analysis can't on it's own (IE that a store and a
1371 // load have the same value, and thus, it isn't clobbering the load).
1372 return E;
1373 }
1374
1375 const StoreExpression *
createStoreExpression(StoreInst * SI,const MemoryAccess * MA) const1376 NewGVN::createStoreExpression(StoreInst *SI, const MemoryAccess *MA) const {
1377 auto *StoredValueLeader = lookupOperandLeader(SI->getValueOperand());
1378 auto *E = new (ExpressionAllocator)
1379 StoreExpression(SI->getNumOperands(), SI, StoredValueLeader, MA);
1380 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1381 E->setType(SI->getValueOperand()->getType());
1382
1383 // Give store and loads same opcode so they value number together.
1384 E->setOpcode(0);
1385 E->op_push_back(lookupOperandLeader(SI->getPointerOperand()));
1386
1387 // TODO: Value number heap versions. We may be able to discover
1388 // things alias analysis can't on it's own (IE that a store and a
1389 // load have the same value, and thus, it isn't clobbering the load).
1390 return E;
1391 }
1392
performSymbolicStoreEvaluation(Instruction * I) const1393 const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I) const {
1394 // Unlike loads, we never try to eliminate stores, so we do not check if they
1395 // are simple and avoid value numbering them.
1396 auto *SI = cast<StoreInst>(I);
1397 auto *StoreAccess = getMemoryAccess(SI);
1398 // Get the expression, if any, for the RHS of the MemoryDef.
1399 const MemoryAccess *StoreRHS = StoreAccess->getDefiningAccess();
1400 if (EnableStoreRefinement)
1401 StoreRHS = MSSAWalker->getClobberingMemoryAccess(StoreAccess);
1402 // If we bypassed the use-def chains, make sure we add a use.
1403 StoreRHS = lookupMemoryLeader(StoreRHS);
1404 if (StoreRHS != StoreAccess->getDefiningAccess())
1405 addMemoryUsers(StoreRHS, StoreAccess);
1406 // If we are defined by ourselves, use the live on entry def.
1407 if (StoreRHS == StoreAccess)
1408 StoreRHS = MSSA->getLiveOnEntryDef();
1409
1410 if (SI->isSimple()) {
1411 // See if we are defined by a previous store expression, it already has a
1412 // value, and it's the same value as our current store. FIXME: Right now, we
1413 // only do this for simple stores, we should expand to cover memcpys, etc.
1414 const auto *LastStore = createStoreExpression(SI, StoreRHS);
1415 const auto *LastCC = ExpressionToClass.lookup(LastStore);
1416 // We really want to check whether the expression we matched was a store. No
1417 // easy way to do that. However, we can check that the class we found has a
1418 // store, which, assuming the value numbering state is not corrupt, is
1419 // sufficient, because we must also be equivalent to that store's expression
1420 // for it to be in the same class as the load.
1421 if (LastCC && LastCC->getStoredValue() == LastStore->getStoredValue())
1422 return LastStore;
1423 // Also check if our value operand is defined by a load of the same memory
1424 // location, and the memory state is the same as it was then (otherwise, it
1425 // could have been overwritten later. See test32 in
1426 // transforms/DeadStoreElimination/simple.ll).
1427 if (auto *LI = dyn_cast<LoadInst>(LastStore->getStoredValue()))
1428 if ((lookupOperandLeader(LI->getPointerOperand()) ==
1429 LastStore->getOperand(0)) &&
1430 (lookupMemoryLeader(getMemoryAccess(LI)->getDefiningAccess()) ==
1431 StoreRHS))
1432 return LastStore;
1433 deleteExpression(LastStore);
1434 }
1435
1436 // If the store is not equivalent to anything, value number it as a store that
1437 // produces a unique memory state (instead of using it's MemoryUse, we use
1438 // it's MemoryDef).
1439 return createStoreExpression(SI, StoreAccess);
1440 }
1441
1442 // See if we can extract the value of a loaded pointer from a load, a store, or
1443 // a memory instruction.
1444 const Expression *
performSymbolicLoadCoercion(Type * LoadType,Value * LoadPtr,LoadInst * LI,Instruction * DepInst,MemoryAccess * DefiningAccess) const1445 NewGVN::performSymbolicLoadCoercion(Type *LoadType, Value *LoadPtr,
1446 LoadInst *LI, Instruction *DepInst,
1447 MemoryAccess *DefiningAccess) const {
1448 assert((!LI || LI->isSimple()) && "Not a simple load");
1449 if (auto *DepSI = dyn_cast<StoreInst>(DepInst)) {
1450 // Can't forward from non-atomic to atomic without violating memory model.
1451 // Also don't need to coerce if they are the same type, we will just
1452 // propagate.
1453 if (LI->isAtomic() > DepSI->isAtomic() ||
1454 LoadType == DepSI->getValueOperand()->getType())
1455 return nullptr;
1456 int Offset = analyzeLoadFromClobberingStore(LoadType, LoadPtr, DepSI, DL);
1457 if (Offset >= 0) {
1458 if (auto *C = dyn_cast<Constant>(
1459 lookupOperandLeader(DepSI->getValueOperand()))) {
1460 if (Constant *Res =
1461 getConstantStoreValueForLoad(C, Offset, LoadType, DL)) {
1462 LLVM_DEBUG(dbgs() << "Coercing load from store " << *DepSI
1463 << " to constant " << *Res << "\n");
1464 return createConstantExpression(Res);
1465 }
1466 }
1467 }
1468 } else if (auto *DepLI = dyn_cast<LoadInst>(DepInst)) {
1469 // Can't forward from non-atomic to atomic without violating memory model.
1470 if (LI->isAtomic() > DepLI->isAtomic())
1471 return nullptr;
1472 int Offset = analyzeLoadFromClobberingLoad(LoadType, LoadPtr, DepLI, DL);
1473 if (Offset >= 0) {
1474 // We can coerce a constant load into a load.
1475 if (auto *C = dyn_cast<Constant>(lookupOperandLeader(DepLI)))
1476 if (auto *PossibleConstant =
1477 getConstantLoadValueForLoad(C, Offset, LoadType, DL)) {
1478 LLVM_DEBUG(dbgs() << "Coercing load from load " << *LI
1479 << " to constant " << *PossibleConstant << "\n");
1480 return createConstantExpression(PossibleConstant);
1481 }
1482 }
1483 } else if (auto *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
1484 int Offset = analyzeLoadFromClobberingMemInst(LoadType, LoadPtr, DepMI, DL);
1485 if (Offset >= 0) {
1486 if (auto *PossibleConstant =
1487 getConstantMemInstValueForLoad(DepMI, Offset, LoadType, DL)) {
1488 LLVM_DEBUG(dbgs() << "Coercing load from meminst " << *DepMI
1489 << " to constant " << *PossibleConstant << "\n");
1490 return createConstantExpression(PossibleConstant);
1491 }
1492 }
1493 }
1494
1495 // All of the below are only true if the loaded pointer is produced
1496 // by the dependent instruction.
1497 if (LoadPtr != lookupOperandLeader(DepInst) &&
1498 !AA->isMustAlias(LoadPtr, DepInst))
1499 return nullptr;
1500 // If this load really doesn't depend on anything, then we must be loading an
1501 // undef value. This can happen when loading for a fresh allocation with no
1502 // intervening stores, for example. Note that this is only true in the case
1503 // that the result of the allocation is pointer equal to the load ptr.
1504 if (isa<AllocaInst>(DepInst)) {
1505 return createConstantExpression(UndefValue::get(LoadType));
1506 }
1507 // If this load occurs either right after a lifetime begin,
1508 // then the loaded value is undefined.
1509 else if (auto *II = dyn_cast<IntrinsicInst>(DepInst)) {
1510 if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1511 return createConstantExpression(UndefValue::get(LoadType));
1512 } else if (auto *InitVal =
1513 getInitialValueOfAllocation(DepInst, TLI, LoadType))
1514 return createConstantExpression(InitVal);
1515
1516 return nullptr;
1517 }
1518
performSymbolicLoadEvaluation(Instruction * I) const1519 const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I) const {
1520 auto *LI = cast<LoadInst>(I);
1521
1522 // We can eliminate in favor of non-simple loads, but we won't be able to
1523 // eliminate the loads themselves.
1524 if (!LI->isSimple())
1525 return nullptr;
1526
1527 Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand());
1528 // Load of undef is UB.
1529 if (isa<UndefValue>(LoadAddressLeader))
1530 return createConstantExpression(PoisonValue::get(LI->getType()));
1531 MemoryAccess *OriginalAccess = getMemoryAccess(I);
1532 MemoryAccess *DefiningAccess =
1533 MSSAWalker->getClobberingMemoryAccess(OriginalAccess);
1534
1535 if (!MSSA->isLiveOnEntryDef(DefiningAccess)) {
1536 if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) {
1537 Instruction *DefiningInst = MD->getMemoryInst();
1538 // If the defining instruction is not reachable, replace with poison.
1539 if (!ReachableBlocks.count(DefiningInst->getParent()))
1540 return createConstantExpression(PoisonValue::get(LI->getType()));
1541 // This will handle stores and memory insts. We only do if it the
1542 // defining access has a different type, or it is a pointer produced by
1543 // certain memory operations that cause the memory to have a fixed value
1544 // (IE things like calloc).
1545 if (const auto *CoercionResult =
1546 performSymbolicLoadCoercion(LI->getType(), LoadAddressLeader, LI,
1547 DefiningInst, DefiningAccess))
1548 return CoercionResult;
1549 }
1550 }
1551
1552 const auto *LE = createLoadExpression(LI->getType(), LoadAddressLeader, LI,
1553 DefiningAccess);
1554 // If our MemoryLeader is not our defining access, add a use to the
1555 // MemoryLeader, so that we get reprocessed when it changes.
1556 if (LE->getMemoryLeader() != DefiningAccess)
1557 addMemoryUsers(LE->getMemoryLeader(), OriginalAccess);
1558 return LE;
1559 }
1560
1561 NewGVN::ExprResult
performSymbolicPredicateInfoEvaluation(IntrinsicInst * I) const1562 NewGVN::performSymbolicPredicateInfoEvaluation(IntrinsicInst *I) const {
1563 auto *PI = PredInfo->getPredicateInfoFor(I);
1564 if (!PI)
1565 return ExprResult::none();
1566
1567 LLVM_DEBUG(dbgs() << "Found predicate info from instruction !\n");
1568
1569 const Optional<PredicateConstraint> &Constraint = PI->getConstraint();
1570 if (!Constraint)
1571 return ExprResult::none();
1572
1573 CmpInst::Predicate Predicate = Constraint->Predicate;
1574 Value *CmpOp0 = I->getOperand(0);
1575 Value *CmpOp1 = Constraint->OtherOp;
1576
1577 Value *FirstOp = lookupOperandLeader(CmpOp0);
1578 Value *SecondOp = lookupOperandLeader(CmpOp1);
1579 Value *AdditionallyUsedValue = CmpOp0;
1580
1581 // Sort the ops.
1582 if (shouldSwapOperandsForIntrinsic(FirstOp, SecondOp, I)) {
1583 std::swap(FirstOp, SecondOp);
1584 Predicate = CmpInst::getSwappedPredicate(Predicate);
1585 AdditionallyUsedValue = CmpOp1;
1586 }
1587
1588 if (Predicate == CmpInst::ICMP_EQ)
1589 return ExprResult::some(createVariableOrConstant(FirstOp),
1590 AdditionallyUsedValue, PI);
1591
1592 // Handle the special case of floating point.
1593 if (Predicate == CmpInst::FCMP_OEQ && isa<ConstantFP>(FirstOp) &&
1594 !cast<ConstantFP>(FirstOp)->isZero())
1595 return ExprResult::some(createConstantExpression(cast<Constant>(FirstOp)),
1596 AdditionallyUsedValue, PI);
1597
1598 return ExprResult::none();
1599 }
1600
1601 // Evaluate read only and pure calls, and create an expression result.
performSymbolicCallEvaluation(Instruction * I) const1602 NewGVN::ExprResult NewGVN::performSymbolicCallEvaluation(Instruction *I) const {
1603 auto *CI = cast<CallInst>(I);
1604 if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1605 // Intrinsics with the returned attribute are copies of arguments.
1606 if (auto *ReturnedValue = II->getReturnedArgOperand()) {
1607 if (II->getIntrinsicID() == Intrinsic::ssa_copy)
1608 if (auto Res = performSymbolicPredicateInfoEvaluation(II))
1609 return Res;
1610 return ExprResult::some(createVariableOrConstant(ReturnedValue));
1611 }
1612 }
1613 if (AA->doesNotAccessMemory(CI)) {
1614 return ExprResult::some(
1615 createCallExpression(CI, TOPClass->getMemoryLeader()));
1616 } else if (AA->onlyReadsMemory(CI)) {
1617 if (auto *MA = MSSA->getMemoryAccess(CI)) {
1618 auto *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(MA);
1619 return ExprResult::some(createCallExpression(CI, DefiningAccess));
1620 } else // MSSA determined that CI does not access memory.
1621 return ExprResult::some(
1622 createCallExpression(CI, TOPClass->getMemoryLeader()));
1623 }
1624 return ExprResult::none();
1625 }
1626
1627 // Retrieve the memory class for a given MemoryAccess.
getMemoryClass(const MemoryAccess * MA) const1628 CongruenceClass *NewGVN::getMemoryClass(const MemoryAccess *MA) const {
1629 auto *Result = MemoryAccessToClass.lookup(MA);
1630 assert(Result && "Should have found memory class");
1631 return Result;
1632 }
1633
1634 // Update the MemoryAccess equivalence table to say that From is equal to To,
1635 // and return true if this is different from what already existed in the table.
setMemoryClass(const MemoryAccess * From,CongruenceClass * NewClass)1636 bool NewGVN::setMemoryClass(const MemoryAccess *From,
1637 CongruenceClass *NewClass) {
1638 assert(NewClass &&
1639 "Every MemoryAccess should be getting mapped to a non-null class");
1640 LLVM_DEBUG(dbgs() << "Setting " << *From);
1641 LLVM_DEBUG(dbgs() << " equivalent to congruence class ");
1642 LLVM_DEBUG(dbgs() << NewClass->getID()
1643 << " with current MemoryAccess leader ");
1644 LLVM_DEBUG(dbgs() << *NewClass->getMemoryLeader() << "\n");
1645
1646 auto LookupResult = MemoryAccessToClass.find(From);
1647 bool Changed = false;
1648 // If it's already in the table, see if the value changed.
1649 if (LookupResult != MemoryAccessToClass.end()) {
1650 auto *OldClass = LookupResult->second;
1651 if (OldClass != NewClass) {
1652 // If this is a phi, we have to handle memory member updates.
1653 if (auto *MP = dyn_cast<MemoryPhi>(From)) {
1654 OldClass->memory_erase(MP);
1655 NewClass->memory_insert(MP);
1656 // This may have killed the class if it had no non-memory members
1657 if (OldClass->getMemoryLeader() == From) {
1658 if (OldClass->definesNoMemory()) {
1659 OldClass->setMemoryLeader(nullptr);
1660 } else {
1661 OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
1662 LLVM_DEBUG(dbgs() << "Memory class leader change for class "
1663 << OldClass->getID() << " to "
1664 << *OldClass->getMemoryLeader()
1665 << " due to removal of a memory member " << *From
1666 << "\n");
1667 markMemoryLeaderChangeTouched(OldClass);
1668 }
1669 }
1670 }
1671 // It wasn't equivalent before, and now it is.
1672 LookupResult->second = NewClass;
1673 Changed = true;
1674 }
1675 }
1676
1677 return Changed;
1678 }
1679
1680 // Determine if a instruction is cycle-free. That means the values in the
1681 // instruction don't depend on any expressions that can change value as a result
1682 // of the instruction. For example, a non-cycle free instruction would be v =
1683 // phi(0, v+1).
isCycleFree(const Instruction * I) const1684 bool NewGVN::isCycleFree(const Instruction *I) const {
1685 // In order to compute cycle-freeness, we do SCC finding on the instruction,
1686 // and see what kind of SCC it ends up in. If it is a singleton, it is
1687 // cycle-free. If it is not in a singleton, it is only cycle free if the
1688 // other members are all phi nodes (as they do not compute anything, they are
1689 // copies).
1690 auto ICS = InstCycleState.lookup(I);
1691 if (ICS == ICS_Unknown) {
1692 SCCFinder.Start(I);
1693 auto &SCC = SCCFinder.getComponentFor(I);
1694 // It's cycle free if it's size 1 or the SCC is *only* phi nodes.
1695 if (SCC.size() == 1)
1696 InstCycleState.insert({I, ICS_CycleFree});
1697 else {
1698 bool AllPhis = llvm::all_of(SCC, [](const Value *V) {
1699 return isa<PHINode>(V) || isCopyOfAPHI(V);
1700 });
1701 ICS = AllPhis ? ICS_CycleFree : ICS_Cycle;
1702 for (auto *Member : SCC)
1703 if (auto *MemberPhi = dyn_cast<PHINode>(Member))
1704 InstCycleState.insert({MemberPhi, ICS});
1705 }
1706 }
1707 if (ICS == ICS_Cycle)
1708 return false;
1709 return true;
1710 }
1711
1712 // Evaluate PHI nodes symbolically and create an expression result.
1713 const Expression *
performSymbolicPHIEvaluation(ArrayRef<ValPair> PHIOps,Instruction * I,BasicBlock * PHIBlock) const1714 NewGVN::performSymbolicPHIEvaluation(ArrayRef<ValPair> PHIOps,
1715 Instruction *I,
1716 BasicBlock *PHIBlock) const {
1717 // True if one of the incoming phi edges is a backedge.
1718 bool HasBackedge = false;
1719 // All constant tracks the state of whether all the *original* phi operands
1720 // This is really shorthand for "this phi cannot cycle due to forward
1721 // change in value of the phi is guaranteed not to later change the value of
1722 // the phi. IE it can't be v = phi(undef, v+1)
1723 bool OriginalOpsConstant = true;
1724 auto *E = cast<PHIExpression>(createPHIExpression(
1725 PHIOps, I, PHIBlock, HasBackedge, OriginalOpsConstant));
1726 // We match the semantics of SimplifyPhiNode from InstructionSimplify here.
1727 // See if all arguments are the same.
1728 // We track if any were undef because they need special handling.
1729 bool HasUndef = false, HasPoison = false;
1730 auto Filtered = make_filter_range(E->operands(), [&](Value *Arg) {
1731 if (isa<PoisonValue>(Arg)) {
1732 HasPoison = true;
1733 return false;
1734 }
1735 if (isa<UndefValue>(Arg)) {
1736 HasUndef = true;
1737 return false;
1738 }
1739 return true;
1740 });
1741 // If we are left with no operands, it's dead.
1742 if (Filtered.empty()) {
1743 // If it has undef or poison at this point, it means there are no-non-undef
1744 // arguments, and thus, the value of the phi node must be undef.
1745 if (HasUndef) {
1746 LLVM_DEBUG(
1747 dbgs() << "PHI Node " << *I
1748 << " has no non-undef arguments, valuing it as undef\n");
1749 return createConstantExpression(UndefValue::get(I->getType()));
1750 }
1751 if (HasPoison) {
1752 LLVM_DEBUG(
1753 dbgs() << "PHI Node " << *I
1754 << " has no non-poison arguments, valuing it as poison\n");
1755 return createConstantExpression(PoisonValue::get(I->getType()));
1756 }
1757
1758 LLVM_DEBUG(dbgs() << "No arguments of PHI node " << *I << " are live\n");
1759 deleteExpression(E);
1760 return createDeadExpression();
1761 }
1762 Value *AllSameValue = *(Filtered.begin());
1763 ++Filtered.begin();
1764 // Can't use std::equal here, sadly, because filter.begin moves.
1765 if (llvm::all_of(Filtered, [&](Value *Arg) { return Arg == AllSameValue; })) {
1766 // Can't fold phi(undef, X) -> X unless X can't be poison (thus X is undef
1767 // in the worst case).
1768 if (HasUndef && !isGuaranteedNotToBePoison(AllSameValue, AC, nullptr, DT))
1769 return E;
1770
1771 // In LLVM's non-standard representation of phi nodes, it's possible to have
1772 // phi nodes with cycles (IE dependent on other phis that are .... dependent
1773 // on the original phi node), especially in weird CFG's where some arguments
1774 // are unreachable, or uninitialized along certain paths. This can cause
1775 // infinite loops during evaluation. We work around this by not trying to
1776 // really evaluate them independently, but instead using a variable
1777 // expression to say if one is equivalent to the other.
1778 // We also special case undef/poison, so that if we have an undef, we can't
1779 // use the common value unless it dominates the phi block.
1780 if (HasPoison || HasUndef) {
1781 // If we have undef and at least one other value, this is really a
1782 // multivalued phi, and we need to know if it's cycle free in order to
1783 // evaluate whether we can ignore the undef. The other parts of this are
1784 // just shortcuts. If there is no backedge, or all operands are
1785 // constants, it also must be cycle free.
1786 if (HasBackedge && !OriginalOpsConstant &&
1787 !isa<UndefValue>(AllSameValue) && !isCycleFree(I))
1788 return E;
1789
1790 // Only have to check for instructions
1791 if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue))
1792 if (!someEquivalentDominates(AllSameInst, I))
1793 return E;
1794 }
1795 // Can't simplify to something that comes later in the iteration.
1796 // Otherwise, when and if it changes congruence class, we will never catch
1797 // up. We will always be a class behind it.
1798 if (isa<Instruction>(AllSameValue) &&
1799 InstrToDFSNum(AllSameValue) > InstrToDFSNum(I))
1800 return E;
1801 NumGVNPhisAllSame++;
1802 LLVM_DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue
1803 << "\n");
1804 deleteExpression(E);
1805 return createVariableOrConstant(AllSameValue);
1806 }
1807 return E;
1808 }
1809
1810 const Expression *
performSymbolicAggrValueEvaluation(Instruction * I) const1811 NewGVN::performSymbolicAggrValueEvaluation(Instruction *I) const {
1812 if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1813 auto *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand());
1814 if (WO && EI->getNumIndices() == 1 && *EI->idx_begin() == 0)
1815 // EI is an extract from one of our with.overflow intrinsics. Synthesize
1816 // a semantically equivalent expression instead of an extract value
1817 // expression.
1818 return createBinaryExpression(WO->getBinaryOp(), EI->getType(),
1819 WO->getLHS(), WO->getRHS(), I);
1820 }
1821
1822 return createAggregateValueExpression(I);
1823 }
1824
performSymbolicCmpEvaluation(Instruction * I) const1825 NewGVN::ExprResult NewGVN::performSymbolicCmpEvaluation(Instruction *I) const {
1826 assert(isa<CmpInst>(I) && "Expected a cmp instruction.");
1827
1828 auto *CI = cast<CmpInst>(I);
1829 // See if our operands are equal to those of a previous predicate, and if so,
1830 // if it implies true or false.
1831 auto Op0 = lookupOperandLeader(CI->getOperand(0));
1832 auto Op1 = lookupOperandLeader(CI->getOperand(1));
1833 auto OurPredicate = CI->getPredicate();
1834 if (shouldSwapOperands(Op0, Op1)) {
1835 std::swap(Op0, Op1);
1836 OurPredicate = CI->getSwappedPredicate();
1837 }
1838
1839 // Avoid processing the same info twice.
1840 const PredicateBase *LastPredInfo = nullptr;
1841 // See if we know something about the comparison itself, like it is the target
1842 // of an assume.
1843 auto *CmpPI = PredInfo->getPredicateInfoFor(I);
1844 if (isa_and_nonnull<PredicateAssume>(CmpPI))
1845 return ExprResult::some(
1846 createConstantExpression(ConstantInt::getTrue(CI->getType())));
1847
1848 if (Op0 == Op1) {
1849 // This condition does not depend on predicates, no need to add users
1850 if (CI->isTrueWhenEqual())
1851 return ExprResult::some(
1852 createConstantExpression(ConstantInt::getTrue(CI->getType())));
1853 else if (CI->isFalseWhenEqual())
1854 return ExprResult::some(
1855 createConstantExpression(ConstantInt::getFalse(CI->getType())));
1856 }
1857
1858 // NOTE: Because we are comparing both operands here and below, and using
1859 // previous comparisons, we rely on fact that predicateinfo knows to mark
1860 // comparisons that use renamed operands as users of the earlier comparisons.
1861 // It is *not* enough to just mark predicateinfo renamed operands as users of
1862 // the earlier comparisons, because the *other* operand may have changed in a
1863 // previous iteration.
1864 // Example:
1865 // icmp slt %a, %b
1866 // %b.0 = ssa.copy(%b)
1867 // false branch:
1868 // icmp slt %c, %b.0
1869
1870 // %c and %a may start out equal, and thus, the code below will say the second
1871 // %icmp is false. c may become equal to something else, and in that case the
1872 // %second icmp *must* be reexamined, but would not if only the renamed
1873 // %operands are considered users of the icmp.
1874
1875 // *Currently* we only check one level of comparisons back, and only mark one
1876 // level back as touched when changes happen. If you modify this code to look
1877 // back farther through comparisons, you *must* mark the appropriate
1878 // comparisons as users in PredicateInfo.cpp, or you will cause bugs. See if
1879 // we know something just from the operands themselves
1880
1881 // See if our operands have predicate info, so that we may be able to derive
1882 // something from a previous comparison.
1883 for (const auto &Op : CI->operands()) {
1884 auto *PI = PredInfo->getPredicateInfoFor(Op);
1885 if (const auto *PBranch = dyn_cast_or_null<PredicateBranch>(PI)) {
1886 if (PI == LastPredInfo)
1887 continue;
1888 LastPredInfo = PI;
1889 // In phi of ops cases, we may have predicate info that we are evaluating
1890 // in a different context.
1891 if (!DT->dominates(PBranch->To, getBlockForValue(I)))
1892 continue;
1893 // TODO: Along the false edge, we may know more things too, like
1894 // icmp of
1895 // same operands is false.
1896 // TODO: We only handle actual comparison conditions below, not
1897 // and/or.
1898 auto *BranchCond = dyn_cast<CmpInst>(PBranch->Condition);
1899 if (!BranchCond)
1900 continue;
1901 auto *BranchOp0 = lookupOperandLeader(BranchCond->getOperand(0));
1902 auto *BranchOp1 = lookupOperandLeader(BranchCond->getOperand(1));
1903 auto BranchPredicate = BranchCond->getPredicate();
1904 if (shouldSwapOperands(BranchOp0, BranchOp1)) {
1905 std::swap(BranchOp0, BranchOp1);
1906 BranchPredicate = BranchCond->getSwappedPredicate();
1907 }
1908 if (BranchOp0 == Op0 && BranchOp1 == Op1) {
1909 if (PBranch->TrueEdge) {
1910 // If we know the previous predicate is true and we are in the true
1911 // edge then we may be implied true or false.
1912 if (CmpInst::isImpliedTrueByMatchingCmp(BranchPredicate,
1913 OurPredicate)) {
1914 return ExprResult::some(
1915 createConstantExpression(ConstantInt::getTrue(CI->getType())),
1916 PI);
1917 }
1918
1919 if (CmpInst::isImpliedFalseByMatchingCmp(BranchPredicate,
1920 OurPredicate)) {
1921 return ExprResult::some(
1922 createConstantExpression(ConstantInt::getFalse(CI->getType())),
1923 PI);
1924 }
1925 } else {
1926 // Just handle the ne and eq cases, where if we have the same
1927 // operands, we may know something.
1928 if (BranchPredicate == OurPredicate) {
1929 // Same predicate, same ops,we know it was false, so this is false.
1930 return ExprResult::some(
1931 createConstantExpression(ConstantInt::getFalse(CI->getType())),
1932 PI);
1933 } else if (BranchPredicate ==
1934 CmpInst::getInversePredicate(OurPredicate)) {
1935 // Inverse predicate, we know the other was false, so this is true.
1936 return ExprResult::some(
1937 createConstantExpression(ConstantInt::getTrue(CI->getType())),
1938 PI);
1939 }
1940 }
1941 }
1942 }
1943 }
1944 // Create expression will take care of simplifyCmpInst
1945 return createExpression(I);
1946 }
1947
1948 // Substitute and symbolize the value before value numbering.
1949 NewGVN::ExprResult
performSymbolicEvaluation(Value * V,SmallPtrSetImpl<Value * > & Visited) const1950 NewGVN::performSymbolicEvaluation(Value *V,
1951 SmallPtrSetImpl<Value *> &Visited) const {
1952
1953 const Expression *E = nullptr;
1954 if (auto *C = dyn_cast<Constant>(V))
1955 E = createConstantExpression(C);
1956 else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1957 E = createVariableExpression(V);
1958 } else {
1959 // TODO: memory intrinsics.
1960 // TODO: Some day, we should do the forward propagation and reassociation
1961 // parts of the algorithm.
1962 auto *I = cast<Instruction>(V);
1963 switch (I->getOpcode()) {
1964 case Instruction::ExtractValue:
1965 case Instruction::InsertValue:
1966 E = performSymbolicAggrValueEvaluation(I);
1967 break;
1968 case Instruction::PHI: {
1969 SmallVector<ValPair, 3> Ops;
1970 auto *PN = cast<PHINode>(I);
1971 for (unsigned i = 0; i < PN->getNumOperands(); ++i)
1972 Ops.push_back({PN->getIncomingValue(i), PN->getIncomingBlock(i)});
1973 // Sort to ensure the invariant createPHIExpression requires is met.
1974 sortPHIOps(Ops);
1975 E = performSymbolicPHIEvaluation(Ops, I, getBlockForValue(I));
1976 } break;
1977 case Instruction::Call:
1978 return performSymbolicCallEvaluation(I);
1979 break;
1980 case Instruction::Store:
1981 E = performSymbolicStoreEvaluation(I);
1982 break;
1983 case Instruction::Load:
1984 E = performSymbolicLoadEvaluation(I);
1985 break;
1986 case Instruction::BitCast:
1987 case Instruction::AddrSpaceCast:
1988 return createExpression(I);
1989 break;
1990 case Instruction::ICmp:
1991 case Instruction::FCmp:
1992 return performSymbolicCmpEvaluation(I);
1993 break;
1994 case Instruction::FNeg:
1995 case Instruction::Add:
1996 case Instruction::FAdd:
1997 case Instruction::Sub:
1998 case Instruction::FSub:
1999 case Instruction::Mul:
2000 case Instruction::FMul:
2001 case Instruction::UDiv:
2002 case Instruction::SDiv:
2003 case Instruction::FDiv:
2004 case Instruction::URem:
2005 case Instruction::SRem:
2006 case Instruction::FRem:
2007 case Instruction::Shl:
2008 case Instruction::LShr:
2009 case Instruction::AShr:
2010 case Instruction::And:
2011 case Instruction::Or:
2012 case Instruction::Xor:
2013 case Instruction::Trunc:
2014 case Instruction::ZExt:
2015 case Instruction::SExt:
2016 case Instruction::FPToUI:
2017 case Instruction::FPToSI:
2018 case Instruction::UIToFP:
2019 case Instruction::SIToFP:
2020 case Instruction::FPTrunc:
2021 case Instruction::FPExt:
2022 case Instruction::PtrToInt:
2023 case Instruction::IntToPtr:
2024 case Instruction::Select:
2025 case Instruction::ExtractElement:
2026 case Instruction::InsertElement:
2027 case Instruction::GetElementPtr:
2028 return createExpression(I);
2029 break;
2030 case Instruction::ShuffleVector:
2031 // FIXME: Add support for shufflevector to createExpression.
2032 return ExprResult::none();
2033 default:
2034 return ExprResult::none();
2035 }
2036 }
2037 return ExprResult::some(E);
2038 }
2039
2040 // Look up a container of values/instructions in a map, and touch all the
2041 // instructions in the container. Then erase value from the map.
2042 template <typename Map, typename KeyType>
touchAndErase(Map & M,const KeyType & Key)2043 void NewGVN::touchAndErase(Map &M, const KeyType &Key) {
2044 const auto Result = M.find_as(Key);
2045 if (Result != M.end()) {
2046 for (const typename Map::mapped_type::value_type Mapped : Result->second)
2047 TouchedInstructions.set(InstrToDFSNum(Mapped));
2048 M.erase(Result);
2049 }
2050 }
2051
addAdditionalUsers(Value * To,Value * User) const2052 void NewGVN::addAdditionalUsers(Value *To, Value *User) const {
2053 assert(User && To != User);
2054 if (isa<Instruction>(To))
2055 AdditionalUsers[To].insert(User);
2056 }
2057
addAdditionalUsers(ExprResult & Res,Instruction * User) const2058 void NewGVN::addAdditionalUsers(ExprResult &Res, Instruction *User) const {
2059 if (Res.ExtraDep && Res.ExtraDep != User)
2060 addAdditionalUsers(Res.ExtraDep, User);
2061 Res.ExtraDep = nullptr;
2062
2063 if (Res.PredDep) {
2064 if (const auto *PBranch = dyn_cast<PredicateBranch>(Res.PredDep))
2065 PredicateToUsers[PBranch->Condition].insert(User);
2066 else if (const auto *PAssume = dyn_cast<PredicateAssume>(Res.PredDep))
2067 PredicateToUsers[PAssume->Condition].insert(User);
2068 }
2069 Res.PredDep = nullptr;
2070 }
2071
markUsersTouched(Value * V)2072 void NewGVN::markUsersTouched(Value *V) {
2073 // Now mark the users as touched.
2074 for (auto *User : V->users()) {
2075 assert(isa<Instruction>(User) && "Use of value not within an instruction?");
2076 TouchedInstructions.set(InstrToDFSNum(User));
2077 }
2078 touchAndErase(AdditionalUsers, V);
2079 }
2080
addMemoryUsers(const MemoryAccess * To,MemoryAccess * U) const2081 void NewGVN::addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const {
2082 LLVM_DEBUG(dbgs() << "Adding memory user " << *U << " to " << *To << "\n");
2083 MemoryToUsers[To].insert(U);
2084 }
2085
markMemoryDefTouched(const MemoryAccess * MA)2086 void NewGVN::markMemoryDefTouched(const MemoryAccess *MA) {
2087 TouchedInstructions.set(MemoryToDFSNum(MA));
2088 }
2089
markMemoryUsersTouched(const MemoryAccess * MA)2090 void NewGVN::markMemoryUsersTouched(const MemoryAccess *MA) {
2091 if (isa<MemoryUse>(MA))
2092 return;
2093 for (auto U : MA->users())
2094 TouchedInstructions.set(MemoryToDFSNum(U));
2095 touchAndErase(MemoryToUsers, MA);
2096 }
2097
2098 // Touch all the predicates that depend on this instruction.
markPredicateUsersTouched(Instruction * I)2099 void NewGVN::markPredicateUsersTouched(Instruction *I) {
2100 touchAndErase(PredicateToUsers, I);
2101 }
2102
2103 // Mark users affected by a memory leader change.
markMemoryLeaderChangeTouched(CongruenceClass * CC)2104 void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass *CC) {
2105 for (auto M : CC->memory())
2106 markMemoryDefTouched(M);
2107 }
2108
2109 // Touch the instructions that need to be updated after a congruence class has a
2110 // leader change, and mark changed values.
markValueLeaderChangeTouched(CongruenceClass * CC)2111 void NewGVN::markValueLeaderChangeTouched(CongruenceClass *CC) {
2112 for (auto M : *CC) {
2113 if (auto *I = dyn_cast<Instruction>(M))
2114 TouchedInstructions.set(InstrToDFSNum(I));
2115 LeaderChanges.insert(M);
2116 }
2117 }
2118
2119 // Give a range of things that have instruction DFS numbers, this will return
2120 // the member of the range with the smallest dfs number.
2121 template <class T, class Range>
getMinDFSOfRange(const Range & R) const2122 T *NewGVN::getMinDFSOfRange(const Range &R) const {
2123 std::pair<T *, unsigned> MinDFS = {nullptr, ~0U};
2124 for (const auto X : R) {
2125 auto DFSNum = InstrToDFSNum(X);
2126 if (DFSNum < MinDFS.second)
2127 MinDFS = {X, DFSNum};
2128 }
2129 return MinDFS.first;
2130 }
2131
2132 // This function returns the MemoryAccess that should be the next leader of
2133 // congruence class CC, under the assumption that the current leader is going to
2134 // disappear.
getNextMemoryLeader(CongruenceClass * CC) const2135 const MemoryAccess *NewGVN::getNextMemoryLeader(CongruenceClass *CC) const {
2136 // TODO: If this ends up to slow, we can maintain a next memory leader like we
2137 // do for regular leaders.
2138 // Make sure there will be a leader to find.
2139 assert(!CC->definesNoMemory() && "Can't get next leader if there is none");
2140 if (CC->getStoreCount() > 0) {
2141 if (auto *NL = dyn_cast_or_null<StoreInst>(CC->getNextLeader().first))
2142 return getMemoryAccess(NL);
2143 // Find the store with the minimum DFS number.
2144 auto *V = getMinDFSOfRange<Value>(make_filter_range(
2145 *CC, [&](const Value *V) { return isa<StoreInst>(V); }));
2146 return getMemoryAccess(cast<StoreInst>(V));
2147 }
2148 assert(CC->getStoreCount() == 0);
2149
2150 // Given our assertion, hitting this part must mean
2151 // !OldClass->memory_empty()
2152 if (CC->memory_size() == 1)
2153 return *CC->memory_begin();
2154 return getMinDFSOfRange<const MemoryPhi>(CC->memory());
2155 }
2156
2157 // This function returns the next value leader of a congruence class, under the
2158 // assumption that the current leader is going away. This should end up being
2159 // the next most dominating member.
getNextValueLeader(CongruenceClass * CC) const2160 Value *NewGVN::getNextValueLeader(CongruenceClass *CC) const {
2161 // We don't need to sort members if there is only 1, and we don't care about
2162 // sorting the TOP class because everything either gets out of it or is
2163 // unreachable.
2164
2165 if (CC->size() == 1 || CC == TOPClass) {
2166 return *(CC->begin());
2167 } else if (CC->getNextLeader().first) {
2168 ++NumGVNAvoidedSortedLeaderChanges;
2169 return CC->getNextLeader().first;
2170 } else {
2171 ++NumGVNSortedLeaderChanges;
2172 // NOTE: If this ends up to slow, we can maintain a dual structure for
2173 // member testing/insertion, or keep things mostly sorted, and sort only
2174 // here, or use SparseBitVector or ....
2175 return getMinDFSOfRange<Value>(*CC);
2176 }
2177 }
2178
2179 // Move a MemoryAccess, currently in OldClass, to NewClass, including updates to
2180 // the memory members, etc for the move.
2181 //
2182 // The invariants of this function are:
2183 //
2184 // - I must be moving to NewClass from OldClass
2185 // - The StoreCount of OldClass and NewClass is expected to have been updated
2186 // for I already if it is a store.
2187 // - The OldClass memory leader has not been updated yet if I was the leader.
moveMemoryToNewCongruenceClass(Instruction * I,MemoryAccess * InstMA,CongruenceClass * OldClass,CongruenceClass * NewClass)2188 void NewGVN::moveMemoryToNewCongruenceClass(Instruction *I,
2189 MemoryAccess *InstMA,
2190 CongruenceClass *OldClass,
2191 CongruenceClass *NewClass) {
2192 // If the leader is I, and we had a representative MemoryAccess, it should
2193 // be the MemoryAccess of OldClass.
2194 assert((!InstMA || !OldClass->getMemoryLeader() ||
2195 OldClass->getLeader() != I ||
2196 MemoryAccessToClass.lookup(OldClass->getMemoryLeader()) ==
2197 MemoryAccessToClass.lookup(InstMA)) &&
2198 "Representative MemoryAccess mismatch");
2199 // First, see what happens to the new class
2200 if (!NewClass->getMemoryLeader()) {
2201 // Should be a new class, or a store becoming a leader of a new class.
2202 assert(NewClass->size() == 1 ||
2203 (isa<StoreInst>(I) && NewClass->getStoreCount() == 1));
2204 NewClass->setMemoryLeader(InstMA);
2205 // Mark it touched if we didn't just create a singleton
2206 LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2207 << NewClass->getID()
2208 << " due to new memory instruction becoming leader\n");
2209 markMemoryLeaderChangeTouched(NewClass);
2210 }
2211 setMemoryClass(InstMA, NewClass);
2212 // Now, fixup the old class if necessary
2213 if (OldClass->getMemoryLeader() == InstMA) {
2214 if (!OldClass->definesNoMemory()) {
2215 OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
2216 LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2217 << OldClass->getID() << " to "
2218 << *OldClass->getMemoryLeader()
2219 << " due to removal of old leader " << *InstMA << "\n");
2220 markMemoryLeaderChangeTouched(OldClass);
2221 } else
2222 OldClass->setMemoryLeader(nullptr);
2223 }
2224 }
2225
2226 // Move a value, currently in OldClass, to be part of NewClass
2227 // Update OldClass and NewClass for the move (including changing leaders, etc).
moveValueToNewCongruenceClass(Instruction * I,const Expression * E,CongruenceClass * OldClass,CongruenceClass * NewClass)2228 void NewGVN::moveValueToNewCongruenceClass(Instruction *I, const Expression *E,
2229 CongruenceClass *OldClass,
2230 CongruenceClass *NewClass) {
2231 if (I == OldClass->getNextLeader().first)
2232 OldClass->resetNextLeader();
2233
2234 OldClass->erase(I);
2235 NewClass->insert(I);
2236
2237 if (NewClass->getLeader() != I)
2238 NewClass->addPossibleNextLeader({I, InstrToDFSNum(I)});
2239 // Handle our special casing of stores.
2240 if (auto *SI = dyn_cast<StoreInst>(I)) {
2241 OldClass->decStoreCount();
2242 // Okay, so when do we want to make a store a leader of a class?
2243 // If we have a store defined by an earlier load, we want the earlier load
2244 // to lead the class.
2245 // If we have a store defined by something else, we want the store to lead
2246 // the class so everything else gets the "something else" as a value.
2247 // If we have a store as the single member of the class, we want the store
2248 // as the leader
2249 if (NewClass->getStoreCount() == 0 && !NewClass->getStoredValue()) {
2250 // If it's a store expression we are using, it means we are not equivalent
2251 // to something earlier.
2252 if (auto *SE = dyn_cast<StoreExpression>(E)) {
2253 NewClass->setStoredValue(SE->getStoredValue());
2254 markValueLeaderChangeTouched(NewClass);
2255 // Shift the new class leader to be the store
2256 LLVM_DEBUG(dbgs() << "Changing leader of congruence class "
2257 << NewClass->getID() << " from "
2258 << *NewClass->getLeader() << " to " << *SI
2259 << " because store joined class\n");
2260 // If we changed the leader, we have to mark it changed because we don't
2261 // know what it will do to symbolic evaluation.
2262 NewClass->setLeader(SI);
2263 }
2264 // We rely on the code below handling the MemoryAccess change.
2265 }
2266 NewClass->incStoreCount();
2267 }
2268 // True if there is no memory instructions left in a class that had memory
2269 // instructions before.
2270
2271 // If it's not a memory use, set the MemoryAccess equivalence
2272 auto *InstMA = dyn_cast_or_null<MemoryDef>(getMemoryAccess(I));
2273 if (InstMA)
2274 moveMemoryToNewCongruenceClass(I, InstMA, OldClass, NewClass);
2275 ValueToClass[I] = NewClass;
2276 // See if we destroyed the class or need to swap leaders.
2277 if (OldClass->empty() && OldClass != TOPClass) {
2278 if (OldClass->getDefiningExpr()) {
2279 LLVM_DEBUG(dbgs() << "Erasing expression " << *OldClass->getDefiningExpr()
2280 << " from table\n");
2281 // We erase it as an exact expression to make sure we don't just erase an
2282 // equivalent one.
2283 auto Iter = ExpressionToClass.find_as(
2284 ExactEqualsExpression(*OldClass->getDefiningExpr()));
2285 if (Iter != ExpressionToClass.end())
2286 ExpressionToClass.erase(Iter);
2287 #ifdef EXPENSIVE_CHECKS
2288 assert(
2289 (*OldClass->getDefiningExpr() != *E || ExpressionToClass.lookup(E)) &&
2290 "We erased the expression we just inserted, which should not happen");
2291 #endif
2292 }
2293 } else if (OldClass->getLeader() == I) {
2294 // When the leader changes, the value numbering of
2295 // everything may change due to symbolization changes, so we need to
2296 // reprocess.
2297 LLVM_DEBUG(dbgs() << "Value class leader change for class "
2298 << OldClass->getID() << "\n");
2299 ++NumGVNLeaderChanges;
2300 // Destroy the stored value if there are no more stores to represent it.
2301 // Note that this is basically clean up for the expression removal that
2302 // happens below. If we remove stores from a class, we may leave it as a
2303 // class of equivalent memory phis.
2304 if (OldClass->getStoreCount() == 0) {
2305 if (OldClass->getStoredValue())
2306 OldClass->setStoredValue(nullptr);
2307 }
2308 OldClass->setLeader(getNextValueLeader(OldClass));
2309 OldClass->resetNextLeader();
2310 markValueLeaderChangeTouched(OldClass);
2311 }
2312 }
2313
2314 // For a given expression, mark the phi of ops instructions that could have
2315 // changed as a result.
markPhiOfOpsChanged(const Expression * E)2316 void NewGVN::markPhiOfOpsChanged(const Expression *E) {
2317 touchAndErase(ExpressionToPhiOfOps, E);
2318 }
2319
2320 // Perform congruence finding on a given value numbering expression.
performCongruenceFinding(Instruction * I,const Expression * E)2321 void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) {
2322 // This is guaranteed to return something, since it will at least find
2323 // TOP.
2324
2325 CongruenceClass *IClass = ValueToClass.lookup(I);
2326 assert(IClass && "Should have found a IClass");
2327 // Dead classes should have been eliminated from the mapping.
2328 assert(!IClass->isDead() && "Found a dead class");
2329
2330 CongruenceClass *EClass = nullptr;
2331 if (const auto *VE = dyn_cast<VariableExpression>(E)) {
2332 EClass = ValueToClass.lookup(VE->getVariableValue());
2333 } else if (isa<DeadExpression>(E)) {
2334 EClass = TOPClass;
2335 }
2336 if (!EClass) {
2337 auto lookupResult = ExpressionToClass.insert({E, nullptr});
2338
2339 // If it's not in the value table, create a new congruence class.
2340 if (lookupResult.second) {
2341 CongruenceClass *NewClass = createCongruenceClass(nullptr, E);
2342 auto place = lookupResult.first;
2343 place->second = NewClass;
2344
2345 // Constants and variables should always be made the leader.
2346 if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
2347 NewClass->setLeader(CE->getConstantValue());
2348 } else if (const auto *SE = dyn_cast<StoreExpression>(E)) {
2349 StoreInst *SI = SE->getStoreInst();
2350 NewClass->setLeader(SI);
2351 NewClass->setStoredValue(SE->getStoredValue());
2352 // The RepMemoryAccess field will be filled in properly by the
2353 // moveValueToNewCongruenceClass call.
2354 } else {
2355 NewClass->setLeader(I);
2356 }
2357 assert(!isa<VariableExpression>(E) &&
2358 "VariableExpression should have been handled already");
2359
2360 EClass = NewClass;
2361 LLVM_DEBUG(dbgs() << "Created new congruence class for " << *I
2362 << " using expression " << *E << " at "
2363 << NewClass->getID() << " and leader "
2364 << *(NewClass->getLeader()));
2365 if (NewClass->getStoredValue())
2366 LLVM_DEBUG(dbgs() << " and stored value "
2367 << *(NewClass->getStoredValue()));
2368 LLVM_DEBUG(dbgs() << "\n");
2369 } else {
2370 EClass = lookupResult.first->second;
2371 if (isa<ConstantExpression>(E))
2372 assert((isa<Constant>(EClass->getLeader()) ||
2373 (EClass->getStoredValue() &&
2374 isa<Constant>(EClass->getStoredValue()))) &&
2375 "Any class with a constant expression should have a "
2376 "constant leader");
2377
2378 assert(EClass && "Somehow don't have an eclass");
2379
2380 assert(!EClass->isDead() && "We accidentally looked up a dead class");
2381 }
2382 }
2383 bool ClassChanged = IClass != EClass;
2384 bool LeaderChanged = LeaderChanges.erase(I);
2385 if (ClassChanged || LeaderChanged) {
2386 LLVM_DEBUG(dbgs() << "New class " << EClass->getID() << " for expression "
2387 << *E << "\n");
2388 if (ClassChanged) {
2389 moveValueToNewCongruenceClass(I, E, IClass, EClass);
2390 markPhiOfOpsChanged(E);
2391 }
2392
2393 markUsersTouched(I);
2394 if (MemoryAccess *MA = getMemoryAccess(I))
2395 markMemoryUsersTouched(MA);
2396 if (auto *CI = dyn_cast<CmpInst>(I))
2397 markPredicateUsersTouched(CI);
2398 }
2399 // If we changed the class of the store, we want to ensure nothing finds the
2400 // old store expression. In particular, loads do not compare against stored
2401 // value, so they will find old store expressions (and associated class
2402 // mappings) if we leave them in the table.
2403 if (ClassChanged && isa<StoreInst>(I)) {
2404 auto *OldE = ValueToExpression.lookup(I);
2405 // It could just be that the old class died. We don't want to erase it if we
2406 // just moved classes.
2407 if (OldE && isa<StoreExpression>(OldE) && *E != *OldE) {
2408 // Erase this as an exact expression to ensure we don't erase expressions
2409 // equivalent to it.
2410 auto Iter = ExpressionToClass.find_as(ExactEqualsExpression(*OldE));
2411 if (Iter != ExpressionToClass.end())
2412 ExpressionToClass.erase(Iter);
2413 }
2414 }
2415 ValueToExpression[I] = E;
2416 }
2417
2418 // Process the fact that Edge (from, to) is reachable, including marking
2419 // any newly reachable blocks and instructions for processing.
updateReachableEdge(BasicBlock * From,BasicBlock * To)2420 void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) {
2421 // Check if the Edge was reachable before.
2422 if (ReachableEdges.insert({From, To}).second) {
2423 // If this block wasn't reachable before, all instructions are touched.
2424 if (ReachableBlocks.insert(To).second) {
2425 LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2426 << " marked reachable\n");
2427 const auto &InstRange = BlockInstRange.lookup(To);
2428 TouchedInstructions.set(InstRange.first, InstRange.second);
2429 } else {
2430 LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2431 << " was reachable, but new edge {"
2432 << getBlockName(From) << "," << getBlockName(To)
2433 << "} to it found\n");
2434
2435 // We've made an edge reachable to an existing block, which may
2436 // impact predicates. Otherwise, only mark the phi nodes as touched, as
2437 // they are the only thing that depend on new edges. Anything using their
2438 // values will get propagated to if necessary.
2439 if (MemoryAccess *MemPhi = getMemoryAccess(To))
2440 TouchedInstructions.set(InstrToDFSNum(MemPhi));
2441
2442 // FIXME: We should just add a union op on a Bitvector and
2443 // SparseBitVector. We can do it word by word faster than we are doing it
2444 // here.
2445 for (auto InstNum : RevisitOnReachabilityChange[To])
2446 TouchedInstructions.set(InstNum);
2447 }
2448 }
2449 }
2450
2451 // Given a predicate condition (from a switch, cmp, or whatever) and a block,
2452 // see if we know some constant value for it already.
findConditionEquivalence(Value * Cond) const2453 Value *NewGVN::findConditionEquivalence(Value *Cond) const {
2454 auto Result = lookupOperandLeader(Cond);
2455 return isa<Constant>(Result) ? Result : nullptr;
2456 }
2457
2458 // Process the outgoing edges of a block for reachability.
processOutgoingEdges(Instruction * TI,BasicBlock * B)2459 void NewGVN::processOutgoingEdges(Instruction *TI, BasicBlock *B) {
2460 // Evaluate reachability of terminator instruction.
2461 Value *Cond;
2462 BasicBlock *TrueSucc, *FalseSucc;
2463 if (match(TI, m_Br(m_Value(Cond), TrueSucc, FalseSucc))) {
2464 Value *CondEvaluated = findConditionEquivalence(Cond);
2465 if (!CondEvaluated) {
2466 if (auto *I = dyn_cast<Instruction>(Cond)) {
2467 SmallPtrSet<Value *, 4> Visited;
2468 auto Res = performSymbolicEvaluation(I, Visited);
2469 if (const auto *CE = dyn_cast_or_null<ConstantExpression>(Res.Expr)) {
2470 CondEvaluated = CE->getConstantValue();
2471 addAdditionalUsers(Res, I);
2472 } else {
2473 // Did not use simplification result, no need to add the extra
2474 // dependency.
2475 Res.ExtraDep = nullptr;
2476 }
2477 } else if (isa<ConstantInt>(Cond)) {
2478 CondEvaluated = Cond;
2479 }
2480 }
2481 ConstantInt *CI;
2482 if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) {
2483 if (CI->isOne()) {
2484 LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2485 << " evaluated to true\n");
2486 updateReachableEdge(B, TrueSucc);
2487 } else if (CI->isZero()) {
2488 LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2489 << " evaluated to false\n");
2490 updateReachableEdge(B, FalseSucc);
2491 }
2492 } else {
2493 updateReachableEdge(B, TrueSucc);
2494 updateReachableEdge(B, FalseSucc);
2495 }
2496 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
2497 // For switches, propagate the case values into the case
2498 // destinations.
2499
2500 Value *SwitchCond = SI->getCondition();
2501 Value *CondEvaluated = findConditionEquivalence(SwitchCond);
2502 // See if we were able to turn this switch statement into a constant.
2503 if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) {
2504 auto *CondVal = cast<ConstantInt>(CondEvaluated);
2505 // We should be able to get case value for this.
2506 auto Case = *SI->findCaseValue(CondVal);
2507 if (Case.getCaseSuccessor() == SI->getDefaultDest()) {
2508 // We proved the value is outside of the range of the case.
2509 // We can't do anything other than mark the default dest as reachable,
2510 // and go home.
2511 updateReachableEdge(B, SI->getDefaultDest());
2512 return;
2513 }
2514 // Now get where it goes and mark it reachable.
2515 BasicBlock *TargetBlock = Case.getCaseSuccessor();
2516 updateReachableEdge(B, TargetBlock);
2517 } else {
2518 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
2519 BasicBlock *TargetBlock = SI->getSuccessor(i);
2520 updateReachableEdge(B, TargetBlock);
2521 }
2522 }
2523 } else {
2524 // Otherwise this is either unconditional, or a type we have no
2525 // idea about. Just mark successors as reachable.
2526 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
2527 BasicBlock *TargetBlock = TI->getSuccessor(i);
2528 updateReachableEdge(B, TargetBlock);
2529 }
2530
2531 // This also may be a memory defining terminator, in which case, set it
2532 // equivalent only to itself.
2533 //
2534 auto *MA = getMemoryAccess(TI);
2535 if (MA && !isa<MemoryUse>(MA)) {
2536 auto *CC = ensureLeaderOfMemoryClass(MA);
2537 if (setMemoryClass(MA, CC))
2538 markMemoryUsersTouched(MA);
2539 }
2540 }
2541 }
2542
2543 // Remove the PHI of Ops PHI for I
removePhiOfOps(Instruction * I,PHINode * PHITemp)2544 void NewGVN::removePhiOfOps(Instruction *I, PHINode *PHITemp) {
2545 InstrDFS.erase(PHITemp);
2546 // It's still a temp instruction. We keep it in the array so it gets erased.
2547 // However, it's no longer used by I, or in the block
2548 TempToBlock.erase(PHITemp);
2549 RealToTemp.erase(I);
2550 // We don't remove the users from the phi node uses. This wastes a little
2551 // time, but such is life. We could use two sets to track which were there
2552 // are the start of NewGVN, and which were added, but right nowt he cost of
2553 // tracking is more than the cost of checking for more phi of ops.
2554 }
2555
2556 // Add PHI Op in BB as a PHI of operations version of ExistingValue.
addPhiOfOps(PHINode * Op,BasicBlock * BB,Instruction * ExistingValue)2557 void NewGVN::addPhiOfOps(PHINode *Op, BasicBlock *BB,
2558 Instruction *ExistingValue) {
2559 InstrDFS[Op] = InstrToDFSNum(ExistingValue);
2560 AllTempInstructions.insert(Op);
2561 TempToBlock[Op] = BB;
2562 RealToTemp[ExistingValue] = Op;
2563 // Add all users to phi node use, as they are now uses of the phi of ops phis
2564 // and may themselves be phi of ops.
2565 for (auto *U : ExistingValue->users())
2566 if (auto *UI = dyn_cast<Instruction>(U))
2567 PHINodeUses.insert(UI);
2568 }
2569
okayForPHIOfOps(const Instruction * I)2570 static bool okayForPHIOfOps(const Instruction *I) {
2571 if (!EnablePhiOfOps)
2572 return false;
2573 return isa<BinaryOperator>(I) || isa<SelectInst>(I) || isa<CmpInst>(I) ||
2574 isa<LoadInst>(I);
2575 }
2576
OpIsSafeForPHIOfOpsHelper(Value * V,const BasicBlock * PHIBlock,SmallPtrSetImpl<const Value * > & Visited,SmallVectorImpl<Instruction * > & Worklist)2577 bool NewGVN::OpIsSafeForPHIOfOpsHelper(
2578 Value *V, const BasicBlock *PHIBlock,
2579 SmallPtrSetImpl<const Value *> &Visited,
2580 SmallVectorImpl<Instruction *> &Worklist) {
2581
2582 if (!isa<Instruction>(V))
2583 return true;
2584 auto OISIt = OpSafeForPHIOfOps.find(V);
2585 if (OISIt != OpSafeForPHIOfOps.end())
2586 return OISIt->second;
2587
2588 // Keep walking until we either dominate the phi block, or hit a phi, or run
2589 // out of things to check.
2590 if (DT->properlyDominates(getBlockForValue(V), PHIBlock)) {
2591 OpSafeForPHIOfOps.insert({V, true});
2592 return true;
2593 }
2594 // PHI in the same block.
2595 if (isa<PHINode>(V) && getBlockForValue(V) == PHIBlock) {
2596 OpSafeForPHIOfOps.insert({V, false});
2597 return false;
2598 }
2599
2600 auto *OrigI = cast<Instruction>(V);
2601 // When we hit an instruction that reads memory (load, call, etc), we must
2602 // consider any store that may happen in the loop. For now, we assume the
2603 // worst: there is a store in the loop that alias with this read.
2604 // The case where the load is outside the loop is already covered by the
2605 // dominator check above.
2606 // TODO: relax this condition
2607 if (OrigI->mayReadFromMemory())
2608 return false;
2609
2610 for (auto *Op : OrigI->operand_values()) {
2611 if (!isa<Instruction>(Op))
2612 continue;
2613 // Stop now if we find an unsafe operand.
2614 auto OISIt = OpSafeForPHIOfOps.find(OrigI);
2615 if (OISIt != OpSafeForPHIOfOps.end()) {
2616 if (!OISIt->second) {
2617 OpSafeForPHIOfOps.insert({V, false});
2618 return false;
2619 }
2620 continue;
2621 }
2622 if (!Visited.insert(Op).second)
2623 continue;
2624 Worklist.push_back(cast<Instruction>(Op));
2625 }
2626 return true;
2627 }
2628
2629 // Return true if this operand will be safe to use for phi of ops.
2630 //
2631 // The reason some operands are unsafe is that we are not trying to recursively
2632 // translate everything back through phi nodes. We actually expect some lookups
2633 // of expressions to fail. In particular, a lookup where the expression cannot
2634 // exist in the predecessor. This is true even if the expression, as shown, can
2635 // be determined to be constant.
OpIsSafeForPHIOfOps(Value * V,const BasicBlock * PHIBlock,SmallPtrSetImpl<const Value * > & Visited)2636 bool NewGVN::OpIsSafeForPHIOfOps(Value *V, const BasicBlock *PHIBlock,
2637 SmallPtrSetImpl<const Value *> &Visited) {
2638 SmallVector<Instruction *, 4> Worklist;
2639 if (!OpIsSafeForPHIOfOpsHelper(V, PHIBlock, Visited, Worklist))
2640 return false;
2641 while (!Worklist.empty()) {
2642 auto *I = Worklist.pop_back_val();
2643 if (!OpIsSafeForPHIOfOpsHelper(I, PHIBlock, Visited, Worklist))
2644 return false;
2645 }
2646 OpSafeForPHIOfOps.insert({V, true});
2647 return true;
2648 }
2649
2650 // Try to find a leader for instruction TransInst, which is a phi translated
2651 // version of something in our original program. Visited is used to ensure we
2652 // don't infinite loop during translations of cycles. OrigInst is the
2653 // instruction in the original program, and PredBB is the predecessor we
2654 // translated it through.
findLeaderForInst(Instruction * TransInst,SmallPtrSetImpl<Value * > & Visited,MemoryAccess * MemAccess,Instruction * OrigInst,BasicBlock * PredBB)2655 Value *NewGVN::findLeaderForInst(Instruction *TransInst,
2656 SmallPtrSetImpl<Value *> &Visited,
2657 MemoryAccess *MemAccess, Instruction *OrigInst,
2658 BasicBlock *PredBB) {
2659 unsigned IDFSNum = InstrToDFSNum(OrigInst);
2660 // Make sure it's marked as a temporary instruction.
2661 AllTempInstructions.insert(TransInst);
2662 // and make sure anything that tries to add it's DFS number is
2663 // redirected to the instruction we are making a phi of ops
2664 // for.
2665 TempToBlock.insert({TransInst, PredBB});
2666 InstrDFS.insert({TransInst, IDFSNum});
2667
2668 auto Res = performSymbolicEvaluation(TransInst, Visited);
2669 const Expression *E = Res.Expr;
2670 addAdditionalUsers(Res, OrigInst);
2671 InstrDFS.erase(TransInst);
2672 AllTempInstructions.erase(TransInst);
2673 TempToBlock.erase(TransInst);
2674 if (MemAccess)
2675 TempToMemory.erase(TransInst);
2676 if (!E)
2677 return nullptr;
2678 auto *FoundVal = findPHIOfOpsLeader(E, OrigInst, PredBB);
2679 if (!FoundVal) {
2680 ExpressionToPhiOfOps[E].insert(OrigInst);
2681 LLVM_DEBUG(dbgs() << "Cannot find phi of ops operand for " << *TransInst
2682 << " in block " << getBlockName(PredBB) << "\n");
2683 return nullptr;
2684 }
2685 if (auto *SI = dyn_cast<StoreInst>(FoundVal))
2686 FoundVal = SI->getValueOperand();
2687 return FoundVal;
2688 }
2689
2690 // When we see an instruction that is an op of phis, generate the equivalent phi
2691 // of ops form.
2692 const Expression *
makePossiblePHIOfOps(Instruction * I,SmallPtrSetImpl<Value * > & Visited)2693 NewGVN::makePossiblePHIOfOps(Instruction *I,
2694 SmallPtrSetImpl<Value *> &Visited) {
2695 if (!okayForPHIOfOps(I))
2696 return nullptr;
2697
2698 if (!Visited.insert(I).second)
2699 return nullptr;
2700 // For now, we require the instruction be cycle free because we don't
2701 // *always* create a phi of ops for instructions that could be done as phi
2702 // of ops, we only do it if we think it is useful. If we did do it all the
2703 // time, we could remove the cycle free check.
2704 if (!isCycleFree(I))
2705 return nullptr;
2706
2707 SmallPtrSet<const Value *, 8> ProcessedPHIs;
2708 // TODO: We don't do phi translation on memory accesses because it's
2709 // complicated. For a load, we'd need to be able to simulate a new memoryuse,
2710 // which we don't have a good way of doing ATM.
2711 auto *MemAccess = getMemoryAccess(I);
2712 // If the memory operation is defined by a memory operation this block that
2713 // isn't a MemoryPhi, transforming the pointer backwards through a scalar phi
2714 // can't help, as it would still be killed by that memory operation.
2715 if (MemAccess && !isa<MemoryPhi>(MemAccess->getDefiningAccess()) &&
2716 MemAccess->getDefiningAccess()->getBlock() == I->getParent())
2717 return nullptr;
2718
2719 // Convert op of phis to phi of ops
2720 SmallPtrSet<const Value *, 10> VisitedOps;
2721 SmallVector<Value *, 4> Ops(I->operand_values());
2722 BasicBlock *SamePHIBlock = nullptr;
2723 PHINode *OpPHI = nullptr;
2724 if (!DebugCounter::shouldExecute(PHIOfOpsCounter))
2725 return nullptr;
2726 for (auto *Op : Ops) {
2727 if (!isa<PHINode>(Op)) {
2728 auto *ValuePHI = RealToTemp.lookup(Op);
2729 if (!ValuePHI)
2730 continue;
2731 LLVM_DEBUG(dbgs() << "Found possible dependent phi of ops\n");
2732 Op = ValuePHI;
2733 }
2734 OpPHI = cast<PHINode>(Op);
2735 if (!SamePHIBlock) {
2736 SamePHIBlock = getBlockForValue(OpPHI);
2737 } else if (SamePHIBlock != getBlockForValue(OpPHI)) {
2738 LLVM_DEBUG(
2739 dbgs()
2740 << "PHIs for operands are not all in the same block, aborting\n");
2741 return nullptr;
2742 }
2743 // No point in doing this for one-operand phis.
2744 if (OpPHI->getNumOperands() == 1) {
2745 OpPHI = nullptr;
2746 continue;
2747 }
2748 }
2749
2750 if (!OpPHI)
2751 return nullptr;
2752
2753 SmallVector<ValPair, 4> PHIOps;
2754 SmallPtrSet<Value *, 4> Deps;
2755 auto *PHIBlock = getBlockForValue(OpPHI);
2756 RevisitOnReachabilityChange[PHIBlock].reset(InstrToDFSNum(I));
2757 for (unsigned PredNum = 0; PredNum < OpPHI->getNumOperands(); ++PredNum) {
2758 auto *PredBB = OpPHI->getIncomingBlock(PredNum);
2759 Value *FoundVal = nullptr;
2760 SmallPtrSet<Value *, 4> CurrentDeps;
2761 // We could just skip unreachable edges entirely but it's tricky to do
2762 // with rewriting existing phi nodes.
2763 if (ReachableEdges.count({PredBB, PHIBlock})) {
2764 // Clone the instruction, create an expression from it that is
2765 // translated back into the predecessor, and see if we have a leader.
2766 Instruction *ValueOp = I->clone();
2767 if (MemAccess)
2768 TempToMemory.insert({ValueOp, MemAccess});
2769 bool SafeForPHIOfOps = true;
2770 VisitedOps.clear();
2771 for (auto &Op : ValueOp->operands()) {
2772 auto *OrigOp = &*Op;
2773 // When these operand changes, it could change whether there is a
2774 // leader for us or not, so we have to add additional users.
2775 if (isa<PHINode>(Op)) {
2776 Op = Op->DoPHITranslation(PHIBlock, PredBB);
2777 if (Op != OrigOp && Op != I)
2778 CurrentDeps.insert(Op);
2779 } else if (auto *ValuePHI = RealToTemp.lookup(Op)) {
2780 if (getBlockForValue(ValuePHI) == PHIBlock)
2781 Op = ValuePHI->getIncomingValueForBlock(PredBB);
2782 }
2783 // If we phi-translated the op, it must be safe.
2784 SafeForPHIOfOps =
2785 SafeForPHIOfOps &&
2786 (Op != OrigOp || OpIsSafeForPHIOfOps(Op, PHIBlock, VisitedOps));
2787 }
2788 // FIXME: For those things that are not safe we could generate
2789 // expressions all the way down, and see if this comes out to a
2790 // constant. For anything where that is true, and unsafe, we should
2791 // have made a phi-of-ops (or value numbered it equivalent to something)
2792 // for the pieces already.
2793 FoundVal = !SafeForPHIOfOps ? nullptr
2794 : findLeaderForInst(ValueOp, Visited,
2795 MemAccess, I, PredBB);
2796 ValueOp->deleteValue();
2797 if (!FoundVal) {
2798 // We failed to find a leader for the current ValueOp, but this might
2799 // change in case of the translated operands change.
2800 if (SafeForPHIOfOps)
2801 for (auto Dep : CurrentDeps)
2802 addAdditionalUsers(Dep, I);
2803
2804 return nullptr;
2805 }
2806 Deps.insert(CurrentDeps.begin(), CurrentDeps.end());
2807 } else {
2808 LLVM_DEBUG(dbgs() << "Skipping phi of ops operand for incoming block "
2809 << getBlockName(PredBB)
2810 << " because the block is unreachable\n");
2811 FoundVal = PoisonValue::get(I->getType());
2812 RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2813 }
2814
2815 PHIOps.push_back({FoundVal, PredBB});
2816 LLVM_DEBUG(dbgs() << "Found phi of ops operand " << *FoundVal << " in "
2817 << getBlockName(PredBB) << "\n");
2818 }
2819 for (auto Dep : Deps)
2820 addAdditionalUsers(Dep, I);
2821 sortPHIOps(PHIOps);
2822 auto *E = performSymbolicPHIEvaluation(PHIOps, I, PHIBlock);
2823 if (isa<ConstantExpression>(E) || isa<VariableExpression>(E)) {
2824 LLVM_DEBUG(
2825 dbgs()
2826 << "Not creating real PHI of ops because it simplified to existing "
2827 "value or constant\n");
2828 // We have leaders for all operands, but do not create a real PHI node with
2829 // those leaders as operands, so the link between the operands and the
2830 // PHI-of-ops is not materialized in the IR. If any of those leaders
2831 // changes, the PHI-of-op may change also, so we need to add the operands as
2832 // additional users.
2833 for (auto &O : PHIOps)
2834 addAdditionalUsers(O.first, I);
2835
2836 return E;
2837 }
2838 auto *ValuePHI = RealToTemp.lookup(I);
2839 bool NewPHI = false;
2840 if (!ValuePHI) {
2841 ValuePHI =
2842 PHINode::Create(I->getType(), OpPHI->getNumOperands(), "phiofops");
2843 addPhiOfOps(ValuePHI, PHIBlock, I);
2844 NewPHI = true;
2845 NumGVNPHIOfOpsCreated++;
2846 }
2847 if (NewPHI) {
2848 for (auto PHIOp : PHIOps)
2849 ValuePHI->addIncoming(PHIOp.first, PHIOp.second);
2850 } else {
2851 TempToBlock[ValuePHI] = PHIBlock;
2852 unsigned int i = 0;
2853 for (auto PHIOp : PHIOps) {
2854 ValuePHI->setIncomingValue(i, PHIOp.first);
2855 ValuePHI->setIncomingBlock(i, PHIOp.second);
2856 ++i;
2857 }
2858 }
2859 RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2860 LLVM_DEBUG(dbgs() << "Created phi of ops " << *ValuePHI << " for " << *I
2861 << "\n");
2862
2863 return E;
2864 }
2865
2866 // The algorithm initially places the values of the routine in the TOP
2867 // congruence class. The leader of TOP is the undetermined value `poison`.
2868 // When the algorithm has finished, values still in TOP are unreachable.
initializeCongruenceClasses(Function & F)2869 void NewGVN::initializeCongruenceClasses(Function &F) {
2870 NextCongruenceNum = 0;
2871
2872 // Note that even though we use the live on entry def as a representative
2873 // MemoryAccess, it is *not* the same as the actual live on entry def. We
2874 // have no real equivalent to poison for MemoryAccesses, and so we really
2875 // should be checking whether the MemoryAccess is top if we want to know if it
2876 // is equivalent to everything. Otherwise, what this really signifies is that
2877 // the access "it reaches all the way back to the beginning of the function"
2878
2879 // Initialize all other instructions to be in TOP class.
2880 TOPClass = createCongruenceClass(nullptr, nullptr);
2881 TOPClass->setMemoryLeader(MSSA->getLiveOnEntryDef());
2882 // The live on entry def gets put into it's own class
2883 MemoryAccessToClass[MSSA->getLiveOnEntryDef()] =
2884 createMemoryClass(MSSA->getLiveOnEntryDef());
2885
2886 for (auto DTN : nodes(DT)) {
2887 BasicBlock *BB = DTN->getBlock();
2888 // All MemoryAccesses are equivalent to live on entry to start. They must
2889 // be initialized to something so that initial changes are noticed. For
2890 // the maximal answer, we initialize them all to be the same as
2891 // liveOnEntry.
2892 auto *MemoryBlockDefs = MSSA->getBlockDefs(BB);
2893 if (MemoryBlockDefs)
2894 for (const auto &Def : *MemoryBlockDefs) {
2895 MemoryAccessToClass[&Def] = TOPClass;
2896 auto *MD = dyn_cast<MemoryDef>(&Def);
2897 // Insert the memory phis into the member list.
2898 if (!MD) {
2899 const MemoryPhi *MP = cast<MemoryPhi>(&Def);
2900 TOPClass->memory_insert(MP);
2901 MemoryPhiState.insert({MP, MPS_TOP});
2902 }
2903
2904 if (MD && isa<StoreInst>(MD->getMemoryInst()))
2905 TOPClass->incStoreCount();
2906 }
2907
2908 // FIXME: This is trying to discover which instructions are uses of phi
2909 // nodes. We should move this into one of the myriad of places that walk
2910 // all the operands already.
2911 for (auto &I : *BB) {
2912 if (isa<PHINode>(&I))
2913 for (auto *U : I.users())
2914 if (auto *UInst = dyn_cast<Instruction>(U))
2915 if (InstrToDFSNum(UInst) != 0 && okayForPHIOfOps(UInst))
2916 PHINodeUses.insert(UInst);
2917 // Don't insert void terminators into the class. We don't value number
2918 // them, and they just end up sitting in TOP.
2919 if (I.isTerminator() && I.getType()->isVoidTy())
2920 continue;
2921 TOPClass->insert(&I);
2922 ValueToClass[&I] = TOPClass;
2923 }
2924 }
2925
2926 // Initialize arguments to be in their own unique congruence classes
2927 for (auto &FA : F.args())
2928 createSingletonCongruenceClass(&FA);
2929 }
2930
cleanupTables()2931 void NewGVN::cleanupTables() {
2932 for (unsigned i = 0, e = CongruenceClasses.size(); i != e; ++i) {
2933 LLVM_DEBUG(dbgs() << "Congruence class " << CongruenceClasses[i]->getID()
2934 << " has " << CongruenceClasses[i]->size()
2935 << " members\n");
2936 // Make sure we delete the congruence class (probably worth switching to
2937 // a unique_ptr at some point.
2938 delete CongruenceClasses[i];
2939 CongruenceClasses[i] = nullptr;
2940 }
2941
2942 // Destroy the value expressions
2943 SmallVector<Instruction *, 8> TempInst(AllTempInstructions.begin(),
2944 AllTempInstructions.end());
2945 AllTempInstructions.clear();
2946
2947 // We have to drop all references for everything first, so there are no uses
2948 // left as we delete them.
2949 for (auto *I : TempInst) {
2950 I->dropAllReferences();
2951 }
2952
2953 while (!TempInst.empty()) {
2954 auto *I = TempInst.pop_back_val();
2955 I->deleteValue();
2956 }
2957
2958 ValueToClass.clear();
2959 ArgRecycler.clear(ExpressionAllocator);
2960 ExpressionAllocator.Reset();
2961 CongruenceClasses.clear();
2962 ExpressionToClass.clear();
2963 ValueToExpression.clear();
2964 RealToTemp.clear();
2965 AdditionalUsers.clear();
2966 ExpressionToPhiOfOps.clear();
2967 TempToBlock.clear();
2968 TempToMemory.clear();
2969 PHINodeUses.clear();
2970 OpSafeForPHIOfOps.clear();
2971 ReachableBlocks.clear();
2972 ReachableEdges.clear();
2973 #ifndef NDEBUG
2974 ProcessedCount.clear();
2975 #endif
2976 InstrDFS.clear();
2977 InstructionsToErase.clear();
2978 DFSToInstr.clear();
2979 BlockInstRange.clear();
2980 TouchedInstructions.clear();
2981 MemoryAccessToClass.clear();
2982 PredicateToUsers.clear();
2983 MemoryToUsers.clear();
2984 RevisitOnReachabilityChange.clear();
2985 IntrinsicInstPred.clear();
2986 }
2987
2988 // Assign local DFS number mapping to instructions, and leave space for Value
2989 // PHI's.
assignDFSNumbers(BasicBlock * B,unsigned Start)2990 std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B,
2991 unsigned Start) {
2992 unsigned End = Start;
2993 if (MemoryAccess *MemPhi = getMemoryAccess(B)) {
2994 InstrDFS[MemPhi] = End++;
2995 DFSToInstr.emplace_back(MemPhi);
2996 }
2997
2998 // Then the real block goes next.
2999 for (auto &I : *B) {
3000 // There's no need to call isInstructionTriviallyDead more than once on
3001 // an instruction. Therefore, once we know that an instruction is dead
3002 // we change its DFS number so that it doesn't get value numbered.
3003 if (isInstructionTriviallyDead(&I, TLI)) {
3004 InstrDFS[&I] = 0;
3005 LLVM_DEBUG(dbgs() << "Skipping trivially dead instruction " << I << "\n");
3006 markInstructionForDeletion(&I);
3007 continue;
3008 }
3009 if (isa<PHINode>(&I))
3010 RevisitOnReachabilityChange[B].set(End);
3011 InstrDFS[&I] = End++;
3012 DFSToInstr.emplace_back(&I);
3013 }
3014
3015 // All of the range functions taken half-open ranges (open on the end side).
3016 // So we do not subtract one from count, because at this point it is one
3017 // greater than the last instruction.
3018 return std::make_pair(Start, End);
3019 }
3020
updateProcessedCount(const Value * V)3021 void NewGVN::updateProcessedCount(const Value *V) {
3022 #ifndef NDEBUG
3023 if (ProcessedCount.count(V) == 0) {
3024 ProcessedCount.insert({V, 1});
3025 } else {
3026 ++ProcessedCount[V];
3027 assert(ProcessedCount[V] < 100 &&
3028 "Seem to have processed the same Value a lot");
3029 }
3030 #endif
3031 }
3032
3033 // Evaluate MemoryPhi nodes symbolically, just like PHI nodes
valueNumberMemoryPhi(MemoryPhi * MP)3034 void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) {
3035 // If all the arguments are the same, the MemoryPhi has the same value as the
3036 // argument. Filter out unreachable blocks and self phis from our operands.
3037 // TODO: We could do cycle-checking on the memory phis to allow valueizing for
3038 // self-phi checking.
3039 const BasicBlock *PHIBlock = MP->getBlock();
3040 auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) {
3041 return cast<MemoryAccess>(U) != MP &&
3042 !isMemoryAccessTOP(cast<MemoryAccess>(U)) &&
3043 ReachableEdges.count({MP->getIncomingBlock(U), PHIBlock});
3044 });
3045 // If all that is left is nothing, our memoryphi is poison. We keep it as
3046 // InitialClass. Note: The only case this should happen is if we have at
3047 // least one self-argument.
3048 if (Filtered.begin() == Filtered.end()) {
3049 if (setMemoryClass(MP, TOPClass))
3050 markMemoryUsersTouched(MP);
3051 return;
3052 }
3053
3054 // Transform the remaining operands into operand leaders.
3055 // FIXME: mapped_iterator should have a range version.
3056 auto LookupFunc = [&](const Use &U) {
3057 return lookupMemoryLeader(cast<MemoryAccess>(U));
3058 };
3059 auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc);
3060 auto MappedEnd = map_iterator(Filtered.end(), LookupFunc);
3061
3062 // and now check if all the elements are equal.
3063 // Sadly, we can't use std::equals since these are random access iterators.
3064 const auto *AllSameValue = *MappedBegin;
3065 ++MappedBegin;
3066 bool AllEqual = std::all_of(
3067 MappedBegin, MappedEnd,
3068 [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; });
3069
3070 if (AllEqual)
3071 LLVM_DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue
3072 << "\n");
3073 else
3074 LLVM_DEBUG(dbgs() << "Memory Phi value numbered to itself\n");
3075 // If it's equal to something, it's in that class. Otherwise, it has to be in
3076 // a class where it is the leader (other things may be equivalent to it, but
3077 // it needs to start off in its own class, which means it must have been the
3078 // leader, and it can't have stopped being the leader because it was never
3079 // removed).
3080 CongruenceClass *CC =
3081 AllEqual ? getMemoryClass(AllSameValue) : ensureLeaderOfMemoryClass(MP);
3082 auto OldState = MemoryPhiState.lookup(MP);
3083 assert(OldState != MPS_Invalid && "Invalid memory phi state");
3084 auto NewState = AllEqual ? MPS_Equivalent : MPS_Unique;
3085 MemoryPhiState[MP] = NewState;
3086 if (setMemoryClass(MP, CC) || OldState != NewState)
3087 markMemoryUsersTouched(MP);
3088 }
3089
3090 // Value number a single instruction, symbolically evaluating, performing
3091 // congruence finding, and updating mappings.
valueNumberInstruction(Instruction * I)3092 void NewGVN::valueNumberInstruction(Instruction *I) {
3093 LLVM_DEBUG(dbgs() << "Processing instruction " << *I << "\n");
3094 if (!I->isTerminator()) {
3095 const Expression *Symbolized = nullptr;
3096 SmallPtrSet<Value *, 2> Visited;
3097 if (DebugCounter::shouldExecute(VNCounter)) {
3098 auto Res = performSymbolicEvaluation(I, Visited);
3099 Symbolized = Res.Expr;
3100 addAdditionalUsers(Res, I);
3101
3102 // Make a phi of ops if necessary
3103 if (Symbolized && !isa<ConstantExpression>(Symbolized) &&
3104 !isa<VariableExpression>(Symbolized) && PHINodeUses.count(I)) {
3105 auto *PHIE = makePossiblePHIOfOps(I, Visited);
3106 // If we created a phi of ops, use it.
3107 // If we couldn't create one, make sure we don't leave one lying around
3108 if (PHIE) {
3109 Symbolized = PHIE;
3110 } else if (auto *Op = RealToTemp.lookup(I)) {
3111 removePhiOfOps(I, Op);
3112 }
3113 }
3114 } else {
3115 // Mark the instruction as unused so we don't value number it again.
3116 InstrDFS[I] = 0;
3117 }
3118 // If we couldn't come up with a symbolic expression, use the unknown
3119 // expression
3120 if (Symbolized == nullptr)
3121 Symbolized = createUnknownExpression(I);
3122 performCongruenceFinding(I, Symbolized);
3123 } else {
3124 // Handle terminators that return values. All of them produce values we
3125 // don't currently understand. We don't place non-value producing
3126 // terminators in a class.
3127 if (!I->getType()->isVoidTy()) {
3128 auto *Symbolized = createUnknownExpression(I);
3129 performCongruenceFinding(I, Symbolized);
3130 }
3131 processOutgoingEdges(I, I->getParent());
3132 }
3133 }
3134
3135 // Check if there is a path, using single or equal argument phi nodes, from
3136 // First to Second.
singleReachablePHIPath(SmallPtrSet<const MemoryAccess *,8> & Visited,const MemoryAccess * First,const MemoryAccess * Second) const3137 bool NewGVN::singleReachablePHIPath(
3138 SmallPtrSet<const MemoryAccess *, 8> &Visited, const MemoryAccess *First,
3139 const MemoryAccess *Second) const {
3140 if (First == Second)
3141 return true;
3142 if (MSSA->isLiveOnEntryDef(First))
3143 return false;
3144
3145 // This is not perfect, but as we're just verifying here, we can live with
3146 // the loss of precision. The real solution would be that of doing strongly
3147 // connected component finding in this routine, and it's probably not worth
3148 // the complexity for the time being. So, we just keep a set of visited
3149 // MemoryAccess and return true when we hit a cycle.
3150 if (!Visited.insert(First).second)
3151 return true;
3152
3153 const auto *EndDef = First;
3154 for (auto *ChainDef : optimized_def_chain(First)) {
3155 if (ChainDef == Second)
3156 return true;
3157 if (MSSA->isLiveOnEntryDef(ChainDef))
3158 return false;
3159 EndDef = ChainDef;
3160 }
3161 auto *MP = cast<MemoryPhi>(EndDef);
3162 auto ReachableOperandPred = [&](const Use &U) {
3163 return ReachableEdges.count({MP->getIncomingBlock(U), MP->getBlock()});
3164 };
3165 auto FilteredPhiArgs =
3166 make_filter_range(MP->operands(), ReachableOperandPred);
3167 SmallVector<const Value *, 32> OperandList;
3168 llvm::copy(FilteredPhiArgs, std::back_inserter(OperandList));
3169 bool Okay = is_splat(OperandList);
3170 if (Okay)
3171 return singleReachablePHIPath(Visited, cast<MemoryAccess>(OperandList[0]),
3172 Second);
3173 return false;
3174 }
3175
3176 // Verify the that the memory equivalence table makes sense relative to the
3177 // congruence classes. Note that this checking is not perfect, and is currently
3178 // subject to very rare false negatives. It is only useful for
3179 // testing/debugging.
verifyMemoryCongruency() const3180 void NewGVN::verifyMemoryCongruency() const {
3181 #ifndef NDEBUG
3182 // Verify that the memory table equivalence and memory member set match
3183 for (const auto *CC : CongruenceClasses) {
3184 if (CC == TOPClass || CC->isDead())
3185 continue;
3186 if (CC->getStoreCount() != 0) {
3187 assert((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) &&
3188 "Any class with a store as a leader should have a "
3189 "representative stored value");
3190 assert(CC->getMemoryLeader() &&
3191 "Any congruence class with a store should have a "
3192 "representative access");
3193 }
3194
3195 if (CC->getMemoryLeader())
3196 assert(MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC &&
3197 "Representative MemoryAccess does not appear to be reverse "
3198 "mapped properly");
3199 for (auto M : CC->memory())
3200 assert(MemoryAccessToClass.lookup(M) == CC &&
3201 "Memory member does not appear to be reverse mapped properly");
3202 }
3203
3204 // Anything equivalent in the MemoryAccess table should be in the same
3205 // congruence class.
3206
3207 // Filter out the unreachable and trivially dead entries, because they may
3208 // never have been updated if the instructions were not processed.
3209 auto ReachableAccessPred =
3210 [&](const std::pair<const MemoryAccess *, CongruenceClass *> Pair) {
3211 bool Result = ReachableBlocks.count(Pair.first->getBlock());
3212 if (!Result || MSSA->isLiveOnEntryDef(Pair.first) ||
3213 MemoryToDFSNum(Pair.first) == 0)
3214 return false;
3215 if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first))
3216 return !isInstructionTriviallyDead(MemDef->getMemoryInst());
3217
3218 // We could have phi nodes which operands are all trivially dead,
3219 // so we don't process them.
3220 if (auto *MemPHI = dyn_cast<MemoryPhi>(Pair.first)) {
3221 for (auto &U : MemPHI->incoming_values()) {
3222 if (auto *I = dyn_cast<Instruction>(&*U)) {
3223 if (!isInstructionTriviallyDead(I))
3224 return true;
3225 }
3226 }
3227 return false;
3228 }
3229
3230 return true;
3231 };
3232
3233 auto Filtered = make_filter_range(MemoryAccessToClass, ReachableAccessPred);
3234 for (auto KV : Filtered) {
3235 if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) {
3236 auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second->getMemoryLeader());
3237 if (FirstMUD && SecondMUD) {
3238 SmallPtrSet<const MemoryAccess *, 8> VisitedMAS;
3239 assert((singleReachablePHIPath(VisitedMAS, FirstMUD, SecondMUD) ||
3240 ValueToClass.lookup(FirstMUD->getMemoryInst()) ==
3241 ValueToClass.lookup(SecondMUD->getMemoryInst())) &&
3242 "The instructions for these memory operations should have "
3243 "been in the same congruence class or reachable through"
3244 "a single argument phi");
3245 }
3246 } else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) {
3247 // We can only sanely verify that MemoryDefs in the operand list all have
3248 // the same class.
3249 auto ReachableOperandPred = [&](const Use &U) {
3250 return ReachableEdges.count(
3251 {FirstMP->getIncomingBlock(U), FirstMP->getBlock()}) &&
3252 isa<MemoryDef>(U);
3253
3254 };
3255 // All arguments should in the same class, ignoring unreachable arguments
3256 auto FilteredPhiArgs =
3257 make_filter_range(FirstMP->operands(), ReachableOperandPred);
3258 SmallVector<const CongruenceClass *, 16> PhiOpClasses;
3259 std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
3260 std::back_inserter(PhiOpClasses), [&](const Use &U) {
3261 const MemoryDef *MD = cast<MemoryDef>(U);
3262 return ValueToClass.lookup(MD->getMemoryInst());
3263 });
3264 assert(is_splat(PhiOpClasses) &&
3265 "All MemoryPhi arguments should be in the same class");
3266 }
3267 }
3268 #endif
3269 }
3270
3271 // Verify that the sparse propagation we did actually found the maximal fixpoint
3272 // We do this by storing the value to class mapping, touching all instructions,
3273 // and redoing the iteration to see if anything changed.
verifyIterationSettled(Function & F)3274 void NewGVN::verifyIterationSettled(Function &F) {
3275 #ifndef NDEBUG
3276 LLVM_DEBUG(dbgs() << "Beginning iteration verification\n");
3277 if (DebugCounter::isCounterSet(VNCounter))
3278 DebugCounter::setCounterValue(VNCounter, StartingVNCounter);
3279
3280 // Note that we have to store the actual classes, as we may change existing
3281 // classes during iteration. This is because our memory iteration propagation
3282 // is not perfect, and so may waste a little work. But it should generate
3283 // exactly the same congruence classes we have now, with different IDs.
3284 std::map<const Value *, CongruenceClass> BeforeIteration;
3285
3286 for (auto &KV : ValueToClass) {
3287 if (auto *I = dyn_cast<Instruction>(KV.first))
3288 // Skip unused/dead instructions.
3289 if (InstrToDFSNum(I) == 0)
3290 continue;
3291 BeforeIteration.insert({KV.first, *KV.second});
3292 }
3293
3294 TouchedInstructions.set();
3295 TouchedInstructions.reset(0);
3296 iterateTouchedInstructions();
3297 DenseSet<std::pair<const CongruenceClass *, const CongruenceClass *>>
3298 EqualClasses;
3299 for (const auto &KV : ValueToClass) {
3300 if (auto *I = dyn_cast<Instruction>(KV.first))
3301 // Skip unused/dead instructions.
3302 if (InstrToDFSNum(I) == 0)
3303 continue;
3304 // We could sink these uses, but i think this adds a bit of clarity here as
3305 // to what we are comparing.
3306 auto *BeforeCC = &BeforeIteration.find(KV.first)->second;
3307 auto *AfterCC = KV.second;
3308 // Note that the classes can't change at this point, so we memoize the set
3309 // that are equal.
3310 if (!EqualClasses.count({BeforeCC, AfterCC})) {
3311 assert(BeforeCC->isEquivalentTo(AfterCC) &&
3312 "Value number changed after main loop completed!");
3313 EqualClasses.insert({BeforeCC, AfterCC});
3314 }
3315 }
3316 #endif
3317 }
3318
3319 // Verify that for each store expression in the expression to class mapping,
3320 // only the latest appears, and multiple ones do not appear.
3321 // Because loads do not use the stored value when doing equality with stores,
3322 // if we don't erase the old store expressions from the table, a load can find
3323 // a no-longer valid StoreExpression.
verifyStoreExpressions() const3324 void NewGVN::verifyStoreExpressions() const {
3325 #ifndef NDEBUG
3326 // This is the only use of this, and it's not worth defining a complicated
3327 // densemapinfo hash/equality function for it.
3328 std::set<
3329 std::pair<const Value *,
3330 std::tuple<const Value *, const CongruenceClass *, Value *>>>
3331 StoreExpressionSet;
3332 for (const auto &KV : ExpressionToClass) {
3333 if (auto *SE = dyn_cast<StoreExpression>(KV.first)) {
3334 // Make sure a version that will conflict with loads is not already there
3335 auto Res = StoreExpressionSet.insert(
3336 {SE->getOperand(0), std::make_tuple(SE->getMemoryLeader(), KV.second,
3337 SE->getStoredValue())});
3338 bool Okay = Res.second;
3339 // It's okay to have the same expression already in there if it is
3340 // identical in nature.
3341 // This can happen when the leader of the stored value changes over time.
3342 if (!Okay)
3343 Okay = (std::get<1>(Res.first->second) == KV.second) &&
3344 (lookupOperandLeader(std::get<2>(Res.first->second)) ==
3345 lookupOperandLeader(SE->getStoredValue()));
3346 assert(Okay && "Stored expression conflict exists in expression table");
3347 auto *ValueExpr = ValueToExpression.lookup(SE->getStoreInst());
3348 assert(ValueExpr && ValueExpr->equals(*SE) &&
3349 "StoreExpression in ExpressionToClass is not latest "
3350 "StoreExpression for value");
3351 }
3352 }
3353 #endif
3354 }
3355
3356 // This is the main value numbering loop, it iterates over the initial touched
3357 // instruction set, propagating value numbers, marking things touched, etc,
3358 // until the set of touched instructions is completely empty.
iterateTouchedInstructions()3359 void NewGVN::iterateTouchedInstructions() {
3360 uint64_t Iterations = 0;
3361 // Figure out where touchedinstructions starts
3362 int FirstInstr = TouchedInstructions.find_first();
3363 // Nothing set, nothing to iterate, just return.
3364 if (FirstInstr == -1)
3365 return;
3366 const BasicBlock *LastBlock = getBlockForValue(InstrFromDFSNum(FirstInstr));
3367 while (TouchedInstructions.any()) {
3368 ++Iterations;
3369 // Walk through all the instructions in all the blocks in RPO.
3370 // TODO: As we hit a new block, we should push and pop equalities into a
3371 // table lookupOperandLeader can use, to catch things PredicateInfo
3372 // might miss, like edge-only equivalences.
3373 for (unsigned InstrNum : TouchedInstructions.set_bits()) {
3374
3375 // This instruction was found to be dead. We don't bother looking
3376 // at it again.
3377 if (InstrNum == 0) {
3378 TouchedInstructions.reset(InstrNum);
3379 continue;
3380 }
3381
3382 Value *V = InstrFromDFSNum(InstrNum);
3383 const BasicBlock *CurrBlock = getBlockForValue(V);
3384
3385 // If we hit a new block, do reachability processing.
3386 if (CurrBlock != LastBlock) {
3387 LastBlock = CurrBlock;
3388 bool BlockReachable = ReachableBlocks.count(CurrBlock);
3389 const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock);
3390
3391 // If it's not reachable, erase any touched instructions and move on.
3392 if (!BlockReachable) {
3393 TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second);
3394 LLVM_DEBUG(dbgs() << "Skipping instructions in block "
3395 << getBlockName(CurrBlock)
3396 << " because it is unreachable\n");
3397 continue;
3398 }
3399 updateProcessedCount(CurrBlock);
3400 }
3401 // Reset after processing (because we may mark ourselves as touched when
3402 // we propagate equalities).
3403 TouchedInstructions.reset(InstrNum);
3404
3405 if (auto *MP = dyn_cast<MemoryPhi>(V)) {
3406 LLVM_DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n");
3407 valueNumberMemoryPhi(MP);
3408 } else if (auto *I = dyn_cast<Instruction>(V)) {
3409 valueNumberInstruction(I);
3410 } else {
3411 llvm_unreachable("Should have been a MemoryPhi or Instruction");
3412 }
3413 updateProcessedCount(V);
3414 }
3415 }
3416 NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations);
3417 }
3418
3419 // This is the main transformation entry point.
runGVN()3420 bool NewGVN::runGVN() {
3421 if (DebugCounter::isCounterSet(VNCounter))
3422 StartingVNCounter = DebugCounter::getCounterValue(VNCounter);
3423 bool Changed = false;
3424 NumFuncArgs = F.arg_size();
3425 MSSAWalker = MSSA->getWalker();
3426 SingletonDeadExpression = new (ExpressionAllocator) DeadExpression();
3427
3428 // Count number of instructions for sizing of hash tables, and come
3429 // up with a global dfs numbering for instructions.
3430 unsigned ICount = 1;
3431 // Add an empty instruction to account for the fact that we start at 1
3432 DFSToInstr.emplace_back(nullptr);
3433 // Note: We want ideal RPO traversal of the blocks, which is not quite the
3434 // same as dominator tree order, particularly with regard whether backedges
3435 // get visited first or second, given a block with multiple successors.
3436 // If we visit in the wrong order, we will end up performing N times as many
3437 // iterations.
3438 // The dominator tree does guarantee that, for a given dom tree node, it's
3439 // parent must occur before it in the RPO ordering. Thus, we only need to sort
3440 // the siblings.
3441 ReversePostOrderTraversal<Function *> RPOT(&F);
3442 unsigned Counter = 0;
3443 for (auto &B : RPOT) {
3444 auto *Node = DT->getNode(B);
3445 assert(Node && "RPO and Dominator tree should have same reachability");
3446 RPOOrdering[Node] = ++Counter;
3447 }
3448 // Sort dominator tree children arrays into RPO.
3449 for (auto &B : RPOT) {
3450 auto *Node = DT->getNode(B);
3451 if (Node->getNumChildren() > 1)
3452 llvm::sort(*Node, [&](const DomTreeNode *A, const DomTreeNode *B) {
3453 return RPOOrdering[A] < RPOOrdering[B];
3454 });
3455 }
3456
3457 // Now a standard depth first ordering of the domtree is equivalent to RPO.
3458 for (auto DTN : depth_first(DT->getRootNode())) {
3459 BasicBlock *B = DTN->getBlock();
3460 const auto &BlockRange = assignDFSNumbers(B, ICount);
3461 BlockInstRange.insert({B, BlockRange});
3462 ICount += BlockRange.second - BlockRange.first;
3463 }
3464 initializeCongruenceClasses(F);
3465
3466 TouchedInstructions.resize(ICount);
3467 // Ensure we don't end up resizing the expressionToClass map, as
3468 // that can be quite expensive. At most, we have one expression per
3469 // instruction.
3470 ExpressionToClass.reserve(ICount);
3471
3472 // Initialize the touched instructions to include the entry block.
3473 const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock());
3474 TouchedInstructions.set(InstRange.first, InstRange.second);
3475 LLVM_DEBUG(dbgs() << "Block " << getBlockName(&F.getEntryBlock())
3476 << " marked reachable\n");
3477 ReachableBlocks.insert(&F.getEntryBlock());
3478
3479 iterateTouchedInstructions();
3480 verifyMemoryCongruency();
3481 verifyIterationSettled(F);
3482 verifyStoreExpressions();
3483
3484 Changed |= eliminateInstructions(F);
3485
3486 // Delete all instructions marked for deletion.
3487 for (Instruction *ToErase : InstructionsToErase) {
3488 if (!ToErase->use_empty())
3489 ToErase->replaceAllUsesWith(PoisonValue::get(ToErase->getType()));
3490
3491 assert(ToErase->getParent() &&
3492 "BB containing ToErase deleted unexpectedly!");
3493 ToErase->eraseFromParent();
3494 }
3495 Changed |= !InstructionsToErase.empty();
3496
3497 // Delete all unreachable blocks.
3498 auto UnreachableBlockPred = [&](const BasicBlock &BB) {
3499 return !ReachableBlocks.count(&BB);
3500 };
3501
3502 for (auto &BB : make_filter_range(F, UnreachableBlockPred)) {
3503 LLVM_DEBUG(dbgs() << "We believe block " << getBlockName(&BB)
3504 << " is unreachable\n");
3505 deleteInstructionsInBlock(&BB);
3506 Changed = true;
3507 }
3508
3509 cleanupTables();
3510 return Changed;
3511 }
3512
3513 struct NewGVN::ValueDFS {
3514 int DFSIn = 0;
3515 int DFSOut = 0;
3516 int LocalNum = 0;
3517
3518 // Only one of Def and U will be set.
3519 // The bool in the Def tells us whether the Def is the stored value of a
3520 // store.
3521 PointerIntPair<Value *, 1, bool> Def;
3522 Use *U = nullptr;
3523
operator <NewGVN::ValueDFS3524 bool operator<(const ValueDFS &Other) const {
3525 // It's not enough that any given field be less than - we have sets
3526 // of fields that need to be evaluated together to give a proper ordering.
3527 // For example, if you have;
3528 // DFS (1, 3)
3529 // Val 0
3530 // DFS (1, 2)
3531 // Val 50
3532 // We want the second to be less than the first, but if we just go field
3533 // by field, we will get to Val 0 < Val 50 and say the first is less than
3534 // the second. We only want it to be less than if the DFS orders are equal.
3535 //
3536 // Each LLVM instruction only produces one value, and thus the lowest-level
3537 // differentiator that really matters for the stack (and what we use as as a
3538 // replacement) is the local dfs number.
3539 // Everything else in the structure is instruction level, and only affects
3540 // the order in which we will replace operands of a given instruction.
3541 //
3542 // For a given instruction (IE things with equal dfsin, dfsout, localnum),
3543 // the order of replacement of uses does not matter.
3544 // IE given,
3545 // a = 5
3546 // b = a + a
3547 // When you hit b, you will have two valuedfs with the same dfsin, out, and
3548 // localnum.
3549 // The .val will be the same as well.
3550 // The .u's will be different.
3551 // You will replace both, and it does not matter what order you replace them
3552 // in (IE whether you replace operand 2, then operand 1, or operand 1, then
3553 // operand 2).
3554 // Similarly for the case of same dfsin, dfsout, localnum, but different
3555 // .val's
3556 // a = 5
3557 // b = 6
3558 // c = a + b
3559 // in c, we will a valuedfs for a, and one for b,with everything the same
3560 // but .val and .u.
3561 // It does not matter what order we replace these operands in.
3562 // You will always end up with the same IR, and this is guaranteed.
3563 return std::tie(DFSIn, DFSOut, LocalNum, Def, U) <
3564 std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Def,
3565 Other.U);
3566 }
3567 };
3568
3569 // This function converts the set of members for a congruence class from values,
3570 // to sets of defs and uses with associated DFS info. The total number of
3571 // reachable uses for each value is stored in UseCount, and instructions that
3572 // seem
3573 // dead (have no non-dead uses) are stored in ProbablyDead.
convertClassToDFSOrdered(const CongruenceClass & Dense,SmallVectorImpl<ValueDFS> & DFSOrderedSet,DenseMap<const Value *,unsigned int> & UseCounts,SmallPtrSetImpl<Instruction * > & ProbablyDead) const3574 void NewGVN::convertClassToDFSOrdered(
3575 const CongruenceClass &Dense, SmallVectorImpl<ValueDFS> &DFSOrderedSet,
3576 DenseMap<const Value *, unsigned int> &UseCounts,
3577 SmallPtrSetImpl<Instruction *> &ProbablyDead) const {
3578 for (auto D : Dense) {
3579 // First add the value.
3580 BasicBlock *BB = getBlockForValue(D);
3581 // Constants are handled prior to ever calling this function, so
3582 // we should only be left with instructions as members.
3583 assert(BB && "Should have figured out a basic block for value");
3584 ValueDFS VDDef;
3585 DomTreeNode *DomNode = DT->getNode(BB);
3586 VDDef.DFSIn = DomNode->getDFSNumIn();
3587 VDDef.DFSOut = DomNode->getDFSNumOut();
3588 // If it's a store, use the leader of the value operand, if it's always
3589 // available, or the value operand. TODO: We could do dominance checks to
3590 // find a dominating leader, but not worth it ATM.
3591 if (auto *SI = dyn_cast<StoreInst>(D)) {
3592 auto Leader = lookupOperandLeader(SI->getValueOperand());
3593 if (alwaysAvailable(Leader)) {
3594 VDDef.Def.setPointer(Leader);
3595 } else {
3596 VDDef.Def.setPointer(SI->getValueOperand());
3597 VDDef.Def.setInt(true);
3598 }
3599 } else {
3600 VDDef.Def.setPointer(D);
3601 }
3602 assert(isa<Instruction>(D) &&
3603 "The dense set member should always be an instruction");
3604 Instruction *Def = cast<Instruction>(D);
3605 VDDef.LocalNum = InstrToDFSNum(D);
3606 DFSOrderedSet.push_back(VDDef);
3607 // If there is a phi node equivalent, add it
3608 if (auto *PN = RealToTemp.lookup(Def)) {
3609 auto *PHIE =
3610 dyn_cast_or_null<PHIExpression>(ValueToExpression.lookup(Def));
3611 if (PHIE) {
3612 VDDef.Def.setInt(false);
3613 VDDef.Def.setPointer(PN);
3614 VDDef.LocalNum = 0;
3615 DFSOrderedSet.push_back(VDDef);
3616 }
3617 }
3618
3619 unsigned int UseCount = 0;
3620 // Now add the uses.
3621 for (auto &U : Def->uses()) {
3622 if (auto *I = dyn_cast<Instruction>(U.getUser())) {
3623 // Don't try to replace into dead uses
3624 if (InstructionsToErase.count(I))
3625 continue;
3626 ValueDFS VDUse;
3627 // Put the phi node uses in the incoming block.
3628 BasicBlock *IBlock;
3629 if (auto *P = dyn_cast<PHINode>(I)) {
3630 IBlock = P->getIncomingBlock(U);
3631 // Make phi node users appear last in the incoming block
3632 // they are from.
3633 VDUse.LocalNum = InstrDFS.size() + 1;
3634 } else {
3635 IBlock = getBlockForValue(I);
3636 VDUse.LocalNum = InstrToDFSNum(I);
3637 }
3638
3639 // Skip uses in unreachable blocks, as we're going
3640 // to delete them.
3641 if (!ReachableBlocks.contains(IBlock))
3642 continue;
3643
3644 DomTreeNode *DomNode = DT->getNode(IBlock);
3645 VDUse.DFSIn = DomNode->getDFSNumIn();
3646 VDUse.DFSOut = DomNode->getDFSNumOut();
3647 VDUse.U = &U;
3648 ++UseCount;
3649 DFSOrderedSet.emplace_back(VDUse);
3650 }
3651 }
3652
3653 // If there are no uses, it's probably dead (but it may have side-effects,
3654 // so not definitely dead. Otherwise, store the number of uses so we can
3655 // track if it becomes dead later).
3656 if (UseCount == 0)
3657 ProbablyDead.insert(Def);
3658 else
3659 UseCounts[Def] = UseCount;
3660 }
3661 }
3662
3663 // This function converts the set of members for a congruence class from values,
3664 // to the set of defs for loads and stores, with associated DFS info.
convertClassToLoadsAndStores(const CongruenceClass & Dense,SmallVectorImpl<ValueDFS> & LoadsAndStores) const3665 void NewGVN::convertClassToLoadsAndStores(
3666 const CongruenceClass &Dense,
3667 SmallVectorImpl<ValueDFS> &LoadsAndStores) const {
3668 for (auto D : Dense) {
3669 if (!isa<LoadInst>(D) && !isa<StoreInst>(D))
3670 continue;
3671
3672 BasicBlock *BB = getBlockForValue(D);
3673 ValueDFS VD;
3674 DomTreeNode *DomNode = DT->getNode(BB);
3675 VD.DFSIn = DomNode->getDFSNumIn();
3676 VD.DFSOut = DomNode->getDFSNumOut();
3677 VD.Def.setPointer(D);
3678
3679 // If it's an instruction, use the real local dfs number.
3680 if (auto *I = dyn_cast<Instruction>(D))
3681 VD.LocalNum = InstrToDFSNum(I);
3682 else
3683 llvm_unreachable("Should have been an instruction");
3684
3685 LoadsAndStores.emplace_back(VD);
3686 }
3687 }
3688
patchAndReplaceAllUsesWith(Instruction * I,Value * Repl)3689 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
3690 patchReplacementInstruction(I, Repl);
3691 I->replaceAllUsesWith(Repl);
3692 }
3693
deleteInstructionsInBlock(BasicBlock * BB)3694 void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) {
3695 LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << *BB);
3696 ++NumGVNBlocksDeleted;
3697
3698 // Delete the instructions backwards, as it has a reduced likelihood of having
3699 // to update as many def-use and use-def chains. Start after the terminator.
3700 auto StartPoint = BB->rbegin();
3701 ++StartPoint;
3702 // Note that we explicitly recalculate BB->rend() on each iteration,
3703 // as it may change when we remove the first instruction.
3704 for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) {
3705 Instruction &Inst = *I++;
3706 if (!Inst.use_empty())
3707 Inst.replaceAllUsesWith(PoisonValue::get(Inst.getType()));
3708 if (isa<LandingPadInst>(Inst))
3709 continue;
3710 salvageKnowledge(&Inst, AC);
3711
3712 Inst.eraseFromParent();
3713 ++NumGVNInstrDeleted;
3714 }
3715 // Now insert something that simplifycfg will turn into an unreachable.
3716 Type *Int8Ty = Type::getInt8Ty(BB->getContext());
3717 new StoreInst(PoisonValue::get(Int8Ty),
3718 Constant::getNullValue(Int8Ty->getPointerTo()),
3719 BB->getTerminator());
3720 }
3721
markInstructionForDeletion(Instruction * I)3722 void NewGVN::markInstructionForDeletion(Instruction *I) {
3723 LLVM_DEBUG(dbgs() << "Marking " << *I << " for deletion\n");
3724 InstructionsToErase.insert(I);
3725 }
3726
replaceInstruction(Instruction * I,Value * V)3727 void NewGVN::replaceInstruction(Instruction *I, Value *V) {
3728 LLVM_DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n");
3729 patchAndReplaceAllUsesWith(I, V);
3730 // We save the actual erasing to avoid invalidating memory
3731 // dependencies until we are done with everything.
3732 markInstructionForDeletion(I);
3733 }
3734
3735 namespace {
3736
3737 // This is a stack that contains both the value and dfs info of where
3738 // that value is valid.
3739 class ValueDFSStack {
3740 public:
back() const3741 Value *back() const { return ValueStack.back(); }
dfs_back() const3742 std::pair<int, int> dfs_back() const { return DFSStack.back(); }
3743
push_back(Value * V,int DFSIn,int DFSOut)3744 void push_back(Value *V, int DFSIn, int DFSOut) {
3745 ValueStack.emplace_back(V);
3746 DFSStack.emplace_back(DFSIn, DFSOut);
3747 }
3748
empty() const3749 bool empty() const { return DFSStack.empty(); }
3750
isInScope(int DFSIn,int DFSOut) const3751 bool isInScope(int DFSIn, int DFSOut) const {
3752 if (empty())
3753 return false;
3754 return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second;
3755 }
3756
popUntilDFSScope(int DFSIn,int DFSOut)3757 void popUntilDFSScope(int DFSIn, int DFSOut) {
3758
3759 // These two should always be in sync at this point.
3760 assert(ValueStack.size() == DFSStack.size() &&
3761 "Mismatch between ValueStack and DFSStack");
3762 while (
3763 !DFSStack.empty() &&
3764 !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) {
3765 DFSStack.pop_back();
3766 ValueStack.pop_back();
3767 }
3768 }
3769
3770 private:
3771 SmallVector<Value *, 8> ValueStack;
3772 SmallVector<std::pair<int, int>, 8> DFSStack;
3773 };
3774
3775 } // end anonymous namespace
3776
3777 // Given an expression, get the congruence class for it.
getClassForExpression(const Expression * E) const3778 CongruenceClass *NewGVN::getClassForExpression(const Expression *E) const {
3779 if (auto *VE = dyn_cast<VariableExpression>(E))
3780 return ValueToClass.lookup(VE->getVariableValue());
3781 else if (isa<DeadExpression>(E))
3782 return TOPClass;
3783 return ExpressionToClass.lookup(E);
3784 }
3785
3786 // Given a value and a basic block we are trying to see if it is available in,
3787 // see if the value has a leader available in that block.
findPHIOfOpsLeader(const Expression * E,const Instruction * OrigInst,const BasicBlock * BB) const3788 Value *NewGVN::findPHIOfOpsLeader(const Expression *E,
3789 const Instruction *OrigInst,
3790 const BasicBlock *BB) const {
3791 // It would already be constant if we could make it constant
3792 if (auto *CE = dyn_cast<ConstantExpression>(E))
3793 return CE->getConstantValue();
3794 if (auto *VE = dyn_cast<VariableExpression>(E)) {
3795 auto *V = VE->getVariableValue();
3796 if (alwaysAvailable(V) || DT->dominates(getBlockForValue(V), BB))
3797 return VE->getVariableValue();
3798 }
3799
3800 auto *CC = getClassForExpression(E);
3801 if (!CC)
3802 return nullptr;
3803 if (alwaysAvailable(CC->getLeader()))
3804 return CC->getLeader();
3805
3806 for (auto Member : *CC) {
3807 auto *MemberInst = dyn_cast<Instruction>(Member);
3808 if (MemberInst == OrigInst)
3809 continue;
3810 // Anything that isn't an instruction is always available.
3811 if (!MemberInst)
3812 return Member;
3813 if (DT->dominates(getBlockForValue(MemberInst), BB))
3814 return Member;
3815 }
3816 return nullptr;
3817 }
3818
eliminateInstructions(Function & F)3819 bool NewGVN::eliminateInstructions(Function &F) {
3820 // This is a non-standard eliminator. The normal way to eliminate is
3821 // to walk the dominator tree in order, keeping track of available
3822 // values, and eliminating them. However, this is mildly
3823 // pointless. It requires doing lookups on every instruction,
3824 // regardless of whether we will ever eliminate it. For
3825 // instructions part of most singleton congruence classes, we know we
3826 // will never eliminate them.
3827
3828 // Instead, this eliminator looks at the congruence classes directly, sorts
3829 // them into a DFS ordering of the dominator tree, and then we just
3830 // perform elimination straight on the sets by walking the congruence
3831 // class member uses in order, and eliminate the ones dominated by the
3832 // last member. This is worst case O(E log E) where E = number of
3833 // instructions in a single congruence class. In theory, this is all
3834 // instructions. In practice, it is much faster, as most instructions are
3835 // either in singleton congruence classes or can't possibly be eliminated
3836 // anyway (if there are no overlapping DFS ranges in class).
3837 // When we find something not dominated, it becomes the new leader
3838 // for elimination purposes.
3839 // TODO: If we wanted to be faster, We could remove any members with no
3840 // overlapping ranges while sorting, as we will never eliminate anything
3841 // with those members, as they don't dominate anything else in our set.
3842
3843 bool AnythingReplaced = false;
3844
3845 // Since we are going to walk the domtree anyway, and we can't guarantee the
3846 // DFS numbers are updated, we compute some ourselves.
3847 DT->updateDFSNumbers();
3848
3849 // Go through all of our phi nodes, and kill the arguments associated with
3850 // unreachable edges.
3851 auto ReplaceUnreachablePHIArgs = [&](PHINode *PHI, BasicBlock *BB) {
3852 for (auto &Operand : PHI->incoming_values())
3853 if (!ReachableEdges.count({PHI->getIncomingBlock(Operand), BB})) {
3854 LLVM_DEBUG(dbgs() << "Replacing incoming value of " << PHI
3855 << " for block "
3856 << getBlockName(PHI->getIncomingBlock(Operand))
3857 << " with poison due to it being unreachable\n");
3858 Operand.set(PoisonValue::get(PHI->getType()));
3859 }
3860 };
3861 // Replace unreachable phi arguments.
3862 // At this point, RevisitOnReachabilityChange only contains:
3863 //
3864 // 1. PHIs
3865 // 2. Temporaries that will convert to PHIs
3866 // 3. Operations that are affected by an unreachable edge but do not fit into
3867 // 1 or 2 (rare).
3868 // So it is a slight overshoot of what we want. We could make it exact by
3869 // using two SparseBitVectors per block.
3870 DenseMap<const BasicBlock *, unsigned> ReachablePredCount;
3871 for (auto &KV : ReachableEdges)
3872 ReachablePredCount[KV.getEnd()]++;
3873 for (auto &BBPair : RevisitOnReachabilityChange) {
3874 for (auto InstNum : BBPair.second) {
3875 auto *Inst = InstrFromDFSNum(InstNum);
3876 auto *PHI = dyn_cast<PHINode>(Inst);
3877 PHI = PHI ? PHI : dyn_cast_or_null<PHINode>(RealToTemp.lookup(Inst));
3878 if (!PHI)
3879 continue;
3880 auto *BB = BBPair.first;
3881 if (ReachablePredCount.lookup(BB) != PHI->getNumIncomingValues())
3882 ReplaceUnreachablePHIArgs(PHI, BB);
3883 }
3884 }
3885
3886 // Map to store the use counts
3887 DenseMap<const Value *, unsigned int> UseCounts;
3888 for (auto *CC : reverse(CongruenceClasses)) {
3889 LLVM_DEBUG(dbgs() << "Eliminating in congruence class " << CC->getID()
3890 << "\n");
3891 // Track the equivalent store info so we can decide whether to try
3892 // dead store elimination.
3893 SmallVector<ValueDFS, 8> PossibleDeadStores;
3894 SmallPtrSet<Instruction *, 8> ProbablyDead;
3895 if (CC->isDead() || CC->empty())
3896 continue;
3897 // Everything still in the TOP class is unreachable or dead.
3898 if (CC == TOPClass) {
3899 for (auto M : *CC) {
3900 auto *VTE = ValueToExpression.lookup(M);
3901 if (VTE && isa<DeadExpression>(VTE))
3902 markInstructionForDeletion(cast<Instruction>(M));
3903 assert((!ReachableBlocks.count(cast<Instruction>(M)->getParent()) ||
3904 InstructionsToErase.count(cast<Instruction>(M))) &&
3905 "Everything in TOP should be unreachable or dead at this "
3906 "point");
3907 }
3908 continue;
3909 }
3910
3911 assert(CC->getLeader() && "We should have had a leader");
3912 // If this is a leader that is always available, and it's a
3913 // constant or has no equivalences, just replace everything with
3914 // it. We then update the congruence class with whatever members
3915 // are left.
3916 Value *Leader =
3917 CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
3918 if (alwaysAvailable(Leader)) {
3919 CongruenceClass::MemberSet MembersLeft;
3920 for (auto M : *CC) {
3921 Value *Member = M;
3922 // Void things have no uses we can replace.
3923 if (Member == Leader || !isa<Instruction>(Member) ||
3924 Member->getType()->isVoidTy()) {
3925 MembersLeft.insert(Member);
3926 continue;
3927 }
3928 LLVM_DEBUG(dbgs() << "Found replacement " << *(Leader) << " for "
3929 << *Member << "\n");
3930 auto *I = cast<Instruction>(Member);
3931 assert(Leader != I && "About to accidentally remove our leader");
3932 replaceInstruction(I, Leader);
3933 AnythingReplaced = true;
3934 }
3935 CC->swap(MembersLeft);
3936 } else {
3937 // If this is a singleton, we can skip it.
3938 if (CC->size() != 1 || RealToTemp.count(Leader)) {
3939 // This is a stack because equality replacement/etc may place
3940 // constants in the middle of the member list, and we want to use
3941 // those constant values in preference to the current leader, over
3942 // the scope of those constants.
3943 ValueDFSStack EliminationStack;
3944
3945 // Convert the members to DFS ordered sets and then merge them.
3946 SmallVector<ValueDFS, 8> DFSOrderedSet;
3947 convertClassToDFSOrdered(*CC, DFSOrderedSet, UseCounts, ProbablyDead);
3948
3949 // Sort the whole thing.
3950 llvm::sort(DFSOrderedSet);
3951 for (auto &VD : DFSOrderedSet) {
3952 int MemberDFSIn = VD.DFSIn;
3953 int MemberDFSOut = VD.DFSOut;
3954 Value *Def = VD.Def.getPointer();
3955 bool FromStore = VD.Def.getInt();
3956 Use *U = VD.U;
3957 // We ignore void things because we can't get a value from them.
3958 if (Def && Def->getType()->isVoidTy())
3959 continue;
3960 auto *DefInst = dyn_cast_or_null<Instruction>(Def);
3961 if (DefInst && AllTempInstructions.count(DefInst)) {
3962 auto *PN = cast<PHINode>(DefInst);
3963
3964 // If this is a value phi and that's the expression we used, insert
3965 // it into the program
3966 // remove from temp instruction list.
3967 AllTempInstructions.erase(PN);
3968 auto *DefBlock = getBlockForValue(Def);
3969 LLVM_DEBUG(dbgs() << "Inserting fully real phi of ops" << *Def
3970 << " into block "
3971 << getBlockName(getBlockForValue(Def)) << "\n");
3972 PN->insertBefore(&DefBlock->front());
3973 Def = PN;
3974 NumGVNPHIOfOpsEliminations++;
3975 }
3976
3977 if (EliminationStack.empty()) {
3978 LLVM_DEBUG(dbgs() << "Elimination Stack is empty\n");
3979 } else {
3980 LLVM_DEBUG(dbgs() << "Elimination Stack Top DFS numbers are ("
3981 << EliminationStack.dfs_back().first << ","
3982 << EliminationStack.dfs_back().second << ")\n");
3983 }
3984
3985 LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << ","
3986 << MemberDFSOut << ")\n");
3987 // First, we see if we are out of scope or empty. If so,
3988 // and there equivalences, we try to replace the top of
3989 // stack with equivalences (if it's on the stack, it must
3990 // not have been eliminated yet).
3991 // Then we synchronize to our current scope, by
3992 // popping until we are back within a DFS scope that
3993 // dominates the current member.
3994 // Then, what happens depends on a few factors
3995 // If the stack is now empty, we need to push
3996 // If we have a constant or a local equivalence we want to
3997 // start using, we also push.
3998 // Otherwise, we walk along, processing members who are
3999 // dominated by this scope, and eliminate them.
4000 bool ShouldPush = Def && EliminationStack.empty();
4001 bool OutOfScope =
4002 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut);
4003
4004 if (OutOfScope || ShouldPush) {
4005 // Sync to our current scope.
4006 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
4007 bool ShouldPush = Def && EliminationStack.empty();
4008 if (ShouldPush) {
4009 EliminationStack.push_back(Def, MemberDFSIn, MemberDFSOut);
4010 }
4011 }
4012
4013 // Skip the Def's, we only want to eliminate on their uses. But mark
4014 // dominated defs as dead.
4015 if (Def) {
4016 // For anything in this case, what and how we value number
4017 // guarantees that any side-effets that would have occurred (ie
4018 // throwing, etc) can be proven to either still occur (because it's
4019 // dominated by something that has the same side-effects), or never
4020 // occur. Otherwise, we would not have been able to prove it value
4021 // equivalent to something else. For these things, we can just mark
4022 // it all dead. Note that this is different from the "ProbablyDead"
4023 // set, which may not be dominated by anything, and thus, are only
4024 // easy to prove dead if they are also side-effect free. Note that
4025 // because stores are put in terms of the stored value, we skip
4026 // stored values here. If the stored value is really dead, it will
4027 // still be marked for deletion when we process it in its own class.
4028 if (!EliminationStack.empty() && Def != EliminationStack.back() &&
4029 isa<Instruction>(Def) && !FromStore)
4030 markInstructionForDeletion(cast<Instruction>(Def));
4031 continue;
4032 }
4033 // At this point, we know it is a Use we are trying to possibly
4034 // replace.
4035
4036 assert(isa<Instruction>(U->get()) &&
4037 "Current def should have been an instruction");
4038 assert(isa<Instruction>(U->getUser()) &&
4039 "Current user should have been an instruction");
4040
4041 // If the thing we are replacing into is already marked to be dead,
4042 // this use is dead. Note that this is true regardless of whether
4043 // we have anything dominating the use or not. We do this here
4044 // because we are already walking all the uses anyway.
4045 Instruction *InstUse = cast<Instruction>(U->getUser());
4046 if (InstructionsToErase.count(InstUse)) {
4047 auto &UseCount = UseCounts[U->get()];
4048 if (--UseCount == 0) {
4049 ProbablyDead.insert(cast<Instruction>(U->get()));
4050 }
4051 }
4052
4053 // If we get to this point, and the stack is empty we must have a use
4054 // with nothing we can use to eliminate this use, so just skip it.
4055 if (EliminationStack.empty())
4056 continue;
4057
4058 Value *DominatingLeader = EliminationStack.back();
4059
4060 auto *II = dyn_cast<IntrinsicInst>(DominatingLeader);
4061 bool isSSACopy = II && II->getIntrinsicID() == Intrinsic::ssa_copy;
4062 if (isSSACopy)
4063 DominatingLeader = II->getOperand(0);
4064
4065 // Don't replace our existing users with ourselves.
4066 if (U->get() == DominatingLeader)
4067 continue;
4068 LLVM_DEBUG(dbgs()
4069 << "Found replacement " << *DominatingLeader << " for "
4070 << *U->get() << " in " << *(U->getUser()) << "\n");
4071
4072 // If we replaced something in an instruction, handle the patching of
4073 // metadata. Skip this if we are replacing predicateinfo with its
4074 // original operand, as we already know we can just drop it.
4075 auto *ReplacedInst = cast<Instruction>(U->get());
4076 auto *PI = PredInfo->getPredicateInfoFor(ReplacedInst);
4077 if (!PI || DominatingLeader != PI->OriginalOp)
4078 patchReplacementInstruction(ReplacedInst, DominatingLeader);
4079 U->set(DominatingLeader);
4080 // This is now a use of the dominating leader, which means if the
4081 // dominating leader was dead, it's now live!
4082 auto &LeaderUseCount = UseCounts[DominatingLeader];
4083 // It's about to be alive again.
4084 if (LeaderUseCount == 0 && isa<Instruction>(DominatingLeader))
4085 ProbablyDead.erase(cast<Instruction>(DominatingLeader));
4086 // For copy instructions, we use their operand as a leader,
4087 // which means we remove a user of the copy and it may become dead.
4088 if (isSSACopy) {
4089 unsigned &IIUseCount = UseCounts[II];
4090 if (--IIUseCount == 0)
4091 ProbablyDead.insert(II);
4092 }
4093 ++LeaderUseCount;
4094 AnythingReplaced = true;
4095 }
4096 }
4097 }
4098
4099 // At this point, anything still in the ProbablyDead set is actually dead if
4100 // would be trivially dead.
4101 for (auto *I : ProbablyDead)
4102 if (wouldInstructionBeTriviallyDead(I))
4103 markInstructionForDeletion(I);
4104
4105 // Cleanup the congruence class.
4106 CongruenceClass::MemberSet MembersLeft;
4107 for (auto *Member : *CC)
4108 if (!isa<Instruction>(Member) ||
4109 !InstructionsToErase.count(cast<Instruction>(Member)))
4110 MembersLeft.insert(Member);
4111 CC->swap(MembersLeft);
4112
4113 // If we have possible dead stores to look at, try to eliminate them.
4114 if (CC->getStoreCount() > 0) {
4115 convertClassToLoadsAndStores(*CC, PossibleDeadStores);
4116 llvm::sort(PossibleDeadStores);
4117 ValueDFSStack EliminationStack;
4118 for (auto &VD : PossibleDeadStores) {
4119 int MemberDFSIn = VD.DFSIn;
4120 int MemberDFSOut = VD.DFSOut;
4121 Instruction *Member = cast<Instruction>(VD.Def.getPointer());
4122 if (EliminationStack.empty() ||
4123 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut)) {
4124 // Sync to our current scope.
4125 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
4126 if (EliminationStack.empty()) {
4127 EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut);
4128 continue;
4129 }
4130 }
4131 // We already did load elimination, so nothing to do here.
4132 if (isa<LoadInst>(Member))
4133 continue;
4134 assert(!EliminationStack.empty());
4135 Instruction *Leader = cast<Instruction>(EliminationStack.back());
4136 (void)Leader;
4137 assert(DT->dominates(Leader->getParent(), Member->getParent()));
4138 // Member is dominater by Leader, and thus dead
4139 LLVM_DEBUG(dbgs() << "Marking dead store " << *Member
4140 << " that is dominated by " << *Leader << "\n");
4141 markInstructionForDeletion(Member);
4142 CC->erase(Member);
4143 ++NumGVNDeadStores;
4144 }
4145 }
4146 }
4147 return AnythingReplaced;
4148 }
4149
4150 // This function provides global ranking of operations so that we can place them
4151 // in a canonical order. Note that rank alone is not necessarily enough for a
4152 // complete ordering, as constants all have the same rank. However, generally,
4153 // we will simplify an operation with all constants so that it doesn't matter
4154 // what order they appear in.
getRank(const Value * V) const4155 unsigned int NewGVN::getRank(const Value *V) const {
4156 // Prefer constants to undef to anything else
4157 // Undef is a constant, have to check it first.
4158 // Prefer poison to undef as it's less defined.
4159 // Prefer smaller constants to constantexprs
4160 // Note that the order here matters because of class inheritance
4161 if (isa<ConstantExpr>(V))
4162 return 3;
4163 if (isa<PoisonValue>(V))
4164 return 1;
4165 if (isa<UndefValue>(V))
4166 return 2;
4167 if (isa<Constant>(V))
4168 return 0;
4169 if (auto *A = dyn_cast<Argument>(V))
4170 return 4 + A->getArgNo();
4171
4172 // Need to shift the instruction DFS by number of arguments + 5 to account for
4173 // the constant and argument ranking above.
4174 unsigned Result = InstrToDFSNum(V);
4175 if (Result > 0)
4176 return 5 + NumFuncArgs + Result;
4177 // Unreachable or something else, just return a really large number.
4178 return ~0;
4179 }
4180
4181 // This is a function that says whether two commutative operations should
4182 // have their order swapped when canonicalizing.
shouldSwapOperands(const Value * A,const Value * B) const4183 bool NewGVN::shouldSwapOperands(const Value *A, const Value *B) const {
4184 // Because we only care about a total ordering, and don't rewrite expressions
4185 // in this order, we order by rank, which will give a strict weak ordering to
4186 // everything but constants, and then we order by pointer address.
4187 return std::make_pair(getRank(A), A) > std::make_pair(getRank(B), B);
4188 }
4189
shouldSwapOperandsForIntrinsic(const Value * A,const Value * B,const IntrinsicInst * I) const4190 bool NewGVN::shouldSwapOperandsForIntrinsic(const Value *A, const Value *B,
4191 const IntrinsicInst *I) const {
4192 auto LookupResult = IntrinsicInstPred.find(I);
4193 if (shouldSwapOperands(A, B)) {
4194 if (LookupResult == IntrinsicInstPred.end())
4195 IntrinsicInstPred.insert({I, B});
4196 else
4197 LookupResult->second = B;
4198 return true;
4199 }
4200
4201 if (LookupResult != IntrinsicInstPred.end()) {
4202 auto *SeenPredicate = LookupResult->second;
4203 if (SeenPredicate) {
4204 if (SeenPredicate == B)
4205 return true;
4206 else
4207 LookupResult->second = nullptr;
4208 }
4209 }
4210 return false;
4211 }
4212
4213 namespace {
4214
4215 class NewGVNLegacyPass : public FunctionPass {
4216 public:
4217 // Pass identification, replacement for typeid.
4218 static char ID;
4219
NewGVNLegacyPass()4220 NewGVNLegacyPass() : FunctionPass(ID) {
4221 initializeNewGVNLegacyPassPass(*PassRegistry::getPassRegistry());
4222 }
4223
4224 bool runOnFunction(Function &F) override;
4225
4226 private:
getAnalysisUsage(AnalysisUsage & AU) const4227 void getAnalysisUsage(AnalysisUsage &AU) const override {
4228 AU.addRequired<AssumptionCacheTracker>();
4229 AU.addRequired<DominatorTreeWrapperPass>();
4230 AU.addRequired<TargetLibraryInfoWrapperPass>();
4231 AU.addRequired<MemorySSAWrapperPass>();
4232 AU.addRequired<AAResultsWrapperPass>();
4233 AU.addPreserved<DominatorTreeWrapperPass>();
4234 AU.addPreserved<GlobalsAAWrapperPass>();
4235 }
4236 };
4237
4238 } // end anonymous namespace
4239
runOnFunction(Function & F)4240 bool NewGVNLegacyPass::runOnFunction(Function &F) {
4241 if (skipFunction(F))
4242 return false;
4243 return NewGVN(F, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
4244 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
4245 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
4246 &getAnalysis<AAResultsWrapperPass>().getAAResults(),
4247 &getAnalysis<MemorySSAWrapperPass>().getMSSA(),
4248 F.getParent()->getDataLayout())
4249 .runGVN();
4250 }
4251
4252 char NewGVNLegacyPass::ID = 0;
4253
4254 INITIALIZE_PASS_BEGIN(NewGVNLegacyPass, "newgvn", "Global Value Numbering",
4255 false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)4256 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4257 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
4258 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4259 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
4260 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
4261 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
4262 INITIALIZE_PASS_END(NewGVNLegacyPass, "newgvn", "Global Value Numbering", false,
4263 false)
4264
4265 // createGVNPass - The public interface to this file.
4266 FunctionPass *llvm::createNewGVNPass() { return new NewGVNLegacyPass(); }
4267
run(Function & F,AnalysisManager<Function> & AM)4268 PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) {
4269 // Apparently the order in which we get these results matter for
4270 // the old GVN (see Chandler's comment in GVN.cpp). I'll keep
4271 // the same order here, just in case.
4272 auto &AC = AM.getResult<AssumptionAnalysis>(F);
4273 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
4274 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
4275 auto &AA = AM.getResult<AAManager>(F);
4276 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
4277 bool Changed =
4278 NewGVN(F, &DT, &AC, &TLI, &AA, &MSSA, F.getParent()->getDataLayout())
4279 .runGVN();
4280 if (!Changed)
4281 return PreservedAnalyses::all();
4282 PreservedAnalyses PA;
4283 PA.preserve<DominatorTreeAnalysis>();
4284 return PA;
4285 }
4286