1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs various transformations related to eliminating memcpy
10 // calls, or transforming sets of stores into memset's.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/Analysis/MemorySSA.h"
27 #include "llvm/Analysis/MemorySSAUpdater.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/Argument.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GetElementPtrTypeIterator.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/IRBuilder.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/LLVMContext.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/Operator.h"
48 #include "llvm/IR/PassManager.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Scalar.h"
59 #include "llvm/Transforms/Utils/Local.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstdint>
63 #include <utility>
64 
65 using namespace llvm;
66 
67 #define DEBUG_TYPE "memcpyopt"
68 
69 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
70 STATISTIC(NumMemSetInfer, "Number of memsets inferred");
71 STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
72 STATISTIC(NumCpyToSet,    "Number of memcpys converted to memset");
73 
74 namespace {
75 
76 /// Represents a range of memset'd bytes with the ByteVal value.
77 /// This allows us to analyze stores like:
78 ///   store 0 -> P+1
79 ///   store 0 -> P+0
80 ///   store 0 -> P+3
81 ///   store 0 -> P+2
82 /// which sometimes happens with stores to arrays of structs etc.  When we see
83 /// the first store, we make a range [1, 2).  The second store extends the range
84 /// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
85 /// two ranges into [0, 3) which is memset'able.
86 struct MemsetRange {
87   // Start/End - A semi range that describes the span that this range covers.
88   // The range is closed at the start and open at the end: [Start, End).
89   int64_t Start, End;
90 
91   /// StartPtr - The getelementptr instruction that points to the start of the
92   /// range.
93   Value *StartPtr;
94 
95   /// Alignment - The known alignment of the first store.
96   unsigned Alignment;
97 
98   /// TheStores - The actual stores that make up this range.
99   SmallVector<Instruction*, 16> TheStores;
100 
101   bool isProfitableToUseMemset(const DataLayout &DL) const;
102 };
103 
104 } // end anonymous namespace
105 
106 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
107   // If we found more than 4 stores to merge or 16 bytes, use memset.
108   if (TheStores.size() >= 4 || End-Start >= 16) return true;
109 
110   // If there is nothing to merge, don't do anything.
111   if (TheStores.size() < 2) return false;
112 
113   // If any of the stores are a memset, then it is always good to extend the
114   // memset.
115   for (Instruction *SI : TheStores)
116     if (!isa<StoreInst>(SI))
117       return true;
118 
119   // Assume that the code generator is capable of merging pairs of stores
120   // together if it wants to.
121   if (TheStores.size() == 2) return false;
122 
123   // If we have fewer than 8 stores, it can still be worthwhile to do this.
124   // For example, merging 4 i8 stores into an i32 store is useful almost always.
125   // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
126   // memset will be split into 2 32-bit stores anyway) and doing so can
127   // pessimize the llvm optimizer.
128   //
129   // Since we don't have perfect knowledge here, make some assumptions: assume
130   // the maximum GPR width is the same size as the largest legal integer
131   // size. If so, check to see whether we will end up actually reducing the
132   // number of stores used.
133   unsigned Bytes = unsigned(End-Start);
134   unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8;
135   if (MaxIntSize == 0)
136     MaxIntSize = 1;
137   unsigned NumPointerStores = Bytes / MaxIntSize;
138 
139   // Assume the remaining bytes if any are done a byte at a time.
140   unsigned NumByteStores = Bytes % MaxIntSize;
141 
142   // If we will reduce the # stores (according to this heuristic), do the
143   // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
144   // etc.
145   return TheStores.size() > NumPointerStores+NumByteStores;
146 }
147 
148 namespace {
149 
150 class MemsetRanges {
151   using range_iterator = SmallVectorImpl<MemsetRange>::iterator;
152 
153   /// A sorted list of the memset ranges.
154   SmallVector<MemsetRange, 8> Ranges;
155 
156   const DataLayout &DL;
157 
158 public:
159   MemsetRanges(const DataLayout &DL) : DL(DL) {}
160 
161   using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator;
162 
163   const_iterator begin() const { return Ranges.begin(); }
164   const_iterator end() const { return Ranges.end(); }
165   bool empty() const { return Ranges.empty(); }
166 
167   void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
168     if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
169       addStore(OffsetFromFirst, SI);
170     else
171       addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
172   }
173 
174   void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
175     int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
176 
177     addRange(OffsetFromFirst, StoreSize, SI->getPointerOperand(),
178              SI->getAlign().value(), SI);
179   }
180 
181   void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
182     int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
183     addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlignment(), MSI);
184   }
185 
186   void addRange(int64_t Start, int64_t Size, Value *Ptr,
187                 unsigned Alignment, Instruction *Inst);
188 };
189 
190 } // end anonymous namespace
191 
192 /// Add a new store to the MemsetRanges data structure.  This adds a
193 /// new range for the specified store at the specified offset, merging into
194 /// existing ranges as appropriate.
195 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
196                             unsigned Alignment, Instruction *Inst) {
197   int64_t End = Start+Size;
198 
199   range_iterator I = partition_point(
200       Ranges, [=](const MemsetRange &O) { return O.End < Start; });
201 
202   // We now know that I == E, in which case we didn't find anything to merge
203   // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
204   // to insert a new range.  Handle this now.
205   if (I == Ranges.end() || End < I->Start) {
206     MemsetRange &R = *Ranges.insert(I, MemsetRange());
207     R.Start        = Start;
208     R.End          = End;
209     R.StartPtr     = Ptr;
210     R.Alignment    = Alignment;
211     R.TheStores.push_back(Inst);
212     return;
213   }
214 
215   // This store overlaps with I, add it.
216   I->TheStores.push_back(Inst);
217 
218   // At this point, we may have an interval that completely contains our store.
219   // If so, just add it to the interval and return.
220   if (I->Start <= Start && I->End >= End)
221     return;
222 
223   // Now we know that Start <= I->End and End >= I->Start so the range overlaps
224   // but is not entirely contained within the range.
225 
226   // See if the range extends the start of the range.  In this case, it couldn't
227   // possibly cause it to join the prior range, because otherwise we would have
228   // stopped on *it*.
229   if (Start < I->Start) {
230     I->Start = Start;
231     I->StartPtr = Ptr;
232     I->Alignment = Alignment;
233   }
234 
235   // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
236   // is in or right at the end of I), and that End >= I->Start.  Extend I out to
237   // End.
238   if (End > I->End) {
239     I->End = End;
240     range_iterator NextI = I;
241     while (++NextI != Ranges.end() && End >= NextI->Start) {
242       // Merge the range in.
243       I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
244       if (NextI->End > I->End)
245         I->End = NextI->End;
246       Ranges.erase(NextI);
247       NextI = I;
248     }
249   }
250 }
251 
252 //===----------------------------------------------------------------------===//
253 //                         MemCpyOptLegacyPass Pass
254 //===----------------------------------------------------------------------===//
255 
256 namespace {
257 
258 class MemCpyOptLegacyPass : public FunctionPass {
259   MemCpyOptPass Impl;
260 
261 public:
262   static char ID; // Pass identification, replacement for typeid
263 
264   MemCpyOptLegacyPass() : FunctionPass(ID) {
265     initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry());
266   }
267 
268   bool runOnFunction(Function &F) override;
269 
270 private:
271   // This transformation requires dominator postdominator info
272   void getAnalysisUsage(AnalysisUsage &AU) const override {
273     AU.setPreservesCFG();
274     AU.addRequired<AssumptionCacheTracker>();
275     AU.addRequired<DominatorTreeWrapperPass>();
276     AU.addPreserved<DominatorTreeWrapperPass>();
277     AU.addPreserved<GlobalsAAWrapperPass>();
278     AU.addRequired<TargetLibraryInfoWrapperPass>();
279     AU.addRequired<MemoryDependenceWrapperPass>();
280     AU.addPreserved<MemoryDependenceWrapperPass>();
281     AU.addRequired<AAResultsWrapperPass>();
282     AU.addPreserved<AAResultsWrapperPass>();
283     AU.addPreserved<MemorySSAWrapperPass>();
284   }
285 };
286 
287 } // end anonymous namespace
288 
289 char MemCpyOptLegacyPass::ID = 0;
290 
291 /// The public interface to this file...
292 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); }
293 
294 INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
295                       false, false)
296 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
297 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
298 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
299 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
300 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
301 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
302 INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
303                     false, false)
304 
305 void MemCpyOptPass::eraseInstruction(Instruction *I) {
306   if (MSSAU)
307     MSSAU->removeMemoryAccess(I);
308   MD->removeInstruction(I);
309   I->eraseFromParent();
310 }
311 
312 /// When scanning forward over instructions, we look for some other patterns to
313 /// fold away. In particular, this looks for stores to neighboring locations of
314 /// memory. If it sees enough consecutive ones, it attempts to merge them
315 /// together into a memcpy/memset.
316 Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst,
317                                                  Value *StartPtr,
318                                                  Value *ByteVal) {
319   const DataLayout &DL = StartInst->getModule()->getDataLayout();
320 
321   // Okay, so we now have a single store that can be splatable.  Scan to find
322   // all subsequent stores of the same value to offset from the same pointer.
323   // Join these together into ranges, so we can decide whether contiguous blocks
324   // are stored.
325   MemsetRanges Ranges(DL);
326 
327   BasicBlock::iterator BI(StartInst);
328 
329   // Keeps track of the last memory use or def before the insertion point for
330   // the new memset. The new MemoryDef for the inserted memsets will be inserted
331   // after MemInsertPoint. It points to either LastMemDef or to the last user
332   // before the insertion point of the memset, if there are any such users.
333   MemoryUseOrDef *MemInsertPoint = nullptr;
334   // Keeps track of the last MemoryDef between StartInst and the insertion point
335   // for the new memset. This will become the defining access of the inserted
336   // memsets.
337   MemoryDef *LastMemDef = nullptr;
338   for (++BI; !BI->isTerminator(); ++BI) {
339     if (MSSAU) {
340       auto *CurrentAcc = cast_or_null<MemoryUseOrDef>(
341           MSSAU->getMemorySSA()->getMemoryAccess(&*BI));
342       if (CurrentAcc) {
343         MemInsertPoint = CurrentAcc;
344         if (auto *CurrentDef = dyn_cast<MemoryDef>(CurrentAcc))
345           LastMemDef = CurrentDef;
346       }
347     }
348 
349     if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
350       // If the instruction is readnone, ignore it, otherwise bail out.  We
351       // don't even allow readonly here because we don't want something like:
352       // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
353       if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
354         break;
355       continue;
356     }
357 
358     if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
359       // If this is a store, see if we can merge it in.
360       if (!NextStore->isSimple()) break;
361 
362       Value *StoredVal = NextStore->getValueOperand();
363 
364       // Don't convert stores of non-integral pointer types to memsets (which
365       // stores integers).
366       if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
367         break;
368 
369       // Check to see if this stored value is of the same byte-splattable value.
370       Value *StoredByte = isBytewiseValue(StoredVal, DL);
371       if (isa<UndefValue>(ByteVal) && StoredByte)
372         ByteVal = StoredByte;
373       if (ByteVal != StoredByte)
374         break;
375 
376       // Check to see if this store is to a constant offset from the start ptr.
377       Optional<int64_t> Offset =
378           isPointerOffset(StartPtr, NextStore->getPointerOperand(), DL);
379       if (!Offset)
380         break;
381 
382       Ranges.addStore(*Offset, NextStore);
383     } else {
384       MemSetInst *MSI = cast<MemSetInst>(BI);
385 
386       if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
387           !isa<ConstantInt>(MSI->getLength()))
388         break;
389 
390       // Check to see if this store is to a constant offset from the start ptr.
391       Optional<int64_t> Offset = isPointerOffset(StartPtr, MSI->getDest(), DL);
392       if (!Offset)
393         break;
394 
395       Ranges.addMemSet(*Offset, MSI);
396     }
397   }
398 
399   // If we have no ranges, then we just had a single store with nothing that
400   // could be merged in.  This is a very common case of course.
401   if (Ranges.empty())
402     return nullptr;
403 
404   // If we had at least one store that could be merged in, add the starting
405   // store as well.  We try to avoid this unless there is at least something
406   // interesting as a small compile-time optimization.
407   Ranges.addInst(0, StartInst);
408 
409   // If we create any memsets, we put it right before the first instruction that
410   // isn't part of the memset block.  This ensure that the memset is dominated
411   // by any addressing instruction needed by the start of the block.
412   IRBuilder<> Builder(&*BI);
413 
414   // Now that we have full information about ranges, loop over the ranges and
415   // emit memset's for anything big enough to be worthwhile.
416   Instruction *AMemSet = nullptr;
417   for (const MemsetRange &Range : Ranges) {
418     if (Range.TheStores.size() == 1) continue;
419 
420     // If it is profitable to lower this range to memset, do so now.
421     if (!Range.isProfitableToUseMemset(DL))
422       continue;
423 
424     // Otherwise, we do want to transform this!  Create a new memset.
425     // Get the starting pointer of the block.
426     StartPtr = Range.StartPtr;
427 
428     AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End - Range.Start,
429                                    MaybeAlign(Range.Alignment));
430     LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI
431                                                    : Range.TheStores) dbgs()
432                                               << *SI << '\n';
433                dbgs() << "With: " << *AMemSet << '\n');
434     if (!Range.TheStores.empty())
435       AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
436 
437     if (MSSAU) {
438       assert(LastMemDef && MemInsertPoint &&
439              "Both LastMemDef and MemInsertPoint need to be set");
440       auto *NewDef =
441           cast<MemoryDef>(MemInsertPoint->getMemoryInst() == &*BI
442                               ? MSSAU->createMemoryAccessBefore(
443                                     AMemSet, LastMemDef, MemInsertPoint)
444                               : MSSAU->createMemoryAccessAfter(
445                                     AMemSet, LastMemDef, MemInsertPoint));
446       MSSAU->insertDef(NewDef, /*RenameUses=*/true);
447       LastMemDef = NewDef;
448       MemInsertPoint = NewDef;
449     }
450 
451     // Zap all the stores.
452     for (Instruction *SI : Range.TheStores)
453       eraseInstruction(SI);
454 
455     ++NumMemSetInfer;
456   }
457 
458   return AMemSet;
459 }
460 
461 // This method try to lift a store instruction before position P.
462 // It will lift the store and its argument + that anything that
463 // may alias with these.
464 // The method returns true if it was successful.
465 bool MemCpyOptPass::moveUp(StoreInst *SI, Instruction *P, const LoadInst *LI) {
466   // If the store alias this position, early bail out.
467   MemoryLocation StoreLoc = MemoryLocation::get(SI);
468   if (isModOrRefSet(AA->getModRefInfo(P, StoreLoc)))
469     return false;
470 
471   // Keep track of the arguments of all instruction we plan to lift
472   // so we can make sure to lift them as well if appropriate.
473   DenseSet<Instruction*> Args;
474   if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand()))
475     if (Ptr->getParent() == SI->getParent())
476       Args.insert(Ptr);
477 
478   // Instruction to lift before P.
479   SmallVector<Instruction*, 8> ToLift;
480 
481   // Memory locations of lifted instructions.
482   SmallVector<MemoryLocation, 8> MemLocs{StoreLoc};
483 
484   // Lifted calls.
485   SmallVector<const CallBase *, 8> Calls;
486 
487   const MemoryLocation LoadLoc = MemoryLocation::get(LI);
488 
489   for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) {
490     auto *C = &*I;
491 
492     bool MayAlias = isModOrRefSet(AA->getModRefInfo(C, None));
493 
494     bool NeedLift = false;
495     if (Args.erase(C))
496       NeedLift = true;
497     else if (MayAlias) {
498       NeedLift = llvm::any_of(MemLocs, [C, this](const MemoryLocation &ML) {
499         return isModOrRefSet(AA->getModRefInfo(C, ML));
500       });
501 
502       if (!NeedLift)
503         NeedLift = llvm::any_of(Calls, [C, this](const CallBase *Call) {
504           return isModOrRefSet(AA->getModRefInfo(C, Call));
505         });
506     }
507 
508     if (!NeedLift)
509       continue;
510 
511     if (MayAlias) {
512       // Since LI is implicitly moved downwards past the lifted instructions,
513       // none of them may modify its source.
514       if (isModSet(AA->getModRefInfo(C, LoadLoc)))
515         return false;
516       else if (const auto *Call = dyn_cast<CallBase>(C)) {
517         // If we can't lift this before P, it's game over.
518         if (isModOrRefSet(AA->getModRefInfo(P, Call)))
519           return false;
520 
521         Calls.push_back(Call);
522       } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) {
523         // If we can't lift this before P, it's game over.
524         auto ML = MemoryLocation::get(C);
525         if (isModOrRefSet(AA->getModRefInfo(P, ML)))
526           return false;
527 
528         MemLocs.push_back(ML);
529       } else
530         // We don't know how to lift this instruction.
531         return false;
532     }
533 
534     ToLift.push_back(C);
535     for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k)
536       if (auto *A = dyn_cast<Instruction>(C->getOperand(k))) {
537         if (A->getParent() == SI->getParent()) {
538           // Cannot hoist user of P above P
539           if(A == P) return false;
540           Args.insert(A);
541         }
542       }
543   }
544 
545   // We made it, we need to lift
546   for (auto *I : llvm::reverse(ToLift)) {
547     LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n");
548     I->moveBefore(P);
549   }
550 
551   return true;
552 }
553 
554 bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
555   if (!SI->isSimple()) return false;
556 
557   // Avoid merging nontemporal stores since the resulting
558   // memcpy/memset would not be able to preserve the nontemporal hint.
559   // In theory we could teach how to propagate the !nontemporal metadata to
560   // memset calls. However, that change would force the backend to
561   // conservatively expand !nontemporal memset calls back to sequences of
562   // store instructions (effectively undoing the merging).
563   if (SI->getMetadata(LLVMContext::MD_nontemporal))
564     return false;
565 
566   const DataLayout &DL = SI->getModule()->getDataLayout();
567 
568   Value *StoredVal = SI->getValueOperand();
569 
570   // Not all the transforms below are correct for non-integral pointers, bail
571   // until we've audited the individual pieces.
572   if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
573     return false;
574 
575   // Load to store forwarding can be interpreted as memcpy.
576   if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
577     if (LI->isSimple() && LI->hasOneUse() &&
578         LI->getParent() == SI->getParent()) {
579 
580       auto *T = LI->getType();
581       if (T->isAggregateType()) {
582         MemoryLocation LoadLoc = MemoryLocation::get(LI);
583 
584         // We use alias analysis to check if an instruction may store to
585         // the memory we load from in between the load and the store. If
586         // such an instruction is found, we try to promote there instead
587         // of at the store position.
588         Instruction *P = SI;
589         for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) {
590           if (isModSet(AA->getModRefInfo(&I, LoadLoc))) {
591             P = &I;
592             break;
593           }
594         }
595 
596         // We found an instruction that may write to the loaded memory.
597         // We can try to promote at this position instead of the store
598         // position if nothing alias the store memory after this and the store
599         // destination is not in the range.
600         if (P && P != SI) {
601           if (!moveUp(SI, P, LI))
602             P = nullptr;
603         }
604 
605         // If a valid insertion position is found, then we can promote
606         // the load/store pair to a memcpy.
607         if (P) {
608           // If we load from memory that may alias the memory we store to,
609           // memmove must be used to preserve semantic. If not, memcpy can
610           // be used.
611           bool UseMemMove = false;
612           if (!AA->isNoAlias(MemoryLocation::get(SI), LoadLoc))
613             UseMemMove = true;
614 
615           uint64_t Size = DL.getTypeStoreSize(T);
616 
617           IRBuilder<> Builder(P);
618           Instruction *M;
619           if (UseMemMove)
620             M = Builder.CreateMemMove(
621                 SI->getPointerOperand(), SI->getAlign(),
622                 LI->getPointerOperand(), LI->getAlign(), Size);
623           else
624             M = Builder.CreateMemCpy(
625                 SI->getPointerOperand(), SI->getAlign(),
626                 LI->getPointerOperand(), LI->getAlign(), Size);
627 
628           LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => "
629                             << *M << "\n");
630 
631           if (MSSAU) {
632             assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(P)));
633             auto *LastDef =
634                 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(P));
635             auto *NewAccess =
636                 MSSAU->createMemoryAccessAfter(M, LastDef, LastDef);
637             MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
638           }
639 
640           eraseInstruction(SI);
641           eraseInstruction(LI);
642           ++NumMemCpyInstr;
643 
644           // Make sure we do not invalidate the iterator.
645           BBI = M->getIterator();
646           return true;
647         }
648       }
649 
650       // Detect cases where we're performing call slot forwarding, but
651       // happen to be using a load-store pair to implement it, rather than
652       // a memcpy.
653       MemDepResult ldep = MD->getDependency(LI);
654       CallInst *C = nullptr;
655       if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst()))
656         C = dyn_cast<CallInst>(ldep.getInst());
657 
658       if (C) {
659         // Check that nothing touches the dest of the "copy" between
660         // the call and the store.
661         Value *CpyDest = SI->getPointerOperand()->stripPointerCasts();
662         bool CpyDestIsLocal = isa<AllocaInst>(CpyDest);
663         MemoryLocation StoreLoc = MemoryLocation::get(SI);
664         for (BasicBlock::iterator I = --SI->getIterator(), E = C->getIterator();
665              I != E; --I) {
666           if (isModOrRefSet(AA->getModRefInfo(&*I, StoreLoc))) {
667             C = nullptr;
668             break;
669           }
670           // The store to dest may never happen if an exception can be thrown
671           // between the load and the store.
672           if (I->mayThrow() && !CpyDestIsLocal) {
673             C = nullptr;
674             break;
675           }
676         }
677       }
678 
679       if (C) {
680         bool changed = performCallSlotOptzn(
681             LI, SI->getPointerOperand()->stripPointerCasts(),
682             LI->getPointerOperand()->stripPointerCasts(),
683             DL.getTypeStoreSize(SI->getOperand(0)->getType()),
684             commonAlignment(SI->getAlign(), LI->getAlign()), C);
685         if (changed) {
686           eraseInstruction(SI);
687           eraseInstruction(LI);
688           ++NumMemCpyInstr;
689           return true;
690         }
691       }
692     }
693   }
694 
695   // There are two cases that are interesting for this code to handle: memcpy
696   // and memset.  Right now we only handle memset.
697 
698   // Ensure that the value being stored is something that can be memset'able a
699   // byte at a time like "0" or "-1" or any width, as well as things like
700   // 0xA0A0A0A0 and 0.0.
701   auto *V = SI->getOperand(0);
702   if (Value *ByteVal = isBytewiseValue(V, DL)) {
703     if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
704                                               ByteVal)) {
705       BBI = I->getIterator(); // Don't invalidate iterator.
706       return true;
707     }
708 
709     // If we have an aggregate, we try to promote it to memset regardless
710     // of opportunity for merging as it can expose optimization opportunities
711     // in subsequent passes.
712     auto *T = V->getType();
713     if (T->isAggregateType()) {
714       uint64_t Size = DL.getTypeStoreSize(T);
715       IRBuilder<> Builder(SI);
716       auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size,
717                                      SI->getAlign());
718 
719       LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n");
720 
721       if (MSSAU) {
722         assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI)));
723         auto *LastDef =
724             cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI));
725         auto *NewAccess = MSSAU->createMemoryAccessAfter(M, LastDef, LastDef);
726         MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
727       }
728 
729       eraseInstruction(SI);
730       NumMemSetInfer++;
731 
732       // Make sure we do not invalidate the iterator.
733       BBI = M->getIterator();
734       return true;
735     }
736   }
737 
738   return false;
739 }
740 
741 bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
742   // See if there is another memset or store neighboring this memset which
743   // allows us to widen out the memset to do a single larger store.
744   if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
745     if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
746                                               MSI->getValue())) {
747       BBI = I->getIterator(); // Don't invalidate iterator.
748       return true;
749     }
750   return false;
751 }
752 
753 /// Takes a memcpy and a call that it depends on,
754 /// and checks for the possibility of a call slot optimization by having
755 /// the call write its result directly into the destination of the memcpy.
756 bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpy, Value *cpyDest,
757                                          Value *cpySrc, uint64_t cpyLen,
758                                          Align cpyAlign, CallInst *C) {
759   // The general transformation to keep in mind is
760   //
761   //   call @func(..., src, ...)
762   //   memcpy(dest, src, ...)
763   //
764   // ->
765   //
766   //   memcpy(dest, src, ...)
767   //   call @func(..., dest, ...)
768   //
769   // Since moving the memcpy is technically awkward, we additionally check that
770   // src only holds uninitialized values at the moment of the call, meaning that
771   // the memcpy can be discarded rather than moved.
772 
773   // Lifetime marks shouldn't be operated on.
774   if (Function *F = C->getCalledFunction())
775     if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start)
776       return false;
777 
778   // Require that src be an alloca.  This simplifies the reasoning considerably.
779   AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
780   if (!srcAlloca)
781     return false;
782 
783   ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
784   if (!srcArraySize)
785     return false;
786 
787   const DataLayout &DL = cpy->getModule()->getDataLayout();
788   uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
789                      srcArraySize->getZExtValue();
790 
791   if (cpyLen < srcSize)
792     return false;
793 
794   // Check that accessing the first srcSize bytes of dest will not cause a
795   // trap.  Otherwise the transform is invalid since it might cause a trap
796   // to occur earlier than it otherwise would.
797   if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
798     // The destination is an alloca.  Check it is larger than srcSize.
799     ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
800     if (!destArraySize)
801       return false;
802 
803     uint64_t destSize = DL.getTypeAllocSize(A->getAllocatedType()) *
804                         destArraySize->getZExtValue();
805 
806     if (destSize < srcSize)
807       return false;
808   } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
809     // The store to dest may never happen if the call can throw.
810     if (C->mayThrow())
811       return false;
812 
813     if (A->getDereferenceableBytes() < srcSize) {
814       // If the destination is an sret parameter then only accesses that are
815       // outside of the returned struct type can trap.
816       if (!A->hasStructRetAttr())
817         return false;
818 
819       Type *StructTy = A->getParamStructRetType();
820       if (!StructTy->isSized()) {
821         // The call may never return and hence the copy-instruction may never
822         // be executed, and therefore it's not safe to say "the destination
823         // has at least <cpyLen> bytes, as implied by the copy-instruction",
824         return false;
825       }
826 
827       uint64_t destSize = DL.getTypeAllocSize(StructTy);
828       if (destSize < srcSize)
829         return false;
830     }
831   } else {
832     return false;
833   }
834 
835   // Check that dest points to memory that is at least as aligned as src.
836   Align srcAlign = srcAlloca->getAlign();
837   bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
838   // If dest is not aligned enough and we can't increase its alignment then
839   // bail out.
840   if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
841     return false;
842 
843   // Check that src is not accessed except via the call and the memcpy.  This
844   // guarantees that it holds only undefined values when passed in (so the final
845   // memcpy can be dropped), that it is not read or written between the call and
846   // the memcpy, and that writing beyond the end of it is undefined.
847   SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(),
848                                    srcAlloca->user_end());
849   while (!srcUseList.empty()) {
850     User *U = srcUseList.pop_back_val();
851 
852     if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
853       for (User *UU : U->users())
854         srcUseList.push_back(UU);
855       continue;
856     }
857     if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) {
858       if (!G->hasAllZeroIndices())
859         return false;
860 
861       for (User *UU : U->users())
862         srcUseList.push_back(UU);
863       continue;
864     }
865     if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U))
866       if (IT->isLifetimeStartOrEnd())
867         continue;
868 
869     if (U != C && U != cpy)
870       return false;
871   }
872 
873   // Check that src isn't captured by the called function since the
874   // transformation can cause aliasing issues in that case.
875   for (unsigned ArgI = 0, E = C->arg_size(); ArgI != E; ++ArgI)
876     if (C->getArgOperand(ArgI) == cpySrc && !C->doesNotCapture(ArgI))
877       return false;
878 
879   // Since we're changing the parameter to the callsite, we need to make sure
880   // that what would be the new parameter dominates the callsite.
881   if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
882     if (!DT->dominates(cpyDestInst, C))
883       return false;
884 
885   // In addition to knowing that the call does not access src in some
886   // unexpected manner, for example via a global, which we deduce from
887   // the use analysis, we also need to know that it does not sneakily
888   // access dest.  We rely on AA to figure this out for us.
889   ModRefInfo MR = AA->getModRefInfo(C, cpyDest, LocationSize::precise(srcSize));
890   // If necessary, perform additional analysis.
891   if (isModOrRefSet(MR))
892     MR = AA->callCapturesBefore(C, cpyDest, LocationSize::precise(srcSize), DT);
893   if (isModOrRefSet(MR))
894     return false;
895 
896   // We can't create address space casts here because we don't know if they're
897   // safe for the target.
898   if (cpySrc->getType()->getPointerAddressSpace() !=
899       cpyDest->getType()->getPointerAddressSpace())
900     return false;
901   for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
902     if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc &&
903         cpySrc->getType()->getPointerAddressSpace() !=
904             C->getArgOperand(ArgI)->getType()->getPointerAddressSpace())
905       return false;
906 
907   // All the checks have passed, so do the transformation.
908   bool changedArgument = false;
909   for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
910     if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc) {
911       Value *Dest = cpySrc->getType() == cpyDest->getType() ?  cpyDest
912         : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
913                                       cpyDest->getName(), C);
914       changedArgument = true;
915       if (C->getArgOperand(ArgI)->getType() == Dest->getType())
916         C->setArgOperand(ArgI, Dest);
917       else
918         C->setArgOperand(ArgI, CastInst::CreatePointerCast(
919                                    Dest, C->getArgOperand(ArgI)->getType(),
920                                    Dest->getName(), C));
921     }
922 
923   if (!changedArgument)
924     return false;
925 
926   // If the destination wasn't sufficiently aligned then increase its alignment.
927   if (!isDestSufficientlyAligned) {
928     assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
929     cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
930   }
931 
932   // Drop any cached information about the call, because we may have changed
933   // its dependence information by changing its parameter.
934   MD->removeInstruction(C);
935 
936   // Update AA metadata
937   // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
938   // handled here, but combineMetadata doesn't support them yet
939   unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
940                          LLVMContext::MD_noalias,
941                          LLVMContext::MD_invariant_group,
942                          LLVMContext::MD_access_group};
943   combineMetadata(C, cpy, KnownIDs, true);
944 
945   return true;
946 }
947 
948 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is
949 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
950 bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
951                                                   MemCpyInst *MDep) {
952   // We can only transforms memcpy's where the dest of one is the source of the
953   // other.
954   if (M->getSource() != MDep->getDest() || MDep->isVolatile())
955     return false;
956 
957   // If dep instruction is reading from our current input, then it is a noop
958   // transfer and substituting the input won't change this instruction.  Just
959   // ignore the input and let someone else zap MDep.  This handles cases like:
960   //    memcpy(a <- a)
961   //    memcpy(b <- a)
962   if (M->getSource() == MDep->getSource())
963     return false;
964 
965   // Second, the length of the memcpy's must be the same, or the preceding one
966   // must be larger than the following one.
967   ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
968   ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
969   if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
970     return false;
971 
972   // Verify that the copied-from memory doesn't change in between the two
973   // transfers.  For example, in:
974   //    memcpy(a <- b)
975   //    *b = 42;
976   //    memcpy(c <- a)
977   // It would be invalid to transform the second memcpy into memcpy(c <- b).
978   //
979   // TODO: If the code between M and MDep is transparent to the destination "c",
980   // then we could still perform the xform by moving M up to the first memcpy.
981   //
982   // NOTE: This is conservative, it will stop on any read from the source loc,
983   // not just the defining memcpy.
984   MemDepResult SourceDep =
985       MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false,
986                                    M->getIterator(), M->getParent());
987   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
988     return false;
989 
990   // If the dest of the second might alias the source of the first, then the
991   // source and dest might overlap.  We still want to eliminate the intermediate
992   // value, but we have to generate a memmove instead of memcpy.
993   bool UseMemMove = false;
994   if (!AA->isNoAlias(MemoryLocation::getForDest(M),
995                      MemoryLocation::getForSource(MDep)))
996     UseMemMove = true;
997 
998   // If all checks passed, then we can transform M.
999   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n"
1000                     << *MDep << '\n' << *M << '\n');
1001 
1002   // TODO: Is this worth it if we're creating a less aligned memcpy? For
1003   // example we could be moving from movaps -> movq on x86.
1004   IRBuilder<> Builder(M);
1005   Instruction *NewM;
1006   if (UseMemMove)
1007     NewM = Builder.CreateMemMove(M->getRawDest(), M->getDestAlign(),
1008                                  MDep->getRawSource(), MDep->getSourceAlign(),
1009                                  M->getLength(), M->isVolatile());
1010   else
1011     NewM = Builder.CreateMemCpy(M->getRawDest(), M->getDestAlign(),
1012                                 MDep->getRawSource(), MDep->getSourceAlign(),
1013                                 M->getLength(), M->isVolatile());
1014 
1015   if (MSSAU) {
1016     assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)));
1017     auto *LastDef = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M));
1018     auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
1019     MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1020   }
1021 
1022   // Remove the instruction we're replacing.
1023   eraseInstruction(M);
1024   ++NumMemCpyInstr;
1025   return true;
1026 }
1027 
1028 /// We've found that the (upward scanning) memory dependence of \p MemCpy is
1029 /// \p MemSet.  Try to simplify \p MemSet to only set the trailing bytes that
1030 /// weren't copied over by \p MemCpy.
1031 ///
1032 /// In other words, transform:
1033 /// \code
1034 ///   memset(dst, c, dst_size);
1035 ///   memcpy(dst, src, src_size);
1036 /// \endcode
1037 /// into:
1038 /// \code
1039 ///   memcpy(dst, src, src_size);
1040 ///   memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
1041 /// \endcode
1042 bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
1043                                                   MemSetInst *MemSet) {
1044   // We can only transform memset/memcpy with the same destination.
1045   if (MemSet->getDest() != MemCpy->getDest())
1046     return false;
1047 
1048   // Check that there are no other dependencies on the memset destination.
1049   MemDepResult DstDepInfo =
1050       MD->getPointerDependencyFrom(MemoryLocation::getForDest(MemSet), false,
1051                                    MemCpy->getIterator(), MemCpy->getParent());
1052   if (DstDepInfo.getInst() != MemSet)
1053     return false;
1054 
1055   // Use the same i8* dest as the memcpy, killing the memset dest if different.
1056   Value *Dest = MemCpy->getRawDest();
1057   Value *DestSize = MemSet->getLength();
1058   Value *SrcSize = MemCpy->getLength();
1059 
1060   // By default, create an unaligned memset.
1061   unsigned Align = 1;
1062   // If Dest is aligned, and SrcSize is constant, use the minimum alignment
1063   // of the sum.
1064   const unsigned DestAlign =
1065       std::max(MemSet->getDestAlignment(), MemCpy->getDestAlignment());
1066   if (DestAlign > 1)
1067     if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
1068       Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign);
1069 
1070   IRBuilder<> Builder(MemCpy);
1071 
1072   // If the sizes have different types, zext the smaller one.
1073   if (DestSize->getType() != SrcSize->getType()) {
1074     if (DestSize->getType()->getIntegerBitWidth() >
1075         SrcSize->getType()->getIntegerBitWidth())
1076       SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType());
1077     else
1078       DestSize = Builder.CreateZExt(DestSize, SrcSize->getType());
1079   }
1080 
1081   Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize);
1082   Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize);
1083   Value *MemsetLen = Builder.CreateSelect(
1084       Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff);
1085   Instruction *NewMemSet = Builder.CreateMemSet(
1086       Builder.CreateGEP(Dest->getType()->getPointerElementType(), Dest,
1087                         SrcSize),
1088       MemSet->getOperand(1), MemsetLen, MaybeAlign(Align));
1089 
1090   if (MSSAU) {
1091     assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)) &&
1092            "MemCpy must be a MemoryDef");
1093     // The new memset is inserted after the memcpy, but it is known that its
1094     // defining access is the memset about to be removed which immediately
1095     // precedes the memcpy.
1096     auto *LastDef =
1097         cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy));
1098     auto *NewAccess = MSSAU->createMemoryAccessBefore(
1099         NewMemSet, LastDef->getDefiningAccess(), LastDef);
1100     MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1101   }
1102 
1103   eraseInstruction(MemSet);
1104   return true;
1105 }
1106 
1107 /// Determine whether the instruction has undefined content for the given Size,
1108 /// either because it was freshly alloca'd or started its lifetime.
1109 static bool hasUndefContents(Instruction *I, ConstantInt *Size) {
1110   if (isa<AllocaInst>(I))
1111     return true;
1112 
1113   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1114     if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1115       if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0)))
1116         if (LTSize->getZExtValue() >= Size->getZExtValue())
1117           return true;
1118 
1119   return false;
1120 }
1121 
1122 /// Transform memcpy to memset when its source was just memset.
1123 /// In other words, turn:
1124 /// \code
1125 ///   memset(dst1, c, dst1_size);
1126 ///   memcpy(dst2, dst1, dst2_size);
1127 /// \endcode
1128 /// into:
1129 /// \code
1130 ///   memset(dst1, c, dst1_size);
1131 ///   memset(dst2, c, dst2_size);
1132 /// \endcode
1133 /// When dst2_size <= dst1_size.
1134 ///
1135 /// The \p MemCpy must have a Constant length.
1136 bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
1137                                                MemSetInst *MemSet) {
1138   // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and
1139   // memcpying from the same address. Otherwise it is hard to reason about.
1140   if (!AA->isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource()))
1141     return false;
1142 
1143   // A known memset size is required.
1144   ConstantInt *MemSetSize = dyn_cast<ConstantInt>(MemSet->getLength());
1145   if (!MemSetSize)
1146     return false;
1147 
1148   // Make sure the memcpy doesn't read any more than what the memset wrote.
1149   // Don't worry about sizes larger than i64.
1150   ConstantInt *CopySize = cast<ConstantInt>(MemCpy->getLength());
1151   if (CopySize->getZExtValue() > MemSetSize->getZExtValue()) {
1152     // If the memcpy is larger than the memset, but the memory was undef prior
1153     // to the memset, we can just ignore the tail. Technically we're only
1154     // interested in the bytes from MemSetSize..CopySize here, but as we can't
1155     // easily represent this location, we use the full 0..CopySize range.
1156     MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy);
1157     MemDepResult DepInfo = MD->getPointerDependencyFrom(
1158         MemCpyLoc, true, MemSet->getIterator(), MemSet->getParent());
1159     if (DepInfo.isDef() && hasUndefContents(DepInfo.getInst(), CopySize))
1160       CopySize = MemSetSize;
1161     else
1162       return false;
1163   }
1164 
1165   IRBuilder<> Builder(MemCpy);
1166   Instruction *NewM =
1167       Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1),
1168                            CopySize, MaybeAlign(MemCpy->getDestAlignment()));
1169   if (MSSAU) {
1170     auto *LastDef =
1171         cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy));
1172     auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
1173     MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1174   }
1175 
1176   return true;
1177 }
1178 
1179 /// Perform simplification of memcpy's.  If we have memcpy A
1180 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
1181 /// B to be a memcpy from X to Z (or potentially a memmove, depending on
1182 /// circumstances). This allows later passes to remove the first memcpy
1183 /// altogether.
1184 bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) {
1185   // We can only optimize non-volatile memcpy's.
1186   if (M->isVolatile()) return false;
1187 
1188   // If the source and destination of the memcpy are the same, then zap it.
1189   if (M->getSource() == M->getDest()) {
1190     ++BBI;
1191     eraseInstruction(M);
1192     return true;
1193   }
1194 
1195   // If copying from a constant, try to turn the memcpy into a memset.
1196   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
1197     if (GV->isConstant() && GV->hasDefinitiveInitializer())
1198       if (Value *ByteVal = isBytewiseValue(GV->getInitializer(),
1199                                            M->getModule()->getDataLayout())) {
1200         IRBuilder<> Builder(M);
1201         Instruction *NewM =
1202             Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
1203                                  MaybeAlign(M->getDestAlignment()), false);
1204         if (MSSAU) {
1205           auto *LastDef =
1206               cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M));
1207           auto *NewAccess =
1208               MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
1209           MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1210         }
1211 
1212         eraseInstruction(M);
1213         ++NumCpyToSet;
1214         return true;
1215       }
1216 
1217   MemDepResult DepInfo = MD->getDependency(M);
1218 
1219   // Try to turn a partially redundant memset + memcpy into
1220   // memcpy + smaller memset.  We don't need the memcpy size for this.
1221   if (DepInfo.isClobber())
1222     if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst()))
1223       if (processMemSetMemCpyDependence(M, MDep))
1224         return true;
1225 
1226   // The optimizations after this point require the memcpy size.
1227   ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
1228   if (!CopySize) return false;
1229 
1230   // There are four possible optimizations we can do for memcpy:
1231   //   a) memcpy-memcpy xform which exposes redundance for DSE.
1232   //   b) call-memcpy xform for return slot optimization.
1233   //   c) memcpy from freshly alloca'd space or space that has just started its
1234   //      lifetime copies undefined data, and we can therefore eliminate the
1235   //      memcpy in favor of the data that was already at the destination.
1236   //   d) memcpy from a just-memset'd source can be turned into memset.
1237   if (DepInfo.isClobber()) {
1238     if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
1239       // FIXME: Can we pass in either of dest/src alignment here instead
1240       // of conservatively taking the minimum?
1241       Align Alignment = std::min(M->getDestAlign().valueOrOne(),
1242                                  M->getSourceAlign().valueOrOne());
1243       if (performCallSlotOptzn(M, M->getDest(), M->getSource(),
1244                                CopySize->getZExtValue(), Alignment, C)) {
1245         eraseInstruction(M);
1246         ++NumMemCpyInstr;
1247         return true;
1248       }
1249     }
1250   }
1251 
1252   MemoryLocation SrcLoc = MemoryLocation::getForSource(M);
1253   MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(
1254       SrcLoc, true, M->getIterator(), M->getParent());
1255 
1256   if (SrcDepInfo.isClobber()) {
1257     if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst()))
1258       return processMemCpyMemCpyDependence(M, MDep);
1259   } else if (SrcDepInfo.isDef()) {
1260     if (hasUndefContents(SrcDepInfo.getInst(), CopySize)) {
1261       eraseInstruction(M);
1262       ++NumMemCpyInstr;
1263       return true;
1264     }
1265   }
1266 
1267   if (SrcDepInfo.isClobber())
1268     if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst()))
1269       if (performMemCpyToMemSetOptzn(M, MDep)) {
1270         eraseInstruction(M);
1271         ++NumCpyToSet;
1272         return true;
1273       }
1274 
1275   return false;
1276 }
1277 
1278 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
1279 /// not to alias.
1280 bool MemCpyOptPass::processMemMove(MemMoveInst *M) {
1281   if (!TLI->has(LibFunc_memmove))
1282     return false;
1283 
1284   // See if the pointers alias.
1285   if (!AA->isNoAlias(MemoryLocation::getForDest(M),
1286                      MemoryLocation::getForSource(M)))
1287     return false;
1288 
1289   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M
1290                     << "\n");
1291 
1292   // If not, then we know we can transform this.
1293   Type *ArgTys[3] = { M->getRawDest()->getType(),
1294                       M->getRawSource()->getType(),
1295                       M->getLength()->getType() };
1296   M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(),
1297                                                  Intrinsic::memcpy, ArgTys));
1298 
1299   // For MemorySSA nothing really changes (except that memcpy may imply stricter
1300   // aliasing guarantees).
1301 
1302   // MemDep may have over conservative information about this instruction, just
1303   // conservatively flush it from the cache.
1304   MD->removeInstruction(M);
1305 
1306   ++NumMoveToCpy;
1307   return true;
1308 }
1309 
1310 /// This is called on every byval argument in call sites.
1311 bool MemCpyOptPass::processByValArgument(CallBase &CB, unsigned ArgNo) {
1312   const DataLayout &DL = CB.getCaller()->getParent()->getDataLayout();
1313   // Find out what feeds this byval argument.
1314   Value *ByValArg = CB.getArgOperand(ArgNo);
1315   Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType();
1316   uint64_t ByValSize = DL.getTypeAllocSize(ByValTy);
1317   MemDepResult DepInfo = MD->getPointerDependencyFrom(
1318       MemoryLocation(ByValArg, LocationSize::precise(ByValSize)), true,
1319       CB.getIterator(), CB.getParent());
1320   if (!DepInfo.isClobber())
1321     return false;
1322 
1323   // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by
1324   // a memcpy, see if we can byval from the source of the memcpy instead of the
1325   // result.
1326   MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
1327   if (!MDep || MDep->isVolatile() ||
1328       ByValArg->stripPointerCasts() != MDep->getDest())
1329     return false;
1330 
1331   // The length of the memcpy must be larger or equal to the size of the byval.
1332   ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
1333   if (!C1 || C1->getValue().getZExtValue() < ByValSize)
1334     return false;
1335 
1336   // Get the alignment of the byval.  If the call doesn't specify the alignment,
1337   // then it is some target specific value that we can't know.
1338   MaybeAlign ByValAlign = CB.getParamAlign(ArgNo);
1339   if (!ByValAlign) return false;
1340 
1341   // If it is greater than the memcpy, then we check to see if we can force the
1342   // source of the memcpy to the alignment we need.  If we fail, we bail out.
1343   MaybeAlign MemDepAlign = MDep->getSourceAlign();
1344   if ((!MemDepAlign || *MemDepAlign < *ByValAlign) &&
1345       getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, &CB, AC,
1346                                  DT) < *ByValAlign)
1347     return false;
1348 
1349   // The address space of the memcpy source must match the byval argument
1350   if (MDep->getSource()->getType()->getPointerAddressSpace() !=
1351       ByValArg->getType()->getPointerAddressSpace())
1352     return false;
1353 
1354   // Verify that the copied-from memory doesn't change in between the memcpy and
1355   // the byval call.
1356   //    memcpy(a <- b)
1357   //    *b = 42;
1358   //    foo(*a)
1359   // It would be invalid to transform the second memcpy into foo(*b).
1360   //
1361   // NOTE: This is conservative, it will stop on any read from the source loc,
1362   // not just the defining memcpy.
1363   MemDepResult SourceDep = MD->getPointerDependencyFrom(
1364       MemoryLocation::getForSource(MDep), false,
1365       CB.getIterator(), MDep->getParent());
1366   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
1367     return false;
1368 
1369   Value *TmpCast = MDep->getSource();
1370   if (MDep->getSource()->getType() != ByValArg->getType()) {
1371     BitCastInst *TmpBitCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
1372                                               "tmpcast", &CB);
1373     // Set the tmpcast's DebugLoc to MDep's
1374     TmpBitCast->setDebugLoc(MDep->getDebugLoc());
1375     TmpCast = TmpBitCast;
1376   }
1377 
1378   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"
1379                     << "  " << *MDep << "\n"
1380                     << "  " << CB << "\n");
1381 
1382   // Otherwise we're good!  Update the byval argument.
1383   CB.setArgOperand(ArgNo, TmpCast);
1384   ++NumMemCpyInstr;
1385   return true;
1386 }
1387 
1388 /// Executes one iteration of MemCpyOptPass.
1389 bool MemCpyOptPass::iterateOnFunction(Function &F) {
1390   bool MadeChange = false;
1391 
1392   // Walk all instruction in the function.
1393   for (BasicBlock &BB : F) {
1394     // Skip unreachable blocks. For example processStore assumes that an
1395     // instruction in a BB can't be dominated by a later instruction in the
1396     // same BB (which is a scenario that can happen for an unreachable BB that
1397     // has itself as a predecessor).
1398     if (!DT->isReachableFromEntry(&BB))
1399       continue;
1400 
1401     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
1402         // Avoid invalidating the iterator.
1403       Instruction *I = &*BI++;
1404 
1405       bool RepeatInstruction = false;
1406 
1407       if (StoreInst *SI = dyn_cast<StoreInst>(I))
1408         MadeChange |= processStore(SI, BI);
1409       else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
1410         RepeatInstruction = processMemSet(M, BI);
1411       else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
1412         RepeatInstruction = processMemCpy(M, BI);
1413       else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
1414         RepeatInstruction = processMemMove(M);
1415       else if (auto *CB = dyn_cast<CallBase>(I)) {
1416         for (unsigned i = 0, e = CB->arg_size(); i != e; ++i)
1417           if (CB->isByValArgument(i))
1418             MadeChange |= processByValArgument(*CB, i);
1419       }
1420 
1421       // Reprocess the instruction if desired.
1422       if (RepeatInstruction) {
1423         if (BI != BB.begin())
1424           --BI;
1425         MadeChange = true;
1426       }
1427     }
1428   }
1429 
1430   return MadeChange;
1431 }
1432 
1433 PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) {
1434   auto &MD = AM.getResult<MemoryDependenceAnalysis>(F);
1435   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1436   auto *AA = &AM.getResult<AAManager>(F);
1437   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
1438   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1439   auto *MSSA = AM.getCachedResult<MemorySSAAnalysis>(F);
1440 
1441   bool MadeChange =
1442       runImpl(F, &MD, &TLI, AA, AC, DT, MSSA ? &MSSA->getMSSA() : nullptr);
1443   if (!MadeChange)
1444     return PreservedAnalyses::all();
1445 
1446   PreservedAnalyses PA;
1447   PA.preserveSet<CFGAnalyses>();
1448   PA.preserve<GlobalsAA>();
1449   PA.preserve<MemoryDependenceAnalysis>();
1450   if (MSSA)
1451     PA.preserve<MemorySSAAnalysis>();
1452   return PA;
1453 }
1454 
1455 bool MemCpyOptPass::runImpl(Function &F, MemoryDependenceResults *MD_,
1456                             TargetLibraryInfo *TLI_, AliasAnalysis *AA_,
1457                             AssumptionCache *AC_, DominatorTree *DT_,
1458                             MemorySSA *MSSA_) {
1459   bool MadeChange = false;
1460   MD = MD_;
1461   TLI = TLI_;
1462   AA = AA_;
1463   AC = AC_;
1464   DT = DT_;
1465   MemorySSAUpdater MSSAU_(MSSA_);
1466   MSSAU = MSSA_ ? &MSSAU_ : nullptr;
1467   // If we don't have at least memset and memcpy, there is little point of doing
1468   // anything here.  These are required by a freestanding implementation, so if
1469   // even they are disabled, there is no point in trying hard.
1470   if (!TLI->has(LibFunc_memset) || !TLI->has(LibFunc_memcpy))
1471     return false;
1472 
1473   while (true) {
1474     if (!iterateOnFunction(F))
1475       break;
1476     MadeChange = true;
1477   }
1478 
1479   if (MSSA_ && VerifyMemorySSA)
1480     MSSA_->verifyMemorySSA();
1481 
1482   MD = nullptr;
1483   return MadeChange;
1484 }
1485 
1486 /// This is the main transformation entry point for a function.
1487 bool MemCpyOptLegacyPass::runOnFunction(Function &F) {
1488   if (skipFunction(F))
1489     return false;
1490 
1491   auto *MD = &getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
1492   auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1493   auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1494   auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1495   auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1496   auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>();
1497 
1498   return Impl.runImpl(F, MD, TLI, AA, AC, DT,
1499                       MSSAWP ? &MSSAWP->getMSSA() : nullptr);
1500 }
1501