1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs various transformations related to eliminating memcpy 10 // calls, or transforming sets of stores into memset's. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/MemCpyOptimizer.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/iterator_range.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/CaptureTracking.h" 24 #include "llvm/Analysis/GlobalsModRef.h" 25 #include "llvm/Analysis/Loads.h" 26 #include "llvm/Analysis/MemoryLocation.h" 27 #include "llvm/Analysis/MemorySSA.h" 28 #include "llvm/Analysis/MemorySSAUpdater.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/Argument.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GetElementPtrTypeIterator.h" 39 #include "llvm/IR/GlobalVariable.h" 40 #include "llvm/IR/IRBuilder.h" 41 #include "llvm/IR/InstrTypes.h" 42 #include "llvm/IR/Instruction.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/Intrinsics.h" 46 #include "llvm/IR/LLVMContext.h" 47 #include "llvm/IR/Module.h" 48 #include "llvm/IR/Operator.h" 49 #include "llvm/IR/PassManager.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/User.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Transforms/Scalar.h" 60 #include "llvm/Transforms/Utils/Local.h" 61 #include <algorithm> 62 #include <cassert> 63 #include <cstdint> 64 #include <utility> 65 66 using namespace llvm; 67 68 #define DEBUG_TYPE "memcpyopt" 69 70 static cl::opt<bool> EnableMemCpyOptWithoutLibcalls( 71 "enable-memcpyopt-without-libcalls", cl::init(false), cl::Hidden, 72 cl::ZeroOrMore, 73 cl::desc("Enable memcpyopt even when libcalls are disabled")); 74 75 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted"); 76 STATISTIC(NumMemSetInfer, "Number of memsets inferred"); 77 STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy"); 78 STATISTIC(NumCpyToSet, "Number of memcpys converted to memset"); 79 STATISTIC(NumCallSlot, "Number of call slot optimizations performed"); 80 81 namespace { 82 83 /// Represents a range of memset'd bytes with the ByteVal value. 84 /// This allows us to analyze stores like: 85 /// store 0 -> P+1 86 /// store 0 -> P+0 87 /// store 0 -> P+3 88 /// store 0 -> P+2 89 /// which sometimes happens with stores to arrays of structs etc. When we see 90 /// the first store, we make a range [1, 2). The second store extends the range 91 /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the 92 /// two ranges into [0, 3) which is memset'able. 93 struct MemsetRange { 94 // Start/End - A semi range that describes the span that this range covers. 95 // The range is closed at the start and open at the end: [Start, End). 96 int64_t Start, End; 97 98 /// StartPtr - The getelementptr instruction that points to the start of the 99 /// range. 100 Value *StartPtr; 101 102 /// Alignment - The known alignment of the first store. 103 unsigned Alignment; 104 105 /// TheStores - The actual stores that make up this range. 106 SmallVector<Instruction*, 16> TheStores; 107 108 bool isProfitableToUseMemset(const DataLayout &DL) const; 109 }; 110 111 } // end anonymous namespace 112 113 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const { 114 // If we found more than 4 stores to merge or 16 bytes, use memset. 115 if (TheStores.size() >= 4 || End-Start >= 16) return true; 116 117 // If there is nothing to merge, don't do anything. 118 if (TheStores.size() < 2) return false; 119 120 // If any of the stores are a memset, then it is always good to extend the 121 // memset. 122 for (Instruction *SI : TheStores) 123 if (!isa<StoreInst>(SI)) 124 return true; 125 126 // Assume that the code generator is capable of merging pairs of stores 127 // together if it wants to. 128 if (TheStores.size() == 2) return false; 129 130 // If we have fewer than 8 stores, it can still be worthwhile to do this. 131 // For example, merging 4 i8 stores into an i32 store is useful almost always. 132 // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the 133 // memset will be split into 2 32-bit stores anyway) and doing so can 134 // pessimize the llvm optimizer. 135 // 136 // Since we don't have perfect knowledge here, make some assumptions: assume 137 // the maximum GPR width is the same size as the largest legal integer 138 // size. If so, check to see whether we will end up actually reducing the 139 // number of stores used. 140 unsigned Bytes = unsigned(End-Start); 141 unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8; 142 if (MaxIntSize == 0) 143 MaxIntSize = 1; 144 unsigned NumPointerStores = Bytes / MaxIntSize; 145 146 // Assume the remaining bytes if any are done a byte at a time. 147 unsigned NumByteStores = Bytes % MaxIntSize; 148 149 // If we will reduce the # stores (according to this heuristic), do the 150 // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32 151 // etc. 152 return TheStores.size() > NumPointerStores+NumByteStores; 153 } 154 155 namespace { 156 157 class MemsetRanges { 158 using range_iterator = SmallVectorImpl<MemsetRange>::iterator; 159 160 /// A sorted list of the memset ranges. 161 SmallVector<MemsetRange, 8> Ranges; 162 163 const DataLayout &DL; 164 165 public: 166 MemsetRanges(const DataLayout &DL) : DL(DL) {} 167 168 using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator; 169 170 const_iterator begin() const { return Ranges.begin(); } 171 const_iterator end() const { return Ranges.end(); } 172 bool empty() const { return Ranges.empty(); } 173 174 void addInst(int64_t OffsetFromFirst, Instruction *Inst) { 175 if (auto *SI = dyn_cast<StoreInst>(Inst)) 176 addStore(OffsetFromFirst, SI); 177 else 178 addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst)); 179 } 180 181 void addStore(int64_t OffsetFromFirst, StoreInst *SI) { 182 TypeSize StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType()); 183 assert(!StoreSize.isScalable() && "Can't track scalable-typed stores"); 184 addRange(OffsetFromFirst, StoreSize.getFixedSize(), SI->getPointerOperand(), 185 SI->getAlign().value(), SI); 186 } 187 188 void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) { 189 int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 190 addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlignment(), MSI); 191 } 192 193 void addRange(int64_t Start, int64_t Size, Value *Ptr, 194 unsigned Alignment, Instruction *Inst); 195 }; 196 197 } // end anonymous namespace 198 199 /// Add a new store to the MemsetRanges data structure. This adds a 200 /// new range for the specified store at the specified offset, merging into 201 /// existing ranges as appropriate. 202 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr, 203 unsigned Alignment, Instruction *Inst) { 204 int64_t End = Start+Size; 205 206 range_iterator I = partition_point( 207 Ranges, [=](const MemsetRange &O) { return O.End < Start; }); 208 209 // We now know that I == E, in which case we didn't find anything to merge 210 // with, or that Start <= I->End. If End < I->Start or I == E, then we need 211 // to insert a new range. Handle this now. 212 if (I == Ranges.end() || End < I->Start) { 213 MemsetRange &R = *Ranges.insert(I, MemsetRange()); 214 R.Start = Start; 215 R.End = End; 216 R.StartPtr = Ptr; 217 R.Alignment = Alignment; 218 R.TheStores.push_back(Inst); 219 return; 220 } 221 222 // This store overlaps with I, add it. 223 I->TheStores.push_back(Inst); 224 225 // At this point, we may have an interval that completely contains our store. 226 // If so, just add it to the interval and return. 227 if (I->Start <= Start && I->End >= End) 228 return; 229 230 // Now we know that Start <= I->End and End >= I->Start so the range overlaps 231 // but is not entirely contained within the range. 232 233 // See if the range extends the start of the range. In this case, it couldn't 234 // possibly cause it to join the prior range, because otherwise we would have 235 // stopped on *it*. 236 if (Start < I->Start) { 237 I->Start = Start; 238 I->StartPtr = Ptr; 239 I->Alignment = Alignment; 240 } 241 242 // Now we know that Start <= I->End and Start >= I->Start (so the startpoint 243 // is in or right at the end of I), and that End >= I->Start. Extend I out to 244 // End. 245 if (End > I->End) { 246 I->End = End; 247 range_iterator NextI = I; 248 while (++NextI != Ranges.end() && End >= NextI->Start) { 249 // Merge the range in. 250 I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end()); 251 if (NextI->End > I->End) 252 I->End = NextI->End; 253 Ranges.erase(NextI); 254 NextI = I; 255 } 256 } 257 } 258 259 //===----------------------------------------------------------------------===// 260 // MemCpyOptLegacyPass Pass 261 //===----------------------------------------------------------------------===// 262 263 namespace { 264 265 class MemCpyOptLegacyPass : public FunctionPass { 266 MemCpyOptPass Impl; 267 268 public: 269 static char ID; // Pass identification, replacement for typeid 270 271 MemCpyOptLegacyPass() : FunctionPass(ID) { 272 initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry()); 273 } 274 275 bool runOnFunction(Function &F) override; 276 277 private: 278 // This transformation requires dominator postdominator info 279 void getAnalysisUsage(AnalysisUsage &AU) const override { 280 AU.setPreservesCFG(); 281 AU.addRequired<AssumptionCacheTracker>(); 282 AU.addRequired<DominatorTreeWrapperPass>(); 283 AU.addPreserved<DominatorTreeWrapperPass>(); 284 AU.addPreserved<GlobalsAAWrapperPass>(); 285 AU.addRequired<TargetLibraryInfoWrapperPass>(); 286 AU.addRequired<AAResultsWrapperPass>(); 287 AU.addPreserved<AAResultsWrapperPass>(); 288 AU.addRequired<MemorySSAWrapperPass>(); 289 AU.addPreserved<MemorySSAWrapperPass>(); 290 } 291 }; 292 293 } // end anonymous namespace 294 295 char MemCpyOptLegacyPass::ID = 0; 296 297 /// The public interface to this file... 298 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); } 299 300 INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization", 301 false, false) 302 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 303 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 304 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 305 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 306 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 307 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 308 INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization", 309 false, false) 310 311 // Check that V is either not accessible by the caller, or unwinding cannot 312 // occur between Start and End. 313 static bool mayBeVisibleThroughUnwinding(Value *V, Instruction *Start, 314 Instruction *End) { 315 assert(Start->getParent() == End->getParent() && "Must be in same block"); 316 if (!Start->getFunction()->doesNotThrow() && 317 !isa<AllocaInst>(getUnderlyingObject(V))) { 318 for (const Instruction &I : 319 make_range(Start->getIterator(), End->getIterator())) { 320 if (I.mayThrow()) 321 return true; 322 } 323 } 324 return false; 325 } 326 327 void MemCpyOptPass::eraseInstruction(Instruction *I) { 328 MSSAU->removeMemoryAccess(I); 329 I->eraseFromParent(); 330 } 331 332 // Check for mod or ref of Loc between Start and End, excluding both boundaries. 333 // Start and End must be in the same block 334 static bool accessedBetween(AliasAnalysis &AA, MemoryLocation Loc, 335 const MemoryUseOrDef *Start, 336 const MemoryUseOrDef *End) { 337 assert(Start->getBlock() == End->getBlock() && "Only local supported"); 338 for (const MemoryAccess &MA : 339 make_range(++Start->getIterator(), End->getIterator())) { 340 if (isModOrRefSet(AA.getModRefInfo(cast<MemoryUseOrDef>(MA).getMemoryInst(), 341 Loc))) 342 return true; 343 } 344 return false; 345 } 346 347 // Check for mod of Loc between Start and End, excluding both boundaries. 348 // Start and End can be in different blocks. 349 static bool writtenBetween(MemorySSA *MSSA, MemoryLocation Loc, 350 const MemoryUseOrDef *Start, 351 const MemoryUseOrDef *End) { 352 // TODO: Only walk until we hit Start. 353 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( 354 End->getDefiningAccess(), Loc); 355 return !MSSA->dominates(Clobber, Start); 356 } 357 358 /// When scanning forward over instructions, we look for some other patterns to 359 /// fold away. In particular, this looks for stores to neighboring locations of 360 /// memory. If it sees enough consecutive ones, it attempts to merge them 361 /// together into a memcpy/memset. 362 Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst, 363 Value *StartPtr, 364 Value *ByteVal) { 365 const DataLayout &DL = StartInst->getModule()->getDataLayout(); 366 367 // We can't track scalable types 368 if (auto *SI = dyn_cast<StoreInst>(StartInst)) 369 if (DL.getTypeStoreSize(SI->getOperand(0)->getType()).isScalable()) 370 return nullptr; 371 372 // Okay, so we now have a single store that can be splatable. Scan to find 373 // all subsequent stores of the same value to offset from the same pointer. 374 // Join these together into ranges, so we can decide whether contiguous blocks 375 // are stored. 376 MemsetRanges Ranges(DL); 377 378 BasicBlock::iterator BI(StartInst); 379 380 // Keeps track of the last memory use or def before the insertion point for 381 // the new memset. The new MemoryDef for the inserted memsets will be inserted 382 // after MemInsertPoint. It points to either LastMemDef or to the last user 383 // before the insertion point of the memset, if there are any such users. 384 MemoryUseOrDef *MemInsertPoint = nullptr; 385 // Keeps track of the last MemoryDef between StartInst and the insertion point 386 // for the new memset. This will become the defining access of the inserted 387 // memsets. 388 MemoryDef *LastMemDef = nullptr; 389 for (++BI; !BI->isTerminator(); ++BI) { 390 auto *CurrentAcc = cast_or_null<MemoryUseOrDef>( 391 MSSAU->getMemorySSA()->getMemoryAccess(&*BI)); 392 if (CurrentAcc) { 393 MemInsertPoint = CurrentAcc; 394 if (auto *CurrentDef = dyn_cast<MemoryDef>(CurrentAcc)) 395 LastMemDef = CurrentDef; 396 } 397 398 // Calls that only access inaccessible memory do not block merging 399 // accessible stores. 400 if (auto *CB = dyn_cast<CallBase>(BI)) { 401 if (CB->onlyAccessesInaccessibleMemory()) 402 continue; 403 } 404 405 if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) { 406 // If the instruction is readnone, ignore it, otherwise bail out. We 407 // don't even allow readonly here because we don't want something like: 408 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A). 409 if (BI->mayWriteToMemory() || BI->mayReadFromMemory()) 410 break; 411 continue; 412 } 413 414 if (auto *NextStore = dyn_cast<StoreInst>(BI)) { 415 // If this is a store, see if we can merge it in. 416 if (!NextStore->isSimple()) break; 417 418 Value *StoredVal = NextStore->getValueOperand(); 419 420 // Don't convert stores of non-integral pointer types to memsets (which 421 // stores integers). 422 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType())) 423 break; 424 425 // We can't track ranges involving scalable types. 426 if (DL.getTypeStoreSize(StoredVal->getType()).isScalable()) 427 break; 428 429 // Check to see if this stored value is of the same byte-splattable value. 430 Value *StoredByte = isBytewiseValue(StoredVal, DL); 431 if (isa<UndefValue>(ByteVal) && StoredByte) 432 ByteVal = StoredByte; 433 if (ByteVal != StoredByte) 434 break; 435 436 // Check to see if this store is to a constant offset from the start ptr. 437 Optional<int64_t> Offset = 438 isPointerOffset(StartPtr, NextStore->getPointerOperand(), DL); 439 if (!Offset) 440 break; 441 442 Ranges.addStore(*Offset, NextStore); 443 } else { 444 auto *MSI = cast<MemSetInst>(BI); 445 446 if (MSI->isVolatile() || ByteVal != MSI->getValue() || 447 !isa<ConstantInt>(MSI->getLength())) 448 break; 449 450 // Check to see if this store is to a constant offset from the start ptr. 451 Optional<int64_t> Offset = isPointerOffset(StartPtr, MSI->getDest(), DL); 452 if (!Offset) 453 break; 454 455 Ranges.addMemSet(*Offset, MSI); 456 } 457 } 458 459 // If we have no ranges, then we just had a single store with nothing that 460 // could be merged in. This is a very common case of course. 461 if (Ranges.empty()) 462 return nullptr; 463 464 // If we had at least one store that could be merged in, add the starting 465 // store as well. We try to avoid this unless there is at least something 466 // interesting as a small compile-time optimization. 467 Ranges.addInst(0, StartInst); 468 469 // If we create any memsets, we put it right before the first instruction that 470 // isn't part of the memset block. This ensure that the memset is dominated 471 // by any addressing instruction needed by the start of the block. 472 IRBuilder<> Builder(&*BI); 473 474 // Now that we have full information about ranges, loop over the ranges and 475 // emit memset's for anything big enough to be worthwhile. 476 Instruction *AMemSet = nullptr; 477 for (const MemsetRange &Range : Ranges) { 478 if (Range.TheStores.size() == 1) continue; 479 480 // If it is profitable to lower this range to memset, do so now. 481 if (!Range.isProfitableToUseMemset(DL)) 482 continue; 483 484 // Otherwise, we do want to transform this! Create a new memset. 485 // Get the starting pointer of the block. 486 StartPtr = Range.StartPtr; 487 488 AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End - Range.Start, 489 MaybeAlign(Range.Alignment)); 490 LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI 491 : Range.TheStores) dbgs() 492 << *SI << '\n'; 493 dbgs() << "With: " << *AMemSet << '\n'); 494 if (!Range.TheStores.empty()) 495 AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc()); 496 497 assert(LastMemDef && MemInsertPoint && 498 "Both LastMemDef and MemInsertPoint need to be set"); 499 auto *NewDef = 500 cast<MemoryDef>(MemInsertPoint->getMemoryInst() == &*BI 501 ? MSSAU->createMemoryAccessBefore( 502 AMemSet, LastMemDef, MemInsertPoint) 503 : MSSAU->createMemoryAccessAfter( 504 AMemSet, LastMemDef, MemInsertPoint)); 505 MSSAU->insertDef(NewDef, /*RenameUses=*/true); 506 LastMemDef = NewDef; 507 MemInsertPoint = NewDef; 508 509 // Zap all the stores. 510 for (Instruction *SI : Range.TheStores) 511 eraseInstruction(SI); 512 513 ++NumMemSetInfer; 514 } 515 516 return AMemSet; 517 } 518 519 // This method try to lift a store instruction before position P. 520 // It will lift the store and its argument + that anything that 521 // may alias with these. 522 // The method returns true if it was successful. 523 bool MemCpyOptPass::moveUp(StoreInst *SI, Instruction *P, const LoadInst *LI) { 524 // If the store alias this position, early bail out. 525 MemoryLocation StoreLoc = MemoryLocation::get(SI); 526 if (isModOrRefSet(AA->getModRefInfo(P, StoreLoc))) 527 return false; 528 529 // Keep track of the arguments of all instruction we plan to lift 530 // so we can make sure to lift them as well if appropriate. 531 DenseSet<Instruction*> Args; 532 if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand())) 533 if (Ptr->getParent() == SI->getParent()) 534 Args.insert(Ptr); 535 536 // Instruction to lift before P. 537 SmallVector<Instruction *, 8> ToLift{SI}; 538 539 // Memory locations of lifted instructions. 540 SmallVector<MemoryLocation, 8> MemLocs{StoreLoc}; 541 542 // Lifted calls. 543 SmallVector<const CallBase *, 8> Calls; 544 545 const MemoryLocation LoadLoc = MemoryLocation::get(LI); 546 547 for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) { 548 auto *C = &*I; 549 550 // Make sure hoisting does not perform a store that was not guaranteed to 551 // happen. 552 if (!isGuaranteedToTransferExecutionToSuccessor(C)) 553 return false; 554 555 bool MayAlias = isModOrRefSet(AA->getModRefInfo(C, None)); 556 557 bool NeedLift = false; 558 if (Args.erase(C)) 559 NeedLift = true; 560 else if (MayAlias) { 561 NeedLift = llvm::any_of(MemLocs, [C, this](const MemoryLocation &ML) { 562 return isModOrRefSet(AA->getModRefInfo(C, ML)); 563 }); 564 565 if (!NeedLift) 566 NeedLift = llvm::any_of(Calls, [C, this](const CallBase *Call) { 567 return isModOrRefSet(AA->getModRefInfo(C, Call)); 568 }); 569 } 570 571 if (!NeedLift) 572 continue; 573 574 if (MayAlias) { 575 // Since LI is implicitly moved downwards past the lifted instructions, 576 // none of them may modify its source. 577 if (isModSet(AA->getModRefInfo(C, LoadLoc))) 578 return false; 579 else if (const auto *Call = dyn_cast<CallBase>(C)) { 580 // If we can't lift this before P, it's game over. 581 if (isModOrRefSet(AA->getModRefInfo(P, Call))) 582 return false; 583 584 Calls.push_back(Call); 585 } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) { 586 // If we can't lift this before P, it's game over. 587 auto ML = MemoryLocation::get(C); 588 if (isModOrRefSet(AA->getModRefInfo(P, ML))) 589 return false; 590 591 MemLocs.push_back(ML); 592 } else 593 // We don't know how to lift this instruction. 594 return false; 595 } 596 597 ToLift.push_back(C); 598 for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k) 599 if (auto *A = dyn_cast<Instruction>(C->getOperand(k))) { 600 if (A->getParent() == SI->getParent()) { 601 // Cannot hoist user of P above P 602 if(A == P) return false; 603 Args.insert(A); 604 } 605 } 606 } 607 608 // Find MSSA insertion point. Normally P will always have a corresponding 609 // memory access before which we can insert. However, with non-standard AA 610 // pipelines, there may be a mismatch between AA and MSSA, in which case we 611 // will scan for a memory access before P. In either case, we know for sure 612 // that at least the load will have a memory access. 613 // TODO: Simplify this once P will be determined by MSSA, in which case the 614 // discrepancy can no longer occur. 615 MemoryUseOrDef *MemInsertPoint = nullptr; 616 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(P)) { 617 MemInsertPoint = cast<MemoryUseOrDef>(--MA->getIterator()); 618 } else { 619 const Instruction *ConstP = P; 620 for (const Instruction &I : make_range(++ConstP->getReverseIterator(), 621 ++LI->getReverseIterator())) { 622 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(&I)) { 623 MemInsertPoint = MA; 624 break; 625 } 626 } 627 } 628 629 // We made it, we need to lift. 630 for (auto *I : llvm::reverse(ToLift)) { 631 LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n"); 632 I->moveBefore(P); 633 assert(MemInsertPoint && "Must have found insert point"); 634 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(I)) { 635 MSSAU->moveAfter(MA, MemInsertPoint); 636 MemInsertPoint = MA; 637 } 638 } 639 640 return true; 641 } 642 643 bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) { 644 if (!SI->isSimple()) return false; 645 646 // Avoid merging nontemporal stores since the resulting 647 // memcpy/memset would not be able to preserve the nontemporal hint. 648 // In theory we could teach how to propagate the !nontemporal metadata to 649 // memset calls. However, that change would force the backend to 650 // conservatively expand !nontemporal memset calls back to sequences of 651 // store instructions (effectively undoing the merging). 652 if (SI->getMetadata(LLVMContext::MD_nontemporal)) 653 return false; 654 655 const DataLayout &DL = SI->getModule()->getDataLayout(); 656 657 Value *StoredVal = SI->getValueOperand(); 658 659 // Not all the transforms below are correct for non-integral pointers, bail 660 // until we've audited the individual pieces. 661 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType())) 662 return false; 663 664 // Load to store forwarding can be interpreted as memcpy. 665 if (auto *LI = dyn_cast<LoadInst>(StoredVal)) { 666 if (LI->isSimple() && LI->hasOneUse() && 667 LI->getParent() == SI->getParent()) { 668 669 auto *T = LI->getType(); 670 // Don't introduce calls to memcpy/memmove intrinsics out of thin air if 671 // the corresponding libcalls are not available. 672 // TODO: We should really distinguish between libcall availability and 673 // our ability to introduce intrinsics. 674 if (T->isAggregateType() && 675 (EnableMemCpyOptWithoutLibcalls || 676 (TLI->has(LibFunc_memcpy) && TLI->has(LibFunc_memmove)))) { 677 MemoryLocation LoadLoc = MemoryLocation::get(LI); 678 679 // We use alias analysis to check if an instruction may store to 680 // the memory we load from in between the load and the store. If 681 // such an instruction is found, we try to promote there instead 682 // of at the store position. 683 // TODO: Can use MSSA for this. 684 Instruction *P = SI; 685 for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) { 686 if (isModSet(AA->getModRefInfo(&I, LoadLoc))) { 687 P = &I; 688 break; 689 } 690 } 691 692 // We found an instruction that may write to the loaded memory. 693 // We can try to promote at this position instead of the store 694 // position if nothing aliases the store memory after this and the store 695 // destination is not in the range. 696 if (P && P != SI) { 697 if (!moveUp(SI, P, LI)) 698 P = nullptr; 699 } 700 701 // If a valid insertion position is found, then we can promote 702 // the load/store pair to a memcpy. 703 if (P) { 704 // If we load from memory that may alias the memory we store to, 705 // memmove must be used to preserve semantic. If not, memcpy can 706 // be used. Also, if we load from constant memory, memcpy can be used 707 // as the constant memory won't be modified. 708 bool UseMemMove = false; 709 if (isModSet(AA->getModRefInfo(SI, LoadLoc))) 710 UseMemMove = true; 711 712 uint64_t Size = DL.getTypeStoreSize(T); 713 714 IRBuilder<> Builder(P); 715 Instruction *M; 716 if (UseMemMove) 717 M = Builder.CreateMemMove( 718 SI->getPointerOperand(), SI->getAlign(), 719 LI->getPointerOperand(), LI->getAlign(), Size); 720 else 721 M = Builder.CreateMemCpy( 722 SI->getPointerOperand(), SI->getAlign(), 723 LI->getPointerOperand(), LI->getAlign(), Size); 724 725 LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => " 726 << *M << "\n"); 727 728 auto *LastDef = 729 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI)); 730 auto *NewAccess = MSSAU->createMemoryAccessAfter(M, LastDef, LastDef); 731 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 732 733 eraseInstruction(SI); 734 eraseInstruction(LI); 735 ++NumMemCpyInstr; 736 737 // Make sure we do not invalidate the iterator. 738 BBI = M->getIterator(); 739 return true; 740 } 741 } 742 743 // Detect cases where we're performing call slot forwarding, but 744 // happen to be using a load-store pair to implement it, rather than 745 // a memcpy. 746 CallInst *C = nullptr; 747 if (auto *LoadClobber = dyn_cast<MemoryUseOrDef>( 748 MSSA->getWalker()->getClobberingMemoryAccess(LI))) { 749 // The load most post-dom the call. Limit to the same block for now. 750 // TODO: Support non-local call-slot optimization? 751 if (LoadClobber->getBlock() == SI->getParent()) 752 C = dyn_cast_or_null<CallInst>(LoadClobber->getMemoryInst()); 753 } 754 755 if (C) { 756 // Check that nothing touches the dest of the "copy" between 757 // the call and the store. 758 MemoryLocation StoreLoc = MemoryLocation::get(SI); 759 if (accessedBetween(*AA, StoreLoc, MSSA->getMemoryAccess(C), 760 MSSA->getMemoryAccess(SI))) 761 C = nullptr; 762 } 763 764 if (C) { 765 bool changed = performCallSlotOptzn( 766 LI, SI, SI->getPointerOperand()->stripPointerCasts(), 767 LI->getPointerOperand()->stripPointerCasts(), 768 DL.getTypeStoreSize(SI->getOperand(0)->getType()), 769 commonAlignment(SI->getAlign(), LI->getAlign()), C); 770 if (changed) { 771 eraseInstruction(SI); 772 eraseInstruction(LI); 773 ++NumMemCpyInstr; 774 return true; 775 } 776 } 777 } 778 } 779 780 // The following code creates memset intrinsics out of thin air. Don't do 781 // this if the corresponding libfunc is not available. 782 // TODO: We should really distinguish between libcall availability and 783 // our ability to introduce intrinsics. 784 if (!(TLI->has(LibFunc_memset) || EnableMemCpyOptWithoutLibcalls)) 785 return false; 786 787 // There are two cases that are interesting for this code to handle: memcpy 788 // and memset. Right now we only handle memset. 789 790 // Ensure that the value being stored is something that can be memset'able a 791 // byte at a time like "0" or "-1" or any width, as well as things like 792 // 0xA0A0A0A0 and 0.0. 793 auto *V = SI->getOperand(0); 794 if (Value *ByteVal = isBytewiseValue(V, DL)) { 795 if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(), 796 ByteVal)) { 797 BBI = I->getIterator(); // Don't invalidate iterator. 798 return true; 799 } 800 801 // If we have an aggregate, we try to promote it to memset regardless 802 // of opportunity for merging as it can expose optimization opportunities 803 // in subsequent passes. 804 auto *T = V->getType(); 805 if (T->isAggregateType()) { 806 uint64_t Size = DL.getTypeStoreSize(T); 807 IRBuilder<> Builder(SI); 808 auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size, 809 SI->getAlign()); 810 811 LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n"); 812 813 // The newly inserted memset is immediately overwritten by the original 814 // store, so we do not need to rename uses. 815 auto *StoreDef = cast<MemoryDef>(MSSA->getMemoryAccess(SI)); 816 auto *NewAccess = MSSAU->createMemoryAccessBefore( 817 M, StoreDef->getDefiningAccess(), StoreDef); 818 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/false); 819 820 eraseInstruction(SI); 821 NumMemSetInfer++; 822 823 // Make sure we do not invalidate the iterator. 824 BBI = M->getIterator(); 825 return true; 826 } 827 } 828 829 return false; 830 } 831 832 bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) { 833 // See if there is another memset or store neighboring this memset which 834 // allows us to widen out the memset to do a single larger store. 835 if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile()) 836 if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(), 837 MSI->getValue())) { 838 BBI = I->getIterator(); // Don't invalidate iterator. 839 return true; 840 } 841 return false; 842 } 843 844 /// Takes a memcpy and a call that it depends on, 845 /// and checks for the possibility of a call slot optimization by having 846 /// the call write its result directly into the destination of the memcpy. 847 bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpyLoad, 848 Instruction *cpyStore, Value *cpyDest, 849 Value *cpySrc, TypeSize cpySize, 850 Align cpyAlign, CallInst *C) { 851 // The general transformation to keep in mind is 852 // 853 // call @func(..., src, ...) 854 // memcpy(dest, src, ...) 855 // 856 // -> 857 // 858 // memcpy(dest, src, ...) 859 // call @func(..., dest, ...) 860 // 861 // Since moving the memcpy is technically awkward, we additionally check that 862 // src only holds uninitialized values at the moment of the call, meaning that 863 // the memcpy can be discarded rather than moved. 864 865 // We can't optimize scalable types. 866 if (cpySize.isScalable()) 867 return false; 868 869 // Lifetime marks shouldn't be operated on. 870 if (Function *F = C->getCalledFunction()) 871 if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start) 872 return false; 873 874 // Require that src be an alloca. This simplifies the reasoning considerably. 875 auto *srcAlloca = dyn_cast<AllocaInst>(cpySrc); 876 if (!srcAlloca) 877 return false; 878 879 ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize()); 880 if (!srcArraySize) 881 return false; 882 883 const DataLayout &DL = cpyLoad->getModule()->getDataLayout(); 884 uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) * 885 srcArraySize->getZExtValue(); 886 887 if (cpySize < srcSize) 888 return false; 889 890 // Check that accessing the first srcSize bytes of dest will not cause a 891 // trap. Otherwise the transform is invalid since it might cause a trap 892 // to occur earlier than it otherwise would. 893 if (!isDereferenceableAndAlignedPointer(cpyDest, Align(1), APInt(64, cpySize), 894 DL, C, DT)) 895 return false; 896 897 // Make sure that nothing can observe cpyDest being written early. There are 898 // a number of cases to consider: 899 // 1. cpyDest cannot be accessed between C and cpyStore as a precondition of 900 // the transform. 901 // 2. C itself may not access cpyDest (prior to the transform). This is 902 // checked further below. 903 // 3. If cpyDest is accessible to the caller of this function (potentially 904 // captured and not based on an alloca), we need to ensure that we cannot 905 // unwind between C and cpyStore. This is checked here. 906 // 4. If cpyDest is potentially captured, there may be accesses to it from 907 // another thread. In this case, we need to check that cpyStore is 908 // guaranteed to be executed if C is. As it is a non-atomic access, it 909 // renders accesses from other threads undefined. 910 // TODO: This is currently not checked. 911 if (mayBeVisibleThroughUnwinding(cpyDest, C, cpyStore)) 912 return false; 913 914 // Check that dest points to memory that is at least as aligned as src. 915 Align srcAlign = srcAlloca->getAlign(); 916 bool isDestSufficientlyAligned = srcAlign <= cpyAlign; 917 // If dest is not aligned enough and we can't increase its alignment then 918 // bail out. 919 if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest)) 920 return false; 921 922 // Check that src is not accessed except via the call and the memcpy. This 923 // guarantees that it holds only undefined values when passed in (so the final 924 // memcpy can be dropped), that it is not read or written between the call and 925 // the memcpy, and that writing beyond the end of it is undefined. 926 SmallVector<User *, 8> srcUseList(srcAlloca->users()); 927 while (!srcUseList.empty()) { 928 User *U = srcUseList.pop_back_val(); 929 930 if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) { 931 append_range(srcUseList, U->users()); 932 continue; 933 } 934 if (const auto *G = dyn_cast<GetElementPtrInst>(U)) { 935 if (!G->hasAllZeroIndices()) 936 return false; 937 938 append_range(srcUseList, U->users()); 939 continue; 940 } 941 if (const auto *IT = dyn_cast<IntrinsicInst>(U)) 942 if (IT->isLifetimeStartOrEnd()) 943 continue; 944 945 if (U != C && U != cpyLoad) 946 return false; 947 } 948 949 // Check whether src is captured by the called function, in which case there 950 // may be further indirect uses of src. 951 bool SrcIsCaptured = any_of(C->args(), [&](Use &U) { 952 return U->stripPointerCasts() == cpySrc && 953 !C->doesNotCapture(C->getArgOperandNo(&U)); 954 }); 955 956 // If src is captured, then check whether there are any potential uses of 957 // src through the captured pointer before the lifetime of src ends, either 958 // due to a lifetime.end or a return from the function. 959 if (SrcIsCaptured) { 960 // Check that dest is not captured before/at the call. We have already 961 // checked that src is not captured before it. If either had been captured, 962 // then the call might be comparing the argument against the captured dest 963 // or src pointer. 964 Value *DestObj = getUnderlyingObject(cpyDest); 965 if (!isIdentifiedFunctionLocal(DestObj) || 966 PointerMayBeCapturedBefore(DestObj, /* ReturnCaptures */ true, 967 /* StoreCaptures */ true, C, DT, 968 /* IncludeI */ true)) 969 return false; 970 971 MemoryLocation SrcLoc = 972 MemoryLocation(srcAlloca, LocationSize::precise(srcSize)); 973 for (Instruction &I : 974 make_range(++C->getIterator(), C->getParent()->end())) { 975 // Lifetime of srcAlloca ends at lifetime.end. 976 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 977 if (II->getIntrinsicID() == Intrinsic::lifetime_end && 978 II->getArgOperand(1)->stripPointerCasts() == srcAlloca && 979 cast<ConstantInt>(II->getArgOperand(0))->uge(srcSize)) 980 break; 981 } 982 983 // Lifetime of srcAlloca ends at return. 984 if (isa<ReturnInst>(&I)) 985 break; 986 987 // Ignore the direct read of src in the load. 988 if (&I == cpyLoad) 989 continue; 990 991 // Check whether this instruction may mod/ref src through the captured 992 // pointer (we have already any direct mod/refs in the loop above). 993 // Also bail if we hit a terminator, as we don't want to scan into other 994 // blocks. 995 if (isModOrRefSet(AA->getModRefInfo(&I, SrcLoc)) || I.isTerminator()) 996 return false; 997 } 998 } 999 1000 // Since we're changing the parameter to the callsite, we need to make sure 1001 // that what would be the new parameter dominates the callsite. 1002 if (!DT->dominates(cpyDest, C)) { 1003 // Support moving a constant index GEP before the call. 1004 auto *GEP = dyn_cast<GetElementPtrInst>(cpyDest); 1005 if (GEP && GEP->hasAllConstantIndices() && 1006 DT->dominates(GEP->getPointerOperand(), C)) 1007 GEP->moveBefore(C); 1008 else 1009 return false; 1010 } 1011 1012 // In addition to knowing that the call does not access src in some 1013 // unexpected manner, for example via a global, which we deduce from 1014 // the use analysis, we also need to know that it does not sneakily 1015 // access dest. We rely on AA to figure this out for us. 1016 ModRefInfo MR = AA->getModRefInfo(C, cpyDest, LocationSize::precise(srcSize)); 1017 // If necessary, perform additional analysis. 1018 if (isModOrRefSet(MR)) 1019 MR = AA->callCapturesBefore(C, cpyDest, LocationSize::precise(srcSize), DT); 1020 if (isModOrRefSet(MR)) 1021 return false; 1022 1023 // We can't create address space casts here because we don't know if they're 1024 // safe for the target. 1025 if (cpySrc->getType()->getPointerAddressSpace() != 1026 cpyDest->getType()->getPointerAddressSpace()) 1027 return false; 1028 for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI) 1029 if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc && 1030 cpySrc->getType()->getPointerAddressSpace() != 1031 C->getArgOperand(ArgI)->getType()->getPointerAddressSpace()) 1032 return false; 1033 1034 // All the checks have passed, so do the transformation. 1035 bool changedArgument = false; 1036 for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI) 1037 if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc) { 1038 Value *Dest = cpySrc->getType() == cpyDest->getType() ? cpyDest 1039 : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(), 1040 cpyDest->getName(), C); 1041 changedArgument = true; 1042 if (C->getArgOperand(ArgI)->getType() == Dest->getType()) 1043 C->setArgOperand(ArgI, Dest); 1044 else 1045 C->setArgOperand(ArgI, CastInst::CreatePointerCast( 1046 Dest, C->getArgOperand(ArgI)->getType(), 1047 Dest->getName(), C)); 1048 } 1049 1050 if (!changedArgument) 1051 return false; 1052 1053 // If the destination wasn't sufficiently aligned then increase its alignment. 1054 if (!isDestSufficientlyAligned) { 1055 assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!"); 1056 cast<AllocaInst>(cpyDest)->setAlignment(srcAlign); 1057 } 1058 1059 // Update AA metadata 1060 // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be 1061 // handled here, but combineMetadata doesn't support them yet 1062 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 1063 LLVMContext::MD_noalias, 1064 LLVMContext::MD_invariant_group, 1065 LLVMContext::MD_access_group}; 1066 combineMetadata(C, cpyLoad, KnownIDs, true); 1067 1068 ++NumCallSlot; 1069 return true; 1070 } 1071 1072 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is 1073 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can. 1074 bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M, 1075 MemCpyInst *MDep) { 1076 // We can only transforms memcpy's where the dest of one is the source of the 1077 // other. 1078 if (M->getSource() != MDep->getDest() || MDep->isVolatile()) 1079 return false; 1080 1081 // If dep instruction is reading from our current input, then it is a noop 1082 // transfer and substituting the input won't change this instruction. Just 1083 // ignore the input and let someone else zap MDep. This handles cases like: 1084 // memcpy(a <- a) 1085 // memcpy(b <- a) 1086 if (M->getSource() == MDep->getSource()) 1087 return false; 1088 1089 // Second, the length of the memcpy's must be the same, or the preceding one 1090 // must be larger than the following one. 1091 if (MDep->getLength() != M->getLength()) { 1092 auto *MDepLen = dyn_cast<ConstantInt>(MDep->getLength()); 1093 auto *MLen = dyn_cast<ConstantInt>(M->getLength()); 1094 if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue()) 1095 return false; 1096 } 1097 1098 // Verify that the copied-from memory doesn't change in between the two 1099 // transfers. For example, in: 1100 // memcpy(a <- b) 1101 // *b = 42; 1102 // memcpy(c <- a) 1103 // It would be invalid to transform the second memcpy into memcpy(c <- b). 1104 // 1105 // TODO: If the code between M and MDep is transparent to the destination "c", 1106 // then we could still perform the xform by moving M up to the first memcpy. 1107 // TODO: It would be sufficient to check the MDep source up to the memcpy 1108 // size of M, rather than MDep. 1109 if (writtenBetween(MSSA, MemoryLocation::getForSource(MDep), 1110 MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(M))) 1111 return false; 1112 1113 // If the dest of the second might alias the source of the first, then the 1114 // source and dest might overlap. In addition, if the source of the first 1115 // points to constant memory, they won't overlap by definition. Otherwise, we 1116 // still want to eliminate the intermediate value, but we have to generate a 1117 // memmove instead of memcpy. 1118 bool UseMemMove = false; 1119 if (isModSet(AA->getModRefInfo(M, MemoryLocation::getForSource(MDep)))) 1120 UseMemMove = true; 1121 1122 // If all checks passed, then we can transform M. 1123 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n" 1124 << *MDep << '\n' << *M << '\n'); 1125 1126 // TODO: Is this worth it if we're creating a less aligned memcpy? For 1127 // example we could be moving from movaps -> movq on x86. 1128 IRBuilder<> Builder(M); 1129 Instruction *NewM; 1130 if (UseMemMove) 1131 NewM = Builder.CreateMemMove(M->getRawDest(), M->getDestAlign(), 1132 MDep->getRawSource(), MDep->getSourceAlign(), 1133 M->getLength(), M->isVolatile()); 1134 else if (isa<MemCpyInlineInst>(M)) { 1135 // llvm.memcpy may be promoted to llvm.memcpy.inline, but the converse is 1136 // never allowed since that would allow the latter to be lowered as a call 1137 // to an external function. 1138 NewM = Builder.CreateMemCpyInline( 1139 M->getRawDest(), M->getDestAlign(), MDep->getRawSource(), 1140 MDep->getSourceAlign(), M->getLength(), M->isVolatile()); 1141 } else 1142 NewM = Builder.CreateMemCpy(M->getRawDest(), M->getDestAlign(), 1143 MDep->getRawSource(), MDep->getSourceAlign(), 1144 M->getLength(), M->isVolatile()); 1145 1146 assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M))); 1147 auto *LastDef = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)); 1148 auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); 1149 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 1150 1151 // Remove the instruction we're replacing. 1152 eraseInstruction(M); 1153 ++NumMemCpyInstr; 1154 return true; 1155 } 1156 1157 /// We've found that the (upward scanning) memory dependence of \p MemCpy is 1158 /// \p MemSet. Try to simplify \p MemSet to only set the trailing bytes that 1159 /// weren't copied over by \p MemCpy. 1160 /// 1161 /// In other words, transform: 1162 /// \code 1163 /// memset(dst, c, dst_size); 1164 /// memcpy(dst, src, src_size); 1165 /// \endcode 1166 /// into: 1167 /// \code 1168 /// memcpy(dst, src, src_size); 1169 /// memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size); 1170 /// \endcode 1171 bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy, 1172 MemSetInst *MemSet) { 1173 // We can only transform memset/memcpy with the same destination. 1174 if (!AA->isMustAlias(MemSet->getDest(), MemCpy->getDest())) 1175 return false; 1176 1177 // Check that src and dst of the memcpy aren't the same. While memcpy 1178 // operands cannot partially overlap, exact equality is allowed. 1179 if (isModSet(AA->getModRefInfo(MemCpy, MemoryLocation::getForSource(MemCpy)))) 1180 return false; 1181 1182 // We know that dst up to src_size is not written. We now need to make sure 1183 // that dst up to dst_size is not accessed. (If we did not move the memset, 1184 // checking for reads would be sufficient.) 1185 if (accessedBetween(*AA, MemoryLocation::getForDest(MemSet), 1186 MSSA->getMemoryAccess(MemSet), 1187 MSSA->getMemoryAccess(MemCpy))) 1188 return false; 1189 1190 // Use the same i8* dest as the memcpy, killing the memset dest if different. 1191 Value *Dest = MemCpy->getRawDest(); 1192 Value *DestSize = MemSet->getLength(); 1193 Value *SrcSize = MemCpy->getLength(); 1194 1195 if (mayBeVisibleThroughUnwinding(Dest, MemSet, MemCpy)) 1196 return false; 1197 1198 // If the sizes are the same, simply drop the memset instead of generating 1199 // a replacement with zero size. 1200 if (DestSize == SrcSize) { 1201 eraseInstruction(MemSet); 1202 return true; 1203 } 1204 1205 // By default, create an unaligned memset. 1206 unsigned Align = 1; 1207 // If Dest is aligned, and SrcSize is constant, use the minimum alignment 1208 // of the sum. 1209 const unsigned DestAlign = 1210 std::max(MemSet->getDestAlignment(), MemCpy->getDestAlignment()); 1211 if (DestAlign > 1) 1212 if (auto *SrcSizeC = dyn_cast<ConstantInt>(SrcSize)) 1213 Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign); 1214 1215 IRBuilder<> Builder(MemCpy); 1216 1217 // If the sizes have different types, zext the smaller one. 1218 if (DestSize->getType() != SrcSize->getType()) { 1219 if (DestSize->getType()->getIntegerBitWidth() > 1220 SrcSize->getType()->getIntegerBitWidth()) 1221 SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType()); 1222 else 1223 DestSize = Builder.CreateZExt(DestSize, SrcSize->getType()); 1224 } 1225 1226 Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize); 1227 Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize); 1228 Value *MemsetLen = Builder.CreateSelect( 1229 Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff); 1230 unsigned DestAS = Dest->getType()->getPointerAddressSpace(); 1231 Instruction *NewMemSet = Builder.CreateMemSet( 1232 Builder.CreateGEP(Builder.getInt8Ty(), 1233 Builder.CreatePointerCast(Dest, 1234 Builder.getInt8PtrTy(DestAS)), 1235 SrcSize), 1236 MemSet->getOperand(1), MemsetLen, MaybeAlign(Align)); 1237 1238 assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)) && 1239 "MemCpy must be a MemoryDef"); 1240 // The new memset is inserted after the memcpy, but it is known that its 1241 // defining access is the memset about to be removed which immediately 1242 // precedes the memcpy. 1243 auto *LastDef = 1244 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)); 1245 auto *NewAccess = MSSAU->createMemoryAccessBefore( 1246 NewMemSet, LastDef->getDefiningAccess(), LastDef); 1247 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 1248 1249 eraseInstruction(MemSet); 1250 return true; 1251 } 1252 1253 /// Determine whether the instruction has undefined content for the given Size, 1254 /// either because it was freshly alloca'd or started its lifetime. 1255 static bool hasUndefContents(MemorySSA *MSSA, AliasAnalysis *AA, Value *V, 1256 MemoryDef *Def, Value *Size) { 1257 if (MSSA->isLiveOnEntryDef(Def)) 1258 return isa<AllocaInst>(getUnderlyingObject(V)); 1259 1260 if (auto *II = dyn_cast_or_null<IntrinsicInst>(Def->getMemoryInst())) { 1261 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 1262 auto *LTSize = cast<ConstantInt>(II->getArgOperand(0)); 1263 1264 if (auto *CSize = dyn_cast<ConstantInt>(Size)) { 1265 if (AA->isMustAlias(V, II->getArgOperand(1)) && 1266 LTSize->getZExtValue() >= CSize->getZExtValue()) 1267 return true; 1268 } 1269 1270 // If the lifetime.start covers a whole alloca (as it almost always 1271 // does) and we're querying a pointer based on that alloca, then we know 1272 // the memory is definitely undef, regardless of how exactly we alias. 1273 // The size also doesn't matter, as an out-of-bounds access would be UB. 1274 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(V))) { 1275 if (getUnderlyingObject(II->getArgOperand(1)) == Alloca) { 1276 const DataLayout &DL = Alloca->getModule()->getDataLayout(); 1277 if (Optional<TypeSize> AllocaSize = 1278 Alloca->getAllocationSizeInBits(DL)) 1279 if (*AllocaSize == LTSize->getValue() * 8) 1280 return true; 1281 } 1282 } 1283 } 1284 } 1285 1286 return false; 1287 } 1288 1289 /// Transform memcpy to memset when its source was just memset. 1290 /// In other words, turn: 1291 /// \code 1292 /// memset(dst1, c, dst1_size); 1293 /// memcpy(dst2, dst1, dst2_size); 1294 /// \endcode 1295 /// into: 1296 /// \code 1297 /// memset(dst1, c, dst1_size); 1298 /// memset(dst2, c, dst2_size); 1299 /// \endcode 1300 /// When dst2_size <= dst1_size. 1301 bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy, 1302 MemSetInst *MemSet) { 1303 // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and 1304 // memcpying from the same address. Otherwise it is hard to reason about. 1305 if (!AA->isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource())) 1306 return false; 1307 1308 Value *MemSetSize = MemSet->getLength(); 1309 Value *CopySize = MemCpy->getLength(); 1310 1311 if (MemSetSize != CopySize) { 1312 // Make sure the memcpy doesn't read any more than what the memset wrote. 1313 // Don't worry about sizes larger than i64. 1314 1315 // A known memset size is required. 1316 auto *CMemSetSize = dyn_cast<ConstantInt>(MemSetSize); 1317 if (!CMemSetSize) 1318 return false; 1319 1320 // A known memcpy size is also required. 1321 auto *CCopySize = dyn_cast<ConstantInt>(CopySize); 1322 if (!CCopySize) 1323 return false; 1324 if (CCopySize->getZExtValue() > CMemSetSize->getZExtValue()) { 1325 // If the memcpy is larger than the memset, but the memory was undef prior 1326 // to the memset, we can just ignore the tail. Technically we're only 1327 // interested in the bytes from MemSetSize..CopySize here, but as we can't 1328 // easily represent this location, we use the full 0..CopySize range. 1329 MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy); 1330 bool CanReduceSize = false; 1331 MemoryUseOrDef *MemSetAccess = MSSA->getMemoryAccess(MemSet); 1332 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( 1333 MemSetAccess->getDefiningAccess(), MemCpyLoc); 1334 if (auto *MD = dyn_cast<MemoryDef>(Clobber)) 1335 if (hasUndefContents(MSSA, AA, MemCpy->getSource(), MD, CopySize)) 1336 CanReduceSize = true; 1337 1338 if (!CanReduceSize) 1339 return false; 1340 CopySize = MemSetSize; 1341 } 1342 } 1343 1344 IRBuilder<> Builder(MemCpy); 1345 Instruction *NewM = 1346 Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1), 1347 CopySize, MaybeAlign(MemCpy->getDestAlignment())); 1348 auto *LastDef = 1349 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)); 1350 auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); 1351 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 1352 1353 return true; 1354 } 1355 1356 /// Perform simplification of memcpy's. If we have memcpy A 1357 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite 1358 /// B to be a memcpy from X to Z (or potentially a memmove, depending on 1359 /// circumstances). This allows later passes to remove the first memcpy 1360 /// altogether. 1361 bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) { 1362 // We can only optimize non-volatile memcpy's. 1363 if (M->isVolatile()) return false; 1364 1365 // If the source and destination of the memcpy are the same, then zap it. 1366 if (M->getSource() == M->getDest()) { 1367 ++BBI; 1368 eraseInstruction(M); 1369 return true; 1370 } 1371 1372 // If copying from a constant, try to turn the memcpy into a memset. 1373 if (auto *GV = dyn_cast<GlobalVariable>(M->getSource())) 1374 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 1375 if (Value *ByteVal = isBytewiseValue(GV->getInitializer(), 1376 M->getModule()->getDataLayout())) { 1377 IRBuilder<> Builder(M); 1378 Instruction *NewM = 1379 Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(), 1380 MaybeAlign(M->getDestAlignment()), false); 1381 auto *LastDef = 1382 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)); 1383 auto *NewAccess = 1384 MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); 1385 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 1386 1387 eraseInstruction(M); 1388 ++NumCpyToSet; 1389 return true; 1390 } 1391 1392 MemoryUseOrDef *MA = MSSA->getMemoryAccess(M); 1393 MemoryAccess *AnyClobber = MSSA->getWalker()->getClobberingMemoryAccess(MA); 1394 MemoryLocation DestLoc = MemoryLocation::getForDest(M); 1395 const MemoryAccess *DestClobber = 1396 MSSA->getWalker()->getClobberingMemoryAccess(AnyClobber, DestLoc); 1397 1398 // Try to turn a partially redundant memset + memcpy into 1399 // memcpy + smaller memset. We don't need the memcpy size for this. 1400 // The memcpy most post-dom the memset, so limit this to the same basic 1401 // block. A non-local generalization is likely not worthwhile. 1402 if (auto *MD = dyn_cast<MemoryDef>(DestClobber)) 1403 if (auto *MDep = dyn_cast_or_null<MemSetInst>(MD->getMemoryInst())) 1404 if (DestClobber->getBlock() == M->getParent()) 1405 if (processMemSetMemCpyDependence(M, MDep)) 1406 return true; 1407 1408 MemoryAccess *SrcClobber = MSSA->getWalker()->getClobberingMemoryAccess( 1409 AnyClobber, MemoryLocation::getForSource(M)); 1410 1411 // There are four possible optimizations we can do for memcpy: 1412 // a) memcpy-memcpy xform which exposes redundance for DSE. 1413 // b) call-memcpy xform for return slot optimization. 1414 // c) memcpy from freshly alloca'd space or space that has just started 1415 // its lifetime copies undefined data, and we can therefore eliminate 1416 // the memcpy in favor of the data that was already at the destination. 1417 // d) memcpy from a just-memset'd source can be turned into memset. 1418 if (auto *MD = dyn_cast<MemoryDef>(SrcClobber)) { 1419 if (Instruction *MI = MD->getMemoryInst()) { 1420 if (auto *CopySize = dyn_cast<ConstantInt>(M->getLength())) { 1421 if (auto *C = dyn_cast<CallInst>(MI)) { 1422 // The memcpy must post-dom the call. Limit to the same block for 1423 // now. Additionally, we need to ensure that there are no accesses 1424 // to dest between the call and the memcpy. Accesses to src will be 1425 // checked by performCallSlotOptzn(). 1426 // TODO: Support non-local call-slot optimization? 1427 if (C->getParent() == M->getParent() && 1428 !accessedBetween(*AA, DestLoc, MD, MA)) { 1429 // FIXME: Can we pass in either of dest/src alignment here instead 1430 // of conservatively taking the minimum? 1431 Align Alignment = std::min(M->getDestAlign().valueOrOne(), 1432 M->getSourceAlign().valueOrOne()); 1433 if (performCallSlotOptzn( 1434 M, M, M->getDest(), M->getSource(), 1435 TypeSize::getFixed(CopySize->getZExtValue()), Alignment, 1436 C)) { 1437 LLVM_DEBUG(dbgs() << "Performed call slot optimization:\n" 1438 << " call: " << *C << "\n" 1439 << " memcpy: " << *M << "\n"); 1440 eraseInstruction(M); 1441 ++NumMemCpyInstr; 1442 return true; 1443 } 1444 } 1445 } 1446 } 1447 if (auto *MDep = dyn_cast<MemCpyInst>(MI)) 1448 return processMemCpyMemCpyDependence(M, MDep); 1449 if (auto *MDep = dyn_cast<MemSetInst>(MI)) { 1450 if (performMemCpyToMemSetOptzn(M, MDep)) { 1451 LLVM_DEBUG(dbgs() << "Converted memcpy to memset\n"); 1452 eraseInstruction(M); 1453 ++NumCpyToSet; 1454 return true; 1455 } 1456 } 1457 } 1458 1459 if (hasUndefContents(MSSA, AA, M->getSource(), MD, M->getLength())) { 1460 LLVM_DEBUG(dbgs() << "Removed memcpy from undef\n"); 1461 eraseInstruction(M); 1462 ++NumMemCpyInstr; 1463 return true; 1464 } 1465 } 1466 1467 return false; 1468 } 1469 1470 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed 1471 /// not to alias. 1472 bool MemCpyOptPass::processMemMove(MemMoveInst *M) { 1473 // See if the source could be modified by this memmove potentially. 1474 if (isModSet(AA->getModRefInfo(M, MemoryLocation::getForSource(M)))) 1475 return false; 1476 1477 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M 1478 << "\n"); 1479 1480 // If not, then we know we can transform this. 1481 Type *ArgTys[3] = { M->getRawDest()->getType(), 1482 M->getRawSource()->getType(), 1483 M->getLength()->getType() }; 1484 M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(), 1485 Intrinsic::memcpy, ArgTys)); 1486 1487 // For MemorySSA nothing really changes (except that memcpy may imply stricter 1488 // aliasing guarantees). 1489 1490 ++NumMoveToCpy; 1491 return true; 1492 } 1493 1494 /// This is called on every byval argument in call sites. 1495 bool MemCpyOptPass::processByValArgument(CallBase &CB, unsigned ArgNo) { 1496 const DataLayout &DL = CB.getCaller()->getParent()->getDataLayout(); 1497 // Find out what feeds this byval argument. 1498 Value *ByValArg = CB.getArgOperand(ArgNo); 1499 Type *ByValTy = CB.getParamByValType(ArgNo); 1500 TypeSize ByValSize = DL.getTypeAllocSize(ByValTy); 1501 MemoryLocation Loc(ByValArg, LocationSize::precise(ByValSize)); 1502 MemoryUseOrDef *CallAccess = MSSA->getMemoryAccess(&CB); 1503 if (!CallAccess) 1504 return false; 1505 MemCpyInst *MDep = nullptr; 1506 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( 1507 CallAccess->getDefiningAccess(), Loc); 1508 if (auto *MD = dyn_cast<MemoryDef>(Clobber)) 1509 MDep = dyn_cast_or_null<MemCpyInst>(MD->getMemoryInst()); 1510 1511 // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by 1512 // a memcpy, see if we can byval from the source of the memcpy instead of the 1513 // result. 1514 if (!MDep || MDep->isVolatile() || 1515 ByValArg->stripPointerCasts() != MDep->getDest()) 1516 return false; 1517 1518 // The length of the memcpy must be larger or equal to the size of the byval. 1519 auto *C1 = dyn_cast<ConstantInt>(MDep->getLength()); 1520 if (!C1 || !TypeSize::isKnownGE( 1521 TypeSize::getFixed(C1->getValue().getZExtValue()), ByValSize)) 1522 return false; 1523 1524 // Get the alignment of the byval. If the call doesn't specify the alignment, 1525 // then it is some target specific value that we can't know. 1526 MaybeAlign ByValAlign = CB.getParamAlign(ArgNo); 1527 if (!ByValAlign) return false; 1528 1529 // If it is greater than the memcpy, then we check to see if we can force the 1530 // source of the memcpy to the alignment we need. If we fail, we bail out. 1531 MaybeAlign MemDepAlign = MDep->getSourceAlign(); 1532 if ((!MemDepAlign || *MemDepAlign < *ByValAlign) && 1533 getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, &CB, AC, 1534 DT) < *ByValAlign) 1535 return false; 1536 1537 // The address space of the memcpy source must match the byval argument 1538 if (MDep->getSource()->getType()->getPointerAddressSpace() != 1539 ByValArg->getType()->getPointerAddressSpace()) 1540 return false; 1541 1542 // Verify that the copied-from memory doesn't change in between the memcpy and 1543 // the byval call. 1544 // memcpy(a <- b) 1545 // *b = 42; 1546 // foo(*a) 1547 // It would be invalid to transform the second memcpy into foo(*b). 1548 if (writtenBetween(MSSA, MemoryLocation::getForSource(MDep), 1549 MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(&CB))) 1550 return false; 1551 1552 Value *TmpCast = MDep->getSource(); 1553 if (MDep->getSource()->getType() != ByValArg->getType()) { 1554 BitCastInst *TmpBitCast = new BitCastInst(MDep->getSource(), ByValArg->getType(), 1555 "tmpcast", &CB); 1556 // Set the tmpcast's DebugLoc to MDep's 1557 TmpBitCast->setDebugLoc(MDep->getDebugLoc()); 1558 TmpCast = TmpBitCast; 1559 } 1560 1561 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n" 1562 << " " << *MDep << "\n" 1563 << " " << CB << "\n"); 1564 1565 // Otherwise we're good! Update the byval argument. 1566 CB.setArgOperand(ArgNo, TmpCast); 1567 ++NumMemCpyInstr; 1568 return true; 1569 } 1570 1571 /// Executes one iteration of MemCpyOptPass. 1572 bool MemCpyOptPass::iterateOnFunction(Function &F) { 1573 bool MadeChange = false; 1574 1575 // Walk all instruction in the function. 1576 for (BasicBlock &BB : F) { 1577 // Skip unreachable blocks. For example processStore assumes that an 1578 // instruction in a BB can't be dominated by a later instruction in the 1579 // same BB (which is a scenario that can happen for an unreachable BB that 1580 // has itself as a predecessor). 1581 if (!DT->isReachableFromEntry(&BB)) 1582 continue; 1583 1584 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 1585 // Avoid invalidating the iterator. 1586 Instruction *I = &*BI++; 1587 1588 bool RepeatInstruction = false; 1589 1590 if (auto *SI = dyn_cast<StoreInst>(I)) 1591 MadeChange |= processStore(SI, BI); 1592 else if (auto *M = dyn_cast<MemSetInst>(I)) 1593 RepeatInstruction = processMemSet(M, BI); 1594 else if (auto *M = dyn_cast<MemCpyInst>(I)) 1595 RepeatInstruction = processMemCpy(M, BI); 1596 else if (auto *M = dyn_cast<MemMoveInst>(I)) 1597 RepeatInstruction = processMemMove(M); 1598 else if (auto *CB = dyn_cast<CallBase>(I)) { 1599 for (unsigned i = 0, e = CB->arg_size(); i != e; ++i) 1600 if (CB->isByValArgument(i)) 1601 MadeChange |= processByValArgument(*CB, i); 1602 } 1603 1604 // Reprocess the instruction if desired. 1605 if (RepeatInstruction) { 1606 if (BI != BB.begin()) 1607 --BI; 1608 MadeChange = true; 1609 } 1610 } 1611 } 1612 1613 return MadeChange; 1614 } 1615 1616 PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) { 1617 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1618 auto *AA = &AM.getResult<AAManager>(F); 1619 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 1620 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 1621 auto *MSSA = &AM.getResult<MemorySSAAnalysis>(F); 1622 1623 bool MadeChange = runImpl(F, &TLI, AA, AC, DT, &MSSA->getMSSA()); 1624 if (!MadeChange) 1625 return PreservedAnalyses::all(); 1626 1627 PreservedAnalyses PA; 1628 PA.preserveSet<CFGAnalyses>(); 1629 PA.preserve<MemorySSAAnalysis>(); 1630 return PA; 1631 } 1632 1633 bool MemCpyOptPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 1634 AliasAnalysis *AA_, AssumptionCache *AC_, 1635 DominatorTree *DT_, MemorySSA *MSSA_) { 1636 bool MadeChange = false; 1637 TLI = TLI_; 1638 AA = AA_; 1639 AC = AC_; 1640 DT = DT_; 1641 MSSA = MSSA_; 1642 MemorySSAUpdater MSSAU_(MSSA_); 1643 MSSAU = &MSSAU_; 1644 1645 while (true) { 1646 if (!iterateOnFunction(F)) 1647 break; 1648 MadeChange = true; 1649 } 1650 1651 if (VerifyMemorySSA) 1652 MSSA_->verifyMemorySSA(); 1653 1654 return MadeChange; 1655 } 1656 1657 /// This is the main transformation entry point for a function. 1658 bool MemCpyOptLegacyPass::runOnFunction(Function &F) { 1659 if (skipFunction(F)) 1660 return false; 1661 1662 auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1663 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1664 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1665 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1666 auto *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 1667 1668 return Impl.runImpl(F, TLI, AA, AC, DT, MSSA); 1669 } 1670