1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs various transformations related to eliminating memcpy
10 // calls, or transforming sets of stores into memset's.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/Analysis/MemorySSA.h"
27 #include "llvm/Analysis/MemorySSAUpdater.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/Argument.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GetElementPtrTypeIterator.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/IRBuilder.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/LLVMContext.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/Operator.h"
48 #include "llvm/IR/PassManager.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Scalar.h"
59 #include "llvm/Transforms/Utils/Local.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstdint>
63 #include <utility>
64 
65 using namespace llvm;
66 
67 #define DEBUG_TYPE "memcpyopt"
68 
69 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
70 STATISTIC(NumMemSetInfer, "Number of memsets inferred");
71 STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
72 STATISTIC(NumCpyToSet,    "Number of memcpys converted to memset");
73 
74 namespace {
75 
76 /// Represents a range of memset'd bytes with the ByteVal value.
77 /// This allows us to analyze stores like:
78 ///   store 0 -> P+1
79 ///   store 0 -> P+0
80 ///   store 0 -> P+3
81 ///   store 0 -> P+2
82 /// which sometimes happens with stores to arrays of structs etc.  When we see
83 /// the first store, we make a range [1, 2).  The second store extends the range
84 /// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
85 /// two ranges into [0, 3) which is memset'able.
86 struct MemsetRange {
87   // Start/End - A semi range that describes the span that this range covers.
88   // The range is closed at the start and open at the end: [Start, End).
89   int64_t Start, End;
90 
91   /// StartPtr - The getelementptr instruction that points to the start of the
92   /// range.
93   Value *StartPtr;
94 
95   /// Alignment - The known alignment of the first store.
96   unsigned Alignment;
97 
98   /// TheStores - The actual stores that make up this range.
99   SmallVector<Instruction*, 16> TheStores;
100 
101   bool isProfitableToUseMemset(const DataLayout &DL) const;
102 };
103 
104 } // end anonymous namespace
105 
106 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
107   // If we found more than 4 stores to merge or 16 bytes, use memset.
108   if (TheStores.size() >= 4 || End-Start >= 16) return true;
109 
110   // If there is nothing to merge, don't do anything.
111   if (TheStores.size() < 2) return false;
112 
113   // If any of the stores are a memset, then it is always good to extend the
114   // memset.
115   for (Instruction *SI : TheStores)
116     if (!isa<StoreInst>(SI))
117       return true;
118 
119   // Assume that the code generator is capable of merging pairs of stores
120   // together if it wants to.
121   if (TheStores.size() == 2) return false;
122 
123   // If we have fewer than 8 stores, it can still be worthwhile to do this.
124   // For example, merging 4 i8 stores into an i32 store is useful almost always.
125   // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
126   // memset will be split into 2 32-bit stores anyway) and doing so can
127   // pessimize the llvm optimizer.
128   //
129   // Since we don't have perfect knowledge here, make some assumptions: assume
130   // the maximum GPR width is the same size as the largest legal integer
131   // size. If so, check to see whether we will end up actually reducing the
132   // number of stores used.
133   unsigned Bytes = unsigned(End-Start);
134   unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8;
135   if (MaxIntSize == 0)
136     MaxIntSize = 1;
137   unsigned NumPointerStores = Bytes / MaxIntSize;
138 
139   // Assume the remaining bytes if any are done a byte at a time.
140   unsigned NumByteStores = Bytes % MaxIntSize;
141 
142   // If we will reduce the # stores (according to this heuristic), do the
143   // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
144   // etc.
145   return TheStores.size() > NumPointerStores+NumByteStores;
146 }
147 
148 namespace {
149 
150 class MemsetRanges {
151   using range_iterator = SmallVectorImpl<MemsetRange>::iterator;
152 
153   /// A sorted list of the memset ranges.
154   SmallVector<MemsetRange, 8> Ranges;
155 
156   const DataLayout &DL;
157 
158 public:
159   MemsetRanges(const DataLayout &DL) : DL(DL) {}
160 
161   using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator;
162 
163   const_iterator begin() const { return Ranges.begin(); }
164   const_iterator end() const { return Ranges.end(); }
165   bool empty() const { return Ranges.empty(); }
166 
167   void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
168     if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
169       addStore(OffsetFromFirst, SI);
170     else
171       addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
172   }
173 
174   void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
175     int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
176 
177     addRange(OffsetFromFirst, StoreSize, SI->getPointerOperand(),
178              SI->getAlign().value(), SI);
179   }
180 
181   void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
182     int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
183     addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlignment(), MSI);
184   }
185 
186   void addRange(int64_t Start, int64_t Size, Value *Ptr,
187                 unsigned Alignment, Instruction *Inst);
188 };
189 
190 } // end anonymous namespace
191 
192 /// Add a new store to the MemsetRanges data structure.  This adds a
193 /// new range for the specified store at the specified offset, merging into
194 /// existing ranges as appropriate.
195 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
196                             unsigned Alignment, Instruction *Inst) {
197   int64_t End = Start+Size;
198 
199   range_iterator I = partition_point(
200       Ranges, [=](const MemsetRange &O) { return O.End < Start; });
201 
202   // We now know that I == E, in which case we didn't find anything to merge
203   // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
204   // to insert a new range.  Handle this now.
205   if (I == Ranges.end() || End < I->Start) {
206     MemsetRange &R = *Ranges.insert(I, MemsetRange());
207     R.Start        = Start;
208     R.End          = End;
209     R.StartPtr     = Ptr;
210     R.Alignment    = Alignment;
211     R.TheStores.push_back(Inst);
212     return;
213   }
214 
215   // This store overlaps with I, add it.
216   I->TheStores.push_back(Inst);
217 
218   // At this point, we may have an interval that completely contains our store.
219   // If so, just add it to the interval and return.
220   if (I->Start <= Start && I->End >= End)
221     return;
222 
223   // Now we know that Start <= I->End and End >= I->Start so the range overlaps
224   // but is not entirely contained within the range.
225 
226   // See if the range extends the start of the range.  In this case, it couldn't
227   // possibly cause it to join the prior range, because otherwise we would have
228   // stopped on *it*.
229   if (Start < I->Start) {
230     I->Start = Start;
231     I->StartPtr = Ptr;
232     I->Alignment = Alignment;
233   }
234 
235   // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
236   // is in or right at the end of I), and that End >= I->Start.  Extend I out to
237   // End.
238   if (End > I->End) {
239     I->End = End;
240     range_iterator NextI = I;
241     while (++NextI != Ranges.end() && End >= NextI->Start) {
242       // Merge the range in.
243       I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
244       if (NextI->End > I->End)
245         I->End = NextI->End;
246       Ranges.erase(NextI);
247       NextI = I;
248     }
249   }
250 }
251 
252 //===----------------------------------------------------------------------===//
253 //                         MemCpyOptLegacyPass Pass
254 //===----------------------------------------------------------------------===//
255 
256 namespace {
257 
258 class MemCpyOptLegacyPass : public FunctionPass {
259   MemCpyOptPass Impl;
260 
261 public:
262   static char ID; // Pass identification, replacement for typeid
263 
264   MemCpyOptLegacyPass() : FunctionPass(ID) {
265     initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry());
266   }
267 
268   bool runOnFunction(Function &F) override;
269 
270 private:
271   // This transformation requires dominator postdominator info
272   void getAnalysisUsage(AnalysisUsage &AU) const override {
273     AU.setPreservesCFG();
274     AU.addRequired<AssumptionCacheTracker>();
275     AU.addRequired<DominatorTreeWrapperPass>();
276     AU.addPreserved<DominatorTreeWrapperPass>();
277     AU.addPreserved<GlobalsAAWrapperPass>();
278     AU.addRequired<TargetLibraryInfoWrapperPass>();
279     AU.addRequired<MemoryDependenceWrapperPass>();
280     AU.addPreserved<MemoryDependenceWrapperPass>();
281     AU.addRequired<AAResultsWrapperPass>();
282     AU.addPreserved<AAResultsWrapperPass>();
283     AU.addPreserved<MemorySSAWrapperPass>();
284   }
285 };
286 
287 } // end anonymous namespace
288 
289 char MemCpyOptLegacyPass::ID = 0;
290 
291 /// The public interface to this file...
292 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); }
293 
294 INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
295                       false, false)
296 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
297 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
298 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
299 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
300 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
301 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
302 INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
303                     false, false)
304 
305 void MemCpyOptPass::eraseInstruction(Instruction *I) {
306   if (MSSAU)
307     MSSAU->removeMemoryAccess(I);
308   MD->removeInstruction(I);
309   I->eraseFromParent();
310 }
311 
312 /// When scanning forward over instructions, we look for some other patterns to
313 /// fold away. In particular, this looks for stores to neighboring locations of
314 /// memory. If it sees enough consecutive ones, it attempts to merge them
315 /// together into a memcpy/memset.
316 Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst,
317                                                  Value *StartPtr,
318                                                  Value *ByteVal) {
319   const DataLayout &DL = StartInst->getModule()->getDataLayout();
320 
321   // Okay, so we now have a single store that can be splatable.  Scan to find
322   // all subsequent stores of the same value to offset from the same pointer.
323   // Join these together into ranges, so we can decide whether contiguous blocks
324   // are stored.
325   MemsetRanges Ranges(DL);
326 
327   BasicBlock::iterator BI(StartInst);
328 
329   // Keeps track of the last memory use or def before the insertion point for
330   // the new memset. The new MemoryDef for the inserted memsets will be inserted
331   // after MemInsertPoint. It points to either LastMemDef or to the last user
332   // before the insertion point of the memset, if there are any such users.
333   MemoryUseOrDef *MemInsertPoint = nullptr;
334   // Keeps track of the last MemoryDef between StartInst and the insertion point
335   // for the new memset. This will become the defining access of the inserted
336   // memsets.
337   MemoryDef *LastMemDef = nullptr;
338   for (++BI; !BI->isTerminator(); ++BI) {
339     if (MSSAU) {
340       auto *CurrentAcc = cast_or_null<MemoryUseOrDef>(
341           MSSAU->getMemorySSA()->getMemoryAccess(&*BI));
342       if (CurrentAcc) {
343         MemInsertPoint = CurrentAcc;
344         if (auto *CurrentDef = dyn_cast<MemoryDef>(CurrentAcc))
345           LastMemDef = CurrentDef;
346       }
347     }
348 
349     if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
350       // If the instruction is readnone, ignore it, otherwise bail out.  We
351       // don't even allow readonly here because we don't want something like:
352       // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
353       if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
354         break;
355       continue;
356     }
357 
358     if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
359       // If this is a store, see if we can merge it in.
360       if (!NextStore->isSimple()) break;
361 
362       Value *StoredVal = NextStore->getValueOperand();
363 
364       // Don't convert stores of non-integral pointer types to memsets (which
365       // stores integers).
366       if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
367         break;
368 
369       // Check to see if this stored value is of the same byte-splattable value.
370       Value *StoredByte = isBytewiseValue(StoredVal, DL);
371       if (isa<UndefValue>(ByteVal) && StoredByte)
372         ByteVal = StoredByte;
373       if (ByteVal != StoredByte)
374         break;
375 
376       // Check to see if this store is to a constant offset from the start ptr.
377       Optional<int64_t> Offset =
378           isPointerOffset(StartPtr, NextStore->getPointerOperand(), DL);
379       if (!Offset)
380         break;
381 
382       Ranges.addStore(*Offset, NextStore);
383     } else {
384       MemSetInst *MSI = cast<MemSetInst>(BI);
385 
386       if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
387           !isa<ConstantInt>(MSI->getLength()))
388         break;
389 
390       // Check to see if this store is to a constant offset from the start ptr.
391       Optional<int64_t> Offset = isPointerOffset(StartPtr, MSI->getDest(), DL);
392       if (!Offset)
393         break;
394 
395       Ranges.addMemSet(*Offset, MSI);
396     }
397   }
398 
399   // If we have no ranges, then we just had a single store with nothing that
400   // could be merged in.  This is a very common case of course.
401   if (Ranges.empty())
402     return nullptr;
403 
404   // If we had at least one store that could be merged in, add the starting
405   // store as well.  We try to avoid this unless there is at least something
406   // interesting as a small compile-time optimization.
407   Ranges.addInst(0, StartInst);
408 
409   // If we create any memsets, we put it right before the first instruction that
410   // isn't part of the memset block.  This ensure that the memset is dominated
411   // by any addressing instruction needed by the start of the block.
412   IRBuilder<> Builder(&*BI);
413 
414   // Now that we have full information about ranges, loop over the ranges and
415   // emit memset's for anything big enough to be worthwhile.
416   Instruction *AMemSet = nullptr;
417   for (const MemsetRange &Range : Ranges) {
418     if (Range.TheStores.size() == 1) continue;
419 
420     // If it is profitable to lower this range to memset, do so now.
421     if (!Range.isProfitableToUseMemset(DL))
422       continue;
423 
424     // Otherwise, we do want to transform this!  Create a new memset.
425     // Get the starting pointer of the block.
426     StartPtr = Range.StartPtr;
427 
428     AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End - Range.Start,
429                                    MaybeAlign(Range.Alignment));
430     LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI
431                                                    : Range.TheStores) dbgs()
432                                               << *SI << '\n';
433                dbgs() << "With: " << *AMemSet << '\n');
434     if (!Range.TheStores.empty())
435       AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
436 
437     if (MSSAU) {
438       assert(LastMemDef && MemInsertPoint &&
439              "Both LastMemDef and MemInsertPoint need to be set");
440       auto *NewDef =
441           cast<MemoryDef>(MemInsertPoint->getMemoryInst() == &*BI
442                               ? MSSAU->createMemoryAccessBefore(
443                                     AMemSet, LastMemDef, MemInsertPoint)
444                               : MSSAU->createMemoryAccessAfter(
445                                     AMemSet, LastMemDef, MemInsertPoint));
446       MSSAU->insertDef(NewDef, /*RenameUses=*/true);
447       LastMemDef = NewDef;
448       MemInsertPoint = NewDef;
449     }
450 
451     // Zap all the stores.
452     for (Instruction *SI : Range.TheStores)
453       eraseInstruction(SI);
454 
455     ++NumMemSetInfer;
456   }
457 
458   return AMemSet;
459 }
460 
461 // This method try to lift a store instruction before position P.
462 // It will lift the store and its argument + that anything that
463 // may alias with these.
464 // The method returns true if it was successful.
465 static bool moveUp(AliasAnalysis &AA, StoreInst *SI, Instruction *P,
466                    const LoadInst *LI) {
467   // If the store alias this position, early bail out.
468   MemoryLocation StoreLoc = MemoryLocation::get(SI);
469   if (isModOrRefSet(AA.getModRefInfo(P, StoreLoc)))
470     return false;
471 
472   // Keep track of the arguments of all instruction we plan to lift
473   // so we can make sure to lift them as well if appropriate.
474   DenseSet<Instruction*> Args;
475   if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand()))
476     if (Ptr->getParent() == SI->getParent())
477       Args.insert(Ptr);
478 
479   // Instruction to lift before P.
480   SmallVector<Instruction*, 8> ToLift;
481 
482   // Memory locations of lifted instructions.
483   SmallVector<MemoryLocation, 8> MemLocs{StoreLoc};
484 
485   // Lifted calls.
486   SmallVector<const CallBase *, 8> Calls;
487 
488   const MemoryLocation LoadLoc = MemoryLocation::get(LI);
489 
490   for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) {
491     auto *C = &*I;
492 
493     bool MayAlias = isModOrRefSet(AA.getModRefInfo(C, None));
494 
495     bool NeedLift = false;
496     if (Args.erase(C))
497       NeedLift = true;
498     else if (MayAlias) {
499       NeedLift = llvm::any_of(MemLocs, [C, &AA](const MemoryLocation &ML) {
500         return isModOrRefSet(AA.getModRefInfo(C, ML));
501       });
502 
503       if (!NeedLift)
504         NeedLift = llvm::any_of(Calls, [C, &AA](const CallBase *Call) {
505           return isModOrRefSet(AA.getModRefInfo(C, Call));
506         });
507     }
508 
509     if (!NeedLift)
510       continue;
511 
512     if (MayAlias) {
513       // Since LI is implicitly moved downwards past the lifted instructions,
514       // none of them may modify its source.
515       if (isModSet(AA.getModRefInfo(C, LoadLoc)))
516         return false;
517       else if (const auto *Call = dyn_cast<CallBase>(C)) {
518         // If we can't lift this before P, it's game over.
519         if (isModOrRefSet(AA.getModRefInfo(P, Call)))
520           return false;
521 
522         Calls.push_back(Call);
523       } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) {
524         // If we can't lift this before P, it's game over.
525         auto ML = MemoryLocation::get(C);
526         if (isModOrRefSet(AA.getModRefInfo(P, ML)))
527           return false;
528 
529         MemLocs.push_back(ML);
530       } else
531         // We don't know how to lift this instruction.
532         return false;
533     }
534 
535     ToLift.push_back(C);
536     for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k)
537       if (auto *A = dyn_cast<Instruction>(C->getOperand(k))) {
538         if (A->getParent() == SI->getParent()) {
539           // Cannot hoist user of P above P
540           if(A == P) return false;
541           Args.insert(A);
542         }
543       }
544   }
545 
546   // We made it, we need to lift
547   for (auto *I : llvm::reverse(ToLift)) {
548     LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n");
549     I->moveBefore(P);
550   }
551 
552   return true;
553 }
554 
555 bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
556   if (!SI->isSimple()) return false;
557 
558   // Avoid merging nontemporal stores since the resulting
559   // memcpy/memset would not be able to preserve the nontemporal hint.
560   // In theory we could teach how to propagate the !nontemporal metadata to
561   // memset calls. However, that change would force the backend to
562   // conservatively expand !nontemporal memset calls back to sequences of
563   // store instructions (effectively undoing the merging).
564   if (SI->getMetadata(LLVMContext::MD_nontemporal))
565     return false;
566 
567   const DataLayout &DL = SI->getModule()->getDataLayout();
568 
569   Value *StoredVal = SI->getValueOperand();
570 
571   // Not all the transforms below are correct for non-integral pointers, bail
572   // until we've audited the individual pieces.
573   if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
574     return false;
575 
576   // Load to store forwarding can be interpreted as memcpy.
577   if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
578     if (LI->isSimple() && LI->hasOneUse() &&
579         LI->getParent() == SI->getParent()) {
580 
581       auto *T = LI->getType();
582       if (T->isAggregateType()) {
583         MemoryLocation LoadLoc = MemoryLocation::get(LI);
584 
585         // We use alias analysis to check if an instruction may store to
586         // the memory we load from in between the load and the store. If
587         // such an instruction is found, we try to promote there instead
588         // of at the store position.
589         Instruction *P = SI;
590         for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) {
591           if (isModSet(AA->getModRefInfo(&I, LoadLoc))) {
592             P = &I;
593             break;
594           }
595         }
596 
597         // We found an instruction that may write to the loaded memory.
598         // We can try to promote at this position instead of the store
599         // position if nothing alias the store memory after this and the store
600         // destination is not in the range.
601         if (P && P != SI) {
602           if (!moveUp(*AA, SI, P, LI))
603             P = nullptr;
604         }
605 
606         // If a valid insertion position is found, then we can promote
607         // the load/store pair to a memcpy.
608         if (P) {
609           // If we load from memory that may alias the memory we store to,
610           // memmove must be used to preserve semantic. If not, memcpy can
611           // be used.
612           bool UseMemMove = false;
613           if (!AA->isNoAlias(MemoryLocation::get(SI), LoadLoc))
614             UseMemMove = true;
615 
616           uint64_t Size = DL.getTypeStoreSize(T);
617 
618           IRBuilder<> Builder(P);
619           Instruction *M;
620           if (UseMemMove)
621             M = Builder.CreateMemMove(
622                 SI->getPointerOperand(), SI->getAlign(),
623                 LI->getPointerOperand(), LI->getAlign(), Size);
624           else
625             M = Builder.CreateMemCpy(
626                 SI->getPointerOperand(), SI->getAlign(),
627                 LI->getPointerOperand(), LI->getAlign(), Size);
628 
629           LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => "
630                             << *M << "\n");
631 
632           if (MSSAU) {
633             assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(P)));
634             auto *LastDef =
635                 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(P));
636             auto *NewAccess =
637                 MSSAU->createMemoryAccessAfter(M, LastDef, LastDef);
638             MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
639           }
640 
641           eraseInstruction(SI);
642           eraseInstruction(LI);
643           ++NumMemCpyInstr;
644 
645           // Make sure we do not invalidate the iterator.
646           BBI = M->getIterator();
647           return true;
648         }
649       }
650 
651       // Detect cases where we're performing call slot forwarding, but
652       // happen to be using a load-store pair to implement it, rather than
653       // a memcpy.
654       MemDepResult ldep = MD->getDependency(LI);
655       CallInst *C = nullptr;
656       if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst()))
657         C = dyn_cast<CallInst>(ldep.getInst());
658 
659       if (C) {
660         // Check that nothing touches the dest of the "copy" between
661         // the call and the store.
662         Value *CpyDest = SI->getPointerOperand()->stripPointerCasts();
663         bool CpyDestIsLocal = isa<AllocaInst>(CpyDest);
664         MemoryLocation StoreLoc = MemoryLocation::get(SI);
665         for (BasicBlock::iterator I = --SI->getIterator(), E = C->getIterator();
666              I != E; --I) {
667           if (isModOrRefSet(AA->getModRefInfo(&*I, StoreLoc))) {
668             C = nullptr;
669             break;
670           }
671           // The store to dest may never happen if an exception can be thrown
672           // between the load and the store.
673           if (I->mayThrow() && !CpyDestIsLocal) {
674             C = nullptr;
675             break;
676           }
677         }
678       }
679 
680       if (C) {
681         bool changed = performCallSlotOptzn(
682             LI, SI->getPointerOperand()->stripPointerCasts(),
683             LI->getPointerOperand()->stripPointerCasts(),
684             DL.getTypeStoreSize(SI->getOperand(0)->getType()),
685             commonAlignment(SI->getAlign(), LI->getAlign()), C);
686         if (changed) {
687           eraseInstruction(SI);
688           eraseInstruction(LI);
689           ++NumMemCpyInstr;
690           return true;
691         }
692       }
693     }
694   }
695 
696   // There are two cases that are interesting for this code to handle: memcpy
697   // and memset.  Right now we only handle memset.
698 
699   // Ensure that the value being stored is something that can be memset'able a
700   // byte at a time like "0" or "-1" or any width, as well as things like
701   // 0xA0A0A0A0 and 0.0.
702   auto *V = SI->getOperand(0);
703   if (Value *ByteVal = isBytewiseValue(V, DL)) {
704     if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
705                                               ByteVal)) {
706       BBI = I->getIterator(); // Don't invalidate iterator.
707       return true;
708     }
709 
710     // If we have an aggregate, we try to promote it to memset regardless
711     // of opportunity for merging as it can expose optimization opportunities
712     // in subsequent passes.
713     auto *T = V->getType();
714     if (T->isAggregateType()) {
715       uint64_t Size = DL.getTypeStoreSize(T);
716       IRBuilder<> Builder(SI);
717       auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size,
718                                      SI->getAlign());
719 
720       LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n");
721 
722       if (MSSAU) {
723         assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI)));
724         auto *LastDef =
725             cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI));
726         auto *NewAccess = MSSAU->createMemoryAccessAfter(M, LastDef, LastDef);
727         MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
728       }
729 
730       eraseInstruction(SI);
731       NumMemSetInfer++;
732 
733       // Make sure we do not invalidate the iterator.
734       BBI = M->getIterator();
735       return true;
736     }
737   }
738 
739   return false;
740 }
741 
742 bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
743   // See if there is another memset or store neighboring this memset which
744   // allows us to widen out the memset to do a single larger store.
745   if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
746     if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
747                                               MSI->getValue())) {
748       BBI = I->getIterator(); // Don't invalidate iterator.
749       return true;
750     }
751   return false;
752 }
753 
754 /// Takes a memcpy and a call that it depends on,
755 /// and checks for the possibility of a call slot optimization by having
756 /// the call write its result directly into the destination of the memcpy.
757 bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpy, Value *cpyDest,
758                                          Value *cpySrc, uint64_t cpyLen,
759                                          Align cpyAlign, CallInst *C) {
760   // The general transformation to keep in mind is
761   //
762   //   call @func(..., src, ...)
763   //   memcpy(dest, src, ...)
764   //
765   // ->
766   //
767   //   memcpy(dest, src, ...)
768   //   call @func(..., dest, ...)
769   //
770   // Since moving the memcpy is technically awkward, we additionally check that
771   // src only holds uninitialized values at the moment of the call, meaning that
772   // the memcpy can be discarded rather than moved.
773 
774   // Lifetime marks shouldn't be operated on.
775   if (Function *F = C->getCalledFunction())
776     if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start)
777       return false;
778 
779   // Require that src be an alloca.  This simplifies the reasoning considerably.
780   AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
781   if (!srcAlloca)
782     return false;
783 
784   ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
785   if (!srcArraySize)
786     return false;
787 
788   const DataLayout &DL = cpy->getModule()->getDataLayout();
789   uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
790                      srcArraySize->getZExtValue();
791 
792   if (cpyLen < srcSize)
793     return false;
794 
795   // Check that accessing the first srcSize bytes of dest will not cause a
796   // trap.  Otherwise the transform is invalid since it might cause a trap
797   // to occur earlier than it otherwise would.
798   if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
799     // The destination is an alloca.  Check it is larger than srcSize.
800     ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
801     if (!destArraySize)
802       return false;
803 
804     uint64_t destSize = DL.getTypeAllocSize(A->getAllocatedType()) *
805                         destArraySize->getZExtValue();
806 
807     if (destSize < srcSize)
808       return false;
809   } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
810     // The store to dest may never happen if the call can throw.
811     if (C->mayThrow())
812       return false;
813 
814     if (A->getDereferenceableBytes() < srcSize) {
815       // If the destination is an sret parameter then only accesses that are
816       // outside of the returned struct type can trap.
817       if (!A->hasStructRetAttr())
818         return false;
819 
820       Type *StructTy = A->getParamStructRetType();
821       if (!StructTy->isSized()) {
822         // The call may never return and hence the copy-instruction may never
823         // be executed, and therefore it's not safe to say "the destination
824         // has at least <cpyLen> bytes, as implied by the copy-instruction",
825         return false;
826       }
827 
828       uint64_t destSize = DL.getTypeAllocSize(StructTy);
829       if (destSize < srcSize)
830         return false;
831     }
832   } else {
833     return false;
834   }
835 
836   // Check that dest points to memory that is at least as aligned as src.
837   Align srcAlign = srcAlloca->getAlign();
838   bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
839   // If dest is not aligned enough and we can't increase its alignment then
840   // bail out.
841   if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
842     return false;
843 
844   // Check that src is not accessed except via the call and the memcpy.  This
845   // guarantees that it holds only undefined values when passed in (so the final
846   // memcpy can be dropped), that it is not read or written between the call and
847   // the memcpy, and that writing beyond the end of it is undefined.
848   SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(),
849                                    srcAlloca->user_end());
850   while (!srcUseList.empty()) {
851     User *U = srcUseList.pop_back_val();
852 
853     if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
854       for (User *UU : U->users())
855         srcUseList.push_back(UU);
856       continue;
857     }
858     if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) {
859       if (!G->hasAllZeroIndices())
860         return false;
861 
862       for (User *UU : U->users())
863         srcUseList.push_back(UU);
864       continue;
865     }
866     if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U))
867       if (IT->isLifetimeStartOrEnd())
868         continue;
869 
870     if (U != C && U != cpy)
871       return false;
872   }
873 
874   // Check that src isn't captured by the called function since the
875   // transformation can cause aliasing issues in that case.
876   for (unsigned ArgI = 0, E = C->arg_size(); ArgI != E; ++ArgI)
877     if (C->getArgOperand(ArgI) == cpySrc && !C->doesNotCapture(ArgI))
878       return false;
879 
880   // Since we're changing the parameter to the callsite, we need to make sure
881   // that what would be the new parameter dominates the callsite.
882   if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
883     if (!DT->dominates(cpyDestInst, C))
884       return false;
885 
886   // In addition to knowing that the call does not access src in some
887   // unexpected manner, for example via a global, which we deduce from
888   // the use analysis, we also need to know that it does not sneakily
889   // access dest.  We rely on AA to figure this out for us.
890   ModRefInfo MR = AA->getModRefInfo(C, cpyDest, LocationSize::precise(srcSize));
891   // If necessary, perform additional analysis.
892   if (isModOrRefSet(MR))
893     MR = AA->callCapturesBefore(C, cpyDest, LocationSize::precise(srcSize), DT);
894   if (isModOrRefSet(MR))
895     return false;
896 
897   // We can't create address space casts here because we don't know if they're
898   // safe for the target.
899   if (cpySrc->getType()->getPointerAddressSpace() !=
900       cpyDest->getType()->getPointerAddressSpace())
901     return false;
902   for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
903     if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc &&
904         cpySrc->getType()->getPointerAddressSpace() !=
905             C->getArgOperand(ArgI)->getType()->getPointerAddressSpace())
906       return false;
907 
908   // All the checks have passed, so do the transformation.
909   bool changedArgument = false;
910   for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
911     if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc) {
912       Value *Dest = cpySrc->getType() == cpyDest->getType() ?  cpyDest
913         : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
914                                       cpyDest->getName(), C);
915       changedArgument = true;
916       if (C->getArgOperand(ArgI)->getType() == Dest->getType())
917         C->setArgOperand(ArgI, Dest);
918       else
919         C->setArgOperand(ArgI, CastInst::CreatePointerCast(
920                                    Dest, C->getArgOperand(ArgI)->getType(),
921                                    Dest->getName(), C));
922     }
923 
924   if (!changedArgument)
925     return false;
926 
927   // If the destination wasn't sufficiently aligned then increase its alignment.
928   if (!isDestSufficientlyAligned) {
929     assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
930     cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
931   }
932 
933   // Drop any cached information about the call, because we may have changed
934   // its dependence information by changing its parameter.
935   MD->removeInstruction(C);
936 
937   // Update AA metadata
938   // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
939   // handled here, but combineMetadata doesn't support them yet
940   unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
941                          LLVMContext::MD_noalias,
942                          LLVMContext::MD_invariant_group,
943                          LLVMContext::MD_access_group};
944   combineMetadata(C, cpy, KnownIDs, true);
945 
946   return true;
947 }
948 
949 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is
950 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
951 bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
952                                                   MemCpyInst *MDep) {
953   // We can only transforms memcpy's where the dest of one is the source of the
954   // other.
955   if (M->getSource() != MDep->getDest() || MDep->isVolatile())
956     return false;
957 
958   // If dep instruction is reading from our current input, then it is a noop
959   // transfer and substituting the input won't change this instruction.  Just
960   // ignore the input and let someone else zap MDep.  This handles cases like:
961   //    memcpy(a <- a)
962   //    memcpy(b <- a)
963   if (M->getSource() == MDep->getSource())
964     return false;
965 
966   // Second, the length of the memcpy's must be the same, or the preceding one
967   // must be larger than the following one.
968   ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
969   ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
970   if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
971     return false;
972 
973   // Verify that the copied-from memory doesn't change in between the two
974   // transfers.  For example, in:
975   //    memcpy(a <- b)
976   //    *b = 42;
977   //    memcpy(c <- a)
978   // It would be invalid to transform the second memcpy into memcpy(c <- b).
979   //
980   // TODO: If the code between M and MDep is transparent to the destination "c",
981   // then we could still perform the xform by moving M up to the first memcpy.
982   //
983   // NOTE: This is conservative, it will stop on any read from the source loc,
984   // not just the defining memcpy.
985   MemDepResult SourceDep =
986       MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false,
987                                    M->getIterator(), M->getParent());
988   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
989     return false;
990 
991   // If the dest of the second might alias the source of the first, then the
992   // source and dest might overlap.  We still want to eliminate the intermediate
993   // value, but we have to generate a memmove instead of memcpy.
994   bool UseMemMove = false;
995   if (!AA->isNoAlias(MemoryLocation::getForDest(M),
996                      MemoryLocation::getForSource(MDep)))
997     UseMemMove = true;
998 
999   // If all checks passed, then we can transform M.
1000   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n"
1001                     << *MDep << '\n' << *M << '\n');
1002 
1003   // TODO: Is this worth it if we're creating a less aligned memcpy? For
1004   // example we could be moving from movaps -> movq on x86.
1005   IRBuilder<> Builder(M);
1006   Instruction *NewM;
1007   if (UseMemMove)
1008     NewM = Builder.CreateMemMove(M->getRawDest(), M->getDestAlign(),
1009                                  MDep->getRawSource(), MDep->getSourceAlign(),
1010                                  M->getLength(), M->isVolatile());
1011   else
1012     NewM = Builder.CreateMemCpy(M->getRawDest(), M->getDestAlign(),
1013                                 MDep->getRawSource(), MDep->getSourceAlign(),
1014                                 M->getLength(), M->isVolatile());
1015 
1016   if (MSSAU) {
1017     assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)));
1018     auto *LastDef = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M));
1019     auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
1020     MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1021   }
1022 
1023   // Remove the instruction we're replacing.
1024   eraseInstruction(M);
1025   ++NumMemCpyInstr;
1026   return true;
1027 }
1028 
1029 /// We've found that the (upward scanning) memory dependence of \p MemCpy is
1030 /// \p MemSet.  Try to simplify \p MemSet to only set the trailing bytes that
1031 /// weren't copied over by \p MemCpy.
1032 ///
1033 /// In other words, transform:
1034 /// \code
1035 ///   memset(dst, c, dst_size);
1036 ///   memcpy(dst, src, src_size);
1037 /// \endcode
1038 /// into:
1039 /// \code
1040 ///   memcpy(dst, src, src_size);
1041 ///   memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
1042 /// \endcode
1043 bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
1044                                                   MemSetInst *MemSet) {
1045   // We can only transform memset/memcpy with the same destination.
1046   if (MemSet->getDest() != MemCpy->getDest())
1047     return false;
1048 
1049   // Check that there are no other dependencies on the memset destination.
1050   MemDepResult DstDepInfo =
1051       MD->getPointerDependencyFrom(MemoryLocation::getForDest(MemSet), false,
1052                                    MemCpy->getIterator(), MemCpy->getParent());
1053   if (DstDepInfo.getInst() != MemSet)
1054     return false;
1055 
1056   // Use the same i8* dest as the memcpy, killing the memset dest if different.
1057   Value *Dest = MemCpy->getRawDest();
1058   Value *DestSize = MemSet->getLength();
1059   Value *SrcSize = MemCpy->getLength();
1060 
1061   // By default, create an unaligned memset.
1062   unsigned Align = 1;
1063   // If Dest is aligned, and SrcSize is constant, use the minimum alignment
1064   // of the sum.
1065   const unsigned DestAlign =
1066       std::max(MemSet->getDestAlignment(), MemCpy->getDestAlignment());
1067   if (DestAlign > 1)
1068     if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
1069       Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign);
1070 
1071   IRBuilder<> Builder(MemCpy);
1072 
1073   // If the sizes have different types, zext the smaller one.
1074   if (DestSize->getType() != SrcSize->getType()) {
1075     if (DestSize->getType()->getIntegerBitWidth() >
1076         SrcSize->getType()->getIntegerBitWidth())
1077       SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType());
1078     else
1079       DestSize = Builder.CreateZExt(DestSize, SrcSize->getType());
1080   }
1081 
1082   Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize);
1083   Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize);
1084   Value *MemsetLen = Builder.CreateSelect(
1085       Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff);
1086   Instruction *NewMemSet = Builder.CreateMemSet(
1087       Builder.CreateGEP(Dest->getType()->getPointerElementType(), Dest,
1088                         SrcSize),
1089       MemSet->getOperand(1), MemsetLen, MaybeAlign(Align));
1090 
1091   if (MSSAU) {
1092     assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)) &&
1093            "MemCpy must be a MemoryDef");
1094     // The new memset is inserted after the memcpy, but it is known that its
1095     // defining access is the memset about to be removed which immediately
1096     // precedes the memcpy.
1097     auto *LastDef =
1098         cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy));
1099     auto *NewAccess = MSSAU->createMemoryAccessBefore(
1100         NewMemSet, LastDef->getDefiningAccess(), LastDef);
1101     MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1102   }
1103 
1104   eraseInstruction(MemSet);
1105   return true;
1106 }
1107 
1108 /// Determine whether the instruction has undefined content for the given Size,
1109 /// either because it was freshly alloca'd or started its lifetime.
1110 static bool hasUndefContents(Instruction *I, ConstantInt *Size) {
1111   if (isa<AllocaInst>(I))
1112     return true;
1113 
1114   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1115     if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1116       if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0)))
1117         if (LTSize->getZExtValue() >= Size->getZExtValue())
1118           return true;
1119 
1120   return false;
1121 }
1122 
1123 /// Transform memcpy to memset when its source was just memset.
1124 /// In other words, turn:
1125 /// \code
1126 ///   memset(dst1, c, dst1_size);
1127 ///   memcpy(dst2, dst1, dst2_size);
1128 /// \endcode
1129 /// into:
1130 /// \code
1131 ///   memset(dst1, c, dst1_size);
1132 ///   memset(dst2, c, dst2_size);
1133 /// \endcode
1134 /// When dst2_size <= dst1_size.
1135 ///
1136 /// The \p MemCpy must have a Constant length.
1137 bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
1138                                                MemSetInst *MemSet) {
1139   // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and
1140   // memcpying from the same address. Otherwise it is hard to reason about.
1141   if (!AA->isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource()))
1142     return false;
1143 
1144   // A known memset size is required.
1145   ConstantInt *MemSetSize = dyn_cast<ConstantInt>(MemSet->getLength());
1146   if (!MemSetSize)
1147     return false;
1148 
1149   // Make sure the memcpy doesn't read any more than what the memset wrote.
1150   // Don't worry about sizes larger than i64.
1151   ConstantInt *CopySize = cast<ConstantInt>(MemCpy->getLength());
1152   if (CopySize->getZExtValue() > MemSetSize->getZExtValue()) {
1153     // If the memcpy is larger than the memset, but the memory was undef prior
1154     // to the memset, we can just ignore the tail. Technically we're only
1155     // interested in the bytes from MemSetSize..CopySize here, but as we can't
1156     // easily represent this location, we use the full 0..CopySize range.
1157     MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy);
1158     MemDepResult DepInfo = MD->getPointerDependencyFrom(
1159         MemCpyLoc, true, MemSet->getIterator(), MemSet->getParent());
1160     if (DepInfo.isDef() && hasUndefContents(DepInfo.getInst(), CopySize))
1161       CopySize = MemSetSize;
1162     else
1163       return false;
1164   }
1165 
1166   IRBuilder<> Builder(MemCpy);
1167   Instruction *NewM =
1168       Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1),
1169                            CopySize, MaybeAlign(MemCpy->getDestAlignment()));
1170   if (MSSAU) {
1171     auto *LastDef =
1172         cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy));
1173     auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
1174     MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1175   }
1176 
1177   return true;
1178 }
1179 
1180 /// Perform simplification of memcpy's.  If we have memcpy A
1181 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
1182 /// B to be a memcpy from X to Z (or potentially a memmove, depending on
1183 /// circumstances). This allows later passes to remove the first memcpy
1184 /// altogether.
1185 bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) {
1186   // We can only optimize non-volatile memcpy's.
1187   if (M->isVolatile()) return false;
1188 
1189   // If the source and destination of the memcpy are the same, then zap it.
1190   if (M->getSource() == M->getDest()) {
1191     ++BBI;
1192     eraseInstruction(M);
1193     return true;
1194   }
1195 
1196   // If copying from a constant, try to turn the memcpy into a memset.
1197   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
1198     if (GV->isConstant() && GV->hasDefinitiveInitializer())
1199       if (Value *ByteVal = isBytewiseValue(GV->getInitializer(),
1200                                            M->getModule()->getDataLayout())) {
1201         IRBuilder<> Builder(M);
1202         Instruction *NewM =
1203             Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
1204                                  MaybeAlign(M->getDestAlignment()), false);
1205         if (MSSAU) {
1206           auto *LastDef =
1207               cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M));
1208           auto *NewAccess =
1209               MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
1210           MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1211         }
1212 
1213         eraseInstruction(M);
1214         ++NumCpyToSet;
1215         return true;
1216       }
1217 
1218   MemDepResult DepInfo = MD->getDependency(M);
1219 
1220   // Try to turn a partially redundant memset + memcpy into
1221   // memcpy + smaller memset.  We don't need the memcpy size for this.
1222   if (DepInfo.isClobber())
1223     if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst()))
1224       if (processMemSetMemCpyDependence(M, MDep))
1225         return true;
1226 
1227   // The optimizations after this point require the memcpy size.
1228   ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
1229   if (!CopySize) return false;
1230 
1231   // There are four possible optimizations we can do for memcpy:
1232   //   a) memcpy-memcpy xform which exposes redundance for DSE.
1233   //   b) call-memcpy xform for return slot optimization.
1234   //   c) memcpy from freshly alloca'd space or space that has just started its
1235   //      lifetime copies undefined data, and we can therefore eliminate the
1236   //      memcpy in favor of the data that was already at the destination.
1237   //   d) memcpy from a just-memset'd source can be turned into memset.
1238   if (DepInfo.isClobber()) {
1239     if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
1240       // FIXME: Can we pass in either of dest/src alignment here instead
1241       // of conservatively taking the minimum?
1242       Align Alignment = std::min(M->getDestAlign().valueOrOne(),
1243                                  M->getSourceAlign().valueOrOne());
1244       if (performCallSlotOptzn(M, M->getDest(), M->getSource(),
1245                                CopySize->getZExtValue(), Alignment, C)) {
1246         eraseInstruction(M);
1247         ++NumMemCpyInstr;
1248         return true;
1249       }
1250     }
1251   }
1252 
1253   MemoryLocation SrcLoc = MemoryLocation::getForSource(M);
1254   MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(
1255       SrcLoc, true, M->getIterator(), M->getParent());
1256 
1257   if (SrcDepInfo.isClobber()) {
1258     if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst()))
1259       return processMemCpyMemCpyDependence(M, MDep);
1260   } else if (SrcDepInfo.isDef()) {
1261     if (hasUndefContents(SrcDepInfo.getInst(), CopySize)) {
1262       eraseInstruction(M);
1263       ++NumMemCpyInstr;
1264       return true;
1265     }
1266   }
1267 
1268   if (SrcDepInfo.isClobber())
1269     if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst()))
1270       if (performMemCpyToMemSetOptzn(M, MDep)) {
1271         eraseInstruction(M);
1272         ++NumCpyToSet;
1273         return true;
1274       }
1275 
1276   return false;
1277 }
1278 
1279 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
1280 /// not to alias.
1281 bool MemCpyOptPass::processMemMove(MemMoveInst *M) {
1282   if (!TLI->has(LibFunc_memmove))
1283     return false;
1284 
1285   // See if the pointers alias.
1286   if (!AA->isNoAlias(MemoryLocation::getForDest(M),
1287                      MemoryLocation::getForSource(M)))
1288     return false;
1289 
1290   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M
1291                     << "\n");
1292 
1293   // If not, then we know we can transform this.
1294   Type *ArgTys[3] = { M->getRawDest()->getType(),
1295                       M->getRawSource()->getType(),
1296                       M->getLength()->getType() };
1297   M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(),
1298                                                  Intrinsic::memcpy, ArgTys));
1299 
1300   // For MemorySSA nothing really changes (except that memcpy may imply stricter
1301   // aliasing guarantees).
1302 
1303   // MemDep may have over conservative information about this instruction, just
1304   // conservatively flush it from the cache.
1305   MD->removeInstruction(M);
1306 
1307   ++NumMoveToCpy;
1308   return true;
1309 }
1310 
1311 /// This is called on every byval argument in call sites.
1312 bool MemCpyOptPass::processByValArgument(CallBase &CB, unsigned ArgNo) {
1313   const DataLayout &DL = CB.getCaller()->getParent()->getDataLayout();
1314   // Find out what feeds this byval argument.
1315   Value *ByValArg = CB.getArgOperand(ArgNo);
1316   Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType();
1317   uint64_t ByValSize = DL.getTypeAllocSize(ByValTy);
1318   MemDepResult DepInfo = MD->getPointerDependencyFrom(
1319       MemoryLocation(ByValArg, LocationSize::precise(ByValSize)), true,
1320       CB.getIterator(), CB.getParent());
1321   if (!DepInfo.isClobber())
1322     return false;
1323 
1324   // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by
1325   // a memcpy, see if we can byval from the source of the memcpy instead of the
1326   // result.
1327   MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
1328   if (!MDep || MDep->isVolatile() ||
1329       ByValArg->stripPointerCasts() != MDep->getDest())
1330     return false;
1331 
1332   // The length of the memcpy must be larger or equal to the size of the byval.
1333   ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
1334   if (!C1 || C1->getValue().getZExtValue() < ByValSize)
1335     return false;
1336 
1337   // Get the alignment of the byval.  If the call doesn't specify the alignment,
1338   // then it is some target specific value that we can't know.
1339   MaybeAlign ByValAlign = CB.getParamAlign(ArgNo);
1340   if (!ByValAlign) return false;
1341 
1342   // If it is greater than the memcpy, then we check to see if we can force the
1343   // source of the memcpy to the alignment we need.  If we fail, we bail out.
1344   MaybeAlign MemDepAlign = MDep->getSourceAlign();
1345   if ((!MemDepAlign || *MemDepAlign < *ByValAlign) &&
1346       getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, &CB, AC,
1347                                  DT) < *ByValAlign)
1348     return false;
1349 
1350   // The address space of the memcpy source must match the byval argument
1351   if (MDep->getSource()->getType()->getPointerAddressSpace() !=
1352       ByValArg->getType()->getPointerAddressSpace())
1353     return false;
1354 
1355   // Verify that the copied-from memory doesn't change in between the memcpy and
1356   // the byval call.
1357   //    memcpy(a <- b)
1358   //    *b = 42;
1359   //    foo(*a)
1360   // It would be invalid to transform the second memcpy into foo(*b).
1361   //
1362   // NOTE: This is conservative, it will stop on any read from the source loc,
1363   // not just the defining memcpy.
1364   MemDepResult SourceDep = MD->getPointerDependencyFrom(
1365       MemoryLocation::getForSource(MDep), false,
1366       CB.getIterator(), MDep->getParent());
1367   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
1368     return false;
1369 
1370   Value *TmpCast = MDep->getSource();
1371   if (MDep->getSource()->getType() != ByValArg->getType()) {
1372     BitCastInst *TmpBitCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
1373                                               "tmpcast", &CB);
1374     // Set the tmpcast's DebugLoc to MDep's
1375     TmpBitCast->setDebugLoc(MDep->getDebugLoc());
1376     TmpCast = TmpBitCast;
1377   }
1378 
1379   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"
1380                     << "  " << *MDep << "\n"
1381                     << "  " << CB << "\n");
1382 
1383   // Otherwise we're good!  Update the byval argument.
1384   CB.setArgOperand(ArgNo, TmpCast);
1385   ++NumMemCpyInstr;
1386   return true;
1387 }
1388 
1389 /// Executes one iteration of MemCpyOptPass.
1390 bool MemCpyOptPass::iterateOnFunction(Function &F) {
1391   bool MadeChange = false;
1392 
1393   // Walk all instruction in the function.
1394   for (BasicBlock &BB : F) {
1395     // Skip unreachable blocks. For example processStore assumes that an
1396     // instruction in a BB can't be dominated by a later instruction in the
1397     // same BB (which is a scenario that can happen for an unreachable BB that
1398     // has itself as a predecessor).
1399     if (!DT->isReachableFromEntry(&BB))
1400       continue;
1401 
1402     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
1403         // Avoid invalidating the iterator.
1404       Instruction *I = &*BI++;
1405 
1406       bool RepeatInstruction = false;
1407 
1408       if (StoreInst *SI = dyn_cast<StoreInst>(I))
1409         MadeChange |= processStore(SI, BI);
1410       else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
1411         RepeatInstruction = processMemSet(M, BI);
1412       else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
1413         RepeatInstruction = processMemCpy(M, BI);
1414       else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
1415         RepeatInstruction = processMemMove(M);
1416       else if (auto *CB = dyn_cast<CallBase>(I)) {
1417         for (unsigned i = 0, e = CB->arg_size(); i != e; ++i)
1418           if (CB->isByValArgument(i))
1419             MadeChange |= processByValArgument(*CB, i);
1420       }
1421 
1422       // Reprocess the instruction if desired.
1423       if (RepeatInstruction) {
1424         if (BI != BB.begin())
1425           --BI;
1426         MadeChange = true;
1427       }
1428     }
1429   }
1430 
1431   return MadeChange;
1432 }
1433 
1434 PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) {
1435   auto &MD = AM.getResult<MemoryDependenceAnalysis>(F);
1436   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1437   auto *AA = &AM.getResult<AAManager>(F);
1438   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
1439   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1440   auto *MSSA = AM.getCachedResult<MemorySSAAnalysis>(F);
1441 
1442   bool MadeChange =
1443       runImpl(F, &MD, &TLI, AA, AC, DT, MSSA ? &MSSA->getMSSA() : nullptr);
1444   if (!MadeChange)
1445     return PreservedAnalyses::all();
1446 
1447   PreservedAnalyses PA;
1448   PA.preserveSet<CFGAnalyses>();
1449   PA.preserve<GlobalsAA>();
1450   PA.preserve<MemoryDependenceAnalysis>();
1451   if (MSSA)
1452     PA.preserve<MemorySSAAnalysis>();
1453   return PA;
1454 }
1455 
1456 bool MemCpyOptPass::runImpl(Function &F, MemoryDependenceResults *MD_,
1457                             TargetLibraryInfo *TLI_, AliasAnalysis *AA_,
1458                             AssumptionCache *AC_, DominatorTree *DT_,
1459                             MemorySSA *MSSA_) {
1460   bool MadeChange = false;
1461   MD = MD_;
1462   TLI = TLI_;
1463   AA = AA_;
1464   AC = AC_;
1465   DT = DT_;
1466   MemorySSAUpdater MSSAU_(MSSA_);
1467   MSSAU = MSSA_ ? &MSSAU_ : nullptr;
1468   // If we don't have at least memset and memcpy, there is little point of doing
1469   // anything here.  These are required by a freestanding implementation, so if
1470   // even they are disabled, there is no point in trying hard.
1471   if (!TLI->has(LibFunc_memset) || !TLI->has(LibFunc_memcpy))
1472     return false;
1473 
1474   while (true) {
1475     if (!iterateOnFunction(F))
1476       break;
1477     MadeChange = true;
1478   }
1479 
1480   if (MSSA_ && VerifyMemorySSA)
1481     MSSA_->verifyMemorySSA();
1482 
1483   MD = nullptr;
1484   return MadeChange;
1485 }
1486 
1487 /// This is the main transformation entry point for a function.
1488 bool MemCpyOptLegacyPass::runOnFunction(Function &F) {
1489   if (skipFunction(F))
1490     return false;
1491 
1492   auto *MD = &getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
1493   auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1494   auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1495   auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1496   auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1497   auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>();
1498 
1499   return Impl.runImpl(F, MD, TLI, AA, AC, DT,
1500                       MSSAWP ? &MSSAWP->getMSSA() : nullptr);
1501 }
1502