1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs various transformations related to eliminating memcpy 11 // calls, or transforming sets of stores into memset's. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/AliasAnalysis.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/GetElementPtrTypeIterator.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include <algorithm> 35 using namespace llvm; 36 37 #define DEBUG_TYPE "memcpyopt" 38 39 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted"); 40 STATISTIC(NumMemSetInfer, "Number of memsets inferred"); 41 STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy"); 42 STATISTIC(NumCpyToSet, "Number of memcpys converted to memset"); 43 44 static int64_t GetOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, 45 bool &VariableIdxFound, 46 const DataLayout &DL) { 47 // Skip over the first indices. 48 gep_type_iterator GTI = gep_type_begin(GEP); 49 for (unsigned i = 1; i != Idx; ++i, ++GTI) 50 /*skip along*/; 51 52 // Compute the offset implied by the rest of the indices. 53 int64_t Offset = 0; 54 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 55 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 56 if (!OpC) 57 return VariableIdxFound = true; 58 if (OpC->isZero()) continue; // No offset. 59 60 // Handle struct indices, which add their field offset to the pointer. 61 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 62 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 63 continue; 64 } 65 66 // Otherwise, we have a sequential type like an array or vector. Multiply 67 // the index by the ElementSize. 68 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 69 Offset += Size*OpC->getSExtValue(); 70 } 71 72 return Offset; 73 } 74 75 /// Return true if Ptr1 is provably equal to Ptr2 plus a constant offset, and 76 /// return that constant offset. For example, Ptr1 might be &A[42], and Ptr2 77 /// might be &A[40]. In this case offset would be -8. 78 static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset, 79 const DataLayout &DL) { 80 Ptr1 = Ptr1->stripPointerCasts(); 81 Ptr2 = Ptr2->stripPointerCasts(); 82 83 // Handle the trivial case first. 84 if (Ptr1 == Ptr2) { 85 Offset = 0; 86 return true; 87 } 88 89 GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 90 GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 91 92 bool VariableIdxFound = false; 93 94 // If one pointer is a GEP and the other isn't, then see if the GEP is a 95 // constant offset from the base, as in "P" and "gep P, 1". 96 if (GEP1 && !GEP2 && GEP1->getOperand(0)->stripPointerCasts() == Ptr2) { 97 Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, DL); 98 return !VariableIdxFound; 99 } 100 101 if (GEP2 && !GEP1 && GEP2->getOperand(0)->stripPointerCasts() == Ptr1) { 102 Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, DL); 103 return !VariableIdxFound; 104 } 105 106 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 107 // base. After that base, they may have some number of common (and 108 // potentially variable) indices. After that they handle some constant 109 // offset, which determines their offset from each other. At this point, we 110 // handle no other case. 111 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 112 return false; 113 114 // Skip any common indices and track the GEP types. 115 unsigned Idx = 1; 116 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 117 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 118 break; 119 120 int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, DL); 121 int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, DL); 122 if (VariableIdxFound) return false; 123 124 Offset = Offset2-Offset1; 125 return true; 126 } 127 128 129 /// Represents a range of memset'd bytes with the ByteVal value. 130 /// This allows us to analyze stores like: 131 /// store 0 -> P+1 132 /// store 0 -> P+0 133 /// store 0 -> P+3 134 /// store 0 -> P+2 135 /// which sometimes happens with stores to arrays of structs etc. When we see 136 /// the first store, we make a range [1, 2). The second store extends the range 137 /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the 138 /// two ranges into [0, 3) which is memset'able. 139 namespace { 140 struct MemsetRange { 141 // Start/End - A semi range that describes the span that this range covers. 142 // The range is closed at the start and open at the end: [Start, End). 143 int64_t Start, End; 144 145 /// StartPtr - The getelementptr instruction that points to the start of the 146 /// range. 147 Value *StartPtr; 148 149 /// Alignment - The known alignment of the first store. 150 unsigned Alignment; 151 152 /// TheStores - The actual stores that make up this range. 153 SmallVector<Instruction*, 16> TheStores; 154 155 bool isProfitableToUseMemset(const DataLayout &DL) const; 156 }; 157 } // end anon namespace 158 159 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const { 160 // If we found more than 4 stores to merge or 16 bytes, use memset. 161 if (TheStores.size() >= 4 || End-Start >= 16) return true; 162 163 // If there is nothing to merge, don't do anything. 164 if (TheStores.size() < 2) return false; 165 166 // If any of the stores are a memset, then it is always good to extend the 167 // memset. 168 for (unsigned i = 0, e = TheStores.size(); i != e; ++i) 169 if (!isa<StoreInst>(TheStores[i])) 170 return true; 171 172 // Assume that the code generator is capable of merging pairs of stores 173 // together if it wants to. 174 if (TheStores.size() == 2) return false; 175 176 // If we have fewer than 8 stores, it can still be worthwhile to do this. 177 // For example, merging 4 i8 stores into an i32 store is useful almost always. 178 // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the 179 // memset will be split into 2 32-bit stores anyway) and doing so can 180 // pessimize the llvm optimizer. 181 // 182 // Since we don't have perfect knowledge here, make some assumptions: assume 183 // the maximum GPR width is the same size as the largest legal integer 184 // size. If so, check to see whether we will end up actually reducing the 185 // number of stores used. 186 unsigned Bytes = unsigned(End-Start); 187 unsigned MaxIntSize = DL.getLargestLegalIntTypeSize(); 188 if (MaxIntSize == 0) 189 MaxIntSize = 1; 190 unsigned NumPointerStores = Bytes / MaxIntSize; 191 192 // Assume the remaining bytes if any are done a byte at a time. 193 unsigned NumByteStores = Bytes - NumPointerStores * MaxIntSize; 194 195 // If we will reduce the # stores (according to this heuristic), do the 196 // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32 197 // etc. 198 return TheStores.size() > NumPointerStores+NumByteStores; 199 } 200 201 202 namespace { 203 class MemsetRanges { 204 /// A sorted list of the memset ranges. 205 SmallVector<MemsetRange, 8> Ranges; 206 typedef SmallVectorImpl<MemsetRange>::iterator range_iterator; 207 const DataLayout &DL; 208 public: 209 MemsetRanges(const DataLayout &DL) : DL(DL) {} 210 211 typedef SmallVectorImpl<MemsetRange>::const_iterator const_iterator; 212 const_iterator begin() const { return Ranges.begin(); } 213 const_iterator end() const { return Ranges.end(); } 214 bool empty() const { return Ranges.empty(); } 215 216 void addInst(int64_t OffsetFromFirst, Instruction *Inst) { 217 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) 218 addStore(OffsetFromFirst, SI); 219 else 220 addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst)); 221 } 222 223 void addStore(int64_t OffsetFromFirst, StoreInst *SI) { 224 int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType()); 225 226 addRange(OffsetFromFirst, StoreSize, 227 SI->getPointerOperand(), SI->getAlignment(), SI); 228 } 229 230 void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) { 231 int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 232 addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getAlignment(), MSI); 233 } 234 235 void addRange(int64_t Start, int64_t Size, Value *Ptr, 236 unsigned Alignment, Instruction *Inst); 237 238 }; 239 240 } // end anon namespace 241 242 243 /// Add a new store to the MemsetRanges data structure. This adds a 244 /// new range for the specified store at the specified offset, merging into 245 /// existing ranges as appropriate. 246 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr, 247 unsigned Alignment, Instruction *Inst) { 248 int64_t End = Start+Size; 249 250 range_iterator I = std::lower_bound(Ranges.begin(), Ranges.end(), Start, 251 [](const MemsetRange &LHS, int64_t RHS) { return LHS.End < RHS; }); 252 253 // We now know that I == E, in which case we didn't find anything to merge 254 // with, or that Start <= I->End. If End < I->Start or I == E, then we need 255 // to insert a new range. Handle this now. 256 if (I == Ranges.end() || End < I->Start) { 257 MemsetRange &R = *Ranges.insert(I, MemsetRange()); 258 R.Start = Start; 259 R.End = End; 260 R.StartPtr = Ptr; 261 R.Alignment = Alignment; 262 R.TheStores.push_back(Inst); 263 return; 264 } 265 266 // This store overlaps with I, add it. 267 I->TheStores.push_back(Inst); 268 269 // At this point, we may have an interval that completely contains our store. 270 // If so, just add it to the interval and return. 271 if (I->Start <= Start && I->End >= End) 272 return; 273 274 // Now we know that Start <= I->End and End >= I->Start so the range overlaps 275 // but is not entirely contained within the range. 276 277 // See if the range extends the start of the range. In this case, it couldn't 278 // possibly cause it to join the prior range, because otherwise we would have 279 // stopped on *it*. 280 if (Start < I->Start) { 281 I->Start = Start; 282 I->StartPtr = Ptr; 283 I->Alignment = Alignment; 284 } 285 286 // Now we know that Start <= I->End and Start >= I->Start (so the startpoint 287 // is in or right at the end of I), and that End >= I->Start. Extend I out to 288 // End. 289 if (End > I->End) { 290 I->End = End; 291 range_iterator NextI = I; 292 while (++NextI != Ranges.end() && End >= NextI->Start) { 293 // Merge the range in. 294 I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end()); 295 if (NextI->End > I->End) 296 I->End = NextI->End; 297 Ranges.erase(NextI); 298 NextI = I; 299 } 300 } 301 } 302 303 //===----------------------------------------------------------------------===// 304 // MemCpyOpt Pass 305 //===----------------------------------------------------------------------===// 306 307 namespace { 308 class MemCpyOpt : public FunctionPass { 309 MemoryDependenceAnalysis *MD; 310 TargetLibraryInfo *TLI; 311 public: 312 static char ID; // Pass identification, replacement for typeid 313 MemCpyOpt() : FunctionPass(ID) { 314 initializeMemCpyOptPass(*PassRegistry::getPassRegistry()); 315 MD = nullptr; 316 TLI = nullptr; 317 } 318 319 bool runOnFunction(Function &F) override; 320 321 private: 322 // This transformation requires dominator postdominator info 323 void getAnalysisUsage(AnalysisUsage &AU) const override { 324 AU.setPreservesCFG(); 325 AU.addRequired<AssumptionCacheTracker>(); 326 AU.addRequired<DominatorTreeWrapperPass>(); 327 AU.addRequired<MemoryDependenceAnalysis>(); 328 AU.addRequired<AAResultsWrapperPass>(); 329 AU.addRequired<TargetLibraryInfoWrapperPass>(); 330 AU.addPreserved<GlobalsAAWrapperPass>(); 331 AU.addPreserved<MemoryDependenceAnalysis>(); 332 } 333 334 // Helper functions 335 bool processStore(StoreInst *SI, BasicBlock::iterator &BBI); 336 bool processMemSet(MemSetInst *SI, BasicBlock::iterator &BBI); 337 bool processMemCpy(MemCpyInst *M); 338 bool processMemMove(MemMoveInst *M); 339 bool performCallSlotOptzn(Instruction *cpy, Value *cpyDst, Value *cpySrc, 340 uint64_t cpyLen, unsigned cpyAlign, CallInst *C); 341 bool processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep); 342 bool processMemSetMemCpyDependence(MemCpyInst *M, MemSetInst *MDep); 343 bool performMemCpyToMemSetOptzn(MemCpyInst *M, MemSetInst *MDep); 344 bool processByValArgument(CallSite CS, unsigned ArgNo); 345 Instruction *tryMergingIntoMemset(Instruction *I, Value *StartPtr, 346 Value *ByteVal); 347 348 bool iterateOnFunction(Function &F); 349 }; 350 351 char MemCpyOpt::ID = 0; 352 } 353 354 /// The public interface to this file... 355 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); } 356 357 INITIALIZE_PASS_BEGIN(MemCpyOpt, "memcpyopt", "MemCpy Optimization", 358 false, false) 359 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 360 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 361 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis) 362 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 363 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 364 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 365 INITIALIZE_PASS_END(MemCpyOpt, "memcpyopt", "MemCpy Optimization", 366 false, false) 367 368 /// When scanning forward over instructions, we look for some other patterns to 369 /// fold away. In particular, this looks for stores to neighboring locations of 370 /// memory. If it sees enough consecutive ones, it attempts to merge them 371 /// together into a memcpy/memset. 372 Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst, 373 Value *StartPtr, Value *ByteVal) { 374 const DataLayout &DL = StartInst->getModule()->getDataLayout(); 375 376 // Okay, so we now have a single store that can be splatable. Scan to find 377 // all subsequent stores of the same value to offset from the same pointer. 378 // Join these together into ranges, so we can decide whether contiguous blocks 379 // are stored. 380 MemsetRanges Ranges(DL); 381 382 BasicBlock::iterator BI = StartInst; 383 for (++BI; !isa<TerminatorInst>(BI); ++BI) { 384 if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) { 385 // If the instruction is readnone, ignore it, otherwise bail out. We 386 // don't even allow readonly here because we don't want something like: 387 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A). 388 if (BI->mayWriteToMemory() || BI->mayReadFromMemory()) 389 break; 390 continue; 391 } 392 393 if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) { 394 // If this is a store, see if we can merge it in. 395 if (!NextStore->isSimple()) break; 396 397 // Check to see if this stored value is of the same byte-splattable value. 398 if (ByteVal != isBytewiseValue(NextStore->getOperand(0))) 399 break; 400 401 // Check to see if this store is to a constant offset from the start ptr. 402 int64_t Offset; 403 if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset, 404 DL)) 405 break; 406 407 Ranges.addStore(Offset, NextStore); 408 } else { 409 MemSetInst *MSI = cast<MemSetInst>(BI); 410 411 if (MSI->isVolatile() || ByteVal != MSI->getValue() || 412 !isa<ConstantInt>(MSI->getLength())) 413 break; 414 415 // Check to see if this store is to a constant offset from the start ptr. 416 int64_t Offset; 417 if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, DL)) 418 break; 419 420 Ranges.addMemSet(Offset, MSI); 421 } 422 } 423 424 // If we have no ranges, then we just had a single store with nothing that 425 // could be merged in. This is a very common case of course. 426 if (Ranges.empty()) 427 return nullptr; 428 429 // If we had at least one store that could be merged in, add the starting 430 // store as well. We try to avoid this unless there is at least something 431 // interesting as a small compile-time optimization. 432 Ranges.addInst(0, StartInst); 433 434 // If we create any memsets, we put it right before the first instruction that 435 // isn't part of the memset block. This ensure that the memset is dominated 436 // by any addressing instruction needed by the start of the block. 437 IRBuilder<> Builder(BI); 438 439 // Now that we have full information about ranges, loop over the ranges and 440 // emit memset's for anything big enough to be worthwhile. 441 Instruction *AMemSet = nullptr; 442 for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end(); 443 I != E; ++I) { 444 const MemsetRange &Range = *I; 445 446 if (Range.TheStores.size() == 1) continue; 447 448 // If it is profitable to lower this range to memset, do so now. 449 if (!Range.isProfitableToUseMemset(DL)) 450 continue; 451 452 // Otherwise, we do want to transform this! Create a new memset. 453 // Get the starting pointer of the block. 454 StartPtr = Range.StartPtr; 455 456 // Determine alignment 457 unsigned Alignment = Range.Alignment; 458 if (Alignment == 0) { 459 Type *EltType = 460 cast<PointerType>(StartPtr->getType())->getElementType(); 461 Alignment = DL.getABITypeAlignment(EltType); 462 } 463 464 AMemSet = 465 Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment); 466 467 DEBUG(dbgs() << "Replace stores:\n"; 468 for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i) 469 dbgs() << *Range.TheStores[i] << '\n'; 470 dbgs() << "With: " << *AMemSet << '\n'); 471 472 if (!Range.TheStores.empty()) 473 AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc()); 474 475 // Zap all the stores. 476 for (SmallVectorImpl<Instruction *>::const_iterator 477 SI = Range.TheStores.begin(), 478 SE = Range.TheStores.end(); SI != SE; ++SI) { 479 MD->removeInstruction(*SI); 480 (*SI)->eraseFromParent(); 481 } 482 ++NumMemSetInfer; 483 } 484 485 return AMemSet; 486 } 487 488 489 bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) { 490 if (!SI->isSimple()) return false; 491 const DataLayout &DL = SI->getModule()->getDataLayout(); 492 493 // Detect cases where we're performing call slot forwarding, but 494 // happen to be using a load-store pair to implement it, rather than 495 // a memcpy. 496 if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) { 497 if (LI->isSimple() && LI->hasOneUse() && 498 LI->getParent() == SI->getParent()) { 499 MemDepResult ldep = MD->getDependency(LI); 500 CallInst *C = nullptr; 501 if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst())) 502 C = dyn_cast<CallInst>(ldep.getInst()); 503 504 if (C) { 505 // Check that nothing touches the dest of the "copy" between 506 // the call and the store. 507 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 508 MemoryLocation StoreLoc = MemoryLocation::get(SI); 509 for (BasicBlock::iterator I = --BasicBlock::iterator(SI), 510 E = C; I != E; --I) { 511 if (AA.getModRefInfo(&*I, StoreLoc) != MRI_NoModRef) { 512 C = nullptr; 513 break; 514 } 515 } 516 } 517 518 if (C) { 519 unsigned storeAlign = SI->getAlignment(); 520 if (!storeAlign) 521 storeAlign = DL.getABITypeAlignment(SI->getOperand(0)->getType()); 522 unsigned loadAlign = LI->getAlignment(); 523 if (!loadAlign) 524 loadAlign = DL.getABITypeAlignment(LI->getType()); 525 526 bool changed = performCallSlotOptzn( 527 LI, SI->getPointerOperand()->stripPointerCasts(), 528 LI->getPointerOperand()->stripPointerCasts(), 529 DL.getTypeStoreSize(SI->getOperand(0)->getType()), 530 std::min(storeAlign, loadAlign), C); 531 if (changed) { 532 MD->removeInstruction(SI); 533 SI->eraseFromParent(); 534 MD->removeInstruction(LI); 535 LI->eraseFromParent(); 536 ++NumMemCpyInstr; 537 return true; 538 } 539 } 540 } 541 } 542 543 // There are two cases that are interesting for this code to handle: memcpy 544 // and memset. Right now we only handle memset. 545 546 // Ensure that the value being stored is something that can be memset'able a 547 // byte at a time like "0" or "-1" or any width, as well as things like 548 // 0xA0A0A0A0 and 0.0. 549 if (Value *ByteVal = isBytewiseValue(SI->getOperand(0))) 550 if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(), 551 ByteVal)) { 552 BBI = I; // Don't invalidate iterator. 553 return true; 554 } 555 556 return false; 557 } 558 559 bool MemCpyOpt::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) { 560 // See if there is another memset or store neighboring this memset which 561 // allows us to widen out the memset to do a single larger store. 562 if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile()) 563 if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(), 564 MSI->getValue())) { 565 BBI = I; // Don't invalidate iterator. 566 return true; 567 } 568 return false; 569 } 570 571 572 /// Takes a memcpy and a call that it depends on, 573 /// and checks for the possibility of a call slot optimization by having 574 /// the call write its result directly into the destination of the memcpy. 575 bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy, 576 Value *cpyDest, Value *cpySrc, 577 uint64_t cpyLen, unsigned cpyAlign, 578 CallInst *C) { 579 // The general transformation to keep in mind is 580 // 581 // call @func(..., src, ...) 582 // memcpy(dest, src, ...) 583 // 584 // -> 585 // 586 // memcpy(dest, src, ...) 587 // call @func(..., dest, ...) 588 // 589 // Since moving the memcpy is technically awkward, we additionally check that 590 // src only holds uninitialized values at the moment of the call, meaning that 591 // the memcpy can be discarded rather than moved. 592 593 // Deliberately get the source and destination with bitcasts stripped away, 594 // because we'll need to do type comparisons based on the underlying type. 595 CallSite CS(C); 596 597 // Require that src be an alloca. This simplifies the reasoning considerably. 598 AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc); 599 if (!srcAlloca) 600 return false; 601 602 ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize()); 603 if (!srcArraySize) 604 return false; 605 606 const DataLayout &DL = cpy->getModule()->getDataLayout(); 607 uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) * 608 srcArraySize->getZExtValue(); 609 610 if (cpyLen < srcSize) 611 return false; 612 613 // Check that accessing the first srcSize bytes of dest will not cause a 614 // trap. Otherwise the transform is invalid since it might cause a trap 615 // to occur earlier than it otherwise would. 616 if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) { 617 // The destination is an alloca. Check it is larger than srcSize. 618 ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize()); 619 if (!destArraySize) 620 return false; 621 622 uint64_t destSize = DL.getTypeAllocSize(A->getAllocatedType()) * 623 destArraySize->getZExtValue(); 624 625 if (destSize < srcSize) 626 return false; 627 } else if (Argument *A = dyn_cast<Argument>(cpyDest)) { 628 if (A->getDereferenceableBytes() < srcSize) { 629 // If the destination is an sret parameter then only accesses that are 630 // outside of the returned struct type can trap. 631 if (!A->hasStructRetAttr()) 632 return false; 633 634 Type *StructTy = cast<PointerType>(A->getType())->getElementType(); 635 if (!StructTy->isSized()) { 636 // The call may never return and hence the copy-instruction may never 637 // be executed, and therefore it's not safe to say "the destination 638 // has at least <cpyLen> bytes, as implied by the copy-instruction", 639 return false; 640 } 641 642 uint64_t destSize = DL.getTypeAllocSize(StructTy); 643 if (destSize < srcSize) 644 return false; 645 } 646 } else { 647 return false; 648 } 649 650 // Check that dest points to memory that is at least as aligned as src. 651 unsigned srcAlign = srcAlloca->getAlignment(); 652 if (!srcAlign) 653 srcAlign = DL.getABITypeAlignment(srcAlloca->getAllocatedType()); 654 bool isDestSufficientlyAligned = srcAlign <= cpyAlign; 655 // If dest is not aligned enough and we can't increase its alignment then 656 // bail out. 657 if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest)) 658 return false; 659 660 // Check that src is not accessed except via the call and the memcpy. This 661 // guarantees that it holds only undefined values when passed in (so the final 662 // memcpy can be dropped), that it is not read or written between the call and 663 // the memcpy, and that writing beyond the end of it is undefined. 664 SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(), 665 srcAlloca->user_end()); 666 while (!srcUseList.empty()) { 667 User *U = srcUseList.pop_back_val(); 668 669 if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) { 670 for (User *UU : U->users()) 671 srcUseList.push_back(UU); 672 continue; 673 } 674 if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) { 675 if (!G->hasAllZeroIndices()) 676 return false; 677 678 for (User *UU : U->users()) 679 srcUseList.push_back(UU); 680 continue; 681 } 682 if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U)) 683 if (IT->getIntrinsicID() == Intrinsic::lifetime_start || 684 IT->getIntrinsicID() == Intrinsic::lifetime_end) 685 continue; 686 687 if (U != C && U != cpy) 688 return false; 689 } 690 691 // Check that src isn't captured by the called function since the 692 // transformation can cause aliasing issues in that case. 693 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 694 if (CS.getArgument(i) == cpySrc && !CS.doesNotCapture(i)) 695 return false; 696 697 // Since we're changing the parameter to the callsite, we need to make sure 698 // that what would be the new parameter dominates the callsite. 699 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 700 if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest)) 701 if (!DT.dominates(cpyDestInst, C)) 702 return false; 703 704 // In addition to knowing that the call does not access src in some 705 // unexpected manner, for example via a global, which we deduce from 706 // the use analysis, we also need to know that it does not sneakily 707 // access dest. We rely on AA to figure this out for us. 708 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 709 ModRefInfo MR = AA.getModRefInfo(C, cpyDest, srcSize); 710 // If necessary, perform additional analysis. 711 if (MR != MRI_NoModRef) 712 MR = AA.callCapturesBefore(C, cpyDest, srcSize, &DT); 713 if (MR != MRI_NoModRef) 714 return false; 715 716 // All the checks have passed, so do the transformation. 717 bool changedArgument = false; 718 for (unsigned i = 0; i < CS.arg_size(); ++i) 719 if (CS.getArgument(i)->stripPointerCasts() == cpySrc) { 720 Value *Dest = cpySrc->getType() == cpyDest->getType() ? cpyDest 721 : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(), 722 cpyDest->getName(), C); 723 changedArgument = true; 724 if (CS.getArgument(i)->getType() == Dest->getType()) 725 CS.setArgument(i, Dest); 726 else 727 CS.setArgument(i, CastInst::CreatePointerCast(Dest, 728 CS.getArgument(i)->getType(), Dest->getName(), C)); 729 } 730 731 if (!changedArgument) 732 return false; 733 734 // If the destination wasn't sufficiently aligned then increase its alignment. 735 if (!isDestSufficientlyAligned) { 736 assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!"); 737 cast<AllocaInst>(cpyDest)->setAlignment(srcAlign); 738 } 739 740 // Drop any cached information about the call, because we may have changed 741 // its dependence information by changing its parameter. 742 MD->removeInstruction(C); 743 744 // Update AA metadata 745 // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be 746 // handled here, but combineMetadata doesn't support them yet 747 unsigned KnownIDs[] = { 748 LLVMContext::MD_tbaa, 749 LLVMContext::MD_alias_scope, 750 LLVMContext::MD_noalias, 751 }; 752 combineMetadata(C, cpy, KnownIDs); 753 754 // Remove the memcpy. 755 MD->removeInstruction(cpy); 756 ++NumMemCpyInstr; 757 758 return true; 759 } 760 761 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is 762 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can. 763 bool MemCpyOpt::processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep) { 764 // We can only transforms memcpy's where the dest of one is the source of the 765 // other. 766 if (M->getSource() != MDep->getDest() || MDep->isVolatile()) 767 return false; 768 769 // If dep instruction is reading from our current input, then it is a noop 770 // transfer and substituting the input won't change this instruction. Just 771 // ignore the input and let someone else zap MDep. This handles cases like: 772 // memcpy(a <- a) 773 // memcpy(b <- a) 774 if (M->getSource() == MDep->getSource()) 775 return false; 776 777 // Second, the length of the memcpy's must be the same, or the preceding one 778 // must be larger than the following one. 779 ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength()); 780 ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength()); 781 if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue()) 782 return false; 783 784 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 785 786 // Verify that the copied-from memory doesn't change in between the two 787 // transfers. For example, in: 788 // memcpy(a <- b) 789 // *b = 42; 790 // memcpy(c <- a) 791 // It would be invalid to transform the second memcpy into memcpy(c <- b). 792 // 793 // TODO: If the code between M and MDep is transparent to the destination "c", 794 // then we could still perform the xform by moving M up to the first memcpy. 795 // 796 // NOTE: This is conservative, it will stop on any read from the source loc, 797 // not just the defining memcpy. 798 MemDepResult SourceDep = MD->getPointerDependencyFrom( 799 MemoryLocation::getForSource(MDep), false, M, M->getParent()); 800 if (!SourceDep.isClobber() || SourceDep.getInst() != MDep) 801 return false; 802 803 // If the dest of the second might alias the source of the first, then the 804 // source and dest might overlap. We still want to eliminate the intermediate 805 // value, but we have to generate a memmove instead of memcpy. 806 bool UseMemMove = false; 807 if (!AA.isNoAlias(MemoryLocation::getForDest(M), 808 MemoryLocation::getForSource(MDep))) 809 UseMemMove = true; 810 811 // If all checks passed, then we can transform M. 812 813 // Make sure to use the lesser of the alignment of the source and the dest 814 // since we're changing where we're reading from, but don't want to increase 815 // the alignment past what can be read from or written to. 816 // TODO: Is this worth it if we're creating a less aligned memcpy? For 817 // example we could be moving from movaps -> movq on x86. 818 unsigned Align = std::min(MDep->getAlignment(), M->getAlignment()); 819 820 IRBuilder<> Builder(M); 821 if (UseMemMove) 822 Builder.CreateMemMove(M->getRawDest(), MDep->getRawSource(), M->getLength(), 823 Align, M->isVolatile()); 824 else 825 Builder.CreateMemCpy(M->getRawDest(), MDep->getRawSource(), M->getLength(), 826 Align, M->isVolatile()); 827 828 // Remove the instruction we're replacing. 829 MD->removeInstruction(M); 830 M->eraseFromParent(); 831 ++NumMemCpyInstr; 832 return true; 833 } 834 835 /// We've found that the (upward scanning) memory dependence of \p MemCpy is 836 /// \p MemSet. Try to simplify \p MemSet to only set the trailing bytes that 837 /// weren't copied over by \p MemCpy. 838 /// 839 /// In other words, transform: 840 /// \code 841 /// memset(dst, c, dst_size); 842 /// memcpy(dst, src, src_size); 843 /// \endcode 844 /// into: 845 /// \code 846 /// memcpy(dst, src, src_size); 847 /// memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size); 848 /// \endcode 849 bool MemCpyOpt::processMemSetMemCpyDependence(MemCpyInst *MemCpy, 850 MemSetInst *MemSet) { 851 // We can only transform memset/memcpy with the same destination. 852 if (MemSet->getDest() != MemCpy->getDest()) 853 return false; 854 855 // Check that there are no other dependencies on the memset destination. 856 MemDepResult DstDepInfo = MD->getPointerDependencyFrom( 857 MemoryLocation::getForDest(MemSet), false, MemCpy, MemCpy->getParent()); 858 if (DstDepInfo.getInst() != MemSet) 859 return false; 860 861 // Use the same i8* dest as the memcpy, killing the memset dest if different. 862 Value *Dest = MemCpy->getRawDest(); 863 Value *DestSize = MemSet->getLength(); 864 Value *SrcSize = MemCpy->getLength(); 865 866 // By default, create an unaligned memset. 867 unsigned Align = 1; 868 // If Dest is aligned, and SrcSize is constant, use the minimum alignment 869 // of the sum. 870 const unsigned DestAlign = 871 std::max(MemSet->getAlignment(), MemCpy->getAlignment()); 872 if (DestAlign > 1) 873 if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize)) 874 Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign); 875 876 IRBuilder<> Builder(MemCpy); 877 878 // If the sizes have different types, zext the smaller one. 879 if (DestSize->getType() != SrcSize->getType()) { 880 if (DestSize->getType()->getIntegerBitWidth() > 881 SrcSize->getType()->getIntegerBitWidth()) 882 SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType()); 883 else 884 DestSize = Builder.CreateZExt(DestSize, SrcSize->getType()); 885 } 886 887 Value *MemsetLen = 888 Builder.CreateSelect(Builder.CreateICmpULE(DestSize, SrcSize), 889 ConstantInt::getNullValue(DestSize->getType()), 890 Builder.CreateSub(DestSize, SrcSize)); 891 Builder.CreateMemSet(Builder.CreateGEP(Dest, SrcSize), MemSet->getOperand(1), 892 MemsetLen, Align); 893 894 MD->removeInstruction(MemSet); 895 MemSet->eraseFromParent(); 896 return true; 897 } 898 899 /// Transform memcpy to memset when its source was just memset. 900 /// In other words, turn: 901 /// \code 902 /// memset(dst1, c, dst1_size); 903 /// memcpy(dst2, dst1, dst2_size); 904 /// \endcode 905 /// into: 906 /// \code 907 /// memset(dst1, c, dst1_size); 908 /// memset(dst2, c, dst2_size); 909 /// \endcode 910 /// When dst2_size <= dst1_size. 911 /// 912 /// The \p MemCpy must have a Constant length. 913 bool MemCpyOpt::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy, 914 MemSetInst *MemSet) { 915 // This only makes sense on memcpy(..., memset(...), ...). 916 if (MemSet->getRawDest() != MemCpy->getRawSource()) 917 return false; 918 919 ConstantInt *CopySize = cast<ConstantInt>(MemCpy->getLength()); 920 ConstantInt *MemSetSize = dyn_cast<ConstantInt>(MemSet->getLength()); 921 // Make sure the memcpy doesn't read any more than what the memset wrote. 922 // Don't worry about sizes larger than i64. 923 if (!MemSetSize || CopySize->getZExtValue() > MemSetSize->getZExtValue()) 924 return false; 925 926 IRBuilder<> Builder(MemCpy); 927 Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1), 928 CopySize, MemCpy->getAlignment()); 929 return true; 930 } 931 932 /// Perform simplification of memcpy's. If we have memcpy A 933 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite 934 /// B to be a memcpy from X to Z (or potentially a memmove, depending on 935 /// circumstances). This allows later passes to remove the first memcpy 936 /// altogether. 937 bool MemCpyOpt::processMemCpy(MemCpyInst *M) { 938 // We can only optimize non-volatile memcpy's. 939 if (M->isVolatile()) return false; 940 941 // If the source and destination of the memcpy are the same, then zap it. 942 if (M->getSource() == M->getDest()) { 943 MD->removeInstruction(M); 944 M->eraseFromParent(); 945 return false; 946 } 947 948 // If copying from a constant, try to turn the memcpy into a memset. 949 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource())) 950 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 951 if (Value *ByteVal = isBytewiseValue(GV->getInitializer())) { 952 IRBuilder<> Builder(M); 953 Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(), 954 M->getAlignment(), false); 955 MD->removeInstruction(M); 956 M->eraseFromParent(); 957 ++NumCpyToSet; 958 return true; 959 } 960 961 MemDepResult DepInfo = MD->getDependency(M); 962 963 // Try to turn a partially redundant memset + memcpy into 964 // memcpy + smaller memset. We don't need the memcpy size for this. 965 if (DepInfo.isClobber()) 966 if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst())) 967 if (processMemSetMemCpyDependence(M, MDep)) 968 return true; 969 970 // The optimizations after this point require the memcpy size. 971 ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength()); 972 if (!CopySize) return false; 973 974 // There are four possible optimizations we can do for memcpy: 975 // a) memcpy-memcpy xform which exposes redundance for DSE. 976 // b) call-memcpy xform for return slot optimization. 977 // c) memcpy from freshly alloca'd space or space that has just started its 978 // lifetime copies undefined data, and we can therefore eliminate the 979 // memcpy in favor of the data that was already at the destination. 980 // d) memcpy from a just-memset'd source can be turned into memset. 981 if (DepInfo.isClobber()) { 982 if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) { 983 if (performCallSlotOptzn(M, M->getDest(), M->getSource(), 984 CopySize->getZExtValue(), M->getAlignment(), 985 C)) { 986 MD->removeInstruction(M); 987 M->eraseFromParent(); 988 return true; 989 } 990 } 991 } 992 993 MemoryLocation SrcLoc = MemoryLocation::getForSource(M); 994 MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(SrcLoc, true, 995 M, M->getParent()); 996 997 if (SrcDepInfo.isClobber()) { 998 if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst())) 999 return processMemCpyMemCpyDependence(M, MDep); 1000 } else if (SrcDepInfo.isDef()) { 1001 Instruction *I = SrcDepInfo.getInst(); 1002 bool hasUndefContents = false; 1003 1004 if (isa<AllocaInst>(I)) { 1005 hasUndefContents = true; 1006 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1007 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 1008 if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0))) 1009 if (LTSize->getZExtValue() >= CopySize->getZExtValue()) 1010 hasUndefContents = true; 1011 } 1012 1013 if (hasUndefContents) { 1014 MD->removeInstruction(M); 1015 M->eraseFromParent(); 1016 ++NumMemCpyInstr; 1017 return true; 1018 } 1019 } 1020 1021 if (SrcDepInfo.isClobber()) 1022 if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst())) 1023 if (performMemCpyToMemSetOptzn(M, MDep)) { 1024 MD->removeInstruction(M); 1025 M->eraseFromParent(); 1026 ++NumCpyToSet; 1027 return true; 1028 } 1029 1030 return false; 1031 } 1032 1033 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed 1034 /// not to alias. 1035 bool MemCpyOpt::processMemMove(MemMoveInst *M) { 1036 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 1037 1038 if (!TLI->has(LibFunc::memmove)) 1039 return false; 1040 1041 // See if the pointers alias. 1042 if (!AA.isNoAlias(MemoryLocation::getForDest(M), 1043 MemoryLocation::getForSource(M))) 1044 return false; 1045 1046 DEBUG(dbgs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M << "\n"); 1047 1048 // If not, then we know we can transform this. 1049 Module *Mod = M->getParent()->getParent()->getParent(); 1050 Type *ArgTys[3] = { M->getRawDest()->getType(), 1051 M->getRawSource()->getType(), 1052 M->getLength()->getType() }; 1053 M->setCalledFunction(Intrinsic::getDeclaration(Mod, Intrinsic::memcpy, 1054 ArgTys)); 1055 1056 // MemDep may have over conservative information about this instruction, just 1057 // conservatively flush it from the cache. 1058 MD->removeInstruction(M); 1059 1060 ++NumMoveToCpy; 1061 return true; 1062 } 1063 1064 /// This is called on every byval argument in call sites. 1065 bool MemCpyOpt::processByValArgument(CallSite CS, unsigned ArgNo) { 1066 const DataLayout &DL = CS.getCaller()->getParent()->getDataLayout(); 1067 // Find out what feeds this byval argument. 1068 Value *ByValArg = CS.getArgument(ArgNo); 1069 Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType(); 1070 uint64_t ByValSize = DL.getTypeAllocSize(ByValTy); 1071 MemDepResult DepInfo = MD->getPointerDependencyFrom( 1072 MemoryLocation(ByValArg, ByValSize), true, CS.getInstruction(), 1073 CS.getInstruction()->getParent()); 1074 if (!DepInfo.isClobber()) 1075 return false; 1076 1077 // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by 1078 // a memcpy, see if we can byval from the source of the memcpy instead of the 1079 // result. 1080 MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst()); 1081 if (!MDep || MDep->isVolatile() || 1082 ByValArg->stripPointerCasts() != MDep->getDest()) 1083 return false; 1084 1085 // The length of the memcpy must be larger or equal to the size of the byval. 1086 ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength()); 1087 if (!C1 || C1->getValue().getZExtValue() < ByValSize) 1088 return false; 1089 1090 // Get the alignment of the byval. If the call doesn't specify the alignment, 1091 // then it is some target specific value that we can't know. 1092 unsigned ByValAlign = CS.getParamAlignment(ArgNo+1); 1093 if (ByValAlign == 0) return false; 1094 1095 // If it is greater than the memcpy, then we check to see if we can force the 1096 // source of the memcpy to the alignment we need. If we fail, we bail out. 1097 AssumptionCache &AC = 1098 getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 1099 *CS->getParent()->getParent()); 1100 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1101 if (MDep->getAlignment() < ByValAlign && 1102 getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, 1103 CS.getInstruction(), &AC, &DT) < ByValAlign) 1104 return false; 1105 1106 // Verify that the copied-from memory doesn't change in between the memcpy and 1107 // the byval call. 1108 // memcpy(a <- b) 1109 // *b = 42; 1110 // foo(*a) 1111 // It would be invalid to transform the second memcpy into foo(*b). 1112 // 1113 // NOTE: This is conservative, it will stop on any read from the source loc, 1114 // not just the defining memcpy. 1115 MemDepResult SourceDep = 1116 MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false, 1117 CS.getInstruction(), MDep->getParent()); 1118 if (!SourceDep.isClobber() || SourceDep.getInst() != MDep) 1119 return false; 1120 1121 Value *TmpCast = MDep->getSource(); 1122 if (MDep->getSource()->getType() != ByValArg->getType()) 1123 TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(), 1124 "tmpcast", CS.getInstruction()); 1125 1126 DEBUG(dbgs() << "MemCpyOpt: Forwarding memcpy to byval:\n" 1127 << " " << *MDep << "\n" 1128 << " " << *CS.getInstruction() << "\n"); 1129 1130 // Otherwise we're good! Update the byval argument. 1131 CS.setArgument(ArgNo, TmpCast); 1132 ++NumMemCpyInstr; 1133 return true; 1134 } 1135 1136 /// Executes one iteration of MemCpyOpt. 1137 bool MemCpyOpt::iterateOnFunction(Function &F) { 1138 bool MadeChange = false; 1139 1140 // Walk all instruction in the function. 1141 for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) { 1142 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) { 1143 // Avoid invalidating the iterator. 1144 Instruction *I = BI++; 1145 1146 bool RepeatInstruction = false; 1147 1148 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 1149 MadeChange |= processStore(SI, BI); 1150 else if (MemSetInst *M = dyn_cast<MemSetInst>(I)) 1151 RepeatInstruction = processMemSet(M, BI); 1152 else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I)) 1153 RepeatInstruction = processMemCpy(M); 1154 else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I)) 1155 RepeatInstruction = processMemMove(M); 1156 else if (auto CS = CallSite(I)) { 1157 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 1158 if (CS.isByValArgument(i)) 1159 MadeChange |= processByValArgument(CS, i); 1160 } 1161 1162 // Reprocess the instruction if desired. 1163 if (RepeatInstruction) { 1164 if (BI != BB->begin()) --BI; 1165 MadeChange = true; 1166 } 1167 } 1168 } 1169 1170 return MadeChange; 1171 } 1172 1173 /// This is the main transformation entry point for a function. 1174 bool MemCpyOpt::runOnFunction(Function &F) { 1175 if (skipOptnoneFunction(F)) 1176 return false; 1177 1178 bool MadeChange = false; 1179 MD = &getAnalysis<MemoryDependenceAnalysis>(); 1180 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 1181 1182 // If we don't have at least memset and memcpy, there is little point of doing 1183 // anything here. These are required by a freestanding implementation, so if 1184 // even they are disabled, there is no point in trying hard. 1185 if (!TLI->has(LibFunc::memset) || !TLI->has(LibFunc::memcpy)) 1186 return false; 1187 1188 while (1) { 1189 if (!iterateOnFunction(F)) 1190 break; 1191 MadeChange = true; 1192 } 1193 1194 MD = nullptr; 1195 return MadeChange; 1196 } 1197