1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs various transformations related to eliminating memcpy 10 // calls, or transforming sets of stores into memset's. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/MemCpyOptimizer.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/iterator_range.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/Analysis/Loads.h" 25 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 26 #include "llvm/Analysis/MemoryLocation.h" 27 #include "llvm/Analysis/MemorySSA.h" 28 #include "llvm/Analysis/MemorySSAUpdater.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/Argument.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GetElementPtrTypeIterator.h" 39 #include "llvm/IR/GlobalVariable.h" 40 #include "llvm/IR/IRBuilder.h" 41 #include "llvm/IR/InstrTypes.h" 42 #include "llvm/IR/Instruction.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/Intrinsics.h" 46 #include "llvm/IR/LLVMContext.h" 47 #include "llvm/IR/Module.h" 48 #include "llvm/IR/Operator.h" 49 #include "llvm/IR/PassManager.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/User.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Transforms/Scalar.h" 60 #include "llvm/Transforms/Utils/Local.h" 61 #include <algorithm> 62 #include <cassert> 63 #include <cstdint> 64 #include <utility> 65 66 using namespace llvm; 67 68 #define DEBUG_TYPE "memcpyopt" 69 70 static cl::opt<bool> 71 EnableMemorySSA("enable-memcpyopt-memoryssa", cl::init(true), cl::Hidden, 72 cl::desc("Use MemorySSA-backed MemCpyOpt.")); 73 74 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted"); 75 STATISTIC(NumMemSetInfer, "Number of memsets inferred"); 76 STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy"); 77 STATISTIC(NumCpyToSet, "Number of memcpys converted to memset"); 78 STATISTIC(NumCallSlot, "Number of call slot optimizations performed"); 79 80 namespace { 81 82 /// Represents a range of memset'd bytes with the ByteVal value. 83 /// This allows us to analyze stores like: 84 /// store 0 -> P+1 85 /// store 0 -> P+0 86 /// store 0 -> P+3 87 /// store 0 -> P+2 88 /// which sometimes happens with stores to arrays of structs etc. When we see 89 /// the first store, we make a range [1, 2). The second store extends the range 90 /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the 91 /// two ranges into [0, 3) which is memset'able. 92 struct MemsetRange { 93 // Start/End - A semi range that describes the span that this range covers. 94 // The range is closed at the start and open at the end: [Start, End). 95 int64_t Start, End; 96 97 /// StartPtr - The getelementptr instruction that points to the start of the 98 /// range. 99 Value *StartPtr; 100 101 /// Alignment - The known alignment of the first store. 102 unsigned Alignment; 103 104 /// TheStores - The actual stores that make up this range. 105 SmallVector<Instruction*, 16> TheStores; 106 107 bool isProfitableToUseMemset(const DataLayout &DL) const; 108 }; 109 110 } // end anonymous namespace 111 112 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const { 113 // If we found more than 4 stores to merge or 16 bytes, use memset. 114 if (TheStores.size() >= 4 || End-Start >= 16) return true; 115 116 // If there is nothing to merge, don't do anything. 117 if (TheStores.size() < 2) return false; 118 119 // If any of the stores are a memset, then it is always good to extend the 120 // memset. 121 for (Instruction *SI : TheStores) 122 if (!isa<StoreInst>(SI)) 123 return true; 124 125 // Assume that the code generator is capable of merging pairs of stores 126 // together if it wants to. 127 if (TheStores.size() == 2) return false; 128 129 // If we have fewer than 8 stores, it can still be worthwhile to do this. 130 // For example, merging 4 i8 stores into an i32 store is useful almost always. 131 // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the 132 // memset will be split into 2 32-bit stores anyway) and doing so can 133 // pessimize the llvm optimizer. 134 // 135 // Since we don't have perfect knowledge here, make some assumptions: assume 136 // the maximum GPR width is the same size as the largest legal integer 137 // size. If so, check to see whether we will end up actually reducing the 138 // number of stores used. 139 unsigned Bytes = unsigned(End-Start); 140 unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8; 141 if (MaxIntSize == 0) 142 MaxIntSize = 1; 143 unsigned NumPointerStores = Bytes / MaxIntSize; 144 145 // Assume the remaining bytes if any are done a byte at a time. 146 unsigned NumByteStores = Bytes % MaxIntSize; 147 148 // If we will reduce the # stores (according to this heuristic), do the 149 // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32 150 // etc. 151 return TheStores.size() > NumPointerStores+NumByteStores; 152 } 153 154 namespace { 155 156 class MemsetRanges { 157 using range_iterator = SmallVectorImpl<MemsetRange>::iterator; 158 159 /// A sorted list of the memset ranges. 160 SmallVector<MemsetRange, 8> Ranges; 161 162 const DataLayout &DL; 163 164 public: 165 MemsetRanges(const DataLayout &DL) : DL(DL) {} 166 167 using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator; 168 169 const_iterator begin() const { return Ranges.begin(); } 170 const_iterator end() const { return Ranges.end(); } 171 bool empty() const { return Ranges.empty(); } 172 173 void addInst(int64_t OffsetFromFirst, Instruction *Inst) { 174 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) 175 addStore(OffsetFromFirst, SI); 176 else 177 addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst)); 178 } 179 180 void addStore(int64_t OffsetFromFirst, StoreInst *SI) { 181 int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType()); 182 183 addRange(OffsetFromFirst, StoreSize, SI->getPointerOperand(), 184 SI->getAlign().value(), SI); 185 } 186 187 void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) { 188 int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 189 addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlignment(), MSI); 190 } 191 192 void addRange(int64_t Start, int64_t Size, Value *Ptr, 193 unsigned Alignment, Instruction *Inst); 194 }; 195 196 } // end anonymous namespace 197 198 /// Add a new store to the MemsetRanges data structure. This adds a 199 /// new range for the specified store at the specified offset, merging into 200 /// existing ranges as appropriate. 201 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr, 202 unsigned Alignment, Instruction *Inst) { 203 int64_t End = Start+Size; 204 205 range_iterator I = partition_point( 206 Ranges, [=](const MemsetRange &O) { return O.End < Start; }); 207 208 // We now know that I == E, in which case we didn't find anything to merge 209 // with, or that Start <= I->End. If End < I->Start or I == E, then we need 210 // to insert a new range. Handle this now. 211 if (I == Ranges.end() || End < I->Start) { 212 MemsetRange &R = *Ranges.insert(I, MemsetRange()); 213 R.Start = Start; 214 R.End = End; 215 R.StartPtr = Ptr; 216 R.Alignment = Alignment; 217 R.TheStores.push_back(Inst); 218 return; 219 } 220 221 // This store overlaps with I, add it. 222 I->TheStores.push_back(Inst); 223 224 // At this point, we may have an interval that completely contains our store. 225 // If so, just add it to the interval and return. 226 if (I->Start <= Start && I->End >= End) 227 return; 228 229 // Now we know that Start <= I->End and End >= I->Start so the range overlaps 230 // but is not entirely contained within the range. 231 232 // See if the range extends the start of the range. In this case, it couldn't 233 // possibly cause it to join the prior range, because otherwise we would have 234 // stopped on *it*. 235 if (Start < I->Start) { 236 I->Start = Start; 237 I->StartPtr = Ptr; 238 I->Alignment = Alignment; 239 } 240 241 // Now we know that Start <= I->End and Start >= I->Start (so the startpoint 242 // is in or right at the end of I), and that End >= I->Start. Extend I out to 243 // End. 244 if (End > I->End) { 245 I->End = End; 246 range_iterator NextI = I; 247 while (++NextI != Ranges.end() && End >= NextI->Start) { 248 // Merge the range in. 249 I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end()); 250 if (NextI->End > I->End) 251 I->End = NextI->End; 252 Ranges.erase(NextI); 253 NextI = I; 254 } 255 } 256 } 257 258 //===----------------------------------------------------------------------===// 259 // MemCpyOptLegacyPass Pass 260 //===----------------------------------------------------------------------===// 261 262 namespace { 263 264 class MemCpyOptLegacyPass : public FunctionPass { 265 MemCpyOptPass Impl; 266 267 public: 268 static char ID; // Pass identification, replacement for typeid 269 270 MemCpyOptLegacyPass() : FunctionPass(ID) { 271 initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry()); 272 } 273 274 bool runOnFunction(Function &F) override; 275 276 private: 277 // This transformation requires dominator postdominator info 278 void getAnalysisUsage(AnalysisUsage &AU) const override { 279 AU.setPreservesCFG(); 280 AU.addRequired<AssumptionCacheTracker>(); 281 AU.addRequired<DominatorTreeWrapperPass>(); 282 AU.addPreserved<DominatorTreeWrapperPass>(); 283 AU.addPreserved<GlobalsAAWrapperPass>(); 284 AU.addRequired<TargetLibraryInfoWrapperPass>(); 285 if (!EnableMemorySSA) 286 AU.addRequired<MemoryDependenceWrapperPass>(); 287 AU.addPreserved<MemoryDependenceWrapperPass>(); 288 AU.addRequired<AAResultsWrapperPass>(); 289 AU.addPreserved<AAResultsWrapperPass>(); 290 if (EnableMemorySSA) 291 AU.addRequired<MemorySSAWrapperPass>(); 292 AU.addPreserved<MemorySSAWrapperPass>(); 293 } 294 }; 295 296 } // end anonymous namespace 297 298 char MemCpyOptLegacyPass::ID = 0; 299 300 /// The public interface to this file... 301 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); } 302 303 INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization", 304 false, false) 305 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 306 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 307 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) 308 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 309 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 310 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 311 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 312 INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization", 313 false, false) 314 315 // Check that V is either not accessible by the caller, or unwinding cannot 316 // occur between Start and End. 317 static bool mayBeVisibleThroughUnwinding(Value *V, Instruction *Start, 318 Instruction *End) { 319 assert(Start->getParent() == End->getParent() && "Must be in same block"); 320 if (!Start->getFunction()->doesNotThrow() && 321 !isa<AllocaInst>(getUnderlyingObject(V))) { 322 for (const Instruction &I : 323 make_range(Start->getIterator(), End->getIterator())) { 324 if (I.mayThrow()) 325 return true; 326 } 327 } 328 return false; 329 } 330 331 void MemCpyOptPass::eraseInstruction(Instruction *I) { 332 if (MSSAU) 333 MSSAU->removeMemoryAccess(I); 334 if (MD) 335 MD->removeInstruction(I); 336 I->eraseFromParent(); 337 } 338 339 // Check for mod or ref of Loc between Start and End, excluding both boundaries. 340 // Start and End must be in the same block 341 static bool accessedBetween(AliasAnalysis &AA, MemoryLocation Loc, 342 const MemoryUseOrDef *Start, 343 const MemoryUseOrDef *End) { 344 assert(Start->getBlock() == End->getBlock() && "Only local supported"); 345 for (const MemoryAccess &MA : 346 make_range(++Start->getIterator(), End->getIterator())) { 347 if (isModOrRefSet(AA.getModRefInfo(cast<MemoryUseOrDef>(MA).getMemoryInst(), 348 Loc))) 349 return true; 350 } 351 return false; 352 } 353 354 // Check for mod of Loc between Start and End, excluding both boundaries. 355 // Start and End can be in different blocks. 356 static bool writtenBetween(MemorySSA *MSSA, MemoryLocation Loc, 357 const MemoryUseOrDef *Start, 358 const MemoryUseOrDef *End) { 359 // TODO: Only walk until we hit Start. 360 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( 361 End->getDefiningAccess(), Loc); 362 return !MSSA->dominates(Clobber, Start); 363 } 364 365 /// When scanning forward over instructions, we look for some other patterns to 366 /// fold away. In particular, this looks for stores to neighboring locations of 367 /// memory. If it sees enough consecutive ones, it attempts to merge them 368 /// together into a memcpy/memset. 369 Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst, 370 Value *StartPtr, 371 Value *ByteVal) { 372 const DataLayout &DL = StartInst->getModule()->getDataLayout(); 373 374 // Okay, so we now have a single store that can be splatable. Scan to find 375 // all subsequent stores of the same value to offset from the same pointer. 376 // Join these together into ranges, so we can decide whether contiguous blocks 377 // are stored. 378 MemsetRanges Ranges(DL); 379 380 BasicBlock::iterator BI(StartInst); 381 382 // Keeps track of the last memory use or def before the insertion point for 383 // the new memset. The new MemoryDef for the inserted memsets will be inserted 384 // after MemInsertPoint. It points to either LastMemDef or to the last user 385 // before the insertion point of the memset, if there are any such users. 386 MemoryUseOrDef *MemInsertPoint = nullptr; 387 // Keeps track of the last MemoryDef between StartInst and the insertion point 388 // for the new memset. This will become the defining access of the inserted 389 // memsets. 390 MemoryDef *LastMemDef = nullptr; 391 for (++BI; !BI->isTerminator(); ++BI) { 392 if (MSSAU) { 393 auto *CurrentAcc = cast_or_null<MemoryUseOrDef>( 394 MSSAU->getMemorySSA()->getMemoryAccess(&*BI)); 395 if (CurrentAcc) { 396 MemInsertPoint = CurrentAcc; 397 if (auto *CurrentDef = dyn_cast<MemoryDef>(CurrentAcc)) 398 LastMemDef = CurrentDef; 399 } 400 } 401 402 // Calls that only access inaccessible memory do not block merging 403 // accessible stores. 404 if (auto *CB = dyn_cast<CallBase>(BI)) { 405 if (CB->onlyAccessesInaccessibleMemory()) 406 continue; 407 } 408 409 if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) { 410 // If the instruction is readnone, ignore it, otherwise bail out. We 411 // don't even allow readonly here because we don't want something like: 412 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A). 413 if (BI->mayWriteToMemory() || BI->mayReadFromMemory()) 414 break; 415 continue; 416 } 417 418 if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) { 419 // If this is a store, see if we can merge it in. 420 if (!NextStore->isSimple()) break; 421 422 Value *StoredVal = NextStore->getValueOperand(); 423 424 // Don't convert stores of non-integral pointer types to memsets (which 425 // stores integers). 426 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType())) 427 break; 428 429 // Check to see if this stored value is of the same byte-splattable value. 430 Value *StoredByte = isBytewiseValue(StoredVal, DL); 431 if (isa<UndefValue>(ByteVal) && StoredByte) 432 ByteVal = StoredByte; 433 if (ByteVal != StoredByte) 434 break; 435 436 // Check to see if this store is to a constant offset from the start ptr. 437 Optional<int64_t> Offset = 438 isPointerOffset(StartPtr, NextStore->getPointerOperand(), DL); 439 if (!Offset) 440 break; 441 442 Ranges.addStore(*Offset, NextStore); 443 } else { 444 MemSetInst *MSI = cast<MemSetInst>(BI); 445 446 if (MSI->isVolatile() || ByteVal != MSI->getValue() || 447 !isa<ConstantInt>(MSI->getLength())) 448 break; 449 450 // Check to see if this store is to a constant offset from the start ptr. 451 Optional<int64_t> Offset = isPointerOffset(StartPtr, MSI->getDest(), DL); 452 if (!Offset) 453 break; 454 455 Ranges.addMemSet(*Offset, MSI); 456 } 457 } 458 459 // If we have no ranges, then we just had a single store with nothing that 460 // could be merged in. This is a very common case of course. 461 if (Ranges.empty()) 462 return nullptr; 463 464 // If we had at least one store that could be merged in, add the starting 465 // store as well. We try to avoid this unless there is at least something 466 // interesting as a small compile-time optimization. 467 Ranges.addInst(0, StartInst); 468 469 // If we create any memsets, we put it right before the first instruction that 470 // isn't part of the memset block. This ensure that the memset is dominated 471 // by any addressing instruction needed by the start of the block. 472 IRBuilder<> Builder(&*BI); 473 474 // Now that we have full information about ranges, loop over the ranges and 475 // emit memset's for anything big enough to be worthwhile. 476 Instruction *AMemSet = nullptr; 477 for (const MemsetRange &Range : Ranges) { 478 if (Range.TheStores.size() == 1) continue; 479 480 // If it is profitable to lower this range to memset, do so now. 481 if (!Range.isProfitableToUseMemset(DL)) 482 continue; 483 484 // Otherwise, we do want to transform this! Create a new memset. 485 // Get the starting pointer of the block. 486 StartPtr = Range.StartPtr; 487 488 AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End - Range.Start, 489 MaybeAlign(Range.Alignment)); 490 LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI 491 : Range.TheStores) dbgs() 492 << *SI << '\n'; 493 dbgs() << "With: " << *AMemSet << '\n'); 494 if (!Range.TheStores.empty()) 495 AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc()); 496 497 if (MSSAU) { 498 assert(LastMemDef && MemInsertPoint && 499 "Both LastMemDef and MemInsertPoint need to be set"); 500 auto *NewDef = 501 cast<MemoryDef>(MemInsertPoint->getMemoryInst() == &*BI 502 ? MSSAU->createMemoryAccessBefore( 503 AMemSet, LastMemDef, MemInsertPoint) 504 : MSSAU->createMemoryAccessAfter( 505 AMemSet, LastMemDef, MemInsertPoint)); 506 MSSAU->insertDef(NewDef, /*RenameUses=*/true); 507 LastMemDef = NewDef; 508 MemInsertPoint = NewDef; 509 } 510 511 // Zap all the stores. 512 for (Instruction *SI : Range.TheStores) 513 eraseInstruction(SI); 514 515 ++NumMemSetInfer; 516 } 517 518 return AMemSet; 519 } 520 521 // This method try to lift a store instruction before position P. 522 // It will lift the store and its argument + that anything that 523 // may alias with these. 524 // The method returns true if it was successful. 525 bool MemCpyOptPass::moveUp(StoreInst *SI, Instruction *P, const LoadInst *LI) { 526 // If the store alias this position, early bail out. 527 MemoryLocation StoreLoc = MemoryLocation::get(SI); 528 if (isModOrRefSet(AA->getModRefInfo(P, StoreLoc))) 529 return false; 530 531 // Keep track of the arguments of all instruction we plan to lift 532 // so we can make sure to lift them as well if appropriate. 533 DenseSet<Instruction*> Args; 534 if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand())) 535 if (Ptr->getParent() == SI->getParent()) 536 Args.insert(Ptr); 537 538 // Instruction to lift before P. 539 SmallVector<Instruction *, 8> ToLift{SI}; 540 541 // Memory locations of lifted instructions. 542 SmallVector<MemoryLocation, 8> MemLocs{StoreLoc}; 543 544 // Lifted calls. 545 SmallVector<const CallBase *, 8> Calls; 546 547 const MemoryLocation LoadLoc = MemoryLocation::get(LI); 548 549 for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) { 550 auto *C = &*I; 551 552 // Make sure hoisting does not perform a store that was not guaranteed to 553 // happen. 554 if (!isGuaranteedToTransferExecutionToSuccessor(C)) 555 return false; 556 557 bool MayAlias = isModOrRefSet(AA->getModRefInfo(C, None)); 558 559 bool NeedLift = false; 560 if (Args.erase(C)) 561 NeedLift = true; 562 else if (MayAlias) { 563 NeedLift = llvm::any_of(MemLocs, [C, this](const MemoryLocation &ML) { 564 return isModOrRefSet(AA->getModRefInfo(C, ML)); 565 }); 566 567 if (!NeedLift) 568 NeedLift = llvm::any_of(Calls, [C, this](const CallBase *Call) { 569 return isModOrRefSet(AA->getModRefInfo(C, Call)); 570 }); 571 } 572 573 if (!NeedLift) 574 continue; 575 576 if (MayAlias) { 577 // Since LI is implicitly moved downwards past the lifted instructions, 578 // none of them may modify its source. 579 if (isModSet(AA->getModRefInfo(C, LoadLoc))) 580 return false; 581 else if (const auto *Call = dyn_cast<CallBase>(C)) { 582 // If we can't lift this before P, it's game over. 583 if (isModOrRefSet(AA->getModRefInfo(P, Call))) 584 return false; 585 586 Calls.push_back(Call); 587 } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) { 588 // If we can't lift this before P, it's game over. 589 auto ML = MemoryLocation::get(C); 590 if (isModOrRefSet(AA->getModRefInfo(P, ML))) 591 return false; 592 593 MemLocs.push_back(ML); 594 } else 595 // We don't know how to lift this instruction. 596 return false; 597 } 598 599 ToLift.push_back(C); 600 for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k) 601 if (auto *A = dyn_cast<Instruction>(C->getOperand(k))) { 602 if (A->getParent() == SI->getParent()) { 603 // Cannot hoist user of P above P 604 if(A == P) return false; 605 Args.insert(A); 606 } 607 } 608 } 609 610 // Find MSSA insertion point. Normally P will always have a corresponding 611 // memory access before which we can insert. However, with non-standard AA 612 // pipelines, there may be a mismatch between AA and MSSA, in which case we 613 // will scan for a memory access before P. In either case, we know for sure 614 // that at least the load will have a memory access. 615 // TODO: Simplify this once P will be determined by MSSA, in which case the 616 // discrepancy can no longer occur. 617 MemoryUseOrDef *MemInsertPoint = nullptr; 618 if (MSSAU) { 619 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(P)) { 620 MemInsertPoint = cast<MemoryUseOrDef>(--MA->getIterator()); 621 } else { 622 const Instruction *ConstP = P; 623 for (const Instruction &I : make_range(++ConstP->getReverseIterator(), 624 ++LI->getReverseIterator())) { 625 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(&I)) { 626 MemInsertPoint = MA; 627 break; 628 } 629 } 630 } 631 } 632 633 // We made it, we need to lift. 634 for (auto *I : llvm::reverse(ToLift)) { 635 LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n"); 636 I->moveBefore(P); 637 if (MSSAU) { 638 assert(MemInsertPoint && "Must have found insert point"); 639 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(I)) { 640 MSSAU->moveAfter(MA, MemInsertPoint); 641 MemInsertPoint = MA; 642 } 643 } 644 } 645 646 return true; 647 } 648 649 bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) { 650 if (!SI->isSimple()) return false; 651 652 // Avoid merging nontemporal stores since the resulting 653 // memcpy/memset would not be able to preserve the nontemporal hint. 654 // In theory we could teach how to propagate the !nontemporal metadata to 655 // memset calls. However, that change would force the backend to 656 // conservatively expand !nontemporal memset calls back to sequences of 657 // store instructions (effectively undoing the merging). 658 if (SI->getMetadata(LLVMContext::MD_nontemporal)) 659 return false; 660 661 const DataLayout &DL = SI->getModule()->getDataLayout(); 662 663 Value *StoredVal = SI->getValueOperand(); 664 665 // Not all the transforms below are correct for non-integral pointers, bail 666 // until we've audited the individual pieces. 667 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType())) 668 return false; 669 670 // Load to store forwarding can be interpreted as memcpy. 671 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 672 if (LI->isSimple() && LI->hasOneUse() && 673 LI->getParent() == SI->getParent()) { 674 675 auto *T = LI->getType(); 676 if (T->isAggregateType()) { 677 MemoryLocation LoadLoc = MemoryLocation::get(LI); 678 679 // We use alias analysis to check if an instruction may store to 680 // the memory we load from in between the load and the store. If 681 // such an instruction is found, we try to promote there instead 682 // of at the store position. 683 // TODO: Can use MSSA for this. 684 Instruction *P = SI; 685 for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) { 686 if (isModSet(AA->getModRefInfo(&I, LoadLoc))) { 687 P = &I; 688 break; 689 } 690 } 691 692 // We found an instruction that may write to the loaded memory. 693 // We can try to promote at this position instead of the store 694 // position if nothing alias the store memory after this and the store 695 // destination is not in the range. 696 if (P && P != SI) { 697 if (!moveUp(SI, P, LI)) 698 P = nullptr; 699 } 700 701 // If a valid insertion position is found, then we can promote 702 // the load/store pair to a memcpy. 703 if (P) { 704 // If we load from memory that may alias the memory we store to, 705 // memmove must be used to preserve semantic. If not, memcpy can 706 // be used. 707 bool UseMemMove = false; 708 if (!AA->isNoAlias(MemoryLocation::get(SI), LoadLoc)) 709 UseMemMove = true; 710 711 uint64_t Size = DL.getTypeStoreSize(T); 712 713 IRBuilder<> Builder(P); 714 Instruction *M; 715 if (UseMemMove) 716 M = Builder.CreateMemMove( 717 SI->getPointerOperand(), SI->getAlign(), 718 LI->getPointerOperand(), LI->getAlign(), Size); 719 else 720 M = Builder.CreateMemCpy( 721 SI->getPointerOperand(), SI->getAlign(), 722 LI->getPointerOperand(), LI->getAlign(), Size); 723 724 LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => " 725 << *M << "\n"); 726 727 if (MSSAU) { 728 auto *LastDef = 729 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI)); 730 auto *NewAccess = 731 MSSAU->createMemoryAccessAfter(M, LastDef, LastDef); 732 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 733 } 734 735 eraseInstruction(SI); 736 eraseInstruction(LI); 737 ++NumMemCpyInstr; 738 739 // Make sure we do not invalidate the iterator. 740 BBI = M->getIterator(); 741 return true; 742 } 743 } 744 745 // Detect cases where we're performing call slot forwarding, but 746 // happen to be using a load-store pair to implement it, rather than 747 // a memcpy. 748 CallInst *C = nullptr; 749 if (EnableMemorySSA) { 750 if (auto *LoadClobber = dyn_cast<MemoryUseOrDef>( 751 MSSA->getWalker()->getClobberingMemoryAccess(LI))) { 752 // The load most post-dom the call. Limit to the same block for now. 753 // TODO: Support non-local call-slot optimization? 754 if (LoadClobber->getBlock() == SI->getParent()) 755 C = dyn_cast_or_null<CallInst>(LoadClobber->getMemoryInst()); 756 } 757 } else { 758 MemDepResult ldep = MD->getDependency(LI); 759 if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst())) 760 C = dyn_cast<CallInst>(ldep.getInst()); 761 } 762 763 if (C) { 764 // Check that nothing touches the dest of the "copy" between 765 // the call and the store. 766 MemoryLocation StoreLoc = MemoryLocation::get(SI); 767 if (EnableMemorySSA) { 768 if (accessedBetween(*AA, StoreLoc, MSSA->getMemoryAccess(C), 769 MSSA->getMemoryAccess(SI))) 770 C = nullptr; 771 } else { 772 for (BasicBlock::iterator I = --SI->getIterator(), 773 E = C->getIterator(); 774 I != E; --I) { 775 if (isModOrRefSet(AA->getModRefInfo(&*I, StoreLoc))) { 776 C = nullptr; 777 break; 778 } 779 } 780 } 781 } 782 783 if (C) { 784 bool changed = performCallSlotOptzn( 785 LI, SI, SI->getPointerOperand()->stripPointerCasts(), 786 LI->getPointerOperand()->stripPointerCasts(), 787 DL.getTypeStoreSize(SI->getOperand(0)->getType()), 788 commonAlignment(SI->getAlign(), LI->getAlign()), C); 789 if (changed) { 790 eraseInstruction(SI); 791 eraseInstruction(LI); 792 ++NumMemCpyInstr; 793 return true; 794 } 795 } 796 } 797 } 798 799 // There are two cases that are interesting for this code to handle: memcpy 800 // and memset. Right now we only handle memset. 801 802 // Ensure that the value being stored is something that can be memset'able a 803 // byte at a time like "0" or "-1" or any width, as well as things like 804 // 0xA0A0A0A0 and 0.0. 805 auto *V = SI->getOperand(0); 806 if (Value *ByteVal = isBytewiseValue(V, DL)) { 807 if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(), 808 ByteVal)) { 809 BBI = I->getIterator(); // Don't invalidate iterator. 810 return true; 811 } 812 813 // If we have an aggregate, we try to promote it to memset regardless 814 // of opportunity for merging as it can expose optimization opportunities 815 // in subsequent passes. 816 auto *T = V->getType(); 817 if (T->isAggregateType()) { 818 uint64_t Size = DL.getTypeStoreSize(T); 819 IRBuilder<> Builder(SI); 820 auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size, 821 SI->getAlign()); 822 823 LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n"); 824 825 if (MSSAU) { 826 assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI))); 827 auto *LastDef = 828 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI)); 829 auto *NewAccess = MSSAU->createMemoryAccessAfter(M, LastDef, LastDef); 830 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 831 } 832 833 eraseInstruction(SI); 834 NumMemSetInfer++; 835 836 // Make sure we do not invalidate the iterator. 837 BBI = M->getIterator(); 838 return true; 839 } 840 } 841 842 return false; 843 } 844 845 bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) { 846 // See if there is another memset or store neighboring this memset which 847 // allows us to widen out the memset to do a single larger store. 848 if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile()) 849 if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(), 850 MSI->getValue())) { 851 BBI = I->getIterator(); // Don't invalidate iterator. 852 return true; 853 } 854 return false; 855 } 856 857 /// Takes a memcpy and a call that it depends on, 858 /// and checks for the possibility of a call slot optimization by having 859 /// the call write its result directly into the destination of the memcpy. 860 bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpyLoad, 861 Instruction *cpyStore, Value *cpyDest, 862 Value *cpySrc, uint64_t cpyLen, 863 Align cpyAlign, CallInst *C) { 864 // The general transformation to keep in mind is 865 // 866 // call @func(..., src, ...) 867 // memcpy(dest, src, ...) 868 // 869 // -> 870 // 871 // memcpy(dest, src, ...) 872 // call @func(..., dest, ...) 873 // 874 // Since moving the memcpy is technically awkward, we additionally check that 875 // src only holds uninitialized values at the moment of the call, meaning that 876 // the memcpy can be discarded rather than moved. 877 878 // Lifetime marks shouldn't be operated on. 879 if (Function *F = C->getCalledFunction()) 880 if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start) 881 return false; 882 883 // Require that src be an alloca. This simplifies the reasoning considerably. 884 AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc); 885 if (!srcAlloca) 886 return false; 887 888 ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize()); 889 if (!srcArraySize) 890 return false; 891 892 const DataLayout &DL = cpyLoad->getModule()->getDataLayout(); 893 uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) * 894 srcArraySize->getZExtValue(); 895 896 if (cpyLen < srcSize) 897 return false; 898 899 // Check that accessing the first srcSize bytes of dest will not cause a 900 // trap. Otherwise the transform is invalid since it might cause a trap 901 // to occur earlier than it otherwise would. 902 if (!isDereferenceableAndAlignedPointer(cpyDest, Align(1), APInt(64, cpyLen), 903 DL, C, DT)) 904 return false; 905 906 // Make sure that nothing can observe cpyDest being written early. There are 907 // a number of cases to consider: 908 // 1. cpyDest cannot be accessed between C and cpyStore as a precondition of 909 // the transform. 910 // 2. C itself may not access cpyDest (prior to the transform). This is 911 // checked further below. 912 // 3. If cpyDest is accessible to the caller of this function (potentially 913 // captured and not based on an alloca), we need to ensure that we cannot 914 // unwind between C and cpyStore. This is checked here. 915 // 4. If cpyDest is potentially captured, there may be accesses to it from 916 // another thread. In this case, we need to check that cpyStore is 917 // guaranteed to be executed if C is. As it is a non-atomic access, it 918 // renders accesses from other threads undefined. 919 // TODO: This is currently not checked. 920 if (mayBeVisibleThroughUnwinding(cpyDest, C, cpyStore)) 921 return false; 922 923 // Check that dest points to memory that is at least as aligned as src. 924 Align srcAlign = srcAlloca->getAlign(); 925 bool isDestSufficientlyAligned = srcAlign <= cpyAlign; 926 // If dest is not aligned enough and we can't increase its alignment then 927 // bail out. 928 if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest)) 929 return false; 930 931 // Check that src is not accessed except via the call and the memcpy. This 932 // guarantees that it holds only undefined values when passed in (so the final 933 // memcpy can be dropped), that it is not read or written between the call and 934 // the memcpy, and that writing beyond the end of it is undefined. 935 SmallVector<User *, 8> srcUseList(srcAlloca->users()); 936 while (!srcUseList.empty()) { 937 User *U = srcUseList.pop_back_val(); 938 939 if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) { 940 append_range(srcUseList, U->users()); 941 continue; 942 } 943 if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) { 944 if (!G->hasAllZeroIndices()) 945 return false; 946 947 append_range(srcUseList, U->users()); 948 continue; 949 } 950 if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U)) 951 if (IT->isLifetimeStartOrEnd()) 952 continue; 953 954 if (U != C && U != cpyLoad) 955 return false; 956 } 957 958 // Check that src isn't captured by the called function since the 959 // transformation can cause aliasing issues in that case. 960 for (unsigned ArgI = 0, E = C->arg_size(); ArgI != E; ++ArgI) 961 if (C->getArgOperand(ArgI) == cpySrc && !C->doesNotCapture(ArgI)) 962 return false; 963 964 // Since we're changing the parameter to the callsite, we need to make sure 965 // that what would be the new parameter dominates the callsite. 966 if (!DT->dominates(cpyDest, C)) { 967 // Support moving a constant index GEP before the call. 968 auto *GEP = dyn_cast<GetElementPtrInst>(cpyDest); 969 if (GEP && GEP->hasAllConstantIndices() && 970 DT->dominates(GEP->getPointerOperand(), C)) 971 GEP->moveBefore(C); 972 else 973 return false; 974 } 975 976 // In addition to knowing that the call does not access src in some 977 // unexpected manner, for example via a global, which we deduce from 978 // the use analysis, we also need to know that it does not sneakily 979 // access dest. We rely on AA to figure this out for us. 980 ModRefInfo MR = AA->getModRefInfo(C, cpyDest, LocationSize::precise(srcSize)); 981 // If necessary, perform additional analysis. 982 if (isModOrRefSet(MR)) 983 MR = AA->callCapturesBefore(C, cpyDest, LocationSize::precise(srcSize), DT); 984 if (isModOrRefSet(MR)) 985 return false; 986 987 // We can't create address space casts here because we don't know if they're 988 // safe for the target. 989 if (cpySrc->getType()->getPointerAddressSpace() != 990 cpyDest->getType()->getPointerAddressSpace()) 991 return false; 992 for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI) 993 if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc && 994 cpySrc->getType()->getPointerAddressSpace() != 995 C->getArgOperand(ArgI)->getType()->getPointerAddressSpace()) 996 return false; 997 998 // All the checks have passed, so do the transformation. 999 bool changedArgument = false; 1000 for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI) 1001 if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc) { 1002 Value *Dest = cpySrc->getType() == cpyDest->getType() ? cpyDest 1003 : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(), 1004 cpyDest->getName(), C); 1005 changedArgument = true; 1006 if (C->getArgOperand(ArgI)->getType() == Dest->getType()) 1007 C->setArgOperand(ArgI, Dest); 1008 else 1009 C->setArgOperand(ArgI, CastInst::CreatePointerCast( 1010 Dest, C->getArgOperand(ArgI)->getType(), 1011 Dest->getName(), C)); 1012 } 1013 1014 if (!changedArgument) 1015 return false; 1016 1017 // If the destination wasn't sufficiently aligned then increase its alignment. 1018 if (!isDestSufficientlyAligned) { 1019 assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!"); 1020 cast<AllocaInst>(cpyDest)->setAlignment(srcAlign); 1021 } 1022 1023 // Drop any cached information about the call, because we may have changed 1024 // its dependence information by changing its parameter. 1025 if (MD) 1026 MD->removeInstruction(C); 1027 1028 // Update AA metadata 1029 // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be 1030 // handled here, but combineMetadata doesn't support them yet 1031 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 1032 LLVMContext::MD_noalias, 1033 LLVMContext::MD_invariant_group, 1034 LLVMContext::MD_access_group}; 1035 combineMetadata(C, cpyLoad, KnownIDs, true); 1036 1037 ++NumCallSlot; 1038 return true; 1039 } 1040 1041 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is 1042 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can. 1043 bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M, 1044 MemCpyInst *MDep) { 1045 // We can only transforms memcpy's where the dest of one is the source of the 1046 // other. 1047 if (M->getSource() != MDep->getDest() || MDep->isVolatile()) 1048 return false; 1049 1050 // If dep instruction is reading from our current input, then it is a noop 1051 // transfer and substituting the input won't change this instruction. Just 1052 // ignore the input and let someone else zap MDep. This handles cases like: 1053 // memcpy(a <- a) 1054 // memcpy(b <- a) 1055 if (M->getSource() == MDep->getSource()) 1056 return false; 1057 1058 // Second, the length of the memcpy's must be the same, or the preceding one 1059 // must be larger than the following one. 1060 if (MDep->getLength() != M->getLength()) { 1061 ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength()); 1062 ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength()); 1063 if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue()) 1064 return false; 1065 } 1066 1067 // Verify that the copied-from memory doesn't change in between the two 1068 // transfers. For example, in: 1069 // memcpy(a <- b) 1070 // *b = 42; 1071 // memcpy(c <- a) 1072 // It would be invalid to transform the second memcpy into memcpy(c <- b). 1073 // 1074 // TODO: If the code between M and MDep is transparent to the destination "c", 1075 // then we could still perform the xform by moving M up to the first memcpy. 1076 if (EnableMemorySSA) { 1077 // TODO: It would be sufficient to check the MDep source up to the memcpy 1078 // size of M, rather than MDep. 1079 if (writtenBetween(MSSA, MemoryLocation::getForSource(MDep), 1080 MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(M))) 1081 return false; 1082 } else { 1083 // NOTE: This is conservative, it will stop on any read from the source loc, 1084 // not just the defining memcpy. 1085 MemDepResult SourceDep = 1086 MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false, 1087 M->getIterator(), M->getParent()); 1088 if (!SourceDep.isClobber() || SourceDep.getInst() != MDep) 1089 return false; 1090 } 1091 1092 // If the dest of the second might alias the source of the first, then the 1093 // source and dest might overlap. We still want to eliminate the intermediate 1094 // value, but we have to generate a memmove instead of memcpy. 1095 bool UseMemMove = false; 1096 if (!AA->isNoAlias(MemoryLocation::getForDest(M), 1097 MemoryLocation::getForSource(MDep))) 1098 UseMemMove = true; 1099 1100 // If all checks passed, then we can transform M. 1101 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n" 1102 << *MDep << '\n' << *M << '\n'); 1103 1104 // TODO: Is this worth it if we're creating a less aligned memcpy? For 1105 // example we could be moving from movaps -> movq on x86. 1106 IRBuilder<> Builder(M); 1107 Instruction *NewM; 1108 if (UseMemMove) 1109 NewM = Builder.CreateMemMove(M->getRawDest(), M->getDestAlign(), 1110 MDep->getRawSource(), MDep->getSourceAlign(), 1111 M->getLength(), M->isVolatile()); 1112 else 1113 NewM = Builder.CreateMemCpy(M->getRawDest(), M->getDestAlign(), 1114 MDep->getRawSource(), MDep->getSourceAlign(), 1115 M->getLength(), M->isVolatile()); 1116 1117 if (MSSAU) { 1118 assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M))); 1119 auto *LastDef = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)); 1120 auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); 1121 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 1122 } 1123 1124 // Remove the instruction we're replacing. 1125 eraseInstruction(M); 1126 ++NumMemCpyInstr; 1127 return true; 1128 } 1129 1130 /// We've found that the (upward scanning) memory dependence of \p MemCpy is 1131 /// \p MemSet. Try to simplify \p MemSet to only set the trailing bytes that 1132 /// weren't copied over by \p MemCpy. 1133 /// 1134 /// In other words, transform: 1135 /// \code 1136 /// memset(dst, c, dst_size); 1137 /// memcpy(dst, src, src_size); 1138 /// \endcode 1139 /// into: 1140 /// \code 1141 /// memcpy(dst, src, src_size); 1142 /// memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size); 1143 /// \endcode 1144 bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy, 1145 MemSetInst *MemSet) { 1146 // We can only transform memset/memcpy with the same destination. 1147 if (!AA->isMustAlias(MemSet->getDest(), MemCpy->getDest())) 1148 return false; 1149 1150 // Check that src and dst of the memcpy aren't the same. While memcpy 1151 // operands cannot partially overlap, exact equality is allowed. 1152 if (!AA->isNoAlias(MemoryLocation(MemCpy->getSource(), 1153 LocationSize::precise(1)), 1154 MemoryLocation(MemCpy->getDest(), 1155 LocationSize::precise(1)))) 1156 return false; 1157 1158 if (EnableMemorySSA) { 1159 // We know that dst up to src_size is not written. We now need to make sure 1160 // that dst up to dst_size is not accessed. (If we did not move the memset, 1161 // checking for reads would be sufficient.) 1162 if (accessedBetween(*AA, MemoryLocation::getForDest(MemSet), 1163 MSSA->getMemoryAccess(MemSet), 1164 MSSA->getMemoryAccess(MemCpy))) { 1165 return false; 1166 } 1167 } else { 1168 // We have already checked that dst up to src_size is not accessed. We 1169 // need to make sure that there are no accesses up to dst_size either. 1170 MemDepResult DstDepInfo = MD->getPointerDependencyFrom( 1171 MemoryLocation::getForDest(MemSet), false, MemCpy->getIterator(), 1172 MemCpy->getParent()); 1173 if (DstDepInfo.getInst() != MemSet) 1174 return false; 1175 } 1176 1177 // Use the same i8* dest as the memcpy, killing the memset dest if different. 1178 Value *Dest = MemCpy->getRawDest(); 1179 Value *DestSize = MemSet->getLength(); 1180 Value *SrcSize = MemCpy->getLength(); 1181 1182 if (mayBeVisibleThroughUnwinding(Dest, MemSet, MemCpy)) 1183 return false; 1184 1185 // If the sizes are the same, simply drop the memset instead of generating 1186 // a replacement with zero size. 1187 if (DestSize == SrcSize) { 1188 eraseInstruction(MemSet); 1189 return true; 1190 } 1191 1192 // By default, create an unaligned memset. 1193 unsigned Align = 1; 1194 // If Dest is aligned, and SrcSize is constant, use the minimum alignment 1195 // of the sum. 1196 const unsigned DestAlign = 1197 std::max(MemSet->getDestAlignment(), MemCpy->getDestAlignment()); 1198 if (DestAlign > 1) 1199 if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize)) 1200 Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign); 1201 1202 IRBuilder<> Builder(MemCpy); 1203 1204 // If the sizes have different types, zext the smaller one. 1205 if (DestSize->getType() != SrcSize->getType()) { 1206 if (DestSize->getType()->getIntegerBitWidth() > 1207 SrcSize->getType()->getIntegerBitWidth()) 1208 SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType()); 1209 else 1210 DestSize = Builder.CreateZExt(DestSize, SrcSize->getType()); 1211 } 1212 1213 Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize); 1214 Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize); 1215 Value *MemsetLen = Builder.CreateSelect( 1216 Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff); 1217 Instruction *NewMemSet = Builder.CreateMemSet( 1218 Builder.CreateGEP(Dest->getType()->getPointerElementType(), Dest, 1219 SrcSize), 1220 MemSet->getOperand(1), MemsetLen, MaybeAlign(Align)); 1221 1222 if (MSSAU) { 1223 assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)) && 1224 "MemCpy must be a MemoryDef"); 1225 // The new memset is inserted after the memcpy, but it is known that its 1226 // defining access is the memset about to be removed which immediately 1227 // precedes the memcpy. 1228 auto *LastDef = 1229 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)); 1230 auto *NewAccess = MSSAU->createMemoryAccessBefore( 1231 NewMemSet, LastDef->getDefiningAccess(), LastDef); 1232 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 1233 } 1234 1235 eraseInstruction(MemSet); 1236 return true; 1237 } 1238 1239 /// Determine whether the instruction has undefined content for the given Size, 1240 /// either because it was freshly alloca'd or started its lifetime. 1241 static bool hasUndefContents(Instruction *I, Value *Size) { 1242 if (isa<AllocaInst>(I)) 1243 return true; 1244 1245 if (ConstantInt *CSize = dyn_cast<ConstantInt>(Size)) { 1246 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1247 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 1248 if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0))) 1249 if (LTSize->getZExtValue() >= CSize->getZExtValue()) 1250 return true; 1251 } 1252 1253 return false; 1254 } 1255 1256 static bool hasUndefContentsMSSA(MemorySSA *MSSA, AliasAnalysis *AA, Value *V, 1257 MemoryDef *Def, Value *Size) { 1258 if (MSSA->isLiveOnEntryDef(Def)) 1259 return isa<AllocaInst>(getUnderlyingObject(V)); 1260 1261 if (IntrinsicInst *II = 1262 dyn_cast_or_null<IntrinsicInst>(Def->getMemoryInst())) { 1263 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 1264 ConstantInt *LTSize = cast<ConstantInt>(II->getArgOperand(0)); 1265 1266 if (ConstantInt *CSize = dyn_cast<ConstantInt>(Size)) { 1267 if (AA->isMustAlias(V, II->getArgOperand(1)) && 1268 LTSize->getZExtValue() >= CSize->getZExtValue()) 1269 return true; 1270 } 1271 1272 // If the lifetime.start covers a whole alloca (as it almost always 1273 // does) and we're querying a pointer based on that alloca, then we know 1274 // the memory is definitely undef, regardless of how exactly we alias. 1275 // The size also doesn't matter, as an out-of-bounds access would be UB. 1276 AllocaInst *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(V)); 1277 if (getUnderlyingObject(II->getArgOperand(1)) == Alloca) { 1278 const DataLayout &DL = Alloca->getModule()->getDataLayout(); 1279 if (Optional<TypeSize> AllocaSize = Alloca->getAllocationSizeInBits(DL)) 1280 if (*AllocaSize == LTSize->getValue() * 8) 1281 return true; 1282 } 1283 } 1284 } 1285 1286 return false; 1287 } 1288 1289 /// Transform memcpy to memset when its source was just memset. 1290 /// In other words, turn: 1291 /// \code 1292 /// memset(dst1, c, dst1_size); 1293 /// memcpy(dst2, dst1, dst2_size); 1294 /// \endcode 1295 /// into: 1296 /// \code 1297 /// memset(dst1, c, dst1_size); 1298 /// memset(dst2, c, dst2_size); 1299 /// \endcode 1300 /// When dst2_size <= dst1_size. 1301 bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy, 1302 MemSetInst *MemSet) { 1303 // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and 1304 // memcpying from the same address. Otherwise it is hard to reason about. 1305 if (!AA->isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource())) 1306 return false; 1307 1308 Value *MemSetSize = MemSet->getLength(); 1309 Value *CopySize = MemCpy->getLength(); 1310 1311 if (MemSetSize != CopySize) { 1312 // Make sure the memcpy doesn't read any more than what the memset wrote. 1313 // Don't worry about sizes larger than i64. 1314 1315 // A known memset size is required. 1316 ConstantInt *CMemSetSize = dyn_cast<ConstantInt>(MemSetSize); 1317 if (!CMemSetSize) 1318 return false; 1319 1320 // A known memcpy size is also required. 1321 ConstantInt *CCopySize = dyn_cast<ConstantInt>(CopySize); 1322 if (!CCopySize) 1323 return false; 1324 if (CCopySize->getZExtValue() > CMemSetSize->getZExtValue()) { 1325 // If the memcpy is larger than the memset, but the memory was undef prior 1326 // to the memset, we can just ignore the tail. Technically we're only 1327 // interested in the bytes from MemSetSize..CopySize here, but as we can't 1328 // easily represent this location, we use the full 0..CopySize range. 1329 MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy); 1330 bool CanReduceSize = false; 1331 if (EnableMemorySSA) { 1332 MemoryUseOrDef *MemSetAccess = MSSA->getMemoryAccess(MemSet); 1333 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( 1334 MemSetAccess->getDefiningAccess(), MemCpyLoc); 1335 if (auto *MD = dyn_cast<MemoryDef>(Clobber)) 1336 if (hasUndefContentsMSSA(MSSA, AA, MemCpy->getSource(), MD, CopySize)) 1337 CanReduceSize = true; 1338 } else { 1339 MemDepResult DepInfo = MD->getPointerDependencyFrom( 1340 MemCpyLoc, true, MemSet->getIterator(), MemSet->getParent()); 1341 if (DepInfo.isDef() && hasUndefContents(DepInfo.getInst(), CopySize)) 1342 CanReduceSize = true; 1343 } 1344 1345 if (!CanReduceSize) 1346 return false; 1347 CopySize = MemSetSize; 1348 } 1349 } 1350 1351 IRBuilder<> Builder(MemCpy); 1352 Instruction *NewM = 1353 Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1), 1354 CopySize, MaybeAlign(MemCpy->getDestAlignment())); 1355 if (MSSAU) { 1356 auto *LastDef = 1357 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)); 1358 auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); 1359 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 1360 } 1361 1362 return true; 1363 } 1364 1365 /// Perform simplification of memcpy's. If we have memcpy A 1366 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite 1367 /// B to be a memcpy from X to Z (or potentially a memmove, depending on 1368 /// circumstances). This allows later passes to remove the first memcpy 1369 /// altogether. 1370 bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) { 1371 // We can only optimize non-volatile memcpy's. 1372 if (M->isVolatile()) return false; 1373 1374 // If the source and destination of the memcpy are the same, then zap it. 1375 if (M->getSource() == M->getDest()) { 1376 ++BBI; 1377 eraseInstruction(M); 1378 return true; 1379 } 1380 1381 // If copying from a constant, try to turn the memcpy into a memset. 1382 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource())) 1383 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 1384 if (Value *ByteVal = isBytewiseValue(GV->getInitializer(), 1385 M->getModule()->getDataLayout())) { 1386 IRBuilder<> Builder(M); 1387 Instruction *NewM = 1388 Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(), 1389 MaybeAlign(M->getDestAlignment()), false); 1390 if (MSSAU) { 1391 auto *LastDef = 1392 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)); 1393 auto *NewAccess = 1394 MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); 1395 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 1396 } 1397 1398 eraseInstruction(M); 1399 ++NumCpyToSet; 1400 return true; 1401 } 1402 1403 if (EnableMemorySSA) { 1404 MemoryUseOrDef *MA = MSSA->getMemoryAccess(M); 1405 MemoryAccess *AnyClobber = MSSA->getWalker()->getClobberingMemoryAccess(MA); 1406 MemoryLocation DestLoc = MemoryLocation::getForDest(M); 1407 const MemoryAccess *DestClobber = 1408 MSSA->getWalker()->getClobberingMemoryAccess(AnyClobber, DestLoc); 1409 1410 // Try to turn a partially redundant memset + memcpy into 1411 // memcpy + smaller memset. We don't need the memcpy size for this. 1412 // The memcpy most post-dom the memset, so limit this to the same basic 1413 // block. A non-local generalization is likely not worthwhile. 1414 if (auto *MD = dyn_cast<MemoryDef>(DestClobber)) 1415 if (auto *MDep = dyn_cast_or_null<MemSetInst>(MD->getMemoryInst())) 1416 if (DestClobber->getBlock() == M->getParent()) 1417 if (processMemSetMemCpyDependence(M, MDep)) 1418 return true; 1419 1420 MemoryAccess *SrcClobber = MSSA->getWalker()->getClobberingMemoryAccess( 1421 AnyClobber, MemoryLocation::getForSource(M)); 1422 1423 // There are four possible optimizations we can do for memcpy: 1424 // a) memcpy-memcpy xform which exposes redundance for DSE. 1425 // b) call-memcpy xform for return slot optimization. 1426 // c) memcpy from freshly alloca'd space or space that has just started 1427 // its lifetime copies undefined data, and we can therefore eliminate 1428 // the memcpy in favor of the data that was already at the destination. 1429 // d) memcpy from a just-memset'd source can be turned into memset. 1430 if (auto *MD = dyn_cast<MemoryDef>(SrcClobber)) { 1431 if (Instruction *MI = MD->getMemoryInst()) { 1432 if (ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength())) { 1433 if (auto *C = dyn_cast<CallInst>(MI)) { 1434 // The memcpy must post-dom the call. Limit to the same block for 1435 // now. Additionally, we need to ensure that there are no accesses 1436 // to dest between the call and the memcpy. Accesses to src will be 1437 // checked by performCallSlotOptzn(). 1438 // TODO: Support non-local call-slot optimization? 1439 if (C->getParent() == M->getParent() && 1440 !accessedBetween(*AA, DestLoc, MD, MA)) { 1441 // FIXME: Can we pass in either of dest/src alignment here instead 1442 // of conservatively taking the minimum? 1443 Align Alignment = std::min(M->getDestAlign().valueOrOne(), 1444 M->getSourceAlign().valueOrOne()); 1445 if (performCallSlotOptzn(M, M, M->getDest(), M->getSource(), 1446 CopySize->getZExtValue(), Alignment, 1447 C)) { 1448 LLVM_DEBUG(dbgs() << "Performed call slot optimization:\n" 1449 << " call: " << *C << "\n" 1450 << " memcpy: " << *M << "\n"); 1451 eraseInstruction(M); 1452 ++NumMemCpyInstr; 1453 return true; 1454 } 1455 } 1456 } 1457 } 1458 if (auto *MDep = dyn_cast<MemCpyInst>(MI)) 1459 return processMemCpyMemCpyDependence(M, MDep); 1460 if (auto *MDep = dyn_cast<MemSetInst>(MI)) { 1461 if (performMemCpyToMemSetOptzn(M, MDep)) { 1462 LLVM_DEBUG(dbgs() << "Converted memcpy to memset\n"); 1463 eraseInstruction(M); 1464 ++NumCpyToSet; 1465 return true; 1466 } 1467 } 1468 } 1469 1470 if (hasUndefContentsMSSA(MSSA, AA, M->getSource(), MD, M->getLength())) { 1471 LLVM_DEBUG(dbgs() << "Removed memcpy from undef\n"); 1472 eraseInstruction(M); 1473 ++NumMemCpyInstr; 1474 return true; 1475 } 1476 } 1477 } else { 1478 MemDepResult DepInfo = MD->getDependency(M); 1479 1480 // Try to turn a partially redundant memset + memcpy into 1481 // memcpy + smaller memset. We don't need the memcpy size for this. 1482 if (DepInfo.isClobber()) 1483 if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst())) 1484 if (processMemSetMemCpyDependence(M, MDep)) 1485 return true; 1486 1487 // There are four possible optimizations we can do for memcpy: 1488 // a) memcpy-memcpy xform which exposes redundance for DSE. 1489 // b) call-memcpy xform for return slot optimization. 1490 // c) memcpy from freshly alloca'd space or space that has just started 1491 // its lifetime copies undefined data, and we can therefore eliminate 1492 // the memcpy in favor of the data that was already at the destination. 1493 // d) memcpy from a just-memset'd source can be turned into memset. 1494 if (ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength())) { 1495 if (DepInfo.isClobber()) { 1496 if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) { 1497 // FIXME: Can we pass in either of dest/src alignment here instead 1498 // of conservatively taking the minimum? 1499 Align Alignment = std::min(M->getDestAlign().valueOrOne(), 1500 M->getSourceAlign().valueOrOne()); 1501 if (performCallSlotOptzn(M, M, M->getDest(), M->getSource(), 1502 CopySize->getZExtValue(), Alignment, C)) { 1503 eraseInstruction(M); 1504 ++NumMemCpyInstr; 1505 return true; 1506 } 1507 } 1508 } 1509 } 1510 1511 MemoryLocation SrcLoc = MemoryLocation::getForSource(M); 1512 MemDepResult SrcDepInfo = MD->getPointerDependencyFrom( 1513 SrcLoc, true, M->getIterator(), M->getParent()); 1514 1515 if (SrcDepInfo.isClobber()) { 1516 if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst())) 1517 return processMemCpyMemCpyDependence(M, MDep); 1518 } else if (SrcDepInfo.isDef()) { 1519 if (hasUndefContents(SrcDepInfo.getInst(), M->getLength())) { 1520 eraseInstruction(M); 1521 ++NumMemCpyInstr; 1522 return true; 1523 } 1524 } 1525 1526 if (SrcDepInfo.isClobber()) 1527 if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst())) 1528 if (performMemCpyToMemSetOptzn(M, MDep)) { 1529 eraseInstruction(M); 1530 ++NumCpyToSet; 1531 return true; 1532 } 1533 } 1534 1535 return false; 1536 } 1537 1538 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed 1539 /// not to alias. 1540 bool MemCpyOptPass::processMemMove(MemMoveInst *M) { 1541 if (!TLI->has(LibFunc_memmove)) 1542 return false; 1543 1544 // See if the pointers alias. 1545 if (!AA->isNoAlias(MemoryLocation::getForDest(M), 1546 MemoryLocation::getForSource(M))) 1547 return false; 1548 1549 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M 1550 << "\n"); 1551 1552 // If not, then we know we can transform this. 1553 Type *ArgTys[3] = { M->getRawDest()->getType(), 1554 M->getRawSource()->getType(), 1555 M->getLength()->getType() }; 1556 M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(), 1557 Intrinsic::memcpy, ArgTys)); 1558 1559 // For MemorySSA nothing really changes (except that memcpy may imply stricter 1560 // aliasing guarantees). 1561 1562 // MemDep may have over conservative information about this instruction, just 1563 // conservatively flush it from the cache. 1564 if (MD) 1565 MD->removeInstruction(M); 1566 1567 ++NumMoveToCpy; 1568 return true; 1569 } 1570 1571 /// This is called on every byval argument in call sites. 1572 bool MemCpyOptPass::processByValArgument(CallBase &CB, unsigned ArgNo) { 1573 const DataLayout &DL = CB.getCaller()->getParent()->getDataLayout(); 1574 // Find out what feeds this byval argument. 1575 Value *ByValArg = CB.getArgOperand(ArgNo); 1576 Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType(); 1577 uint64_t ByValSize = DL.getTypeAllocSize(ByValTy); 1578 MemoryLocation Loc(ByValArg, LocationSize::precise(ByValSize)); 1579 MemCpyInst *MDep = nullptr; 1580 if (EnableMemorySSA) { 1581 MemoryUseOrDef *CallAccess = MSSA->getMemoryAccess(&CB); 1582 if (!CallAccess) 1583 return false; 1584 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( 1585 CallAccess->getDefiningAccess(), Loc); 1586 if (auto *MD = dyn_cast<MemoryDef>(Clobber)) 1587 MDep = dyn_cast_or_null<MemCpyInst>(MD->getMemoryInst()); 1588 } else { 1589 MemDepResult DepInfo = MD->getPointerDependencyFrom( 1590 Loc, true, CB.getIterator(), CB.getParent()); 1591 if (!DepInfo.isClobber()) 1592 return false; 1593 MDep = dyn_cast<MemCpyInst>(DepInfo.getInst()); 1594 } 1595 1596 // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by 1597 // a memcpy, see if we can byval from the source of the memcpy instead of the 1598 // result. 1599 if (!MDep || MDep->isVolatile() || 1600 ByValArg->stripPointerCasts() != MDep->getDest()) 1601 return false; 1602 1603 // The length of the memcpy must be larger or equal to the size of the byval. 1604 ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength()); 1605 if (!C1 || C1->getValue().getZExtValue() < ByValSize) 1606 return false; 1607 1608 // Get the alignment of the byval. If the call doesn't specify the alignment, 1609 // then it is some target specific value that we can't know. 1610 MaybeAlign ByValAlign = CB.getParamAlign(ArgNo); 1611 if (!ByValAlign) return false; 1612 1613 // If it is greater than the memcpy, then we check to see if we can force the 1614 // source of the memcpy to the alignment we need. If we fail, we bail out. 1615 MaybeAlign MemDepAlign = MDep->getSourceAlign(); 1616 if ((!MemDepAlign || *MemDepAlign < *ByValAlign) && 1617 getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, &CB, AC, 1618 DT) < *ByValAlign) 1619 return false; 1620 1621 // The address space of the memcpy source must match the byval argument 1622 if (MDep->getSource()->getType()->getPointerAddressSpace() != 1623 ByValArg->getType()->getPointerAddressSpace()) 1624 return false; 1625 1626 // Verify that the copied-from memory doesn't change in between the memcpy and 1627 // the byval call. 1628 // memcpy(a <- b) 1629 // *b = 42; 1630 // foo(*a) 1631 // It would be invalid to transform the second memcpy into foo(*b). 1632 if (EnableMemorySSA) { 1633 if (writtenBetween(MSSA, MemoryLocation::getForSource(MDep), 1634 MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(&CB))) 1635 return false; 1636 } else { 1637 // NOTE: This is conservative, it will stop on any read from the source loc, 1638 // not just the defining memcpy. 1639 MemDepResult SourceDep = MD->getPointerDependencyFrom( 1640 MemoryLocation::getForSource(MDep), false, 1641 CB.getIterator(), MDep->getParent()); 1642 if (!SourceDep.isClobber() || SourceDep.getInst() != MDep) 1643 return false; 1644 } 1645 1646 Value *TmpCast = MDep->getSource(); 1647 if (MDep->getSource()->getType() != ByValArg->getType()) { 1648 BitCastInst *TmpBitCast = new BitCastInst(MDep->getSource(), ByValArg->getType(), 1649 "tmpcast", &CB); 1650 // Set the tmpcast's DebugLoc to MDep's 1651 TmpBitCast->setDebugLoc(MDep->getDebugLoc()); 1652 TmpCast = TmpBitCast; 1653 } 1654 1655 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n" 1656 << " " << *MDep << "\n" 1657 << " " << CB << "\n"); 1658 1659 // Otherwise we're good! Update the byval argument. 1660 CB.setArgOperand(ArgNo, TmpCast); 1661 ++NumMemCpyInstr; 1662 return true; 1663 } 1664 1665 /// Executes one iteration of MemCpyOptPass. 1666 bool MemCpyOptPass::iterateOnFunction(Function &F) { 1667 bool MadeChange = false; 1668 1669 // Walk all instruction in the function. 1670 for (BasicBlock &BB : F) { 1671 // Skip unreachable blocks. For example processStore assumes that an 1672 // instruction in a BB can't be dominated by a later instruction in the 1673 // same BB (which is a scenario that can happen for an unreachable BB that 1674 // has itself as a predecessor). 1675 if (!DT->isReachableFromEntry(&BB)) 1676 continue; 1677 1678 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 1679 // Avoid invalidating the iterator. 1680 Instruction *I = &*BI++; 1681 1682 bool RepeatInstruction = false; 1683 1684 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 1685 MadeChange |= processStore(SI, BI); 1686 else if (MemSetInst *M = dyn_cast<MemSetInst>(I)) 1687 RepeatInstruction = processMemSet(M, BI); 1688 else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I)) 1689 RepeatInstruction = processMemCpy(M, BI); 1690 else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I)) 1691 RepeatInstruction = processMemMove(M); 1692 else if (auto *CB = dyn_cast<CallBase>(I)) { 1693 for (unsigned i = 0, e = CB->arg_size(); i != e; ++i) 1694 if (CB->isByValArgument(i)) 1695 MadeChange |= processByValArgument(*CB, i); 1696 } 1697 1698 // Reprocess the instruction if desired. 1699 if (RepeatInstruction) { 1700 if (BI != BB.begin()) 1701 --BI; 1702 MadeChange = true; 1703 } 1704 } 1705 } 1706 1707 return MadeChange; 1708 } 1709 1710 PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) { 1711 auto *MD = !EnableMemorySSA ? &AM.getResult<MemoryDependenceAnalysis>(F) 1712 : AM.getCachedResult<MemoryDependenceAnalysis>(F); 1713 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1714 auto *AA = &AM.getResult<AAManager>(F); 1715 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 1716 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 1717 auto *MSSA = EnableMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F) 1718 : AM.getCachedResult<MemorySSAAnalysis>(F); 1719 1720 bool MadeChange = 1721 runImpl(F, MD, &TLI, AA, AC, DT, MSSA ? &MSSA->getMSSA() : nullptr); 1722 if (!MadeChange) 1723 return PreservedAnalyses::all(); 1724 1725 PreservedAnalyses PA; 1726 PA.preserveSet<CFGAnalyses>(); 1727 if (MD) 1728 PA.preserve<MemoryDependenceAnalysis>(); 1729 if (MSSA) 1730 PA.preserve<MemorySSAAnalysis>(); 1731 return PA; 1732 } 1733 1734 bool MemCpyOptPass::runImpl(Function &F, MemoryDependenceResults *MD_, 1735 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 1736 AssumptionCache *AC_, DominatorTree *DT_, 1737 MemorySSA *MSSA_) { 1738 bool MadeChange = false; 1739 MD = MD_; 1740 TLI = TLI_; 1741 AA = AA_; 1742 AC = AC_; 1743 DT = DT_; 1744 MSSA = MSSA_; 1745 MemorySSAUpdater MSSAU_(MSSA_); 1746 MSSAU = MSSA_ ? &MSSAU_ : nullptr; 1747 // If we don't have at least memset and memcpy, there is little point of doing 1748 // anything here. These are required by a freestanding implementation, so if 1749 // even they are disabled, there is no point in trying hard. 1750 if (!TLI->has(LibFunc_memset) || !TLI->has(LibFunc_memcpy)) 1751 return false; 1752 1753 while (true) { 1754 if (!iterateOnFunction(F)) 1755 break; 1756 MadeChange = true; 1757 } 1758 1759 if (MSSA_ && VerifyMemorySSA) 1760 MSSA_->verifyMemorySSA(); 1761 1762 MD = nullptr; 1763 return MadeChange; 1764 } 1765 1766 /// This is the main transformation entry point for a function. 1767 bool MemCpyOptLegacyPass::runOnFunction(Function &F) { 1768 if (skipFunction(F)) 1769 return false; 1770 1771 auto *MDWP = !EnableMemorySSA 1772 ? &getAnalysis<MemoryDependenceWrapperPass>() 1773 : getAnalysisIfAvailable<MemoryDependenceWrapperPass>(); 1774 auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1775 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1776 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1777 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1778 auto *MSSAWP = EnableMemorySSA 1779 ? &getAnalysis<MemorySSAWrapperPass>() 1780 : getAnalysisIfAvailable<MemorySSAWrapperPass>(); 1781 1782 return Impl.runImpl(F, MDWP ? & MDWP->getMemDep() : nullptr, TLI, AA, AC, DT, 1783 MSSAWP ? &MSSAWP->getMSSA() : nullptr); 1784 } 1785