1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs various transformations related to eliminating memcpy
10 // calls, or transforming sets of stores into memset's.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/CaptureTracking.h"
24 #include "llvm/Analysis/GlobalsModRef.h"
25 #include "llvm/Analysis/Loads.h"
26 #include "llvm/Analysis/MemoryLocation.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/IRBuilder.h"
39 #include "llvm/IR/InstrTypes.h"
40 #include "llvm/IR/Instruction.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/User.h"
49 #include "llvm/IR/Value.h"
50 #include "llvm/InitializePasses.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/MathExtras.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Transforms/Scalar.h"
57 #include "llvm/Transforms/Utils/Local.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <cstdint>
61
62 using namespace llvm;
63
64 #define DEBUG_TYPE "memcpyopt"
65
66 static cl::opt<bool> EnableMemCpyOptWithoutLibcalls(
67 "enable-memcpyopt-without-libcalls", cl::Hidden,
68 cl::desc("Enable memcpyopt even when libcalls are disabled"));
69
70 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
71 STATISTIC(NumMemSetInfer, "Number of memsets inferred");
72 STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy");
73 STATISTIC(NumCpyToSet, "Number of memcpys converted to memset");
74 STATISTIC(NumCallSlot, "Number of call slot optimizations performed");
75
76 namespace {
77
78 /// Represents a range of memset'd bytes with the ByteVal value.
79 /// This allows us to analyze stores like:
80 /// store 0 -> P+1
81 /// store 0 -> P+0
82 /// store 0 -> P+3
83 /// store 0 -> P+2
84 /// which sometimes happens with stores to arrays of structs etc. When we see
85 /// the first store, we make a range [1, 2). The second store extends the range
86 /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the
87 /// two ranges into [0, 3) which is memset'able.
88 struct MemsetRange {
89 // Start/End - A semi range that describes the span that this range covers.
90 // The range is closed at the start and open at the end: [Start, End).
91 int64_t Start, End;
92
93 /// StartPtr - The getelementptr instruction that points to the start of the
94 /// range.
95 Value *StartPtr;
96
97 /// Alignment - The known alignment of the first store.
98 MaybeAlign Alignment;
99
100 /// TheStores - The actual stores that make up this range.
101 SmallVector<Instruction*, 16> TheStores;
102
103 bool isProfitableToUseMemset(const DataLayout &DL) const;
104 };
105
106 } // end anonymous namespace
107
isProfitableToUseMemset(const DataLayout & DL) const108 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
109 // If we found more than 4 stores to merge or 16 bytes, use memset.
110 if (TheStores.size() >= 4 || End-Start >= 16) return true;
111
112 // If there is nothing to merge, don't do anything.
113 if (TheStores.size() < 2) return false;
114
115 // If any of the stores are a memset, then it is always good to extend the
116 // memset.
117 for (Instruction *SI : TheStores)
118 if (!isa<StoreInst>(SI))
119 return true;
120
121 // Assume that the code generator is capable of merging pairs of stores
122 // together if it wants to.
123 if (TheStores.size() == 2) return false;
124
125 // If we have fewer than 8 stores, it can still be worthwhile to do this.
126 // For example, merging 4 i8 stores into an i32 store is useful almost always.
127 // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
128 // memset will be split into 2 32-bit stores anyway) and doing so can
129 // pessimize the llvm optimizer.
130 //
131 // Since we don't have perfect knowledge here, make some assumptions: assume
132 // the maximum GPR width is the same size as the largest legal integer
133 // size. If so, check to see whether we will end up actually reducing the
134 // number of stores used.
135 unsigned Bytes = unsigned(End-Start);
136 unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8;
137 if (MaxIntSize == 0)
138 MaxIntSize = 1;
139 unsigned NumPointerStores = Bytes / MaxIntSize;
140
141 // Assume the remaining bytes if any are done a byte at a time.
142 unsigned NumByteStores = Bytes % MaxIntSize;
143
144 // If we will reduce the # stores (according to this heuristic), do the
145 // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
146 // etc.
147 return TheStores.size() > NumPointerStores+NumByteStores;
148 }
149
150 namespace {
151
152 class MemsetRanges {
153 using range_iterator = SmallVectorImpl<MemsetRange>::iterator;
154
155 /// A sorted list of the memset ranges.
156 SmallVector<MemsetRange, 8> Ranges;
157
158 const DataLayout &DL;
159
160 public:
MemsetRanges(const DataLayout & DL)161 MemsetRanges(const DataLayout &DL) : DL(DL) {}
162
163 using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator;
164
begin() const165 const_iterator begin() const { return Ranges.begin(); }
end() const166 const_iterator end() const { return Ranges.end(); }
empty() const167 bool empty() const { return Ranges.empty(); }
168
addInst(int64_t OffsetFromFirst,Instruction * Inst)169 void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
170 if (auto *SI = dyn_cast<StoreInst>(Inst))
171 addStore(OffsetFromFirst, SI);
172 else
173 addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
174 }
175
addStore(int64_t OffsetFromFirst,StoreInst * SI)176 void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
177 TypeSize StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
178 assert(!StoreSize.isScalable() && "Can't track scalable-typed stores");
179 addRange(OffsetFromFirst, StoreSize.getFixedSize(), SI->getPointerOperand(),
180 SI->getAlign(), SI);
181 }
182
addMemSet(int64_t OffsetFromFirst,MemSetInst * MSI)183 void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
184 int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
185 addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlign(), MSI);
186 }
187
188 void addRange(int64_t Start, int64_t Size, Value *Ptr, MaybeAlign Alignment,
189 Instruction *Inst);
190 };
191
192 } // end anonymous namespace
193
194 /// Add a new store to the MemsetRanges data structure. This adds a
195 /// new range for the specified store at the specified offset, merging into
196 /// existing ranges as appropriate.
addRange(int64_t Start,int64_t Size,Value * Ptr,MaybeAlign Alignment,Instruction * Inst)197 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
198 MaybeAlign Alignment, Instruction *Inst) {
199 int64_t End = Start+Size;
200
201 range_iterator I = partition_point(
202 Ranges, [=](const MemsetRange &O) { return O.End < Start; });
203
204 // We now know that I == E, in which case we didn't find anything to merge
205 // with, or that Start <= I->End. If End < I->Start or I == E, then we need
206 // to insert a new range. Handle this now.
207 if (I == Ranges.end() || End < I->Start) {
208 MemsetRange &R = *Ranges.insert(I, MemsetRange());
209 R.Start = Start;
210 R.End = End;
211 R.StartPtr = Ptr;
212 R.Alignment = Alignment;
213 R.TheStores.push_back(Inst);
214 return;
215 }
216
217 // This store overlaps with I, add it.
218 I->TheStores.push_back(Inst);
219
220 // At this point, we may have an interval that completely contains our store.
221 // If so, just add it to the interval and return.
222 if (I->Start <= Start && I->End >= End)
223 return;
224
225 // Now we know that Start <= I->End and End >= I->Start so the range overlaps
226 // but is not entirely contained within the range.
227
228 // See if the range extends the start of the range. In this case, it couldn't
229 // possibly cause it to join the prior range, because otherwise we would have
230 // stopped on *it*.
231 if (Start < I->Start) {
232 I->Start = Start;
233 I->StartPtr = Ptr;
234 I->Alignment = Alignment;
235 }
236
237 // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
238 // is in or right at the end of I), and that End >= I->Start. Extend I out to
239 // End.
240 if (End > I->End) {
241 I->End = End;
242 range_iterator NextI = I;
243 while (++NextI != Ranges.end() && End >= NextI->Start) {
244 // Merge the range in.
245 I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
246 if (NextI->End > I->End)
247 I->End = NextI->End;
248 Ranges.erase(NextI);
249 NextI = I;
250 }
251 }
252 }
253
254 //===----------------------------------------------------------------------===//
255 // MemCpyOptLegacyPass Pass
256 //===----------------------------------------------------------------------===//
257
258 namespace {
259
260 class MemCpyOptLegacyPass : public FunctionPass {
261 MemCpyOptPass Impl;
262
263 public:
264 static char ID; // Pass identification, replacement for typeid
265
MemCpyOptLegacyPass()266 MemCpyOptLegacyPass() : FunctionPass(ID) {
267 initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry());
268 }
269
270 bool runOnFunction(Function &F) override;
271
272 private:
273 // This transformation requires dominator postdominator info
getAnalysisUsage(AnalysisUsage & AU) const274 void getAnalysisUsage(AnalysisUsage &AU) const override {
275 AU.setPreservesCFG();
276 AU.addRequired<AssumptionCacheTracker>();
277 AU.addRequired<DominatorTreeWrapperPass>();
278 AU.addPreserved<DominatorTreeWrapperPass>();
279 AU.addPreserved<GlobalsAAWrapperPass>();
280 AU.addRequired<TargetLibraryInfoWrapperPass>();
281 AU.addRequired<AAResultsWrapperPass>();
282 AU.addPreserved<AAResultsWrapperPass>();
283 AU.addRequired<MemorySSAWrapperPass>();
284 AU.addPreserved<MemorySSAWrapperPass>();
285 }
286 };
287
288 } // end anonymous namespace
289
290 char MemCpyOptLegacyPass::ID = 0;
291
292 /// The public interface to this file...
createMemCpyOptPass()293 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); }
294
295 INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
296 false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)297 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
298 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
299 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
300 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
301 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
302 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
303 INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
304 false, false)
305
306 // Check that V is either not accessible by the caller, or unwinding cannot
307 // occur between Start and End.
308 static bool mayBeVisibleThroughUnwinding(Value *V, Instruction *Start,
309 Instruction *End) {
310 assert(Start->getParent() == End->getParent() && "Must be in same block");
311 // Function can't unwind, so it also can't be visible through unwinding.
312 if (Start->getFunction()->doesNotThrow())
313 return false;
314
315 // Object is not visible on unwind.
316 // TODO: Support RequiresNoCaptureBeforeUnwind case.
317 bool RequiresNoCaptureBeforeUnwind;
318 if (isNotVisibleOnUnwind(getUnderlyingObject(V),
319 RequiresNoCaptureBeforeUnwind) &&
320 !RequiresNoCaptureBeforeUnwind)
321 return false;
322
323 // Check whether there are any unwinding instructions in the range.
324 return any_of(make_range(Start->getIterator(), End->getIterator()),
325 [](const Instruction &I) { return I.mayThrow(); });
326 }
327
eraseInstruction(Instruction * I)328 void MemCpyOptPass::eraseInstruction(Instruction *I) {
329 MSSAU->removeMemoryAccess(I);
330 I->eraseFromParent();
331 }
332
333 // Check for mod or ref of Loc between Start and End, excluding both boundaries.
334 // Start and End must be in the same block
accessedBetween(AliasAnalysis & AA,MemoryLocation Loc,const MemoryUseOrDef * Start,const MemoryUseOrDef * End)335 static bool accessedBetween(AliasAnalysis &AA, MemoryLocation Loc,
336 const MemoryUseOrDef *Start,
337 const MemoryUseOrDef *End) {
338 assert(Start->getBlock() == End->getBlock() && "Only local supported");
339 for (const MemoryAccess &MA :
340 make_range(++Start->getIterator(), End->getIterator())) {
341 if (isModOrRefSet(AA.getModRefInfo(cast<MemoryUseOrDef>(MA).getMemoryInst(),
342 Loc)))
343 return true;
344 }
345 return false;
346 }
347
348 // Check for mod of Loc between Start and End, excluding both boundaries.
349 // Start and End can be in different blocks.
writtenBetween(MemorySSA * MSSA,AliasAnalysis & AA,MemoryLocation Loc,const MemoryUseOrDef * Start,const MemoryUseOrDef * End)350 static bool writtenBetween(MemorySSA *MSSA, AliasAnalysis &AA,
351 MemoryLocation Loc, const MemoryUseOrDef *Start,
352 const MemoryUseOrDef *End) {
353 if (isa<MemoryUse>(End)) {
354 // For MemoryUses, getClobberingMemoryAccess may skip non-clobbering writes.
355 // Manually check read accesses between Start and End, if they are in the
356 // same block, for clobbers. Otherwise assume Loc is clobbered.
357 return Start->getBlock() != End->getBlock() ||
358 any_of(
359 make_range(std::next(Start->getIterator()), End->getIterator()),
360 [&AA, Loc](const MemoryAccess &Acc) {
361 if (isa<MemoryUse>(&Acc))
362 return false;
363 Instruction *AccInst =
364 cast<MemoryUseOrDef>(&Acc)->getMemoryInst();
365 return isModSet(AA.getModRefInfo(AccInst, Loc));
366 });
367 }
368
369 // TODO: Only walk until we hit Start.
370 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
371 End->getDefiningAccess(), Loc);
372 return !MSSA->dominates(Clobber, Start);
373 }
374
375 /// When scanning forward over instructions, we look for some other patterns to
376 /// fold away. In particular, this looks for stores to neighboring locations of
377 /// memory. If it sees enough consecutive ones, it attempts to merge them
378 /// together into a memcpy/memset.
tryMergingIntoMemset(Instruction * StartInst,Value * StartPtr,Value * ByteVal)379 Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst,
380 Value *StartPtr,
381 Value *ByteVal) {
382 const DataLayout &DL = StartInst->getModule()->getDataLayout();
383
384 // We can't track scalable types
385 if (auto *SI = dyn_cast<StoreInst>(StartInst))
386 if (DL.getTypeStoreSize(SI->getOperand(0)->getType()).isScalable())
387 return nullptr;
388
389 // Okay, so we now have a single store that can be splatable. Scan to find
390 // all subsequent stores of the same value to offset from the same pointer.
391 // Join these together into ranges, so we can decide whether contiguous blocks
392 // are stored.
393 MemsetRanges Ranges(DL);
394
395 BasicBlock::iterator BI(StartInst);
396
397 // Keeps track of the last memory use or def before the insertion point for
398 // the new memset. The new MemoryDef for the inserted memsets will be inserted
399 // after MemInsertPoint. It points to either LastMemDef or to the last user
400 // before the insertion point of the memset, if there are any such users.
401 MemoryUseOrDef *MemInsertPoint = nullptr;
402 // Keeps track of the last MemoryDef between StartInst and the insertion point
403 // for the new memset. This will become the defining access of the inserted
404 // memsets.
405 MemoryDef *LastMemDef = nullptr;
406 for (++BI; !BI->isTerminator(); ++BI) {
407 auto *CurrentAcc = cast_or_null<MemoryUseOrDef>(
408 MSSAU->getMemorySSA()->getMemoryAccess(&*BI));
409 if (CurrentAcc) {
410 MemInsertPoint = CurrentAcc;
411 if (auto *CurrentDef = dyn_cast<MemoryDef>(CurrentAcc))
412 LastMemDef = CurrentDef;
413 }
414
415 // Calls that only access inaccessible memory do not block merging
416 // accessible stores.
417 if (auto *CB = dyn_cast<CallBase>(BI)) {
418 if (CB->onlyAccessesInaccessibleMemory())
419 continue;
420 }
421
422 if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
423 // If the instruction is readnone, ignore it, otherwise bail out. We
424 // don't even allow readonly here because we don't want something like:
425 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
426 if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
427 break;
428 continue;
429 }
430
431 if (auto *NextStore = dyn_cast<StoreInst>(BI)) {
432 // If this is a store, see if we can merge it in.
433 if (!NextStore->isSimple()) break;
434
435 Value *StoredVal = NextStore->getValueOperand();
436
437 // Don't convert stores of non-integral pointer types to memsets (which
438 // stores integers).
439 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
440 break;
441
442 // We can't track ranges involving scalable types.
443 if (DL.getTypeStoreSize(StoredVal->getType()).isScalable())
444 break;
445
446 // Check to see if this stored value is of the same byte-splattable value.
447 Value *StoredByte = isBytewiseValue(StoredVal, DL);
448 if (isa<UndefValue>(ByteVal) && StoredByte)
449 ByteVal = StoredByte;
450 if (ByteVal != StoredByte)
451 break;
452
453 // Check to see if this store is to a constant offset from the start ptr.
454 Optional<int64_t> Offset =
455 isPointerOffset(StartPtr, NextStore->getPointerOperand(), DL);
456 if (!Offset)
457 break;
458
459 Ranges.addStore(*Offset, NextStore);
460 } else {
461 auto *MSI = cast<MemSetInst>(BI);
462
463 if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
464 !isa<ConstantInt>(MSI->getLength()))
465 break;
466
467 // Check to see if this store is to a constant offset from the start ptr.
468 Optional<int64_t> Offset = isPointerOffset(StartPtr, MSI->getDest(), DL);
469 if (!Offset)
470 break;
471
472 Ranges.addMemSet(*Offset, MSI);
473 }
474 }
475
476 // If we have no ranges, then we just had a single store with nothing that
477 // could be merged in. This is a very common case of course.
478 if (Ranges.empty())
479 return nullptr;
480
481 // If we had at least one store that could be merged in, add the starting
482 // store as well. We try to avoid this unless there is at least something
483 // interesting as a small compile-time optimization.
484 Ranges.addInst(0, StartInst);
485
486 // If we create any memsets, we put it right before the first instruction that
487 // isn't part of the memset block. This ensure that the memset is dominated
488 // by any addressing instruction needed by the start of the block.
489 IRBuilder<> Builder(&*BI);
490
491 // Now that we have full information about ranges, loop over the ranges and
492 // emit memset's for anything big enough to be worthwhile.
493 Instruction *AMemSet = nullptr;
494 for (const MemsetRange &Range : Ranges) {
495 if (Range.TheStores.size() == 1) continue;
496
497 // If it is profitable to lower this range to memset, do so now.
498 if (!Range.isProfitableToUseMemset(DL))
499 continue;
500
501 // Otherwise, we do want to transform this! Create a new memset.
502 // Get the starting pointer of the block.
503 StartPtr = Range.StartPtr;
504
505 AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End - Range.Start,
506 Range.Alignment);
507 LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI
508 : Range.TheStores) dbgs()
509 << *SI << '\n';
510 dbgs() << "With: " << *AMemSet << '\n');
511 if (!Range.TheStores.empty())
512 AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
513
514 assert(LastMemDef && MemInsertPoint &&
515 "Both LastMemDef and MemInsertPoint need to be set");
516 auto *NewDef =
517 cast<MemoryDef>(MemInsertPoint->getMemoryInst() == &*BI
518 ? MSSAU->createMemoryAccessBefore(
519 AMemSet, LastMemDef, MemInsertPoint)
520 : MSSAU->createMemoryAccessAfter(
521 AMemSet, LastMemDef, MemInsertPoint));
522 MSSAU->insertDef(NewDef, /*RenameUses=*/true);
523 LastMemDef = NewDef;
524 MemInsertPoint = NewDef;
525
526 // Zap all the stores.
527 for (Instruction *SI : Range.TheStores)
528 eraseInstruction(SI);
529
530 ++NumMemSetInfer;
531 }
532
533 return AMemSet;
534 }
535
536 // This method try to lift a store instruction before position P.
537 // It will lift the store and its argument + that anything that
538 // may alias with these.
539 // The method returns true if it was successful.
moveUp(StoreInst * SI,Instruction * P,const LoadInst * LI)540 bool MemCpyOptPass::moveUp(StoreInst *SI, Instruction *P, const LoadInst *LI) {
541 // If the store alias this position, early bail out.
542 MemoryLocation StoreLoc = MemoryLocation::get(SI);
543 if (isModOrRefSet(AA->getModRefInfo(P, StoreLoc)))
544 return false;
545
546 // Keep track of the arguments of all instruction we plan to lift
547 // so we can make sure to lift them as well if appropriate.
548 DenseSet<Instruction*> Args;
549 if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand()))
550 if (Ptr->getParent() == SI->getParent())
551 Args.insert(Ptr);
552
553 // Instruction to lift before P.
554 SmallVector<Instruction *, 8> ToLift{SI};
555
556 // Memory locations of lifted instructions.
557 SmallVector<MemoryLocation, 8> MemLocs{StoreLoc};
558
559 // Lifted calls.
560 SmallVector<const CallBase *, 8> Calls;
561
562 const MemoryLocation LoadLoc = MemoryLocation::get(LI);
563
564 for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) {
565 auto *C = &*I;
566
567 // Make sure hoisting does not perform a store that was not guaranteed to
568 // happen.
569 if (!isGuaranteedToTransferExecutionToSuccessor(C))
570 return false;
571
572 bool MayAlias = isModOrRefSet(AA->getModRefInfo(C, None));
573
574 bool NeedLift = false;
575 if (Args.erase(C))
576 NeedLift = true;
577 else if (MayAlias) {
578 NeedLift = llvm::any_of(MemLocs, [C, this](const MemoryLocation &ML) {
579 return isModOrRefSet(AA->getModRefInfo(C, ML));
580 });
581
582 if (!NeedLift)
583 NeedLift = llvm::any_of(Calls, [C, this](const CallBase *Call) {
584 return isModOrRefSet(AA->getModRefInfo(C, Call));
585 });
586 }
587
588 if (!NeedLift)
589 continue;
590
591 if (MayAlias) {
592 // Since LI is implicitly moved downwards past the lifted instructions,
593 // none of them may modify its source.
594 if (isModSet(AA->getModRefInfo(C, LoadLoc)))
595 return false;
596 else if (const auto *Call = dyn_cast<CallBase>(C)) {
597 // If we can't lift this before P, it's game over.
598 if (isModOrRefSet(AA->getModRefInfo(P, Call)))
599 return false;
600
601 Calls.push_back(Call);
602 } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) {
603 // If we can't lift this before P, it's game over.
604 auto ML = MemoryLocation::get(C);
605 if (isModOrRefSet(AA->getModRefInfo(P, ML)))
606 return false;
607
608 MemLocs.push_back(ML);
609 } else
610 // We don't know how to lift this instruction.
611 return false;
612 }
613
614 ToLift.push_back(C);
615 for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k)
616 if (auto *A = dyn_cast<Instruction>(C->getOperand(k))) {
617 if (A->getParent() == SI->getParent()) {
618 // Cannot hoist user of P above P
619 if(A == P) return false;
620 Args.insert(A);
621 }
622 }
623 }
624
625 // Find MSSA insertion point. Normally P will always have a corresponding
626 // memory access before which we can insert. However, with non-standard AA
627 // pipelines, there may be a mismatch between AA and MSSA, in which case we
628 // will scan for a memory access before P. In either case, we know for sure
629 // that at least the load will have a memory access.
630 // TODO: Simplify this once P will be determined by MSSA, in which case the
631 // discrepancy can no longer occur.
632 MemoryUseOrDef *MemInsertPoint = nullptr;
633 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(P)) {
634 MemInsertPoint = cast<MemoryUseOrDef>(--MA->getIterator());
635 } else {
636 const Instruction *ConstP = P;
637 for (const Instruction &I : make_range(++ConstP->getReverseIterator(),
638 ++LI->getReverseIterator())) {
639 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
640 MemInsertPoint = MA;
641 break;
642 }
643 }
644 }
645
646 // We made it, we need to lift.
647 for (auto *I : llvm::reverse(ToLift)) {
648 LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n");
649 I->moveBefore(P);
650 assert(MemInsertPoint && "Must have found insert point");
651 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(I)) {
652 MSSAU->moveAfter(MA, MemInsertPoint);
653 MemInsertPoint = MA;
654 }
655 }
656
657 return true;
658 }
659
processStore(StoreInst * SI,BasicBlock::iterator & BBI)660 bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
661 if (!SI->isSimple()) return false;
662
663 // Avoid merging nontemporal stores since the resulting
664 // memcpy/memset would not be able to preserve the nontemporal hint.
665 // In theory we could teach how to propagate the !nontemporal metadata to
666 // memset calls. However, that change would force the backend to
667 // conservatively expand !nontemporal memset calls back to sequences of
668 // store instructions (effectively undoing the merging).
669 if (SI->getMetadata(LLVMContext::MD_nontemporal))
670 return false;
671
672 const DataLayout &DL = SI->getModule()->getDataLayout();
673
674 Value *StoredVal = SI->getValueOperand();
675
676 // Not all the transforms below are correct for non-integral pointers, bail
677 // until we've audited the individual pieces.
678 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
679 return false;
680
681 // Load to store forwarding can be interpreted as memcpy.
682 if (auto *LI = dyn_cast<LoadInst>(StoredVal)) {
683 if (LI->isSimple() && LI->hasOneUse() &&
684 LI->getParent() == SI->getParent()) {
685
686 auto *T = LI->getType();
687 // Don't introduce calls to memcpy/memmove intrinsics out of thin air if
688 // the corresponding libcalls are not available.
689 // TODO: We should really distinguish between libcall availability and
690 // our ability to introduce intrinsics.
691 if (T->isAggregateType() &&
692 (EnableMemCpyOptWithoutLibcalls ||
693 (TLI->has(LibFunc_memcpy) && TLI->has(LibFunc_memmove)))) {
694 MemoryLocation LoadLoc = MemoryLocation::get(LI);
695
696 // We use alias analysis to check if an instruction may store to
697 // the memory we load from in between the load and the store. If
698 // such an instruction is found, we try to promote there instead
699 // of at the store position.
700 // TODO: Can use MSSA for this.
701 Instruction *P = SI;
702 for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) {
703 if (isModSet(AA->getModRefInfo(&I, LoadLoc))) {
704 P = &I;
705 break;
706 }
707 }
708
709 // We found an instruction that may write to the loaded memory.
710 // We can try to promote at this position instead of the store
711 // position if nothing aliases the store memory after this and the store
712 // destination is not in the range.
713 if (P && P != SI) {
714 if (!moveUp(SI, P, LI))
715 P = nullptr;
716 }
717
718 // If a valid insertion position is found, then we can promote
719 // the load/store pair to a memcpy.
720 if (P) {
721 // If we load from memory that may alias the memory we store to,
722 // memmove must be used to preserve semantic. If not, memcpy can
723 // be used. Also, if we load from constant memory, memcpy can be used
724 // as the constant memory won't be modified.
725 bool UseMemMove = false;
726 if (isModSet(AA->getModRefInfo(SI, LoadLoc)))
727 UseMemMove = true;
728
729 uint64_t Size = DL.getTypeStoreSize(T);
730
731 IRBuilder<> Builder(P);
732 Instruction *M;
733 if (UseMemMove)
734 M = Builder.CreateMemMove(
735 SI->getPointerOperand(), SI->getAlign(),
736 LI->getPointerOperand(), LI->getAlign(), Size);
737 else
738 M = Builder.CreateMemCpy(
739 SI->getPointerOperand(), SI->getAlign(),
740 LI->getPointerOperand(), LI->getAlign(), Size);
741
742 LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => "
743 << *M << "\n");
744
745 auto *LastDef =
746 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI));
747 auto *NewAccess = MSSAU->createMemoryAccessAfter(M, LastDef, LastDef);
748 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
749
750 eraseInstruction(SI);
751 eraseInstruction(LI);
752 ++NumMemCpyInstr;
753
754 // Make sure we do not invalidate the iterator.
755 BBI = M->getIterator();
756 return true;
757 }
758 }
759
760 // Detect cases where we're performing call slot forwarding, but
761 // happen to be using a load-store pair to implement it, rather than
762 // a memcpy.
763 auto GetCall = [&]() -> CallInst * {
764 // We defer this expensive clobber walk until the cheap checks
765 // have been done on the source inside performCallSlotOptzn.
766 if (auto *LoadClobber = dyn_cast<MemoryUseOrDef>(
767 MSSA->getWalker()->getClobberingMemoryAccess(LI)))
768 return dyn_cast_or_null<CallInst>(LoadClobber->getMemoryInst());
769 return nullptr;
770 };
771
772 bool changed = performCallSlotOptzn(
773 LI, SI, SI->getPointerOperand()->stripPointerCasts(),
774 LI->getPointerOperand()->stripPointerCasts(),
775 DL.getTypeStoreSize(SI->getOperand(0)->getType()),
776 std::min(SI->getAlign(), LI->getAlign()), GetCall);
777 if (changed) {
778 eraseInstruction(SI);
779 eraseInstruction(LI);
780 ++NumMemCpyInstr;
781 return true;
782 }
783 }
784 }
785
786 // The following code creates memset intrinsics out of thin air. Don't do
787 // this if the corresponding libfunc is not available.
788 // TODO: We should really distinguish between libcall availability and
789 // our ability to introduce intrinsics.
790 if (!(TLI->has(LibFunc_memset) || EnableMemCpyOptWithoutLibcalls))
791 return false;
792
793 // There are two cases that are interesting for this code to handle: memcpy
794 // and memset. Right now we only handle memset.
795
796 // Ensure that the value being stored is something that can be memset'able a
797 // byte at a time like "0" or "-1" or any width, as well as things like
798 // 0xA0A0A0A0 and 0.0.
799 auto *V = SI->getOperand(0);
800 if (Value *ByteVal = isBytewiseValue(V, DL)) {
801 if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
802 ByteVal)) {
803 BBI = I->getIterator(); // Don't invalidate iterator.
804 return true;
805 }
806
807 // If we have an aggregate, we try to promote it to memset regardless
808 // of opportunity for merging as it can expose optimization opportunities
809 // in subsequent passes.
810 auto *T = V->getType();
811 if (T->isAggregateType()) {
812 uint64_t Size = DL.getTypeStoreSize(T);
813 IRBuilder<> Builder(SI);
814 auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size,
815 SI->getAlign());
816
817 LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n");
818
819 // The newly inserted memset is immediately overwritten by the original
820 // store, so we do not need to rename uses.
821 auto *StoreDef = cast<MemoryDef>(MSSA->getMemoryAccess(SI));
822 auto *NewAccess = MSSAU->createMemoryAccessBefore(
823 M, StoreDef->getDefiningAccess(), StoreDef);
824 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/false);
825
826 eraseInstruction(SI);
827 NumMemSetInfer++;
828
829 // Make sure we do not invalidate the iterator.
830 BBI = M->getIterator();
831 return true;
832 }
833 }
834
835 return false;
836 }
837
processMemSet(MemSetInst * MSI,BasicBlock::iterator & BBI)838 bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
839 // See if there is another memset or store neighboring this memset which
840 // allows us to widen out the memset to do a single larger store.
841 if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
842 if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
843 MSI->getValue())) {
844 BBI = I->getIterator(); // Don't invalidate iterator.
845 return true;
846 }
847 return false;
848 }
849
850 /// Takes a memcpy and a call that it depends on,
851 /// and checks for the possibility of a call slot optimization by having
852 /// the call write its result directly into the destination of the memcpy.
performCallSlotOptzn(Instruction * cpyLoad,Instruction * cpyStore,Value * cpyDest,Value * cpySrc,TypeSize cpySize,Align cpyAlign,std::function<CallInst * ()> GetC)853 bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpyLoad,
854 Instruction *cpyStore, Value *cpyDest,
855 Value *cpySrc, TypeSize cpySize,
856 Align cpyAlign,
857 std::function<CallInst *()> GetC) {
858 // The general transformation to keep in mind is
859 //
860 // call @func(..., src, ...)
861 // memcpy(dest, src, ...)
862 //
863 // ->
864 //
865 // memcpy(dest, src, ...)
866 // call @func(..., dest, ...)
867 //
868 // Since moving the memcpy is technically awkward, we additionally check that
869 // src only holds uninitialized values at the moment of the call, meaning that
870 // the memcpy can be discarded rather than moved.
871
872 // We can't optimize scalable types.
873 if (cpySize.isScalable())
874 return false;
875
876 // Require that src be an alloca. This simplifies the reasoning considerably.
877 auto *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
878 if (!srcAlloca)
879 return false;
880
881 ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
882 if (!srcArraySize)
883 return false;
884
885 const DataLayout &DL = cpyLoad->getModule()->getDataLayout();
886 uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
887 srcArraySize->getZExtValue();
888
889 if (cpySize < srcSize)
890 return false;
891
892 CallInst *C = GetC();
893 if (!C)
894 return false;
895
896 // Lifetime marks shouldn't be operated on.
897 if (Function *F = C->getCalledFunction())
898 if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start)
899 return false;
900
901
902 if (C->getParent() != cpyStore->getParent()) {
903 LLVM_DEBUG(dbgs() << "Call Slot: block local restriction\n");
904 return false;
905 }
906
907 MemoryLocation DestLoc = isa<StoreInst>(cpyStore) ?
908 MemoryLocation::get(cpyStore) :
909 MemoryLocation::getForDest(cast<MemCpyInst>(cpyStore));
910
911 // Check that nothing touches the dest of the copy between
912 // the call and the store/memcpy.
913 if (accessedBetween(*AA, DestLoc, MSSA->getMemoryAccess(C),
914 MSSA->getMemoryAccess(cpyStore))) {
915 LLVM_DEBUG(dbgs() << "Call Slot: Dest pointer modified after call\n");
916 return false;
917 }
918
919 // Check that accessing the first srcSize bytes of dest will not cause a
920 // trap. Otherwise the transform is invalid since it might cause a trap
921 // to occur earlier than it otherwise would.
922 if (!isDereferenceableAndAlignedPointer(cpyDest, Align(1), APInt(64, cpySize),
923 DL, C, DT)) {
924 LLVM_DEBUG(dbgs() << "Call Slot: Dest pointer not dereferenceable\n");
925 return false;
926 }
927
928
929 // Make sure that nothing can observe cpyDest being written early. There are
930 // a number of cases to consider:
931 // 1. cpyDest cannot be accessed between C and cpyStore as a precondition of
932 // the transform.
933 // 2. C itself may not access cpyDest (prior to the transform). This is
934 // checked further below.
935 // 3. If cpyDest is accessible to the caller of this function (potentially
936 // captured and not based on an alloca), we need to ensure that we cannot
937 // unwind between C and cpyStore. This is checked here.
938 // 4. If cpyDest is potentially captured, there may be accesses to it from
939 // another thread. In this case, we need to check that cpyStore is
940 // guaranteed to be executed if C is. As it is a non-atomic access, it
941 // renders accesses from other threads undefined.
942 // TODO: This is currently not checked.
943 if (mayBeVisibleThroughUnwinding(cpyDest, C, cpyStore)) {
944 LLVM_DEBUG(dbgs() << "Call Slot: Dest may be visible through unwinding");
945 return false;
946 }
947
948 // Check that dest points to memory that is at least as aligned as src.
949 Align srcAlign = srcAlloca->getAlign();
950 bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
951 // If dest is not aligned enough and we can't increase its alignment then
952 // bail out.
953 if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
954 return false;
955
956 // Check that src is not accessed except via the call and the memcpy. This
957 // guarantees that it holds only undefined values when passed in (so the final
958 // memcpy can be dropped), that it is not read or written between the call and
959 // the memcpy, and that writing beyond the end of it is undefined.
960 SmallVector<User *, 8> srcUseList(srcAlloca->users());
961 while (!srcUseList.empty()) {
962 User *U = srcUseList.pop_back_val();
963
964 if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
965 append_range(srcUseList, U->users());
966 continue;
967 }
968 if (const auto *G = dyn_cast<GetElementPtrInst>(U)) {
969 if (!G->hasAllZeroIndices())
970 return false;
971
972 append_range(srcUseList, U->users());
973 continue;
974 }
975 if (const auto *IT = dyn_cast<IntrinsicInst>(U))
976 if (IT->isLifetimeStartOrEnd())
977 continue;
978
979 if (U != C && U != cpyLoad)
980 return false;
981 }
982
983 // Check whether src is captured by the called function, in which case there
984 // may be further indirect uses of src.
985 bool SrcIsCaptured = any_of(C->args(), [&](Use &U) {
986 return U->stripPointerCasts() == cpySrc &&
987 !C->doesNotCapture(C->getArgOperandNo(&U));
988 });
989
990 // If src is captured, then check whether there are any potential uses of
991 // src through the captured pointer before the lifetime of src ends, either
992 // due to a lifetime.end or a return from the function.
993 if (SrcIsCaptured) {
994 // Check that dest is not captured before/at the call. We have already
995 // checked that src is not captured before it. If either had been captured,
996 // then the call might be comparing the argument against the captured dest
997 // or src pointer.
998 Value *DestObj = getUnderlyingObject(cpyDest);
999 if (!isIdentifiedFunctionLocal(DestObj) ||
1000 PointerMayBeCapturedBefore(DestObj, /* ReturnCaptures */ true,
1001 /* StoreCaptures */ true, C, DT,
1002 /* IncludeI */ true))
1003 return false;
1004
1005 MemoryLocation SrcLoc =
1006 MemoryLocation(srcAlloca, LocationSize::precise(srcSize));
1007 for (Instruction &I :
1008 make_range(++C->getIterator(), C->getParent()->end())) {
1009 // Lifetime of srcAlloca ends at lifetime.end.
1010 if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
1011 if (II->getIntrinsicID() == Intrinsic::lifetime_end &&
1012 II->getArgOperand(1)->stripPointerCasts() == srcAlloca &&
1013 cast<ConstantInt>(II->getArgOperand(0))->uge(srcSize))
1014 break;
1015 }
1016
1017 // Lifetime of srcAlloca ends at return.
1018 if (isa<ReturnInst>(&I))
1019 break;
1020
1021 // Ignore the direct read of src in the load.
1022 if (&I == cpyLoad)
1023 continue;
1024
1025 // Check whether this instruction may mod/ref src through the captured
1026 // pointer (we have already any direct mod/refs in the loop above).
1027 // Also bail if we hit a terminator, as we don't want to scan into other
1028 // blocks.
1029 if (isModOrRefSet(AA->getModRefInfo(&I, SrcLoc)) || I.isTerminator())
1030 return false;
1031 }
1032 }
1033
1034 // Since we're changing the parameter to the callsite, we need to make sure
1035 // that what would be the new parameter dominates the callsite.
1036 if (!DT->dominates(cpyDest, C)) {
1037 // Support moving a constant index GEP before the call.
1038 auto *GEP = dyn_cast<GetElementPtrInst>(cpyDest);
1039 if (GEP && GEP->hasAllConstantIndices() &&
1040 DT->dominates(GEP->getPointerOperand(), C))
1041 GEP->moveBefore(C);
1042 else
1043 return false;
1044 }
1045
1046 // In addition to knowing that the call does not access src in some
1047 // unexpected manner, for example via a global, which we deduce from
1048 // the use analysis, we also need to know that it does not sneakily
1049 // access dest. We rely on AA to figure this out for us.
1050 ModRefInfo MR = AA->getModRefInfo(C, cpyDest, LocationSize::precise(srcSize));
1051 // If necessary, perform additional analysis.
1052 if (isModOrRefSet(MR))
1053 MR = AA->callCapturesBefore(C, cpyDest, LocationSize::precise(srcSize), DT);
1054 if (isModOrRefSet(MR))
1055 return false;
1056
1057 // We can't create address space casts here because we don't know if they're
1058 // safe for the target.
1059 if (cpySrc->getType()->getPointerAddressSpace() !=
1060 cpyDest->getType()->getPointerAddressSpace())
1061 return false;
1062 for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
1063 if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc &&
1064 cpySrc->getType()->getPointerAddressSpace() !=
1065 C->getArgOperand(ArgI)->getType()->getPointerAddressSpace())
1066 return false;
1067
1068 // All the checks have passed, so do the transformation.
1069 bool changedArgument = false;
1070 for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
1071 if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc) {
1072 Value *Dest = cpySrc->getType() == cpyDest->getType() ? cpyDest
1073 : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
1074 cpyDest->getName(), C);
1075 changedArgument = true;
1076 if (C->getArgOperand(ArgI)->getType() == Dest->getType())
1077 C->setArgOperand(ArgI, Dest);
1078 else
1079 C->setArgOperand(ArgI, CastInst::CreatePointerCast(
1080 Dest, C->getArgOperand(ArgI)->getType(),
1081 Dest->getName(), C));
1082 }
1083
1084 if (!changedArgument)
1085 return false;
1086
1087 // If the destination wasn't sufficiently aligned then increase its alignment.
1088 if (!isDestSufficientlyAligned) {
1089 assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
1090 cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
1091 }
1092
1093 // Update AA metadata
1094 // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
1095 // handled here, but combineMetadata doesn't support them yet
1096 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
1097 LLVMContext::MD_noalias,
1098 LLVMContext::MD_invariant_group,
1099 LLVMContext::MD_access_group};
1100 combineMetadata(C, cpyLoad, KnownIDs, true);
1101 if (cpyLoad != cpyStore)
1102 combineMetadata(C, cpyStore, KnownIDs, true);
1103
1104 ++NumCallSlot;
1105 return true;
1106 }
1107
1108 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is
1109 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
processMemCpyMemCpyDependence(MemCpyInst * M,MemCpyInst * MDep)1110 bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
1111 MemCpyInst *MDep) {
1112 // We can only transforms memcpy's where the dest of one is the source of the
1113 // other.
1114 if (M->getSource() != MDep->getDest() || MDep->isVolatile())
1115 return false;
1116
1117 // If dep instruction is reading from our current input, then it is a noop
1118 // transfer and substituting the input won't change this instruction. Just
1119 // ignore the input and let someone else zap MDep. This handles cases like:
1120 // memcpy(a <- a)
1121 // memcpy(b <- a)
1122 if (M->getSource() == MDep->getSource())
1123 return false;
1124
1125 // Second, the length of the memcpy's must be the same, or the preceding one
1126 // must be larger than the following one.
1127 if (MDep->getLength() != M->getLength()) {
1128 auto *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
1129 auto *MLen = dyn_cast<ConstantInt>(M->getLength());
1130 if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
1131 return false;
1132 }
1133
1134 // Verify that the copied-from memory doesn't change in between the two
1135 // transfers. For example, in:
1136 // memcpy(a <- b)
1137 // *b = 42;
1138 // memcpy(c <- a)
1139 // It would be invalid to transform the second memcpy into memcpy(c <- b).
1140 //
1141 // TODO: If the code between M and MDep is transparent to the destination "c",
1142 // then we could still perform the xform by moving M up to the first memcpy.
1143 // TODO: It would be sufficient to check the MDep source up to the memcpy
1144 // size of M, rather than MDep.
1145 if (writtenBetween(MSSA, *AA, MemoryLocation::getForSource(MDep),
1146 MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(M)))
1147 return false;
1148
1149 // If the dest of the second might alias the source of the first, then the
1150 // source and dest might overlap. In addition, if the source of the first
1151 // points to constant memory, they won't overlap by definition. Otherwise, we
1152 // still want to eliminate the intermediate value, but we have to generate a
1153 // memmove instead of memcpy.
1154 bool UseMemMove = false;
1155 if (isModSet(AA->getModRefInfo(M, MemoryLocation::getForSource(MDep))))
1156 UseMemMove = true;
1157
1158 // If all checks passed, then we can transform M.
1159 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n"
1160 << *MDep << '\n' << *M << '\n');
1161
1162 // TODO: Is this worth it if we're creating a less aligned memcpy? For
1163 // example we could be moving from movaps -> movq on x86.
1164 IRBuilder<> Builder(M);
1165 Instruction *NewM;
1166 if (UseMemMove)
1167 NewM = Builder.CreateMemMove(M->getRawDest(), M->getDestAlign(),
1168 MDep->getRawSource(), MDep->getSourceAlign(),
1169 M->getLength(), M->isVolatile());
1170 else if (isa<MemCpyInlineInst>(M)) {
1171 // llvm.memcpy may be promoted to llvm.memcpy.inline, but the converse is
1172 // never allowed since that would allow the latter to be lowered as a call
1173 // to an external function.
1174 NewM = Builder.CreateMemCpyInline(
1175 M->getRawDest(), M->getDestAlign(), MDep->getRawSource(),
1176 MDep->getSourceAlign(), M->getLength(), M->isVolatile());
1177 } else
1178 NewM = Builder.CreateMemCpy(M->getRawDest(), M->getDestAlign(),
1179 MDep->getRawSource(), MDep->getSourceAlign(),
1180 M->getLength(), M->isVolatile());
1181
1182 assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)));
1183 auto *LastDef = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M));
1184 auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
1185 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1186
1187 // Remove the instruction we're replacing.
1188 eraseInstruction(M);
1189 ++NumMemCpyInstr;
1190 return true;
1191 }
1192
1193 /// We've found that the (upward scanning) memory dependence of \p MemCpy is
1194 /// \p MemSet. Try to simplify \p MemSet to only set the trailing bytes that
1195 /// weren't copied over by \p MemCpy.
1196 ///
1197 /// In other words, transform:
1198 /// \code
1199 /// memset(dst, c, dst_size);
1200 /// memcpy(dst, src, src_size);
1201 /// \endcode
1202 /// into:
1203 /// \code
1204 /// memcpy(dst, src, src_size);
1205 /// memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
1206 /// \endcode
processMemSetMemCpyDependence(MemCpyInst * MemCpy,MemSetInst * MemSet)1207 bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
1208 MemSetInst *MemSet) {
1209 // We can only transform memset/memcpy with the same destination.
1210 if (!AA->isMustAlias(MemSet->getDest(), MemCpy->getDest()))
1211 return false;
1212
1213 // Check that src and dst of the memcpy aren't the same. While memcpy
1214 // operands cannot partially overlap, exact equality is allowed.
1215 if (isModSet(AA->getModRefInfo(MemCpy, MemoryLocation::getForSource(MemCpy))))
1216 return false;
1217
1218 // We know that dst up to src_size is not written. We now need to make sure
1219 // that dst up to dst_size is not accessed. (If we did not move the memset,
1220 // checking for reads would be sufficient.)
1221 if (accessedBetween(*AA, MemoryLocation::getForDest(MemSet),
1222 MSSA->getMemoryAccess(MemSet),
1223 MSSA->getMemoryAccess(MemCpy)))
1224 return false;
1225
1226 // Use the same i8* dest as the memcpy, killing the memset dest if different.
1227 Value *Dest = MemCpy->getRawDest();
1228 Value *DestSize = MemSet->getLength();
1229 Value *SrcSize = MemCpy->getLength();
1230
1231 if (mayBeVisibleThroughUnwinding(Dest, MemSet, MemCpy))
1232 return false;
1233
1234 // If the sizes are the same, simply drop the memset instead of generating
1235 // a replacement with zero size.
1236 if (DestSize == SrcSize) {
1237 eraseInstruction(MemSet);
1238 return true;
1239 }
1240
1241 // By default, create an unaligned memset.
1242 Align Alignment = Align(1);
1243 // If Dest is aligned, and SrcSize is constant, use the minimum alignment
1244 // of the sum.
1245 const Align DestAlign = std::max(MemSet->getDestAlign().valueOrOne(),
1246 MemCpy->getDestAlign().valueOrOne());
1247 if (DestAlign > 1)
1248 if (auto *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
1249 Alignment = commonAlignment(DestAlign, SrcSizeC->getZExtValue());
1250
1251 IRBuilder<> Builder(MemCpy);
1252
1253 // If the sizes have different types, zext the smaller one.
1254 if (DestSize->getType() != SrcSize->getType()) {
1255 if (DestSize->getType()->getIntegerBitWidth() >
1256 SrcSize->getType()->getIntegerBitWidth())
1257 SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType());
1258 else
1259 DestSize = Builder.CreateZExt(DestSize, SrcSize->getType());
1260 }
1261
1262 Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize);
1263 Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize);
1264 Value *MemsetLen = Builder.CreateSelect(
1265 Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff);
1266 unsigned DestAS = Dest->getType()->getPointerAddressSpace();
1267 Instruction *NewMemSet = Builder.CreateMemSet(
1268 Builder.CreateGEP(
1269 Builder.getInt8Ty(),
1270 Builder.CreatePointerCast(Dest, Builder.getInt8PtrTy(DestAS)),
1271 SrcSize),
1272 MemSet->getOperand(1), MemsetLen, Alignment);
1273
1274 assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)) &&
1275 "MemCpy must be a MemoryDef");
1276 // The new memset is inserted after the memcpy, but it is known that its
1277 // defining access is the memset about to be removed which immediately
1278 // precedes the memcpy.
1279 auto *LastDef =
1280 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy));
1281 auto *NewAccess = MSSAU->createMemoryAccessBefore(
1282 NewMemSet, LastDef->getDefiningAccess(), LastDef);
1283 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1284
1285 eraseInstruction(MemSet);
1286 return true;
1287 }
1288
1289 /// Determine whether the instruction has undefined content for the given Size,
1290 /// either because it was freshly alloca'd or started its lifetime.
hasUndefContents(MemorySSA * MSSA,AliasAnalysis * AA,Value * V,MemoryDef * Def,Value * Size)1291 static bool hasUndefContents(MemorySSA *MSSA, AliasAnalysis *AA, Value *V,
1292 MemoryDef *Def, Value *Size) {
1293 if (MSSA->isLiveOnEntryDef(Def))
1294 return isa<AllocaInst>(getUnderlyingObject(V));
1295
1296 if (auto *II = dyn_cast_or_null<IntrinsicInst>(Def->getMemoryInst())) {
1297 if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1298 auto *LTSize = cast<ConstantInt>(II->getArgOperand(0));
1299
1300 if (auto *CSize = dyn_cast<ConstantInt>(Size)) {
1301 if (AA->isMustAlias(V, II->getArgOperand(1)) &&
1302 LTSize->getZExtValue() >= CSize->getZExtValue())
1303 return true;
1304 }
1305
1306 // If the lifetime.start covers a whole alloca (as it almost always
1307 // does) and we're querying a pointer based on that alloca, then we know
1308 // the memory is definitely undef, regardless of how exactly we alias.
1309 // The size also doesn't matter, as an out-of-bounds access would be UB.
1310 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(V))) {
1311 if (getUnderlyingObject(II->getArgOperand(1)) == Alloca) {
1312 const DataLayout &DL = Alloca->getModule()->getDataLayout();
1313 if (Optional<TypeSize> AllocaSize =
1314 Alloca->getAllocationSizeInBits(DL))
1315 if (*AllocaSize == LTSize->getValue() * 8)
1316 return true;
1317 }
1318 }
1319 }
1320 }
1321
1322 return false;
1323 }
1324
1325 /// Transform memcpy to memset when its source was just memset.
1326 /// In other words, turn:
1327 /// \code
1328 /// memset(dst1, c, dst1_size);
1329 /// memcpy(dst2, dst1, dst2_size);
1330 /// \endcode
1331 /// into:
1332 /// \code
1333 /// memset(dst1, c, dst1_size);
1334 /// memset(dst2, c, dst2_size);
1335 /// \endcode
1336 /// When dst2_size <= dst1_size.
performMemCpyToMemSetOptzn(MemCpyInst * MemCpy,MemSetInst * MemSet)1337 bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
1338 MemSetInst *MemSet) {
1339 // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and
1340 // memcpying from the same address. Otherwise it is hard to reason about.
1341 if (!AA->isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource()))
1342 return false;
1343
1344 Value *MemSetSize = MemSet->getLength();
1345 Value *CopySize = MemCpy->getLength();
1346
1347 if (MemSetSize != CopySize) {
1348 // Make sure the memcpy doesn't read any more than what the memset wrote.
1349 // Don't worry about sizes larger than i64.
1350
1351 // A known memset size is required.
1352 auto *CMemSetSize = dyn_cast<ConstantInt>(MemSetSize);
1353 if (!CMemSetSize)
1354 return false;
1355
1356 // A known memcpy size is also required.
1357 auto *CCopySize = dyn_cast<ConstantInt>(CopySize);
1358 if (!CCopySize)
1359 return false;
1360 if (CCopySize->getZExtValue() > CMemSetSize->getZExtValue()) {
1361 // If the memcpy is larger than the memset, but the memory was undef prior
1362 // to the memset, we can just ignore the tail. Technically we're only
1363 // interested in the bytes from MemSetSize..CopySize here, but as we can't
1364 // easily represent this location, we use the full 0..CopySize range.
1365 MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy);
1366 bool CanReduceSize = false;
1367 MemoryUseOrDef *MemSetAccess = MSSA->getMemoryAccess(MemSet);
1368 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
1369 MemSetAccess->getDefiningAccess(), MemCpyLoc);
1370 if (auto *MD = dyn_cast<MemoryDef>(Clobber))
1371 if (hasUndefContents(MSSA, AA, MemCpy->getSource(), MD, CopySize))
1372 CanReduceSize = true;
1373
1374 if (!CanReduceSize)
1375 return false;
1376 CopySize = MemSetSize;
1377 }
1378 }
1379
1380 IRBuilder<> Builder(MemCpy);
1381 Instruction *NewM =
1382 Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1),
1383 CopySize, MaybeAlign(MemCpy->getDestAlignment()));
1384 auto *LastDef =
1385 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy));
1386 auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
1387 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1388
1389 return true;
1390 }
1391
1392 /// Perform simplification of memcpy's. If we have memcpy A
1393 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
1394 /// B to be a memcpy from X to Z (or potentially a memmove, depending on
1395 /// circumstances). This allows later passes to remove the first memcpy
1396 /// altogether.
processMemCpy(MemCpyInst * M,BasicBlock::iterator & BBI)1397 bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) {
1398 // We can only optimize non-volatile memcpy's.
1399 if (M->isVolatile()) return false;
1400
1401 // If the source and destination of the memcpy are the same, then zap it.
1402 if (M->getSource() == M->getDest()) {
1403 ++BBI;
1404 eraseInstruction(M);
1405 return true;
1406 }
1407
1408 // If copying from a constant, try to turn the memcpy into a memset.
1409 if (auto *GV = dyn_cast<GlobalVariable>(M->getSource()))
1410 if (GV->isConstant() && GV->hasDefinitiveInitializer())
1411 if (Value *ByteVal = isBytewiseValue(GV->getInitializer(),
1412 M->getModule()->getDataLayout())) {
1413 IRBuilder<> Builder(M);
1414 Instruction *NewM =
1415 Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
1416 MaybeAlign(M->getDestAlignment()), false);
1417 auto *LastDef =
1418 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M));
1419 auto *NewAccess =
1420 MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
1421 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1422
1423 eraseInstruction(M);
1424 ++NumCpyToSet;
1425 return true;
1426 }
1427
1428 MemoryUseOrDef *MA = MSSA->getMemoryAccess(M);
1429 // FIXME: Not using getClobberingMemoryAccess() here due to PR54682.
1430 MemoryAccess *AnyClobber = MA->getDefiningAccess();
1431 MemoryLocation DestLoc = MemoryLocation::getForDest(M);
1432 const MemoryAccess *DestClobber =
1433 MSSA->getWalker()->getClobberingMemoryAccess(AnyClobber, DestLoc);
1434
1435 // Try to turn a partially redundant memset + memcpy into
1436 // memcpy + smaller memset. We don't need the memcpy size for this.
1437 // The memcpy most post-dom the memset, so limit this to the same basic
1438 // block. A non-local generalization is likely not worthwhile.
1439 if (auto *MD = dyn_cast<MemoryDef>(DestClobber))
1440 if (auto *MDep = dyn_cast_or_null<MemSetInst>(MD->getMemoryInst()))
1441 if (DestClobber->getBlock() == M->getParent())
1442 if (processMemSetMemCpyDependence(M, MDep))
1443 return true;
1444
1445 MemoryAccess *SrcClobber = MSSA->getWalker()->getClobberingMemoryAccess(
1446 AnyClobber, MemoryLocation::getForSource(M));
1447
1448 // There are four possible optimizations we can do for memcpy:
1449 // a) memcpy-memcpy xform which exposes redundance for DSE.
1450 // b) call-memcpy xform for return slot optimization.
1451 // c) memcpy from freshly alloca'd space or space that has just started
1452 // its lifetime copies undefined data, and we can therefore eliminate
1453 // the memcpy in favor of the data that was already at the destination.
1454 // d) memcpy from a just-memset'd source can be turned into memset.
1455 if (auto *MD = dyn_cast<MemoryDef>(SrcClobber)) {
1456 if (Instruction *MI = MD->getMemoryInst()) {
1457 if (auto *CopySize = dyn_cast<ConstantInt>(M->getLength())) {
1458 if (auto *C = dyn_cast<CallInst>(MI)) {
1459 // FIXME: Can we pass in either of dest/src alignment here instead
1460 // of conservatively taking the minimum?
1461 Align Alignment = std::min(M->getDestAlign().valueOrOne(),
1462 M->getSourceAlign().valueOrOne());
1463 if (performCallSlotOptzn(
1464 M, M, M->getDest(), M->getSource(),
1465 TypeSize::getFixed(CopySize->getZExtValue()), Alignment,
1466 [C]() -> CallInst * { return C; })) {
1467 LLVM_DEBUG(dbgs() << "Performed call slot optimization:\n"
1468 << " call: " << *C << "\n"
1469 << " memcpy: " << *M << "\n");
1470 eraseInstruction(M);
1471 ++NumMemCpyInstr;
1472 return true;
1473 }
1474 }
1475 }
1476 if (auto *MDep = dyn_cast<MemCpyInst>(MI))
1477 return processMemCpyMemCpyDependence(M, MDep);
1478 if (auto *MDep = dyn_cast<MemSetInst>(MI)) {
1479 if (performMemCpyToMemSetOptzn(M, MDep)) {
1480 LLVM_DEBUG(dbgs() << "Converted memcpy to memset\n");
1481 eraseInstruction(M);
1482 ++NumCpyToSet;
1483 return true;
1484 }
1485 }
1486 }
1487
1488 if (hasUndefContents(MSSA, AA, M->getSource(), MD, M->getLength())) {
1489 LLVM_DEBUG(dbgs() << "Removed memcpy from undef\n");
1490 eraseInstruction(M);
1491 ++NumMemCpyInstr;
1492 return true;
1493 }
1494 }
1495
1496 return false;
1497 }
1498
1499 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
1500 /// not to alias.
processMemMove(MemMoveInst * M)1501 bool MemCpyOptPass::processMemMove(MemMoveInst *M) {
1502 // See if the source could be modified by this memmove potentially.
1503 if (isModSet(AA->getModRefInfo(M, MemoryLocation::getForSource(M))))
1504 return false;
1505
1506 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M
1507 << "\n");
1508
1509 // If not, then we know we can transform this.
1510 Type *ArgTys[3] = { M->getRawDest()->getType(),
1511 M->getRawSource()->getType(),
1512 M->getLength()->getType() };
1513 M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(),
1514 Intrinsic::memcpy, ArgTys));
1515
1516 // For MemorySSA nothing really changes (except that memcpy may imply stricter
1517 // aliasing guarantees).
1518
1519 ++NumMoveToCpy;
1520 return true;
1521 }
1522
1523 /// This is called on every byval argument in call sites.
processByValArgument(CallBase & CB,unsigned ArgNo)1524 bool MemCpyOptPass::processByValArgument(CallBase &CB, unsigned ArgNo) {
1525 const DataLayout &DL = CB.getCaller()->getParent()->getDataLayout();
1526 // Find out what feeds this byval argument.
1527 Value *ByValArg = CB.getArgOperand(ArgNo);
1528 Type *ByValTy = CB.getParamByValType(ArgNo);
1529 TypeSize ByValSize = DL.getTypeAllocSize(ByValTy);
1530 MemoryLocation Loc(ByValArg, LocationSize::precise(ByValSize));
1531 MemoryUseOrDef *CallAccess = MSSA->getMemoryAccess(&CB);
1532 if (!CallAccess)
1533 return false;
1534 MemCpyInst *MDep = nullptr;
1535 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
1536 CallAccess->getDefiningAccess(), Loc);
1537 if (auto *MD = dyn_cast<MemoryDef>(Clobber))
1538 MDep = dyn_cast_or_null<MemCpyInst>(MD->getMemoryInst());
1539
1540 // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by
1541 // a memcpy, see if we can byval from the source of the memcpy instead of the
1542 // result.
1543 if (!MDep || MDep->isVolatile() ||
1544 ByValArg->stripPointerCasts() != MDep->getDest())
1545 return false;
1546
1547 // The length of the memcpy must be larger or equal to the size of the byval.
1548 auto *C1 = dyn_cast<ConstantInt>(MDep->getLength());
1549 if (!C1 || !TypeSize::isKnownGE(
1550 TypeSize::getFixed(C1->getValue().getZExtValue()), ByValSize))
1551 return false;
1552
1553 // Get the alignment of the byval. If the call doesn't specify the alignment,
1554 // then it is some target specific value that we can't know.
1555 MaybeAlign ByValAlign = CB.getParamAlign(ArgNo);
1556 if (!ByValAlign) return false;
1557
1558 // If it is greater than the memcpy, then we check to see if we can force the
1559 // source of the memcpy to the alignment we need. If we fail, we bail out.
1560 MaybeAlign MemDepAlign = MDep->getSourceAlign();
1561 if ((!MemDepAlign || *MemDepAlign < *ByValAlign) &&
1562 getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, &CB, AC,
1563 DT) < *ByValAlign)
1564 return false;
1565
1566 // The address space of the memcpy source must match the byval argument
1567 if (MDep->getSource()->getType()->getPointerAddressSpace() !=
1568 ByValArg->getType()->getPointerAddressSpace())
1569 return false;
1570
1571 // Verify that the copied-from memory doesn't change in between the memcpy and
1572 // the byval call.
1573 // memcpy(a <- b)
1574 // *b = 42;
1575 // foo(*a)
1576 // It would be invalid to transform the second memcpy into foo(*b).
1577 if (writtenBetween(MSSA, *AA, MemoryLocation::getForSource(MDep),
1578 MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(&CB)))
1579 return false;
1580
1581 Value *TmpCast = MDep->getSource();
1582 if (MDep->getSource()->getType() != ByValArg->getType()) {
1583 BitCastInst *TmpBitCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
1584 "tmpcast", &CB);
1585 // Set the tmpcast's DebugLoc to MDep's
1586 TmpBitCast->setDebugLoc(MDep->getDebugLoc());
1587 TmpCast = TmpBitCast;
1588 }
1589
1590 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"
1591 << " " << *MDep << "\n"
1592 << " " << CB << "\n");
1593
1594 // Otherwise we're good! Update the byval argument.
1595 CB.setArgOperand(ArgNo, TmpCast);
1596 ++NumMemCpyInstr;
1597 return true;
1598 }
1599
1600 /// Executes one iteration of MemCpyOptPass.
iterateOnFunction(Function & F)1601 bool MemCpyOptPass::iterateOnFunction(Function &F) {
1602 bool MadeChange = false;
1603
1604 // Walk all instruction in the function.
1605 for (BasicBlock &BB : F) {
1606 // Skip unreachable blocks. For example processStore assumes that an
1607 // instruction in a BB can't be dominated by a later instruction in the
1608 // same BB (which is a scenario that can happen for an unreachable BB that
1609 // has itself as a predecessor).
1610 if (!DT->isReachableFromEntry(&BB))
1611 continue;
1612
1613 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
1614 // Avoid invalidating the iterator.
1615 Instruction *I = &*BI++;
1616
1617 bool RepeatInstruction = false;
1618
1619 if (auto *SI = dyn_cast<StoreInst>(I))
1620 MadeChange |= processStore(SI, BI);
1621 else if (auto *M = dyn_cast<MemSetInst>(I))
1622 RepeatInstruction = processMemSet(M, BI);
1623 else if (auto *M = dyn_cast<MemCpyInst>(I))
1624 RepeatInstruction = processMemCpy(M, BI);
1625 else if (auto *M = dyn_cast<MemMoveInst>(I))
1626 RepeatInstruction = processMemMove(M);
1627 else if (auto *CB = dyn_cast<CallBase>(I)) {
1628 for (unsigned i = 0, e = CB->arg_size(); i != e; ++i)
1629 if (CB->isByValArgument(i))
1630 MadeChange |= processByValArgument(*CB, i);
1631 }
1632
1633 // Reprocess the instruction if desired.
1634 if (RepeatInstruction) {
1635 if (BI != BB.begin())
1636 --BI;
1637 MadeChange = true;
1638 }
1639 }
1640 }
1641
1642 return MadeChange;
1643 }
1644
run(Function & F,FunctionAnalysisManager & AM)1645 PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) {
1646 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1647 auto *AA = &AM.getResult<AAManager>(F);
1648 auto *AC = &AM.getResult<AssumptionAnalysis>(F);
1649 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1650 auto *MSSA = &AM.getResult<MemorySSAAnalysis>(F);
1651
1652 bool MadeChange = runImpl(F, &TLI, AA, AC, DT, &MSSA->getMSSA());
1653 if (!MadeChange)
1654 return PreservedAnalyses::all();
1655
1656 PreservedAnalyses PA;
1657 PA.preserveSet<CFGAnalyses>();
1658 PA.preserve<MemorySSAAnalysis>();
1659 return PA;
1660 }
1661
runImpl(Function & F,TargetLibraryInfo * TLI_,AliasAnalysis * AA_,AssumptionCache * AC_,DominatorTree * DT_,MemorySSA * MSSA_)1662 bool MemCpyOptPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
1663 AliasAnalysis *AA_, AssumptionCache *AC_,
1664 DominatorTree *DT_, MemorySSA *MSSA_) {
1665 bool MadeChange = false;
1666 TLI = TLI_;
1667 AA = AA_;
1668 AC = AC_;
1669 DT = DT_;
1670 MSSA = MSSA_;
1671 MemorySSAUpdater MSSAU_(MSSA_);
1672 MSSAU = &MSSAU_;
1673
1674 while (true) {
1675 if (!iterateOnFunction(F))
1676 break;
1677 MadeChange = true;
1678 }
1679
1680 if (VerifyMemorySSA)
1681 MSSA_->verifyMemorySSA();
1682
1683 return MadeChange;
1684 }
1685
1686 /// This is the main transformation entry point for a function.
runOnFunction(Function & F)1687 bool MemCpyOptLegacyPass::runOnFunction(Function &F) {
1688 if (skipFunction(F))
1689 return false;
1690
1691 auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1692 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1693 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1694 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1695 auto *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
1696
1697 return Impl.runImpl(F, TLI, AA, AC, DT, MSSA);
1698 }
1699