1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs various transformations related to eliminating memcpy
10 // calls, or transforming sets of stores into memset's.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/Analysis/MemorySSA.h"
27 #include "llvm/Analysis/MemorySSAUpdater.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/Argument.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GetElementPtrTypeIterator.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/IRBuilder.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/LLVMContext.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/Operator.h"
48 #include "llvm/IR/PassManager.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Scalar.h"
59 #include "llvm/Transforms/Utils/Local.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstdint>
63 #include <utility>
64 
65 using namespace llvm;
66 
67 #define DEBUG_TYPE "memcpyopt"
68 
69 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
70 STATISTIC(NumMemSetInfer, "Number of memsets inferred");
71 STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
72 STATISTIC(NumCpyToSet,    "Number of memcpys converted to memset");
73 
74 namespace {
75 
76 /// Represents a range of memset'd bytes with the ByteVal value.
77 /// This allows us to analyze stores like:
78 ///   store 0 -> P+1
79 ///   store 0 -> P+0
80 ///   store 0 -> P+3
81 ///   store 0 -> P+2
82 /// which sometimes happens with stores to arrays of structs etc.  When we see
83 /// the first store, we make a range [1, 2).  The second store extends the range
84 /// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
85 /// two ranges into [0, 3) which is memset'able.
86 struct MemsetRange {
87   // Start/End - A semi range that describes the span that this range covers.
88   // The range is closed at the start and open at the end: [Start, End).
89   int64_t Start, End;
90 
91   /// StartPtr - The getelementptr instruction that points to the start of the
92   /// range.
93   Value *StartPtr;
94 
95   /// Alignment - The known alignment of the first store.
96   unsigned Alignment;
97 
98   /// TheStores - The actual stores that make up this range.
99   SmallVector<Instruction*, 16> TheStores;
100 
101   bool isProfitableToUseMemset(const DataLayout &DL) const;
102 };
103 
104 } // end anonymous namespace
105 
106 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
107   // If we found more than 4 stores to merge or 16 bytes, use memset.
108   if (TheStores.size() >= 4 || End-Start >= 16) return true;
109 
110   // If there is nothing to merge, don't do anything.
111   if (TheStores.size() < 2) return false;
112 
113   // If any of the stores are a memset, then it is always good to extend the
114   // memset.
115   for (Instruction *SI : TheStores)
116     if (!isa<StoreInst>(SI))
117       return true;
118 
119   // Assume that the code generator is capable of merging pairs of stores
120   // together if it wants to.
121   if (TheStores.size() == 2) return false;
122 
123   // If we have fewer than 8 stores, it can still be worthwhile to do this.
124   // For example, merging 4 i8 stores into an i32 store is useful almost always.
125   // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
126   // memset will be split into 2 32-bit stores anyway) and doing so can
127   // pessimize the llvm optimizer.
128   //
129   // Since we don't have perfect knowledge here, make some assumptions: assume
130   // the maximum GPR width is the same size as the largest legal integer
131   // size. If so, check to see whether we will end up actually reducing the
132   // number of stores used.
133   unsigned Bytes = unsigned(End-Start);
134   unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8;
135   if (MaxIntSize == 0)
136     MaxIntSize = 1;
137   unsigned NumPointerStores = Bytes / MaxIntSize;
138 
139   // Assume the remaining bytes if any are done a byte at a time.
140   unsigned NumByteStores = Bytes % MaxIntSize;
141 
142   // If we will reduce the # stores (according to this heuristic), do the
143   // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
144   // etc.
145   return TheStores.size() > NumPointerStores+NumByteStores;
146 }
147 
148 namespace {
149 
150 class MemsetRanges {
151   using range_iterator = SmallVectorImpl<MemsetRange>::iterator;
152 
153   /// A sorted list of the memset ranges.
154   SmallVector<MemsetRange, 8> Ranges;
155 
156   const DataLayout &DL;
157 
158 public:
159   MemsetRanges(const DataLayout &DL) : DL(DL) {}
160 
161   using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator;
162 
163   const_iterator begin() const { return Ranges.begin(); }
164   const_iterator end() const { return Ranges.end(); }
165   bool empty() const { return Ranges.empty(); }
166 
167   void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
168     if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
169       addStore(OffsetFromFirst, SI);
170     else
171       addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
172   }
173 
174   void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
175     int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
176 
177     addRange(OffsetFromFirst, StoreSize, SI->getPointerOperand(),
178              SI->getAlign().value(), SI);
179   }
180 
181   void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
182     int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
183     addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlignment(), MSI);
184   }
185 
186   void addRange(int64_t Start, int64_t Size, Value *Ptr,
187                 unsigned Alignment, Instruction *Inst);
188 };
189 
190 } // end anonymous namespace
191 
192 /// Add a new store to the MemsetRanges data structure.  This adds a
193 /// new range for the specified store at the specified offset, merging into
194 /// existing ranges as appropriate.
195 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
196                             unsigned Alignment, Instruction *Inst) {
197   int64_t End = Start+Size;
198 
199   range_iterator I = partition_point(
200       Ranges, [=](const MemsetRange &O) { return O.End < Start; });
201 
202   // We now know that I == E, in which case we didn't find anything to merge
203   // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
204   // to insert a new range.  Handle this now.
205   if (I == Ranges.end() || End < I->Start) {
206     MemsetRange &R = *Ranges.insert(I, MemsetRange());
207     R.Start        = Start;
208     R.End          = End;
209     R.StartPtr     = Ptr;
210     R.Alignment    = Alignment;
211     R.TheStores.push_back(Inst);
212     return;
213   }
214 
215   // This store overlaps with I, add it.
216   I->TheStores.push_back(Inst);
217 
218   // At this point, we may have an interval that completely contains our store.
219   // If so, just add it to the interval and return.
220   if (I->Start <= Start && I->End >= End)
221     return;
222 
223   // Now we know that Start <= I->End and End >= I->Start so the range overlaps
224   // but is not entirely contained within the range.
225 
226   // See if the range extends the start of the range.  In this case, it couldn't
227   // possibly cause it to join the prior range, because otherwise we would have
228   // stopped on *it*.
229   if (Start < I->Start) {
230     I->Start = Start;
231     I->StartPtr = Ptr;
232     I->Alignment = Alignment;
233   }
234 
235   // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
236   // is in or right at the end of I), and that End >= I->Start.  Extend I out to
237   // End.
238   if (End > I->End) {
239     I->End = End;
240     range_iterator NextI = I;
241     while (++NextI != Ranges.end() && End >= NextI->Start) {
242       // Merge the range in.
243       I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
244       if (NextI->End > I->End)
245         I->End = NextI->End;
246       Ranges.erase(NextI);
247       NextI = I;
248     }
249   }
250 }
251 
252 //===----------------------------------------------------------------------===//
253 //                         MemCpyOptLegacyPass Pass
254 //===----------------------------------------------------------------------===//
255 
256 namespace {
257 
258 class MemCpyOptLegacyPass : public FunctionPass {
259   MemCpyOptPass Impl;
260 
261 public:
262   static char ID; // Pass identification, replacement for typeid
263 
264   MemCpyOptLegacyPass() : FunctionPass(ID) {
265     initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry());
266   }
267 
268   bool runOnFunction(Function &F) override;
269 
270 private:
271   // This transformation requires dominator postdominator info
272   void getAnalysisUsage(AnalysisUsage &AU) const override {
273     AU.setPreservesCFG();
274     AU.addRequired<AssumptionCacheTracker>();
275     AU.addRequired<DominatorTreeWrapperPass>();
276     AU.addPreserved<DominatorTreeWrapperPass>();
277     AU.addPreserved<GlobalsAAWrapperPass>();
278     AU.addRequired<TargetLibraryInfoWrapperPass>();
279     AU.addRequired<MemoryDependenceWrapperPass>();
280     AU.addPreserved<MemoryDependenceWrapperPass>();
281     AU.addRequired<AAResultsWrapperPass>();
282     AU.addPreserved<AAResultsWrapperPass>();
283     AU.addPreserved<MemorySSAWrapperPass>();
284   }
285 };
286 
287 } // end anonymous namespace
288 
289 char MemCpyOptLegacyPass::ID = 0;
290 
291 /// The public interface to this file...
292 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); }
293 
294 INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
295                       false, false)
296 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
297 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
298 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
299 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
300 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
301 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
302 INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
303                     false, false)
304 
305 /// When scanning forward over instructions, we look for some other patterns to
306 /// fold away. In particular, this looks for stores to neighboring locations of
307 /// memory. If it sees enough consecutive ones, it attempts to merge them
308 /// together into a memcpy/memset.
309 Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst,
310                                                  Value *StartPtr,
311                                                  Value *ByteVal) {
312   const DataLayout &DL = StartInst->getModule()->getDataLayout();
313 
314   // Okay, so we now have a single store that can be splatable.  Scan to find
315   // all subsequent stores of the same value to offset from the same pointer.
316   // Join these together into ranges, so we can decide whether contiguous blocks
317   // are stored.
318   MemsetRanges Ranges(DL);
319 
320   BasicBlock::iterator BI(StartInst);
321 
322   // Keeps track of the last memory use or def before the insertion point for
323   // the new memset. The new MemoryDef for the inserted memsets will be inserted
324   // after MemInsertPoint. It points to either LastMemDef or to the last user
325   // before the insertion point of the memset, if there are any such users.
326   MemoryUseOrDef *MemInsertPoint = nullptr;
327   // Keeps track of the last MemoryDef between StartInst and the insertion point
328   // for the new memset. This will become the defining access of the inserted
329   // memsets.
330   MemoryDef *LastMemDef = nullptr;
331   for (++BI; !BI->isTerminator(); ++BI) {
332     if (MSSAU) {
333       auto *CurrentAcc = cast_or_null<MemoryUseOrDef>(
334           MSSAU->getMemorySSA()->getMemoryAccess(&*BI));
335       if (CurrentAcc) {
336         MemInsertPoint = CurrentAcc;
337         if (auto *CurrentDef = dyn_cast<MemoryDef>(CurrentAcc))
338           LastMemDef = CurrentDef;
339       }
340     }
341 
342     if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
343       // If the instruction is readnone, ignore it, otherwise bail out.  We
344       // don't even allow readonly here because we don't want something like:
345       // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
346       if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
347         break;
348       continue;
349     }
350 
351     if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
352       // If this is a store, see if we can merge it in.
353       if (!NextStore->isSimple()) break;
354 
355       // Check to see if this stored value is of the same byte-splattable value.
356       Value *StoredByte = isBytewiseValue(NextStore->getOperand(0), DL);
357       if (isa<UndefValue>(ByteVal) && StoredByte)
358         ByteVal = StoredByte;
359       if (ByteVal != StoredByte)
360         break;
361 
362       // Check to see if this store is to a constant offset from the start ptr.
363       Optional<int64_t> Offset =
364           isPointerOffset(StartPtr, NextStore->getPointerOperand(), DL);
365       if (!Offset)
366         break;
367 
368       Ranges.addStore(*Offset, NextStore);
369     } else {
370       MemSetInst *MSI = cast<MemSetInst>(BI);
371 
372       if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
373           !isa<ConstantInt>(MSI->getLength()))
374         break;
375 
376       // Check to see if this store is to a constant offset from the start ptr.
377       Optional<int64_t> Offset = isPointerOffset(StartPtr, MSI->getDest(), DL);
378       if (!Offset)
379         break;
380 
381       Ranges.addMemSet(*Offset, MSI);
382     }
383   }
384 
385   // If we have no ranges, then we just had a single store with nothing that
386   // could be merged in.  This is a very common case of course.
387   if (Ranges.empty())
388     return nullptr;
389 
390   // If we had at least one store that could be merged in, add the starting
391   // store as well.  We try to avoid this unless there is at least something
392   // interesting as a small compile-time optimization.
393   Ranges.addInst(0, StartInst);
394 
395   // If we create any memsets, we put it right before the first instruction that
396   // isn't part of the memset block.  This ensure that the memset is dominated
397   // by any addressing instruction needed by the start of the block.
398   IRBuilder<> Builder(&*BI);
399 
400   // Now that we have full information about ranges, loop over the ranges and
401   // emit memset's for anything big enough to be worthwhile.
402   Instruction *AMemSet = nullptr;
403   for (const MemsetRange &Range : Ranges) {
404     if (Range.TheStores.size() == 1) continue;
405 
406     // If it is profitable to lower this range to memset, do so now.
407     if (!Range.isProfitableToUseMemset(DL))
408       continue;
409 
410     // Otherwise, we do want to transform this!  Create a new memset.
411     // Get the starting pointer of the block.
412     StartPtr = Range.StartPtr;
413 
414     AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End - Range.Start,
415                                    MaybeAlign(Range.Alignment));
416     LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI
417                                                    : Range.TheStores) dbgs()
418                                               << *SI << '\n';
419                dbgs() << "With: " << *AMemSet << '\n');
420     if (!Range.TheStores.empty())
421       AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
422 
423     if (MSSAU) {
424       assert(LastMemDef && MemInsertPoint &&
425              "Both LastMemDef and MemInsertPoint need to be set");
426       auto *NewDef =
427           cast<MemoryDef>(MemInsertPoint->getMemoryInst() == &*BI
428                               ? MSSAU->createMemoryAccessBefore(
429                                     AMemSet, LastMemDef, MemInsertPoint)
430                               : MSSAU->createMemoryAccessAfter(
431                                     AMemSet, LastMemDef, MemInsertPoint));
432       MSSAU->insertDef(NewDef, /*RenameUses=*/true);
433       LastMemDef = NewDef;
434       MemInsertPoint = NewDef;
435     }
436 
437     // Zap all the stores.
438     for (Instruction *SI : Range.TheStores) {
439       if (MSSAU)
440         MSSAU->removeMemoryAccess(SI);
441       MD->removeInstruction(SI);
442       SI->eraseFromParent();
443     }
444 
445     ++NumMemSetInfer;
446   }
447 
448   return AMemSet;
449 }
450 
451 // This method try to lift a store instruction before position P.
452 // It will lift the store and its argument + that anything that
453 // may alias with these.
454 // The method returns true if it was successful.
455 static bool moveUp(AliasAnalysis &AA, StoreInst *SI, Instruction *P,
456                    const LoadInst *LI) {
457   // If the store alias this position, early bail out.
458   MemoryLocation StoreLoc = MemoryLocation::get(SI);
459   if (isModOrRefSet(AA.getModRefInfo(P, StoreLoc)))
460     return false;
461 
462   // Keep track of the arguments of all instruction we plan to lift
463   // so we can make sure to lift them as well if appropriate.
464   DenseSet<Instruction*> Args;
465   if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand()))
466     if (Ptr->getParent() == SI->getParent())
467       Args.insert(Ptr);
468 
469   // Instruction to lift before P.
470   SmallVector<Instruction*, 8> ToLift;
471 
472   // Memory locations of lifted instructions.
473   SmallVector<MemoryLocation, 8> MemLocs{StoreLoc};
474 
475   // Lifted calls.
476   SmallVector<const CallBase *, 8> Calls;
477 
478   const MemoryLocation LoadLoc = MemoryLocation::get(LI);
479 
480   for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) {
481     auto *C = &*I;
482 
483     bool MayAlias = isModOrRefSet(AA.getModRefInfo(C, None));
484 
485     bool NeedLift = false;
486     if (Args.erase(C))
487       NeedLift = true;
488     else if (MayAlias) {
489       NeedLift = llvm::any_of(MemLocs, [C, &AA](const MemoryLocation &ML) {
490         return isModOrRefSet(AA.getModRefInfo(C, ML));
491       });
492 
493       if (!NeedLift)
494         NeedLift = llvm::any_of(Calls, [C, &AA](const CallBase *Call) {
495           return isModOrRefSet(AA.getModRefInfo(C, Call));
496         });
497     }
498 
499     if (!NeedLift)
500       continue;
501 
502     if (MayAlias) {
503       // Since LI is implicitly moved downwards past the lifted instructions,
504       // none of them may modify its source.
505       if (isModSet(AA.getModRefInfo(C, LoadLoc)))
506         return false;
507       else if (const auto *Call = dyn_cast<CallBase>(C)) {
508         // If we can't lift this before P, it's game over.
509         if (isModOrRefSet(AA.getModRefInfo(P, Call)))
510           return false;
511 
512         Calls.push_back(Call);
513       } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) {
514         // If we can't lift this before P, it's game over.
515         auto ML = MemoryLocation::get(C);
516         if (isModOrRefSet(AA.getModRefInfo(P, ML)))
517           return false;
518 
519         MemLocs.push_back(ML);
520       } else
521         // We don't know how to lift this instruction.
522         return false;
523     }
524 
525     ToLift.push_back(C);
526     for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k)
527       if (auto *A = dyn_cast<Instruction>(C->getOperand(k))) {
528         if (A->getParent() == SI->getParent()) {
529           // Cannot hoist user of P above P
530           if(A == P) return false;
531           Args.insert(A);
532         }
533       }
534   }
535 
536   // We made it, we need to lift
537   for (auto *I : llvm::reverse(ToLift)) {
538     LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n");
539     I->moveBefore(P);
540   }
541 
542   return true;
543 }
544 
545 bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
546   if (!SI->isSimple()) return false;
547 
548   // Avoid merging nontemporal stores since the resulting
549   // memcpy/memset would not be able to preserve the nontemporal hint.
550   // In theory we could teach how to propagate the !nontemporal metadata to
551   // memset calls. However, that change would force the backend to
552   // conservatively expand !nontemporal memset calls back to sequences of
553   // store instructions (effectively undoing the merging).
554   if (SI->getMetadata(LLVMContext::MD_nontemporal))
555     return false;
556 
557   const DataLayout &DL = SI->getModule()->getDataLayout();
558 
559   // Load to store forwarding can be interpreted as memcpy.
560   if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
561     if (LI->isSimple() && LI->hasOneUse() &&
562         LI->getParent() == SI->getParent()) {
563 
564       auto *T = LI->getType();
565       if (T->isAggregateType()) {
566         MemoryLocation LoadLoc = MemoryLocation::get(LI);
567 
568         // We use alias analysis to check if an instruction may store to
569         // the memory we load from in between the load and the store. If
570         // such an instruction is found, we try to promote there instead
571         // of at the store position.
572         Instruction *P = SI;
573         for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) {
574           if (isModSet(AA->getModRefInfo(&I, LoadLoc))) {
575             P = &I;
576             break;
577           }
578         }
579 
580         // We found an instruction that may write to the loaded memory.
581         // We can try to promote at this position instead of the store
582         // position if nothing alias the store memory after this and the store
583         // destination is not in the range.
584         if (P && P != SI) {
585           if (!moveUp(*AA, SI, P, LI))
586             P = nullptr;
587         }
588 
589         // If a valid insertion position is found, then we can promote
590         // the load/store pair to a memcpy.
591         if (P) {
592           // If we load from memory that may alias the memory we store to,
593           // memmove must be used to preserve semantic. If not, memcpy can
594           // be used.
595           bool UseMemMove = false;
596           if (!AA->isNoAlias(MemoryLocation::get(SI), LoadLoc))
597             UseMemMove = true;
598 
599           uint64_t Size = DL.getTypeStoreSize(T);
600 
601           IRBuilder<> Builder(P);
602           Instruction *M;
603           if (UseMemMove)
604             M = Builder.CreateMemMove(
605                 SI->getPointerOperand(), SI->getAlign(),
606                 LI->getPointerOperand(), LI->getAlign(), Size);
607           else
608             M = Builder.CreateMemCpy(
609                 SI->getPointerOperand(), SI->getAlign(),
610                 LI->getPointerOperand(), LI->getAlign(), Size);
611 
612           LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => "
613                             << *M << "\n");
614 
615           if (MSSAU) {
616             assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(P)));
617             auto *LastDef =
618                 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(P));
619             auto *NewAccess =
620                 MSSAU->createMemoryAccessAfter(M, LastDef, LastDef);
621             MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
622             MSSAU->removeMemoryAccess(SI);
623             MSSAU->removeMemoryAccess(LI);
624           }
625 
626           MD->removeInstruction(SI);
627           SI->eraseFromParent();
628           MD->removeInstruction(LI);
629           LI->eraseFromParent();
630           ++NumMemCpyInstr;
631 
632           // Make sure we do not invalidate the iterator.
633           BBI = M->getIterator();
634           return true;
635         }
636       }
637 
638       // Detect cases where we're performing call slot forwarding, but
639       // happen to be using a load-store pair to implement it, rather than
640       // a memcpy.
641       MemDepResult ldep = MD->getDependency(LI);
642       CallInst *C = nullptr;
643       if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst()))
644         C = dyn_cast<CallInst>(ldep.getInst());
645 
646       if (C) {
647         // Check that nothing touches the dest of the "copy" between
648         // the call and the store.
649         Value *CpyDest = SI->getPointerOperand()->stripPointerCasts();
650         bool CpyDestIsLocal = isa<AllocaInst>(CpyDest);
651         MemoryLocation StoreLoc = MemoryLocation::get(SI);
652         for (BasicBlock::iterator I = --SI->getIterator(), E = C->getIterator();
653              I != E; --I) {
654           if (isModOrRefSet(AA->getModRefInfo(&*I, StoreLoc))) {
655             C = nullptr;
656             break;
657           }
658           // The store to dest may never happen if an exception can be thrown
659           // between the load and the store.
660           if (I->mayThrow() && !CpyDestIsLocal) {
661             C = nullptr;
662             break;
663           }
664         }
665       }
666 
667       if (C) {
668         bool changed = performCallSlotOptzn(
669             LI, SI->getPointerOperand()->stripPointerCasts(),
670             LI->getPointerOperand()->stripPointerCasts(),
671             DL.getTypeStoreSize(SI->getOperand(0)->getType()),
672             commonAlignment(SI->getAlign(), LI->getAlign()), C);
673         if (changed) {
674           if (MSSAU) {
675             MSSAU->removeMemoryAccess(SI);
676             MSSAU->removeMemoryAccess(LI);
677           }
678 
679           MD->removeInstruction(SI);
680           SI->eraseFromParent();
681           MD->removeInstruction(LI);
682           LI->eraseFromParent();
683           ++NumMemCpyInstr;
684           return true;
685         }
686       }
687     }
688   }
689 
690   // There are two cases that are interesting for this code to handle: memcpy
691   // and memset.  Right now we only handle memset.
692 
693   // Ensure that the value being stored is something that can be memset'able a
694   // byte at a time like "0" or "-1" or any width, as well as things like
695   // 0xA0A0A0A0 and 0.0.
696   auto *V = SI->getOperand(0);
697   if (Value *ByteVal = isBytewiseValue(V, DL)) {
698     if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
699                                               ByteVal)) {
700       BBI = I->getIterator(); // Don't invalidate iterator.
701       return true;
702     }
703 
704     // If we have an aggregate, we try to promote it to memset regardless
705     // of opportunity for merging as it can expose optimization opportunities
706     // in subsequent passes.
707     auto *T = V->getType();
708     if (T->isAggregateType()) {
709       uint64_t Size = DL.getTypeStoreSize(T);
710       IRBuilder<> Builder(SI);
711       auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size,
712                                      SI->getAlign());
713 
714       LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n");
715 
716       if (MSSAU) {
717         assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI)));
718         auto *LastDef =
719             cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI));
720         auto *NewAccess = MSSAU->createMemoryAccessAfter(M, LastDef, LastDef);
721         MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
722         MSSAU->removeMemoryAccess(SI);
723       }
724 
725       MD->removeInstruction(SI);
726       SI->eraseFromParent();
727       NumMemSetInfer++;
728 
729       // Make sure we do not invalidate the iterator.
730       BBI = M->getIterator();
731       return true;
732     }
733   }
734 
735   return false;
736 }
737 
738 bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
739   // See if there is another memset or store neighboring this memset which
740   // allows us to widen out the memset to do a single larger store.
741   if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
742     if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
743                                               MSI->getValue())) {
744       BBI = I->getIterator(); // Don't invalidate iterator.
745       return true;
746     }
747   return false;
748 }
749 
750 /// Takes a memcpy and a call that it depends on,
751 /// and checks for the possibility of a call slot optimization by having
752 /// the call write its result directly into the destination of the memcpy.
753 bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpy, Value *cpyDest,
754                                          Value *cpySrc, uint64_t cpyLen,
755                                          Align cpyAlign, CallInst *C) {
756   // The general transformation to keep in mind is
757   //
758   //   call @func(..., src, ...)
759   //   memcpy(dest, src, ...)
760   //
761   // ->
762   //
763   //   memcpy(dest, src, ...)
764   //   call @func(..., dest, ...)
765   //
766   // Since moving the memcpy is technically awkward, we additionally check that
767   // src only holds uninitialized values at the moment of the call, meaning that
768   // the memcpy can be discarded rather than moved.
769 
770   // Lifetime marks shouldn't be operated on.
771   if (Function *F = C->getCalledFunction())
772     if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start)
773       return false;
774 
775   // Require that src be an alloca.  This simplifies the reasoning considerably.
776   AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
777   if (!srcAlloca)
778     return false;
779 
780   ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
781   if (!srcArraySize)
782     return false;
783 
784   const DataLayout &DL = cpy->getModule()->getDataLayout();
785   uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
786                      srcArraySize->getZExtValue();
787 
788   if (cpyLen < srcSize)
789     return false;
790 
791   // Check that accessing the first srcSize bytes of dest will not cause a
792   // trap.  Otherwise the transform is invalid since it might cause a trap
793   // to occur earlier than it otherwise would.
794   if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
795     // The destination is an alloca.  Check it is larger than srcSize.
796     ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
797     if (!destArraySize)
798       return false;
799 
800     uint64_t destSize = DL.getTypeAllocSize(A->getAllocatedType()) *
801                         destArraySize->getZExtValue();
802 
803     if (destSize < srcSize)
804       return false;
805   } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
806     // The store to dest may never happen if the call can throw.
807     if (C->mayThrow())
808       return false;
809 
810     if (A->getDereferenceableBytes() < srcSize) {
811       // If the destination is an sret parameter then only accesses that are
812       // outside of the returned struct type can trap.
813       if (!A->hasStructRetAttr())
814         return false;
815 
816       Type *StructTy = cast<PointerType>(A->getType())->getElementType();
817       if (!StructTy->isSized()) {
818         // The call may never return and hence the copy-instruction may never
819         // be executed, and therefore it's not safe to say "the destination
820         // has at least <cpyLen> bytes, as implied by the copy-instruction",
821         return false;
822       }
823 
824       uint64_t destSize = DL.getTypeAllocSize(StructTy);
825       if (destSize < srcSize)
826         return false;
827     }
828   } else {
829     return false;
830   }
831 
832   // Check that dest points to memory that is at least as aligned as src.
833   Align srcAlign = srcAlloca->getAlign();
834   bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
835   // If dest is not aligned enough and we can't increase its alignment then
836   // bail out.
837   if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
838     return false;
839 
840   // Check that src is not accessed except via the call and the memcpy.  This
841   // guarantees that it holds only undefined values when passed in (so the final
842   // memcpy can be dropped), that it is not read or written between the call and
843   // the memcpy, and that writing beyond the end of it is undefined.
844   SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(),
845                                    srcAlloca->user_end());
846   while (!srcUseList.empty()) {
847     User *U = srcUseList.pop_back_val();
848 
849     if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
850       for (User *UU : U->users())
851         srcUseList.push_back(UU);
852       continue;
853     }
854     if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) {
855       if (!G->hasAllZeroIndices())
856         return false;
857 
858       for (User *UU : U->users())
859         srcUseList.push_back(UU);
860       continue;
861     }
862     if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U))
863       if (IT->isLifetimeStartOrEnd())
864         continue;
865 
866     if (U != C && U != cpy)
867       return false;
868   }
869 
870   // Check that src isn't captured by the called function since the
871   // transformation can cause aliasing issues in that case.
872   for (unsigned ArgI = 0, E = C->arg_size(); ArgI != E; ++ArgI)
873     if (C->getArgOperand(ArgI) == cpySrc && !C->doesNotCapture(ArgI))
874       return false;
875 
876   // Since we're changing the parameter to the callsite, we need to make sure
877   // that what would be the new parameter dominates the callsite.
878   if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
879     if (!DT->dominates(cpyDestInst, C))
880       return false;
881 
882   // In addition to knowing that the call does not access src in some
883   // unexpected manner, for example via a global, which we deduce from
884   // the use analysis, we also need to know that it does not sneakily
885   // access dest.  We rely on AA to figure this out for us.
886   ModRefInfo MR = AA->getModRefInfo(C, cpyDest, LocationSize::precise(srcSize));
887   // If necessary, perform additional analysis.
888   if (isModOrRefSet(MR))
889     MR = AA->callCapturesBefore(C, cpyDest, LocationSize::precise(srcSize), DT);
890   if (isModOrRefSet(MR))
891     return false;
892 
893   // We can't create address space casts here because we don't know if they're
894   // safe for the target.
895   if (cpySrc->getType()->getPointerAddressSpace() !=
896       cpyDest->getType()->getPointerAddressSpace())
897     return false;
898   for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
899     if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc &&
900         cpySrc->getType()->getPointerAddressSpace() !=
901             C->getArgOperand(ArgI)->getType()->getPointerAddressSpace())
902       return false;
903 
904   // All the checks have passed, so do the transformation.
905   bool changedArgument = false;
906   for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
907     if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc) {
908       Value *Dest = cpySrc->getType() == cpyDest->getType() ?  cpyDest
909         : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
910                                       cpyDest->getName(), C);
911       changedArgument = true;
912       if (C->getArgOperand(ArgI)->getType() == Dest->getType())
913         C->setArgOperand(ArgI, Dest);
914       else
915         C->setArgOperand(ArgI, CastInst::CreatePointerCast(
916                                    Dest, C->getArgOperand(ArgI)->getType(),
917                                    Dest->getName(), C));
918     }
919 
920   if (!changedArgument)
921     return false;
922 
923   // If the destination wasn't sufficiently aligned then increase its alignment.
924   if (!isDestSufficientlyAligned) {
925     assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
926     cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
927   }
928 
929   // Drop any cached information about the call, because we may have changed
930   // its dependence information by changing its parameter.
931   MD->removeInstruction(C);
932 
933   // Update AA metadata
934   // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
935   // handled here, but combineMetadata doesn't support them yet
936   unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
937                          LLVMContext::MD_noalias,
938                          LLVMContext::MD_invariant_group,
939                          LLVMContext::MD_access_group};
940   combineMetadata(C, cpy, KnownIDs, true);
941 
942   // Remove the memcpy.
943   MD->removeInstruction(cpy);
944   ++NumMemCpyInstr;
945 
946   return true;
947 }
948 
949 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is
950 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
951 bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
952                                                   MemCpyInst *MDep) {
953   // We can only transforms memcpy's where the dest of one is the source of the
954   // other.
955   if (M->getSource() != MDep->getDest() || MDep->isVolatile())
956     return false;
957 
958   // If dep instruction is reading from our current input, then it is a noop
959   // transfer and substituting the input won't change this instruction.  Just
960   // ignore the input and let someone else zap MDep.  This handles cases like:
961   //    memcpy(a <- a)
962   //    memcpy(b <- a)
963   if (M->getSource() == MDep->getSource())
964     return false;
965 
966   // Second, the length of the memcpy's must be the same, or the preceding one
967   // must be larger than the following one.
968   ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
969   ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
970   if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
971     return false;
972 
973   // Verify that the copied-from memory doesn't change in between the two
974   // transfers.  For example, in:
975   //    memcpy(a <- b)
976   //    *b = 42;
977   //    memcpy(c <- a)
978   // It would be invalid to transform the second memcpy into memcpy(c <- b).
979   //
980   // TODO: If the code between M and MDep is transparent to the destination "c",
981   // then we could still perform the xform by moving M up to the first memcpy.
982   //
983   // NOTE: This is conservative, it will stop on any read from the source loc,
984   // not just the defining memcpy.
985   MemDepResult SourceDep =
986       MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false,
987                                    M->getIterator(), M->getParent());
988   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
989     return false;
990 
991   // If the dest of the second might alias the source of the first, then the
992   // source and dest might overlap.  We still want to eliminate the intermediate
993   // value, but we have to generate a memmove instead of memcpy.
994   bool UseMemMove = false;
995   if (!AA->isNoAlias(MemoryLocation::getForDest(M),
996                      MemoryLocation::getForSource(MDep)))
997     UseMemMove = true;
998 
999   // If all checks passed, then we can transform M.
1000   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n"
1001                     << *MDep << '\n' << *M << '\n');
1002 
1003   // TODO: Is this worth it if we're creating a less aligned memcpy? For
1004   // example we could be moving from movaps -> movq on x86.
1005   IRBuilder<> Builder(M);
1006   Instruction *NewM;
1007   if (UseMemMove)
1008     NewM = Builder.CreateMemMove(M->getRawDest(), M->getDestAlign(),
1009                                  MDep->getRawSource(), MDep->getSourceAlign(),
1010                                  M->getLength(), M->isVolatile());
1011   else
1012     NewM = Builder.CreateMemCpy(M->getRawDest(), M->getDestAlign(),
1013                                 MDep->getRawSource(), MDep->getSourceAlign(),
1014                                 M->getLength(), M->isVolatile());
1015 
1016   if (MSSAU) {
1017     assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)));
1018     auto *LastDef = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M));
1019     auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
1020     MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1021     MSSAU->removeMemoryAccess(M);
1022   }
1023 
1024   // Remove the instruction we're replacing.
1025   MD->removeInstruction(M);
1026   M->eraseFromParent();
1027   ++NumMemCpyInstr;
1028   return true;
1029 }
1030 
1031 /// We've found that the (upward scanning) memory dependence of \p MemCpy is
1032 /// \p MemSet.  Try to simplify \p MemSet to only set the trailing bytes that
1033 /// weren't copied over by \p MemCpy.
1034 ///
1035 /// In other words, transform:
1036 /// \code
1037 ///   memset(dst, c, dst_size);
1038 ///   memcpy(dst, src, src_size);
1039 /// \endcode
1040 /// into:
1041 /// \code
1042 ///   memcpy(dst, src, src_size);
1043 ///   memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
1044 /// \endcode
1045 bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
1046                                                   MemSetInst *MemSet) {
1047   // We can only transform memset/memcpy with the same destination.
1048   if (MemSet->getDest() != MemCpy->getDest())
1049     return false;
1050 
1051   // Check that there are no other dependencies on the memset destination.
1052   MemDepResult DstDepInfo =
1053       MD->getPointerDependencyFrom(MemoryLocation::getForDest(MemSet), false,
1054                                    MemCpy->getIterator(), MemCpy->getParent());
1055   if (DstDepInfo.getInst() != MemSet)
1056     return false;
1057 
1058   // Use the same i8* dest as the memcpy, killing the memset dest if different.
1059   Value *Dest = MemCpy->getRawDest();
1060   Value *DestSize = MemSet->getLength();
1061   Value *SrcSize = MemCpy->getLength();
1062 
1063   // By default, create an unaligned memset.
1064   unsigned Align = 1;
1065   // If Dest is aligned, and SrcSize is constant, use the minimum alignment
1066   // of the sum.
1067   const unsigned DestAlign =
1068       std::max(MemSet->getDestAlignment(), MemCpy->getDestAlignment());
1069   if (DestAlign > 1)
1070     if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
1071       Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign);
1072 
1073   IRBuilder<> Builder(MemCpy);
1074 
1075   // If the sizes have different types, zext the smaller one.
1076   if (DestSize->getType() != SrcSize->getType()) {
1077     if (DestSize->getType()->getIntegerBitWidth() >
1078         SrcSize->getType()->getIntegerBitWidth())
1079       SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType());
1080     else
1081       DestSize = Builder.CreateZExt(DestSize, SrcSize->getType());
1082   }
1083 
1084   Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize);
1085   Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize);
1086   Value *MemsetLen = Builder.CreateSelect(
1087       Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff);
1088   Instruction *NewMemSet = Builder.CreateMemSet(
1089       Builder.CreateGEP(Dest->getType()->getPointerElementType(), Dest,
1090                         SrcSize),
1091       MemSet->getOperand(1), MemsetLen, MaybeAlign(Align));
1092 
1093   if (MSSAU) {
1094     assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)) &&
1095            "MemCpy must be a MemoryDef");
1096     // The new memset is inserted after the memcpy, but it is known that its
1097     // defining access is the memset about to be removed which immediately
1098     // precedes the memcpy.
1099     auto *LastDef =
1100         cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy));
1101     auto *NewAccess = MSSAU->createMemoryAccessBefore(
1102         NewMemSet, LastDef->getDefiningAccess(), LastDef);
1103     MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1104     MSSAU->removeMemoryAccess(MemSet);
1105   }
1106 
1107   MD->removeInstruction(MemSet);
1108   MemSet->eraseFromParent();
1109   return true;
1110 }
1111 
1112 /// Determine whether the instruction has undefined content for the given Size,
1113 /// either because it was freshly alloca'd or started its lifetime.
1114 static bool hasUndefContents(Instruction *I, ConstantInt *Size) {
1115   if (isa<AllocaInst>(I))
1116     return true;
1117 
1118   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1119     if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1120       if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0)))
1121         if (LTSize->getZExtValue() >= Size->getZExtValue())
1122           return true;
1123 
1124   return false;
1125 }
1126 
1127 /// Transform memcpy to memset when its source was just memset.
1128 /// In other words, turn:
1129 /// \code
1130 ///   memset(dst1, c, dst1_size);
1131 ///   memcpy(dst2, dst1, dst2_size);
1132 /// \endcode
1133 /// into:
1134 /// \code
1135 ///   memset(dst1, c, dst1_size);
1136 ///   memset(dst2, c, dst2_size);
1137 /// \endcode
1138 /// When dst2_size <= dst1_size.
1139 ///
1140 /// The \p MemCpy must have a Constant length.
1141 bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
1142                                                MemSetInst *MemSet) {
1143   // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and
1144   // memcpying from the same address. Otherwise it is hard to reason about.
1145   if (!AA->isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource()))
1146     return false;
1147 
1148   // A known memset size is required.
1149   ConstantInt *MemSetSize = dyn_cast<ConstantInt>(MemSet->getLength());
1150   if (!MemSetSize)
1151     return false;
1152 
1153   // Make sure the memcpy doesn't read any more than what the memset wrote.
1154   // Don't worry about sizes larger than i64.
1155   ConstantInt *CopySize = cast<ConstantInt>(MemCpy->getLength());
1156   if (CopySize->getZExtValue() > MemSetSize->getZExtValue()) {
1157     // If the memcpy is larger than the memset, but the memory was undef prior
1158     // to the memset, we can just ignore the tail. Technically we're only
1159     // interested in the bytes from MemSetSize..CopySize here, but as we can't
1160     // easily represent this location, we use the full 0..CopySize range.
1161     MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy);
1162     MemDepResult DepInfo = MD->getPointerDependencyFrom(
1163         MemCpyLoc, true, MemSet->getIterator(), MemSet->getParent());
1164     if (DepInfo.isDef() && hasUndefContents(DepInfo.getInst(), CopySize))
1165       CopySize = MemSetSize;
1166     else
1167       return false;
1168   }
1169 
1170   IRBuilder<> Builder(MemCpy);
1171   Instruction *NewM =
1172       Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1),
1173                            CopySize, MaybeAlign(MemCpy->getDestAlignment()));
1174   if (MSSAU) {
1175     auto *LastDef =
1176         cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy));
1177     auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
1178     MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1179   }
1180 
1181   return true;
1182 }
1183 
1184 /// Perform simplification of memcpy's.  If we have memcpy A
1185 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
1186 /// B to be a memcpy from X to Z (or potentially a memmove, depending on
1187 /// circumstances). This allows later passes to remove the first memcpy
1188 /// altogether.
1189 bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) {
1190   // We can only optimize non-volatile memcpy's.
1191   if (M->isVolatile()) return false;
1192 
1193   // If the source and destination of the memcpy are the same, then zap it.
1194   if (M->getSource() == M->getDest()) {
1195     ++BBI;
1196     if (MSSAU)
1197       MSSAU->removeMemoryAccess(M);
1198 
1199     MD->removeInstruction(M);
1200     M->eraseFromParent();
1201     return true;
1202   }
1203 
1204   // If copying from a constant, try to turn the memcpy into a memset.
1205   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
1206     if (GV->isConstant() && GV->hasDefinitiveInitializer())
1207       if (Value *ByteVal = isBytewiseValue(GV->getInitializer(),
1208                                            M->getModule()->getDataLayout())) {
1209         IRBuilder<> Builder(M);
1210         Instruction *NewM =
1211             Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
1212                                  MaybeAlign(M->getDestAlignment()), false);
1213         if (MSSAU) {
1214           auto *LastDef =
1215               cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M));
1216           auto *NewAccess =
1217               MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
1218           MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1219           MSSAU->removeMemoryAccess(M);
1220         }
1221 
1222         MD->removeInstruction(M);
1223         M->eraseFromParent();
1224         ++NumCpyToSet;
1225         return true;
1226       }
1227 
1228   MemDepResult DepInfo = MD->getDependency(M);
1229 
1230   // Try to turn a partially redundant memset + memcpy into
1231   // memcpy + smaller memset.  We don't need the memcpy size for this.
1232   if (DepInfo.isClobber())
1233     if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst()))
1234       if (processMemSetMemCpyDependence(M, MDep))
1235         return true;
1236 
1237   // The optimizations after this point require the memcpy size.
1238   ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
1239   if (!CopySize) return false;
1240 
1241   // There are four possible optimizations we can do for memcpy:
1242   //   a) memcpy-memcpy xform which exposes redundance for DSE.
1243   //   b) call-memcpy xform for return slot optimization.
1244   //   c) memcpy from freshly alloca'd space or space that has just started its
1245   //      lifetime copies undefined data, and we can therefore eliminate the
1246   //      memcpy in favor of the data that was already at the destination.
1247   //   d) memcpy from a just-memset'd source can be turned into memset.
1248   if (DepInfo.isClobber()) {
1249     if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
1250       // FIXME: Can we pass in either of dest/src alignment here instead
1251       // of conservatively taking the minimum?
1252       Align Alignment = std::min(M->getDestAlign().valueOrOne(),
1253                                  M->getSourceAlign().valueOrOne());
1254       if (performCallSlotOptzn(M, M->getDest(), M->getSource(),
1255                                CopySize->getZExtValue(), Alignment, C)) {
1256         if (MSSAU)
1257           MSSAU->removeMemoryAccess(M);
1258 
1259         MD->removeInstruction(M);
1260         M->eraseFromParent();
1261         return true;
1262       }
1263     }
1264   }
1265 
1266   MemoryLocation SrcLoc = MemoryLocation::getForSource(M);
1267   MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(
1268       SrcLoc, true, M->getIterator(), M->getParent());
1269 
1270   if (SrcDepInfo.isClobber()) {
1271     if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst()))
1272       return processMemCpyMemCpyDependence(M, MDep);
1273   } else if (SrcDepInfo.isDef()) {
1274     if (hasUndefContents(SrcDepInfo.getInst(), CopySize)) {
1275       if (MSSAU)
1276         MSSAU->removeMemoryAccess(M);
1277 
1278       MD->removeInstruction(M);
1279       M->eraseFromParent();
1280       ++NumMemCpyInstr;
1281       return true;
1282     }
1283   }
1284 
1285   if (SrcDepInfo.isClobber())
1286     if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst()))
1287       if (performMemCpyToMemSetOptzn(M, MDep)) {
1288         if (MSSAU)
1289           MSSAU->removeMemoryAccess(M);
1290         MD->removeInstruction(M);
1291         M->eraseFromParent();
1292         ++NumCpyToSet;
1293         return true;
1294       }
1295 
1296   return false;
1297 }
1298 
1299 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
1300 /// not to alias.
1301 bool MemCpyOptPass::processMemMove(MemMoveInst *M) {
1302   if (!TLI->has(LibFunc_memmove))
1303     return false;
1304 
1305   // See if the pointers alias.
1306   if (!AA->isNoAlias(MemoryLocation::getForDest(M),
1307                      MemoryLocation::getForSource(M)))
1308     return false;
1309 
1310   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M
1311                     << "\n");
1312 
1313   // If not, then we know we can transform this.
1314   Type *ArgTys[3] = { M->getRawDest()->getType(),
1315                       M->getRawSource()->getType(),
1316                       M->getLength()->getType() };
1317   M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(),
1318                                                  Intrinsic::memcpy, ArgTys));
1319 
1320   // For MemorySSA nothing really changes (except that memcpy may imply stricter
1321   // aliasing guarantees).
1322 
1323   // MemDep may have over conservative information about this instruction, just
1324   // conservatively flush it from the cache.
1325   MD->removeInstruction(M);
1326 
1327   ++NumMoveToCpy;
1328   return true;
1329 }
1330 
1331 /// This is called on every byval argument in call sites.
1332 bool MemCpyOptPass::processByValArgument(CallBase &CB, unsigned ArgNo) {
1333   const DataLayout &DL = CB.getCaller()->getParent()->getDataLayout();
1334   // Find out what feeds this byval argument.
1335   Value *ByValArg = CB.getArgOperand(ArgNo);
1336   Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType();
1337   uint64_t ByValSize = DL.getTypeAllocSize(ByValTy);
1338   MemDepResult DepInfo = MD->getPointerDependencyFrom(
1339       MemoryLocation(ByValArg, LocationSize::precise(ByValSize)), true,
1340       CB.getIterator(), CB.getParent());
1341   if (!DepInfo.isClobber())
1342     return false;
1343 
1344   // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by
1345   // a memcpy, see if we can byval from the source of the memcpy instead of the
1346   // result.
1347   MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
1348   if (!MDep || MDep->isVolatile() ||
1349       ByValArg->stripPointerCasts() != MDep->getDest())
1350     return false;
1351 
1352   // The length of the memcpy must be larger or equal to the size of the byval.
1353   ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
1354   if (!C1 || C1->getValue().getZExtValue() < ByValSize)
1355     return false;
1356 
1357   // Get the alignment of the byval.  If the call doesn't specify the alignment,
1358   // then it is some target specific value that we can't know.
1359   MaybeAlign ByValAlign = CB.getParamAlign(ArgNo);
1360   if (!ByValAlign) return false;
1361 
1362   // If it is greater than the memcpy, then we check to see if we can force the
1363   // source of the memcpy to the alignment we need.  If we fail, we bail out.
1364   MaybeAlign MemDepAlign = MDep->getSourceAlign();
1365   if ((!MemDepAlign || *MemDepAlign < *ByValAlign) &&
1366       getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, &CB, AC,
1367                                  DT) < *ByValAlign)
1368     return false;
1369 
1370   // The address space of the memcpy source must match the byval argument
1371   if (MDep->getSource()->getType()->getPointerAddressSpace() !=
1372       ByValArg->getType()->getPointerAddressSpace())
1373     return false;
1374 
1375   // Verify that the copied-from memory doesn't change in between the memcpy and
1376   // the byval call.
1377   //    memcpy(a <- b)
1378   //    *b = 42;
1379   //    foo(*a)
1380   // It would be invalid to transform the second memcpy into foo(*b).
1381   //
1382   // NOTE: This is conservative, it will stop on any read from the source loc,
1383   // not just the defining memcpy.
1384   MemDepResult SourceDep = MD->getPointerDependencyFrom(
1385       MemoryLocation::getForSource(MDep), false,
1386       CB.getIterator(), MDep->getParent());
1387   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
1388     return false;
1389 
1390   Value *TmpCast = MDep->getSource();
1391   if (MDep->getSource()->getType() != ByValArg->getType()) {
1392     BitCastInst *TmpBitCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
1393                                               "tmpcast", &CB);
1394     // Set the tmpcast's DebugLoc to MDep's
1395     TmpBitCast->setDebugLoc(MDep->getDebugLoc());
1396     TmpCast = TmpBitCast;
1397   }
1398 
1399   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"
1400                     << "  " << *MDep << "\n"
1401                     << "  " << CB << "\n");
1402 
1403   // Otherwise we're good!  Update the byval argument.
1404   CB.setArgOperand(ArgNo, TmpCast);
1405   ++NumMemCpyInstr;
1406   return true;
1407 }
1408 
1409 /// Executes one iteration of MemCpyOptPass.
1410 bool MemCpyOptPass::iterateOnFunction(Function &F) {
1411   bool MadeChange = false;
1412 
1413   // Walk all instruction in the function.
1414   for (BasicBlock &BB : F) {
1415     // Skip unreachable blocks. For example processStore assumes that an
1416     // instruction in a BB can't be dominated by a later instruction in the
1417     // same BB (which is a scenario that can happen for an unreachable BB that
1418     // has itself as a predecessor).
1419     if (!DT->isReachableFromEntry(&BB))
1420       continue;
1421 
1422     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
1423         // Avoid invalidating the iterator.
1424       Instruction *I = &*BI++;
1425 
1426       bool RepeatInstruction = false;
1427 
1428       if (StoreInst *SI = dyn_cast<StoreInst>(I))
1429         MadeChange |= processStore(SI, BI);
1430       else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
1431         RepeatInstruction = processMemSet(M, BI);
1432       else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
1433         RepeatInstruction = processMemCpy(M, BI);
1434       else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
1435         RepeatInstruction = processMemMove(M);
1436       else if (auto *CB = dyn_cast<CallBase>(I)) {
1437         for (unsigned i = 0, e = CB->arg_size(); i != e; ++i)
1438           if (CB->isByValArgument(i))
1439             MadeChange |= processByValArgument(*CB, i);
1440       }
1441 
1442       // Reprocess the instruction if desired.
1443       if (RepeatInstruction) {
1444         if (BI != BB.begin())
1445           --BI;
1446         MadeChange = true;
1447       }
1448     }
1449   }
1450 
1451   return MadeChange;
1452 }
1453 
1454 PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) {
1455   auto &MD = AM.getResult<MemoryDependenceAnalysis>(F);
1456   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1457   auto *AA = &AM.getResult<AAManager>(F);
1458   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
1459   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1460   auto *MSSA = AM.getCachedResult<MemorySSAAnalysis>(F);
1461 
1462   bool MadeChange =
1463       runImpl(F, &MD, &TLI, AA, AC, DT, MSSA ? &MSSA->getMSSA() : nullptr);
1464   if (!MadeChange)
1465     return PreservedAnalyses::all();
1466 
1467   PreservedAnalyses PA;
1468   PA.preserveSet<CFGAnalyses>();
1469   PA.preserve<GlobalsAA>();
1470   PA.preserve<MemoryDependenceAnalysis>();
1471   if (MSSA)
1472     PA.preserve<MemorySSAAnalysis>();
1473   return PA;
1474 }
1475 
1476 bool MemCpyOptPass::runImpl(Function &F, MemoryDependenceResults *MD_,
1477                             TargetLibraryInfo *TLI_, AliasAnalysis *AA_,
1478                             AssumptionCache *AC_, DominatorTree *DT_,
1479                             MemorySSA *MSSA_) {
1480   bool MadeChange = false;
1481   MD = MD_;
1482   TLI = TLI_;
1483   AA = AA_;
1484   AC = AC_;
1485   DT = DT_;
1486   MemorySSAUpdater MSSAU_(MSSA_);
1487   MSSAU = MSSA_ ? &MSSAU_ : nullptr;
1488   // If we don't have at least memset and memcpy, there is little point of doing
1489   // anything here.  These are required by a freestanding implementation, so if
1490   // even they are disabled, there is no point in trying hard.
1491   if (!TLI->has(LibFunc_memset) || !TLI->has(LibFunc_memcpy))
1492     return false;
1493 
1494   while (true) {
1495     if (!iterateOnFunction(F))
1496       break;
1497     MadeChange = true;
1498   }
1499 
1500   if (MSSA_ && VerifyMemorySSA)
1501     MSSA_->verifyMemorySSA();
1502 
1503   MD = nullptr;
1504   return MadeChange;
1505 }
1506 
1507 /// This is the main transformation entry point for a function.
1508 bool MemCpyOptLegacyPass::runOnFunction(Function &F) {
1509   if (skipFunction(F))
1510     return false;
1511 
1512   auto *MD = &getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
1513   auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1514   auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1515   auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1516   auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1517   auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>();
1518 
1519   return Impl.runImpl(F, MD, TLI, AA, AC, DT,
1520                       MSSAWP ? &MSSAWP->getMSSA() : nullptr);
1521 }
1522